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Abstract

The production of a microprocessor is one of the most complex and expensive processes
in the industry these days. These high costs are why big companies dedicate most of their
efforts to design verification during the development of these projects. Design verifica-
tion is vital to be able to deliver an error-free design. As the final manufacturing of these
products is expensive, no company can afford to spendmoney on defective designs. Gov-
ernments and associations are investing in research projects with the recent open-source
trends. These allowed entities like the Barcelona Supercomputing Center (BSC) to start
developing their designs. Considering how hard it is for these entities to receive inver-
sions of this type, they have to work hard in design verification.

One of the critical aspects of design verification involves applying the correct stimulus to
the IPs or modules to be verified. The verification engineers must generate a correct but
diverse stimulus to drive the design under test. These stimuli are often achieved using
Universal VerificationMethodology (UVM) and directed testbenches. However, this task
is sometimes not easy, where the design under verification might have a very complex
interface or have a vast range of stimulation possibilities.

In this thesis, a UVM-based testbench is presented for the design verification of a RISC-V
Vector Accelerator. From design specifications to the testbench implementation, this work
explains its structure and the reasoning behind its specific characteristics. This testbench
can provide random stimulus through the interface of the Accelerator and handle the
execution of vector instructions from the RISC-V Vector specifications. Although it is full
of features, we will be focusing on the module interface treatment part of the testbench in
thiswork. Finally, wewill review its strengths andweaknesses and howwe could improve
these.
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Chapter 1

Introduction

Producing a microprocessor or a similar design is a costly and challenging process. Cur-
rently, almost all these designs are done by huge companies because those are the only
entities with resources to afford these processes. These companies have big and diverse
teams devoted to each step of the production process, one of which is the Design Verifi-
cation team.

In the last few years, research entities have started developing their designs thanks to
governments support. With as few chances as researchers have, the teams must assert
that their design is as correct as possible before sending it to the factory. That is why
verification has such enormous relevance in modern-day projects, as it is the primary tool
that engineers have to ensure the correctness of their designs.

In this chapter, Section 1.1 introduces the circumstances and the need for verification that
motivates this master thesis. In Section 1.2, the contributions provided in this master
thesis are presented. Finally, in Section 1.3, the thesis structure is described.

1.1 Motivation
Even if RTL design and CPU microarchitecture are well and widely taught at many de-
grees, it is not so common to dedicate the time it deserves to design verification. Although
it is mandatory to have a verification process in such a project as a core or an accelerator,
the techniques involved in them are almost unknown for most students. As one could ex-
pect, this secrecy is because big companies do not often disclose their tools andworkflows
to the public. As these processes are only performed in massive projects like producing
the newest generation core, they never reach the smallest companies or researchers. The
whole environment produces a cycle where the most prominent companies must train all
the professionals and cannot always hire the desired level of experience.

At the same time, this cycle implies that smaller companies or research entities do not get
access to optimal tools and knowledge commonly used that is standard in the industry,
which means that their projects are behind right from the start. It gets even worse if we
focus on research entities, like the Barcelona Supercomputing Center (BSC), that rely on
government funding to produce their designs and most of the time do not sell them.

9
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For the newly created microarchitecture department at BSC, the chance of participating
in the European Processor Initiative (EPI) was a huge opportunity. In this project, the BSC
takes on the design of aVectorAccelerator integratedwith a scalar core in amore extensive
environment. This accelerator needs to be bug-free and capable of communicating with
the rest of the project modules. Therefore, thorough verification of the IP is mandatory
and necessary in developing the Vector Accelerator.

As soon as this project came across the BSC’s horizon, the corresponding teams started to
get prepared or formed, in the case of the verification team. The experienced verification
engineer is not very affordable and the previous verification experience in the BSC was
almost inexistent, so the newly created team was formed by graduate engineers with no
knowledge in verification. This little experience meant, apart from the delay due to the
team’s formation, that the team had to go through a ramp-up process that gave them the
pointers towhere they should direct the verification process. This delay caused the Vector
Accelerator to be almost implemented by the time the verification efforts started and the
need for a fast and efficient initial implementation.

1.2 Contributions
In this document, we present two main contributions to the verification process of the
Vector Accelerator:

• Design under test interface interaction: using Universal Verification Methodology
(UVM ) and other sources, stimuli must be generated to observe and test as many
capabilities of the design as possible.

• Memory operations emulation: in this project, the interaction with memory is done
through the scalar core, and in simulations without it, the verification team must
handle both the interaction with the core and the emulation of its memory.

The verification of the Vector Accelerator was a team effort and we developed multiple
tools and features for that purpose. However, some members of the team specialized in
certain aspects of the verification infrastructure. Josep Sans and Iván Díaz were in charge
of tweaking a RISC-V binary generator to fit our needs. Mario Rodríguez was mainly
in charge of adapting an Instruction Set Simulator (ISS) to our testbench and creating a
set of Continuous Integration pipelines together with Marc Domínguez. These will be
explained in Subsections 3.4.1, 3.4.2 and 3.4.6, respectively. Together, we developed a
testbench for the Accelerator full of features, among which we find the ones explained in
this document.

Firstly, we will describe how we managed to feed the Vector Accelerator with instruc-
tions to execute and the responses in the interface necessary to complete them. All the
techniques used and their goals and motivations will be explained. In addition, we will
explain how we asserted that we were taking the right approach. This interaction aimed
to stimulate the Vector Accelerator in the broadest way possible, showing and testing all
the design features.

After that, the document will focus on the Vector Accelerator memory operations. These
had to be implemented in a particular way in the verification environment as they involve
much communication with the scalar core. These operations implied significant changes
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to the verification environment and a clever and complex way to follow and check their
results.

Memory operations are one of the critical aspects of the Vector Accelerator, but they are
also one of the most delicate points. That is why they were essential to verify and why
their dedicated part of the environment was fundamental in the verification process.

1.3 Thesis structure
The following chapters describe the contributions to the verification of the project men-
tioned above. The remainder of the document is structured as follows:

• In Chapter 2, there is an introduction to the project along with the necessary back-
ground of RTL design and verification.

• In Chapter 3, EPI Architecture and Design Verification Infrastructure, there are de-
tails on the Vector Accelerator, our design under test, and the whole verification
environment the whole team created.

• Chapter 4 describes the first main contribution, the UVM environment and its stim-
ulus generation, with a particular focus on its interactionwith the VectorAccelerator
interface.

• In Chapter 5, followingwith the interface interaction explanation, there is a descrip-
tion of the peculiarities and insights of the memory operations handling in the en-
vironment.

• Finally, in Chapter 6 and Chapter 7, there is a reflection on how the contributions
helped in the verification process and how they could be improved along with pos-
sible future work and the conclusions.



Chapter 2

Background and Related Work

In this chapter, key microprocessor design and production concepts are introduced and
explained in Section 2.1. A brief introduction to design verification and the EPI project are
provided in Sections 2.2 and 2.3, respectively. In Section 2.4 the RISC-V ISA is presented,
with particular focus on its vector specifications. Finally, pointers to related work and a
description of the previous work in verification in the Barcelona Supercomputing Center
are shown in Section 2.5.

2.1 Processor Production
Since the Intel 4004, the first commercial semiconductor processor, came out in 1971,
many companies and entities have produced their microprocessor designs. Fifty years
and many generations of processors later, making a chip is still a complex task, or even
more, considering designs have grown bigger. Producing a design involves several steps,
from the initial conception and design to its physical manufacturing.

Every stage of this process must be done carefully and accurately to achieve a successful
design. Among these stages, we find the following:

• Specification: In this step, the features and characteristics of the processor are listed
and described. Often underestimated, the specification stage is one of the most crit-
ical steps in producing a design. All details must be specified and everything must
be correctly connected, with no space for ambiguities. Any problem could lead to
issues in the implementation and verification stages, complicating the work across
teams. For example, a poor interface protocol description could lead to a misun-
derstanding between the engineers that would cause a delay in the already tight
production schedule.

• Implementation: Once the specification is complete comes the implementation
phase. The details in the specifications are portrayed in the RTL code, usually
written in the Verilog or VHDL languages. In the beginning, each engineer will
work in a module or set of modules, writing the code and the needed testbenches
to test them quickly. After that, all the modules must be integrated, and all the
engineers will collaborate to connect everything. If many engineers can work

12
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independently in their assigned modules and integrate them easily, the quality of
the specification is proven. This step tends to be the longest, but the quality of the
specifications highly influences this.

• Verification: In the meantime, and with specifications in hand, a verification plan
will be implemented to ensure that the design works as expected. Together with the
specification stage, this step is one of the most important in the process. In it, as in
the implementation one, the quality of the specifications is asserted. The verifica-
tion engineer needs these to be complete and exact so that he or she can test all the
necessary features and develop an ad-hoc environment to verify the design. This
environment and all the verification features included in the plan must follow the
specifications and a misunderstanding could cause the whole verification effort to
be useless.

• Fabrication: After a design is verified, it will be sent to the factory for its manufac-
turing. This step is the most expensive one, as producing a physical chip is costly.
Therefore, the designmust be as perfect as possible before this stage. Very few com-
panies or entities in theworld can afford to produce a processor, but almost none can
afford to produce a deficient processor. Once the processors are received, the engi-
neers will perform further physical tests to ensure that the designworks as expected
in the real world.

In the previous list there are many missing steps, which are shown in Figure 2.1.

Figure 2.1: Design production flow [7]

Even if all engineers have improved these steps and have learned better andmore efficient
ways of producing their designs, the expensive nature of the fabrication of a processor still
makes it a challenging task. Specialized teams for each step of the process collaboratewith
the rest to successfully carry out the production of the design.

Thewhole process is costly and almost no entities can afford towastemoney on fabricating
deficient processors. Hence, companies typically dedicate a big part of their project funds
to verification. A good verification process ensures that the design sent to the factory is
correct and follows the corresponding specifications.

2.2 Processor Verification
Design verification is the set of techniques used to assert that a design works as expected.
These include tasks like creating a simulation environment, finding ways to check the
behaviour of the design or setting up automatic testing tools. As stated, verification is
vital to avoid producing a deficient design. However, it is also beneficial to help the design
team ensure that everything specified has been implemented as expected.

Initially, the verification strategy was custom andmade up for every project. For example,
for the Intel 4004, Federico Faggin says that he “had to figure out and create a random-
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logic design methodology for silicon gate technology that did not yet exist” [14]. He
worked under a tight schedule and had to do the design and verification tasks simul-
taneously. However, after decades of refining the verification process, it is much more
standard and straight than then. Even if each design requires verification planning and
thinking before the process starts, we have tools and previous work that leads us to at
least a reasonable verification process.

Strangely enough, the basic methodology has not changed that much since the first Intel
4004 was sold. Random testing, if well implemented, is still one of the best ways of verify-
ing a design. Random stimulus, together with many other techniques, allows verification
teams across the world to assert the correct behaviour of their designs. Even though each
process is different, their verification processes resemblemany aspects. For example, they
all usually have a testbench or similar, where the design unit is instantiated and through
which stimuli are provided. Additionally, extra features are added to this testbench to
check the correctness of the behaviour (like Scoreboards or Assertions) and to measure the
quality of the verification process (Coverage). More recently, automatic testing pipelines
have been implemented to increase the number of situations to which the design under
test (DUT) has been exposed (Continuous Integration (CI)). These techniques will be de-
scribed in the following sections of this document.

2.2.1 UVM
Universal Verification Methodology (UVM) [2][17] is a standardized methodology for
verifying RTL designs. Based on System Verilog [10] and standardized by Accelera, it
inherits many ideas from Open Verification Methodology (OVM).

The structure of UVM testbenchesmakes it easy to support constrained random stimulus,
which is one of their essential parts, as it enables the users to generate awide range of cases
to test a design. In addition, UVM is thought to be re-usable and extendable. For that, it
takes advantage of Object-Oriented Programming (OOP).

Figure 2.2: UVM Inheritance Diagram [17]
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All of the types of classes in UVM inherit from a base class called UVM Object. In Figure
2.2, from the UVMCookbook, all the basic children classes fromUVMObject can be seen.
This way, the main classes that extend from UVM Object are: UVM Component, UVM
Sequence Item and UVM Sequence.

In summary, UVMSequences produce Sequence Items following a determined or random
pattern, which UVM Components use to communicate data between them. Generally, a
UVM testbench strength in producing valid and complete stimulus comes with a proper
Sequence implementation.

Class instances are created and destroyed as in many other OOP utilities or languages.
In the case of UVM, Sequences are requested Sequence Items (also called transactions), so
they create an instance of the class Sequence Item and randomize it with the corresponding
function, particular of the class. By extending the base Sequence Item class, one can create
a transaction class that fits the needs of its testbench. In addition, the base class methods
can be overridden to customize the new one.

In this way, one can create a transaction class that contains different values and has a
custom randomize method that sets these to random, using UVM standard methods or
custom values. This transaction is created and randomized inside a Sequence that will
send it to the component that requested it through the Sequence methods.

Furthermore, one could have more than one custom transaction type and Sequence, ran-
domizing what type of transaction it creates at every request. This feature makes it pos-
sible to introduce random stimuli in a directed test.

This is possible thanks to polymorphism and OOP, which eases reusability and future
environment extensions. For example, one could create a custom “base class” of many
of the UVM Objects needed to verify a design. Later in that same project, the engineer
could extend his class to create a custom dedicated case. Additionally, later in some other
project, the engineer could use that same base class, if generic enough, to extend it and
create a custom dedicated class for the other project.

Apart fromordinary objects, polymorphism is used inUVMComponents, which typically
compose a UVM testbench. These perform actions related to the testbench and have their
functionalities. For example, some components create Sequences (and transactions) and
others communicate with the DUT.

UVM Components make use of what is called UVM Phases. These are used to have a
consistent testbench execution flow and in them, big steps are executed in order. There
are three groups of phases:

• Build phases: where the testbench is configured and constructed.

• Run-time phases: where the testbench runs the test case.

• Clean-up phases: where the results of the run-time phases are collected and re-
ported.

The complete set of phases and the group that they belong to can be seen in Figure 2.3.
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Figure 2.3: UVM Phases [17]

The UVM Component base class contains virtual methods that are called during each
phase. When extending from this base class, the engineer can choose whether to im-
plement these methods or not. If so, the component will take part in the corresponding
phase.

For example, one component might need to initialize the instance of another one in the
build phase. To do so, it must have its virtual method build_phase implemented. Oth-
erwise, the component will do nothing in phase. It is worth noting that all components
execute the specific phases in the same time window. That means that if two components
implement the run phase, they will execute them simultaneously.

Using these phases allows UVM Components to be developed independently but still
cooperate and execute their tasks with the certainty that things they depend on are ready
as they were processed in previous phases.

In addition to the previous and to ease the use of polymorphism, UVM has the UVM Fac-
tory. Its purpose is to enable an object of one type to be substituted with an object of a
derived type without changing the testbench structure or even the testbench code. This
replacement is called “override” by either instance or type. This functionality is conve-
nient for changing Sequence behaviour or replacing one componentwith another. Certain
coding conventions must be followed to take advantage of the factory, where the compo-
nents or objects must be registered in it, default constructors must be added to these and
they have to be created in a particular way.

In Figure 2.4 we have an overview of a simple UVM environment. In it, we can see the
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Figure 2.4: UVM Testbench Overview

main UVM Components that are almost essential to building a UVM testbench. These
are:

• Test: It contains all the components of the UVM environment. In essence, the test
is a wrapper for the environment. A UVM testbench could have more than one,
being able to switch between very different environments by just instantiating one
or another test.

• Environment: Instantiated inside the UVM Test, the environment is where all the
interacting UVM Components are instantiated and connected. For example, the
different communicating components are connected inside it using communication
ports.

• Agent: The agent contains all the UVMComponents that generate or receive values
from the DUT. These are the following:

– Sequencer: Is in charge of obtaining the transactions from the Sequences and
sending them to the driver through the ports.

– Driver: Requests for data transactions to the Sequencer and stimulates theDUT
with the corresponding values after receiving them.

– Monitor: Observes the DUT interface or values and creates transactions. These
could be incoming or outgoing values from the DUT and will later be used to
react or create different driver or sequence values.

• Coverage: Additionally, UVM can be used to record coverage numbers. Coverage,
as will be explained in further sections, is used in design verification to track how
many possible values have been observed in the environment, both as inputs and
outputs of the DUT.

TheUVMTest is run from theUVMTopmodule. This topmodule also instantiates the test
harness, which is the entity containing the DUT connected to a SystemVerilog interface.
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This interface is then declared in theUVMdatabase, a utility of UVM inwhich one can de-
clare objects to be used and communicate between different points of the testbench. Using
this UVM database, this virtual interface can be accessed in the Driver and the Monitor,
amongst others, as seen in Figure 2.4.

Asmentioned before, one could create a generic UVMDriver classwith themainmethods
and attributes and extend it to a custom class adapted to the DUT connected to and with
the type of transactions required. This makes it faster to build whole environments for
multiplemodules or projects. There are tools such as Easier UVM[13] that provide empty
testbenches adapted to the DUT that the user specifies.

A typical use case is creating a base test class and then extending it to other child classes
that can be switched easily in the testbench, stimulating the DUT very differently by just
instantiating one or another UVM test. These tests could be, for instance, a random one in
which all componentswork randomly or a directed one, where specific sequences produce
controlled stimulus. These different tests could also use the same UVM Components but
change the generation of values.

2.3 European Processor Initiative
In recent years, governments and other entities have been investing in different research
areas, one of them being microprocessor design and production. This is the case of the
European Processor Initiative (EPI). In this project, funded by the European Commis-
sion, many research entities and companies collaborate to design and build a new family
of European low-power and high-performance processors for various applications like
supercomputers, Big Data, automotive or Machine Learning. These processors will use
the open-source Instruction Set Architecture (ISA) RISC-V, explained in Section 2.4. This
and more details will be further discussed in the following sections, but the fact that it is
an open-source ISA favours the proliferation of these projects. Without setting these cor-
rectly, vector instructions may be executed differently depending on the architecture and
the code executed. If used well, this is one of the most attractive features of the RISC-V
vector extension [23]. Many entities cooperate to take this project to terms and each of
them has its tasks and responsibilities. For example, the BSC is mainly in charge of pro-
ducing aVectorAccelerator that implements the recent vector extension of theRISC-V ISA.
Similarly, other companies or entities design scalar cores, floating-point units and other
accelerators. In the end, all partners combine their efforts and collaborate to integrate the
different units.

Considering the costs of producing a design and how hard it is for a research project
to start and be funded, verification takes an even more significant part and relevance.
Therefore, all partners must deliver their units thoroughly verified and a narrow margin
can be given to them to fail post-integration. If some of the units failed or were deficient,
it would be a catastrophe and it would probably be preferable to leave it out of the final
tape out. An integration failure would be a considerable drawback for the project and the
responsible entity.

The module itself and the interface with the rest of the design must be verified. The in-
terconnections of the module are one of the crucial and most essential parts of the unit.
They must be a collaborative effort with the corresponding colliding partners to ensure
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the perfect functioning of the interfaces. In this document, we will focus on the interface
verification of the Vector Accelerator, among others, which involves the connection to a
scalar core.

2.4 RISC-V
RISC-V is an open-source Instruction Set Architecture (ISA) [22] based on reduced in-
struction set computer (RISC) principles. As said, the main difference between RISC-V
and other ISA is its open-source license, which means that using it for producing a design
does not require paying a fee.

Since its appearance in University of California Berkeley in the year 2010, it has been used
in several projects to produce open-source designs. Being open-source is especially in-
teresting for research and academic entities, which cannot sometimes afford to pay for
other ISAs. With already ten years of history, the RISC-V ISA is at its best moment and
has become a popular choice even for big companies when looking for an ISA to produce
their designs. Early 2021, Huawei has announced the development of its first RISC-V de-
sign, the HiSilicon Hi3861 development board [19]. Giant e-commerce company Alibaba
has also recently announced that its Xuantie 910 processor aimed at cloud servers would
be using a RISC-V core [46]. Previous to that, storage drives companies Western Digital
and Seagate had announced that they would be producing RISC-V processors to control
storage and security of data [8].

RISC-Vhas established itself as amodular ISA,whichmeans that it has a base specification
to be implemented and many optional extensions. The base specifications are called rv32
and rv64 depending on the size of registers and buses in the design.

Among the ratifiedRISC-V extensions [21] that can be implementedwefind the following:

• Multiplication (M): which contains the scalar multiplication and division instruc-
tions.

• Atomic (A): which contains the atomic memory operations, used to operate safely
on values inside memory when communication between different cores is required.

• Floating Point (F): specifies the single-precision floating-point operations.

• Double Precision Floating Point (D): which specifies the double-precision floating-
point operations

• Quad Precision Floating Point (Q): which specifies the quad-precision floating-
point operations

• Compressed (C): contains the compressed set of instructions, encoded in 16 bits.

• Vector (V): contains the specifications for vector-processing operations and
architecture-specific details.

Most of thesewill be implemented in the EPI project. However, wewill focus on theVector
Extension, which is the part of the RISC-V ISA that the Vector Accelerator developed by
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the Barcelona Supercomputing Center is implementing. More details on the RISC-V ISA
can be found in their website and their specification documents [5] [6].

2.4.1 RISC-V Vector Extension
Vectors could be described as elements of the same type arranged in the same structure.
Typically these are used to operate on big groups of data to which one has to perform
the same operation. For example, a vector ADD immediate instruction can be used to
add the same immediate value to a vector. This type of instruction is typically used while
operating with media like video and audio. Nowadays, most CPU designs contain Vector
Accelerators that are exclusively in charge of implementing vector instructions.

Vector processors allow operating on multiple data with one instruction because oper-
ations ensure that there are no dependencies within a vector [34]. Vector instructions
reduce fetch bandwidth requirements as each of them generates multiple operations. Ad-
ditionally, these operations follow a very regular execution pattern, which eliminates un-
necessary delays in the execution and allows removing explicit code loops, which means
fewer branches in the execution and potentially fewer delays.

This type of processor is typically divided into lanes. Each lane contains a set of elements
of the vector and one or more functional units, which are used to operate on the elements.
This way, multiple elements of the vector can be operated on simultaneously, one in each
lane. The elements are stored in vector registers, often interleaved in the different lanes.
When a vector operation starts, the lane retrieves elements successively from the vector
register and performs the execution pipeline for the instruction for each of them until it
potentially saves the resulting element in the vector register again.

Classic Vector architectures required the programmer or compiler tomake data structures
in the code fit the size of the structure in the hardware. This is one of the disadvantages
of standard Vector processors, where they would only work efficiently if parallelism is
regular.

In addition, in typical Vector or SIMD extensions, a change in the size of the elements
in the code forces a change in the instruction set to expand the vector registers (in the
case of x86, from 64-bit MMX registers to 128-bit Streaming SIMD Extensions (SSE), to
256-bit Advanced Vector Extensions (AVX), and AVX-512 [11]). The result is a growing
instruction set and a need to port previously working code to the new instructions.

In the RISC-V Vector extension, rather than fixing the vector length in the architecture,
the vsetvl instruction can be used to vary both the vector length and element width of
the registers. This way, operations are agnostic to architecture and implementations. This
approachmakes it easier to be compatible with a broader range of vector processing units.

The vector extension introduces 32 new vector registers, which are used in the vector units
to do their operations. In addition, it presents new Control Status Registers (CSR) that are
used to configure the execution of vector instructions. The most important ones are:

• Vector length (VL): which indicates vector elements used in each vector instruction.

• Vector Type (vtype): which contains other configuration fields such as:
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– Standard Element Width (vsew): specifies the length of the elements in the
vector. It can take values corresponding to 8, 16, 32, 64 and 128 bits.

– Vector register group multiplier (vlmul): specifies the number of vectors to
operate with for each instruction. It can take values corresponding to 1, 2, 4
and 8.

• Vector start position (vstart): indicates the element from which the operation must
be performed on the vector register.

There exist more CSRs than the previous ones that control how particular instructions are
executed and other relevant features of the vector extension. Without setting these cor-
rectly, vector instructions may be executed differently depending on the architecture and
code. If used well, this is one of the most exciting features of the RISC-V vector extension.

At the start of the EPI project, the vector extension was in a pre-release state, with version
0.7.1. Therefore, the partners decided to stick to it until the end of the project and the
Vector Accelerator implemented it [23]. In the later stages of the project, version 1.0 [24]
of the vector extension was released, which the Vector Accelerator will use in the future.

2.5 Related Work
When looking at previous work in design verification, there is not much disclosure for the
verification of decoupled accelerators. Big companies tend to be hermetic and do not de-
tail their work. They use UVM, formal techniques and continuous integration pipelines,
but they do not release any code or documentation. This secrecy makes it hard for new-
comers to learn the “industry standard way to verify designs”.

Therefore, we must rely on the few design verification efforts done in open source hard-
ware projects, where there is not much consensus. Every team interprets the verification
process differently, coming up with ideas and flows that put together the techniques that
must be used. However, these teams often publish articles and write documentation on
how they worked andwhat they used or not during the verification process. In this sense,
we have examples like theOpentitan [32] project from lowRISC [30], theOpenHWGroup
projects [18], and the rocket-chip [9] and Syntacore SCR1 [44] projects. All these are open
source projects that aim to produce a RISC-V core (among other designs).

Opentitan is a massive project with exhaustive documentation. They have an entire site
with information related to the project, but they also explain how they generate this in-
formation and provide pointers to all the tools they used. Additionally, this site contains
a dedicated verification section with clear and detailed explanations of their verification
process features, from which we took inspiration.

In Opentitan they developed a whole integrated chip containing, among other IPs, the
RISC-V Ibex [29] core. For the whole design, they developed multiple verification tools.
They created testbenches, test plans for their IPs and multiple scripts that automatically
create from UVM testbenches to register models to verify the RISC-V CSRs.

They targeted the design in three ways; IP Level, Core level and Chip level, in which they
verify all the IPs integrated with the core. For each of these levels, they developed dedi-



Chapter 2. Background and Related Work page 22

cated UVM testbenches. Their core testbench, for example, runs binaries in co-simulation
with an Instruction Set Simulator (ISS), to which then they compare the execution trace
logs to determine whether the DUT functionality was correct or not. The rest are very IP
or module-specific testbenches that use features that range from UVM to memory mod-
els, depending on the DUT. The core level testbench resembles in many aspects, like ISS
co-simulation, what we have done with the Vector Accelerator and it is much more rele-
vant for this work. However, the IP or module level demands a large amount of resources
as it involves creating a testbench for each submodule of the Accelerator, which we could
not afford due to lack of time and people.

In addition to all the previous points, they implemented functional coverage and asser-
tions for their modules. All this is explained in the design verification methodology page
of the Opentitan site [28].

The other big source of data is the OpenHW Group. This is an organization composed
of multiple contributors where hardware and software designers collaborate to develop
open-source cores, related IP, tools and software. They are making considerable efforts
to open-source as much information and code as possible to help create open-source IPs.
The Barcelona Supercomputing Center is a member of the group. In their own words:
“OpenHW provides an infrastructure for hosting high-quality open-source HW develop-
ments in line with industry best practices” [18].

They have multiple parallel projects, but it is of particular interest for this thesis the ver-
ification efforts performed on the CORE-V family of RISC-V cores. These are a collection
of open-source RISC-V cores (such as RI5CY [36] or Ariane [27]) to which they execute
industrial grade verification. All the code is in the same Github repository [18], which to
begin with, makes it very handy to access their resources. Then, inside each core folder,
the structure is clear; they have separate folders for the modules related to the DUT and
the modules related to the testbenches.

For each core, they have a massive UVM testbench that contains assertions and functional
coverage. In these testbenches, they generate the instructions that the core will be exe-
cuting and check the results that it produced comparing to ovpsim [20], an Instruction
Set Simulator developed by Imperas. All these are features that we have also adopted in
our testbench, from co-simulation with an ISS, as explained, to checking specific proper-
ties with assertions and counting coverage, so these are valuable references for the work
explained in this thesis.

Another interesting feature is the RISC-V Formal Interface [43]. This is an interface that
can be potentially connected to any RISC-V scalar core, using certain signals that char-
acterize the execution of an instruction. The model will then determine its result after
detecting which instruction is being executed and compare it with the one in the core.
This can speed up the initial stages of the verification process of many designs, as the
engineers must only find the necessary signals and connect the formal interface to these.
All this and more information is provided in the CV32E40X User Manual [12] and the
CORE-V Verification Strategy [33] pages.

Finally, the rocket-chip and SCR1 projects, even though they have simulation environ-
ments, have more insufficient verification documentation. We may only find pointers to
external repositories with tests used to stimulate the core and how to run them, but no
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actual description of their environments is provided. In both cases, their repositories only
contain testbenches on which they instantiate the core and provide instructions to it read-
ing from amemory that has previously been loadedwith the binary to execute. It is worth
noting that these projects are usually made up of different partners and contributors so
that this documentation may be distributed between the separate repositories.

As seen, what all these projects have in common is that they provide a complex simulation
environment for their designs. These execute a test and stimulate the design to collect the
results later and check their correctness.

The Barcelona Supercomputing Center had previously produced a few designs, but no
similar environment was developed. The previous project was the preDRAC [4] tape
out, a RISC-V 5-stage in-order core. This design was tested using random binaries gen-
erated with a RISC-V random binary generator, riscv-torture [37], loaded in a RAM. At
the end of these tests, contents of the registers were dumped into this RAM using store
instructions and then compared with a reference model. Additionally, in the later stages
of the project, this tool was improved and extended to provide more information to the
engineers, displaying the values resulting from each independent instruction andmaking
it easy to debug possible errors in the design.

Even if this is a clever way of building an environment andwas good enough to findmany
bugs in the design, it is not the standard way of implementing a verification environment.
UVM is typically in the centre of these, and randomness is a critical factor for the proper
verification of a design. It is worth noting that no dedicated verification team existed in
the BSC at the time, which means that both the RTL design and the testing environment
were developed simultaneously and by the same engineers for the preDRAC tapeout.
Nevertheless, this vast effort resulted in a mostly successful tape out. Still, it showed the
need for a dedicated verification team, which was formed shortly after the design was
sent for production.



Chapter 3

EPAC Architecture and DV
Infrastructure

This chapter will focus on the closest background, the design under test and a summary
of the full verification environment. In Section 3.1 we will describe the EPAC Architec-
ture. Then, the Vector Accelerator interface, OVI, and its architecture, will be explained
in Sections 3.2 and 3.3, respectively. Finally, we will have a short description of the whole
verification environment for the Vector Accelerator that we developed in Section 3.4.

3.1 EPAC Architecture
As said in Section 2.3, the EPI project comprises multiple partners, each with its module
or purpose. The resulting chip of the project is called EPAC (European Processor Accel-
erators). This chip contains four vector-processing micro-tiles composed of an Avispado
RISC-V core, designed by SemiDynamics, and a vector processing unit designed by the
Barcelona Supercomputing Center and the University of Zagreb.

Each tile also contains a HomeNode and L2 cache, designed by Chalmers and FORTH. In
addition, the chip contains a Stencil and Tensor accelerator (STX), designed by Fraunhofer
IIS, ITWM and ETH Zürich, and a variable precision processor (VRP) designed by CEA
LIST. These tiles and accelerators are connected through a high-speed network on chip
(NOC) and SERDES technology from EXTOLL.

The EPAC chip integration in GLOBALFOUNDRIES 22FDX low-power technology is led
by Fraunhofer IIS. The architecture above can be seen in Figure 3.1, in which we can see
all the accelerators and tiles along with the NOC. Additionally, the EPAC is integrated
and evaluated in the FPGA-based board designed by FORTH, E4 and the University of
Zagreb.

In around two years, the different partners have developed and verified this whole struc-
ture. In the second half of 2021, the chip has been taped out, marking the end of the
project’s first phase. This tapeout took the name of EPAC 1.0 [1] and in Figure 3.2 we can
see the layout with 25 mm2 in GF 22FDX technology. The figure shows the area distribu-
tion between the tiles and the rest of the accelerators.

24
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Figure 3.1: EPAC Architecture Diagram [35]

Figure 3.2: EPAC first tape out [1]

These tiles are the ones composed, as seen in previous images, of one Avispado core and
one Vector Accelerator. We developed the accelerator in the Barcelona Supercomputing
Center, while Semidynamics developed theAvispadoRISC-V scalar core. Aswell as in the
rest of the design, communication between two modules developed by different partners
was vital for success and one of the critical parts of the chip. To communicate these two
IPs (intellectual properties), the different partners decided to use Open Vector Interface
(OVI).
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3.2 Open Vector Interface
This interface was released and open-sourced by Semidynamics [41] to connect Vector
Units to their cores. OVI eases the collaboration between the entities and helps focus
only on the computation capabilities of the module one is developing. This is achieved
by providing a specified interface to which the module must adapt instead of coming
up with it. In its Github repository, one may find the specifications document for this
interface [40].

Figure 3.3: Open Vector Interface buses description

As seen in Figure 3.3, OVI is divided into multiple sub-interfaces. These are the Issue,
Dispatch, Completed, Memop, Load, Store and Mask Idx sub-interfaces. Together, they
send instructions and meta-data to execute them to the Vector Unit connected to the core.
Each sub-interface is in charge of the following:

• Issue: Through this sub-interface, the core sends the Vector Accelerator the instruc-
tions and the necessary data for them. This sub-interface also has a credit system
through which the Vector Unit controls how many instructions can be issued. Once
the Vector Unit has treated (not necessarily executed) the incoming instructions,
it will return a credit. If the core sends instructions non-stop without receiving a
credit, it will have to stop sending them once it runs out of credits.

• Dispatch: All instructions must be seniored to finish execution or killed through this
sub-interface. The Dispatch sub-interface is necessary due to the possibility of hav-
ing an out-of-order core connected, which may discard already issued instructions.
In addition, memory exceptions can cause instructions to fail execution and force
the core to kill the following instructions.

• Completed: When the Vector Unit finishes the execution of an instruction, it will
notify the core using the signals inside this bus. Along with this notification, the
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buses may contain results and other meta-data.

• Memop: Previously issuedmemory instructions will start and finish their operation
through the interface using this sub-interface.

• Load: If a load memory operation starts, the core will send the corresponding data
and meta-data using this sub-interface. This meta-data includes a mask and a bus
called seq id that specifies where the valid elements can be found inside the data.

• Store: If a store memory operation starts, the Vector Unit will use this sub-interface
to send the corresponding data. This sub-interface uses a similar credit system to
the one used by the Issue one, but it is the core now providing the credits instead of
the Vector Unit.

• Mask Idx: If a maskedmemory operation starts, the Vector Unit will send themasks
using this sub-interface. Indexed memory operations, usually called scatter and
gather, also make use of the buses inside this group. The Mask Idx sub-interface
also uses credits the same way as the Store one.

Not all cases were explained in the previous list but will be run down in depth in the
following sections as these complicate the verification environment implementation.

As seen, many of these sub-interfaces may be used together to execute only one instruc-
tion. For example, if we wanted to execute a masked vector load, we would issue the load
instruction through the Issue sub-interface and then confirm its execution using the Dis-
patch sub-interface. Afterwards, wewould start and finish its memory operation through
the Memop one, send the masks using the Mask Idx one, send the memory data through
the Load one and communicate its ending through the Completed sub-interface.

Therefore, all these sub-interfaces are connected and must be used appropriately. Al-
though the whole verification environment and process will be described, this work fo-
cuses mainly on the stimulus and verification of the OVI interface, because as can be seen,
it carries many difficulties.

3.3 Vector Accelerator Architecture
In our case, the Vector Accelerator [15] is our design under test (DUT). This work and the
whole verification process concerns this Vector Processing Unit, which we will call VPU
from this point on. In the EPAC architecture, each tile connected to the NOC has one VPU
exclusively dedicated to executing vector instructions.

Our VPU supports 64 and 32-bit floating-point vector operations and 64, 32, 16 and 8-bit
integer vector operations. It has 32 logical and 40 physical vector registers. With these, the
VPU can handle vectors up to a maximum vector length of 256 elements of 64 bits each
(16Kb in total). The VPU is connected to the scalar core through the OVI, as explained in
Sections 3.1 and 3.2. Themodule that first receives the instructions, connected to the issue
sub-interface, is the Pre IssueQueue, which controls the credit system of the sub-interface.

Once the instructions can be executed and after being decoded, these will be sent to the
Store or Load Management Unit or the Vector Instructions Queue. The first two control
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Figure 3.4: VPU Overview

the execution of memory instructions, while the Vector Instructions Queue provides the
arithmetic ones to the Vector Lanes.

As seen in Figure 3.4, the VPU is composed of eight vector lanes. A vector lane is mainly
in charge of processing vector arithmetic instructions. Each lane also has access and a
part of the vector register file, used in almost every vector instruction. These lanes are
interconnected thanks to the Inter-lane Ring.

Dividing the execution units into different vector lanes allows the operations to be per-
formed concurrently. This parallelization is achieved by slicing the vector register file,
which means that each lane contains only a portion of the vectors. Figure 3.5 shows the
distribution of the elements of a vector in each slice of the vector register file.

In the figure, we can see the eight lanes. In every lane there are five banks with 256 reg-
isters of 64 bits each. The mapping of vector register elements is shown in the image. For
the first vector (v0), element 0 is in lane 0; element 1 is in lane one and so on. This in-
creases the throughput, as all lanes could be operating concurrently for the same vector
to compute a vector instruction.

In addition, this parallel capability is also exploited in writing in the registers. It perfectly
suits the data buses of the load and store sub-interfaces fromOVI, which are 512 bits wide,
meaning that from each transaction with the scalar core, potentially all the elements sent
or received can be treated at once.

As seen in Figure 3.4, memory operations are treated in the corresponding Load or Store
Management unit. Loadmemory operations have a limited out-of-order capability, as the
scalar core could send some elements sooner than it should. This happens, for example,
when it has a longer memory latency to access a previous element. This particularity of
OVI is supported andhandled in theVPU. Therefore, simulating all the possibleOVI inter-
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Figure 3.5: Vector Register File diagram [15]

face behaviours along with these semi-random events complicate the verification process
of the VPU.

3.4 Verification environment
We first thought we could do block-level verification when planning the verification en-
vironment. That is, creating a verification environment for each module of the VPU. We
came up with this idea from a mixture of the little information we had from the indus-
try. However, big companies have big verification teams and the resources to take these
projects to terms. In our case, we were four very junior verification engineers with no
experience who had just learned what UVM was, so we soon saw that this strategy was
unfeasible. In any case, developing the environments for some of these modules gave us
the chance to make our first steps in UVM.

In the end, though, we decided to go directly for a full big UVM testbench for the whole
design. Although it seemed pretty scary initially, this type of environment would help us
verify the whole design at once, which would have taken months with the other strategy.
We needed to emulate the OVI interface, such as the scalar core, to stimulate the whole
design. For that purpose, as we had multiple "independent" sub-interfaces, we thought
it would be interesting to have a sub-interface divided UVM testbench. These divided
agents could all extend from a base agent class, making its development more manage-
able.

The UVM testbench and all of its features will be explained in detail in Chapters 4 and 5,
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as this work mainly focuses on this part of the verification process.

3.4.1 Riscv-dv
Even if we planned on producing random stimulus, generating a valid instruction for the
VPU would mean creating a complex set of constraints for the transaction. To solve this
issue, we decided to go with an instruction generator.

After some search, we found aRISC-V instruction generator that supported the generation
of vector instructions, Riscv-dv [16]. Riscv-dv is a System Verilog and UVM based open-
source random instruction generator developed by Google.

However, we needed to perform several additions to the tool to use the generator. Among
these, we find:

• Generation of vsetvl instructions through the code. The vsetvl instructions are used
to change the element width and vector length of the registers during the execution
of a binary. In addition to the prior, modifications in the generation of memory
operations were done to allow the change of element width and vector length.

• An option was added to select the initialization pattern of the data pages of the
generated binary.

• Constraining the memory addresses accessed by the binary to avoid memory ex-
ceptions, especially for vector memory indexed instructions, where some addresses
could cause page or access fault exceptions.

• Adapting the generator to the 0.7.1 RISC-V Vector specifications.

Additionally, we had to blacklist different instructions in some stages of the project. This
was either due to the VPU not supporting some instructions, because somemodules were
still under development, or because specific features needed to be tested and we needed
a cleaner test.

The tool comes with a script to make it easier to execute. It offers capabilities like gener-
ating tests for different target architectures or generating multiple tests in only one com-
mand. When we run the generator, we obtain an assembly code, which becomes a binary
after being compiled. This binary contains different random instructions, which we can
feed to the VPU using the UVM and other environment features explained in the follow-
ing sections.

3.4.2 Spike ISS
With the features explained so far, we have the stimulus of the DUT and its generation.
However, we need to check that the responses of the VPU are correct. This is often done
in design verification using a reference model, which can be developed specifically for the
project or borrowed from previous ones.

In addition to this, while we were developing the environment, we thought it would be
more interesting to generate scalar instructions with Riscv-dv to simulate better the actual
case with the scalar core. The VPU would be connected to a core that would only send
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the vector instructions while executing the scalar ones in the real environment.

Although this might seem inherent to the VPU, scalar instructions may modify values
used in vector instructions. For instance, we have scalar to vector instructions, where a
value in a scalar register is used for modifying vector registers, and memory instructions,
where the memory space is shared between the scalar core and the VPU.

If we were not executing scalar instructions between the vector ones, the source values for
the instructions mentioned above would always be the same, leading to possible missing
cases or straight unreal situations.

For these two purposes, executing scalar instructions (acting as scalar core in general) and
as a reference model for vector instructions, we decided that we needed an Instruction
Set Simulator (ISS). These tools can execute binaries of the corresponding ISA and act
as a design capable of interpreting their instructions. In the Barcelona Supercomputing
Center, we have had previous experience with Spike [25], a RISC-V ISS, and we knew it
satisfied our needs, so we decided to go with it.

However, we needed to perform some modifications and additions to use Spike as we
wanted. These are the following:

• To call Spike from System Verilog, we defined functions that use Direct Program-
ming Interface (DPI). This is necessary because Spike had to be compiled as a C++
library to be included. The main DPI functions are:

– Method that resumes the Spike simulation until a vector instruction is found.
The instruction is then executed and the reference results are returned to the
UVM. The instruction is issued in the VPU and when it completes, the DUT
results are compared against the Spike ones.

– Function to set the result of specific instructions into Spike. This was necessary
to avoid execution divergence in unordered floating-point reductions, as the
VPU method for performing this operation was different from the Spike one,
while both being correct. Even if we found a way to check that both results
were correct, Spike would have a different value in its registers, which may
later be used in another instruction, resulting in a mismatch. To avoid this, we
inserted the result from the VPU into Spike.

– Functions to read from Spike memory, used in vector load instructions to pro-
vide the same data as Spike.

All the methods above allow Spike to act as the scalar core, providing instructions and
the tools to emulate a real environment. However, the version of Spike that we had at
the time was not the exact ISA version that we needed, which was the 0.7.1 of the RISC-V
Vector Specification.

To tackle this issue, we had to introduce some modifications in the actual Spike imple-
mentation, which are detailed below:

• Change in the implementation of the vector tail zeroing, replaced by a different pol-
icy after version 0.7.1.
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• Change in the decoding of some instructions to follow the 0.7.1 specification.

• Change in the requirements of the Vector Context Status (VCS) fields in themstatus
Control Status Registers (CSRs).

Once Spike fitted our needs perfectly, it allowed the execution of all kinds of instructions
between Spike and the VPU. In addition, we could obtain the results of the vector instruc-
tions from both sources and compare them to assert that the VPU worked as expected, as
will be explained in Subsection 3.4.3.

3.4.3 UVM Scoreboard
The UVM Scoreboard is an optional UVM Component commonly used to ensure that the
DUT works correctly. It is often composed of two main parts, the predictor and the com-
parator. The first obtains the expected outputs from the DUT resulting from the inputs it
receives: a reference model. Usually, this reference model is written in a different, higher-
level language than the DUT to make sure the implementation is different enough and
correct to be used as a reference. On the other hand, the comparator takes the results
from the predictor and the DUT and compares them to decide whether the DUT worked
as expected or not.

In summary, the Scoreboard receives the same inputs as theDUT and compares the results
it produces to those that the DUT produced. The UVM Scoreboard details can be seen in
Figure 3.6.

Figure 3.6: Typical UVM Scoreboard structure and connections, based on [47]

This figure shows that the UVM Scoreboard is typically instantiated in the UVMEnviron-
ment component. We can see that the image has two agents, one active and one passive.
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These stimulate and observe the DUT, respectively.

The active agent also contains a monitor in charge of recording the interface’s state when
new stimuli are being sent. This is how the Scoreboard’s predictor gets the input values,
in this case, the "Reference Model" box in the figure. The reference model will generate
the corresponding expected outputs from the DUT and send them to the "Checker/Com-
parator" component.

On the other hand, the passive agent is in charge of recording the output values of the
DUT through its monitor. For this, the whole environment must be aware of the delay
of the interaction with the DUT because otherwise, it would capture incorrect values.
Afterwards, the monitor sends the transaction to the "Checker/Comparator" component
in the Scoreboard, where the predictor results are waiting.

Once both values are in the comparator part of the Scoreboard, this will determine
whether the DUT responded well to the stimulus or not. After this comparison is
done, the Scoreboard might use the uvm_info to display some information about it and
uvm_warning or uvm_error to warn that something went wrong. Additionally, uvm_fatal
might be used to terminate the simulation instantly and show a message indicating what
happened.

In the case of our verification environment, we decided to have a scoreboard for the results
of the vector instructions. For this, we have a queue where issued instructions are stored
as they come from Spike, with results and their sources. This works at the same time
as the monitor before the predictor and the predictor itself from Figure 3.6 because it
straight contains the results. Once one of these instructions completes, the monitor in
the completed interface, which will be detailed in Chapter 4, will communicate to the
Scoreboard that it can start its comparison.

For this, we could not use the typical scheme just described, as we did not have a monitor
for the vector registers, only for the interface. We decided to create a different virtual
interface to extract the values from the vector registers to face this issue. This is set up in
the test harness and has two main issues:

• It has to keep track of the actual destination vector register. Due to the VPU hav-
ing register renaming, the physical vector register where the actual values are may
not match the one specified in the instruction. To solve this issue, we maintained
discussions with the RTL team and found a signal that pointed to the correspond-
ing physical register when the instruction was completed. We decided to send this
signal with the contents of all the physical registers to the scoreboard to select the
correct register.

• It has to solve the slicing of the vector registers. As explained in Section 3.3, the vec-
tor registers are sliced among the vector lanes of the VPU, making it harder to read
the contents of a vector sequentially. For this, once we have the physical register to
read and its contents, we call a function that "unslices" the vector from the registers.
In the later stages of the project, the RTL teamprovided an already ordered structure
that contained the vector registers, easing the implementation of the scoreboard.

After the scoreboard receives the instruction completion signal and the content of the
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vector registers, it can compare them to the results from Spike and determine whether the
VPU did right or wrong. If this last is the case, the Scoreboard calls the UVM particular
method uvm_fatal described before and the simulation ends. If the results match, the test
goes on and checking further instructions.

Figure 3.7: Scoreboard structure and connections for the VPU

Additionally, to check if the VPU correctly executed vector store instructions, we must
compare what Spike stored in its memory to what the VPU has sent through its Store
sub-interface. For this, when the instruction is retrieved from Spike, we go through all
thememory addresses that the instruction changes and collect their values. This data gets
to the Scoreboard together with the rest of the instruction information and is compared
to the VPU data. This process can be observed in Figure 3.7, along with the rest of the
components and connections mentioned before.

3.4.4 Assertions
Another design verification tool that is commonly used is Assertions. These are used to
check that some behaviours and situations happen as they should. In the case of our
project, we decided to use System Verilog Assertions [3].

Assertions are typically done by the RTL teamandwritten alongwith the RTL code. These
are inserted in each developed module and control small features of it. However, due to
the lack of time and resources, the RTL team dedicated most of their spare time writing
the design specifications.

Because of this, we created a list of assertions to check the VPU and our environment’s
behaviour at OVI. We decided to go this way because we had a very detailed specification
document for the OVI by the timewe started. Thus, we could simultaneously develop our
implementation of OVI and these assertions to check that it is working as expected.

All our assertions are included inside a checker module connected to the DUT interface
and instantiated in the test harness. In Chapters 4 and 5, some example assertions imple-
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mented in the project will be detailed.

3.4.5 Coverage
Coverage is one of the most important verification features. It measures how well or how
much of the design has been tested. How many of the possible cases that the DUT can
handle have been tried out. There are two types of coverage:

• Functional coverage: Must be implemented by the verification team and has to fol-
low the RTL design specifications. In System Verilog Coverage [45]; covergroups,
coverpoints and bins have to be written to record whether certain values have been
explored for the DUT signals.

• Code coverage: It is recorded by the simulation tool. The tool records information
like if a function has been called or not, whether source code statements have been
executed, and how condition statements come out. This is useful for detecting dead
parts of the code and identifying awrong condition in a conditional statement, apart
from detecting non-tested parts of the design.

Through coverage, we know if our environment is stimulating properly the DUT or not.
At the same time, the RTL team can see if certain conditions are not being passed or if
some parts of the code are never being executed. Thus, coverage is a powerful tool that
helps the RTL and design verification teams do their job. For this reason, we decided to
record both numbers for our project, functional and code coverage.

In our case, we recorded the code coverage numbers using the corresponding feature of
our simulation tool, Questasim [38]. In the case of the functional coverage, we have a
dedicatedmodulewith plenty of covergroupswith their corresponding bins. These count
values are observed in the interface signals of the VPU.

For example, we extract numbers of the possible element count for load transactions in
OVI. We also check what indexes have been seen at the mask interface for vector indexed
load instructions. These numbers help us identify if we are testing enough possible cases
for vector load instructions. In further chapters, the coverage numbers we have extracted
will be analyzed.

3.4.6 Continuous integration
In addition to the previous techniques, we included our environment and tools in Con-
tinuous Integration (CI) pipelines. These allow us to create even more possible cases,
potentially finding more bugs in the design. In addition, continuous integration is used
in our repository to check that every commit has not broken previously working features.

In Figure 3.8 there is a simplified diagram of thewhole environment and flow of the simu-
lation of a random test. In it, we can see all the bigmainmodules mentioned before, along
with a representation of how a random Riscv-dv binary is executed. This is included in
some of the continuous integration pipelines that we developed and gave us the chance
to generate and execute an arbitrary number of random tests automatically. Our Contin-
uous Integration infrastructure is built in the open-source CI server Jenkins. We created
a set of pipelines that interact to have the most error-free design possible.
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Figure 3.8: Simplified full environment diagram

At the beginning of the verification process, we had what we called "Night Runs". This
was a CI pipeline that would execute 20 random tests every night. Later that day, another
pipeline would collect the results of these tests and post them in a Gitlab issue. This way,
the RTL teamwould have a table with the failing tests and interesting related information
like the last executed instruction, the number of instructions or whether the test failed
because of a timeout or a result mismatch.

This information helped the RTL teamfind the cause of the bugs and fix them faster. After
the fix, most failed tests were saved as regression and executed in future commits to check
that the RTL is still doing fine. However, we found the Night Runs approach too manual
and at some point in the process, it even got outdated, as it was not finding asmany errors
as at the beginning. We decided to increase the number of tests generated and executed,
but the design was getting healthier and we had to change the approach, as it was not
enough.

Therefore, we introduced a new set of pipelines to findmore bugs. We have the following
pipelines:

• New tests: Generates random tests with Riscv-dv, compiles the DUT, executes the
binaries and does a classification between passed and failed tests. Passed and failed
tests are separated into two directories. The first ones are used to create a regression
set and the last are kept for debugging and checking until the RTL team fixes the
error. In addition to all this, coverage is collected and saved for these tests.

• Retry: For each change in the main branch of the DUT repository, the set of pre-
viously failed tests is re-executed and classified again in passed and failed. The
assumption is that changes in that branch often aim to resolve known bugs, making
them disappear from the failed folder.

• Selection: Every day at midnight, if the number of tests classified as passed is above
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a certain threshold, tests are ranked by the collected coverage and we create two
sets of regressions, a complete and a small one. The only difference between the
complete and small sets is the number of tests in each one.

• Regressions: When there is a change in the DUT, which is a candidate to be merged,
we execute the small set of tests called regressions to check the correctness of these
changes. If these fail, the merge cannot be performed. Additionally, a more exten-
sive and complete set is executed once per week to ensure recent changes do not
break known-good tests.

All these have created a suitable testing environment that is automatically run and has
been able to find many bugs independently, even much later than we started the verifica-
tion process of another project. The splitting between passing and failing tests has created
an extensive and reliable set of regression tests that help us detect whenever the RTL in-
troduces a bug. In addition, it helps us to test the environment whenwe add new features
to it, keeping it healthy.

In Chapter 6 the results of these CI pipelines and the collected coverage will be discussed
and analyzed.



Chapter 4

UVM and interface interaction

In this chapter, we will go over the basic functioning of the environment together with the
DUT. In section 4.1 we will describe the idea behind the UVM testbench structure and its
implementation. From then, details will be given about every particular OVI sub-interface
in sections 4.2, 4.3 and 4.4. This way, the basic execution flow of instructions in the VPU
and the testbench will be explained.

4.1 UVM Environment overview
As explained in Section 2.2.1, a typical UVM would have one environment, agent, driver
and monitor, for example. This is not always true, but how a UVM environment is pre-
sented in documentation. In our case, we were guided by this documentation when we
were planning our testbench. We observed that only simple or small modules were veri-
fied in the examples.

These are often modules that receive some inputs and send some outputs back in an or-
dered fashion. This suits UVM perfectly, as while we keep the inputs constrained and
legal, we will obtain the expected outputs. An engineer can get 100% coverage with con-
strained random stimulus by just running simulations.

However, this scheme does not seem to support modules with a complex interface, where
the UVM testbench should be reacting to possible outputs or implementing one side of
a protocol. Our DUT is not a simple module, so we had to implement a UVM testbench
that could handle the VPU.

For this, we looked for ways of doing it in the documentation we had, but we found no
good examples. We have found that in industry, each engineer takes on a module or two
for big designs. This eases the development of the testbenches while at the same time
providing a much more in-depth verification process.

In the previous chapter, we commented that we tried this approach at first, but after de-
veloping the testbenches for some of the most important modules, we could not keep up
with that rate. In addition, most of the modules did not have specifications and the de-
sign was still in development, so many of the features taken into account when creating
the testbench could change afterwards, making it even useless.

38
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Moreover, we knew that after potentially creating a UVM testbench for every module in
the project, we would have to test the whole integrated DUT, maybe in a regular RTL
testbench. Otherwise, we would not know if it as a whole worked properly or not. All
these reasons made us replan the strategy for the testbench and directly target the whole
DUT.

As said, though, we did not have any example of how to do this. We were looking at how
to create a testbench that implemented the whole scalar core part of the OVI to connect to
the VPU and follow a normal execution flow.

Since we already had a very detailed OVI specifications document, we knew that it was
divided into sub-interfaces. These can work independently at any point in time, although
most of them collaborate in many functionalities of the VPU. We came up with the idea
of creating a big UVM testbench that contained a UVM agent for each sub-interface to
simplify the implementation of each of these.

Figure 4.1: Full UVM Testbench

This can be seen in Figure 4.1. In it, we can observe each of the independent agents, all
instantiated in the UVM environment, where we also have a memory model. In this di-
agram, we can also observe the whole structure of the UVM testbench, where the DUT
and the virtual interfaces are instantiated inside the test harness. The UVM top module
has access to this test harness and connects its virtual interfaces through the UVM config
database with the rest of the environment. The different UVM agents instantiated inside
the UVM environment are connected through these virtual interfaces to their correspond-
ing sub-interfaces.

However, what outstands the most in this diagram is the number of interconnections be-
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tween the agents. This is due to the different sub-interfaces being in almost constant col-
laboration for the VPU to execute an instruction.

In regular UVM testbenches, sequences are in charge of generating transactions that con-
tain information to stimulate the interface of the DUT, most of the time by taking advan-
tage of randomize calls. However, we needed the sequences to react to the DUT outputs
and send precise inputs to respond to them in our environment. Also, as we decided to
use different agents in our testbench, we needed a different sequence type for each. These
could not be the same as they produced completely different data for their agents. Addi-
tionally, in many cases, these sequences would need information from others to produce
their values, which we found particularly difficult to handle.

For tackling this need for different sequences and communication between them, we de-
cided to use a system based on a UVM virtual sequence.

These are sequences that control stimulus generation using several sequencers and they
are often used to coordinate the stimulus across different interfaces and the interactions
between them. A virtual sequence is often the top level of the sequence hierarchy and
differs from a normal sequence in that its primary purpose is not to send sequence items.
Instead, it generates and executes sequences on different target agents. For this, it contains
handles of the target sequencers and these are used when the sequences are started. This
structure can be seen in Figure 4.2.

Figure 4.2: Virtual Sequences in UVM Testbenches, based on [17]

In the diagram, we can see that this UVM feature perfectly fits our needs. In the example,
the DUT has two different sub-interfaces, for which the testbench presents two agents,
one for each. These agents contain a sequencer, most likely connected to a driver inter-
acting with the DUT. Each of these sequencers needs a different sequence type, as the
sub-interfaces are different. The testbench can provide two different sequences that gen-
erate different transactions and assign them to their corresponding sequencer through the
virtual sequence.

What is different in that system is that sequences are entirely independent. In our DUT,
transactions could be generated independently in terms of time, but their values depend
on ones sent to other agents. Therefore, we need to connect the different sequences some-
how to communicate between them.
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To tackle this, considering that the sequences are instances of the corresponding class,
we can create them inside other sequences and directly access their values. These are
only created once, so we took advantage of what is called a singleton. This means that the
initially created instance of the corresponding sequence is unique and every following
instantiation of the sequence will refer to it. Therefore, we instantiate sequences once in
the environment but reference them inside the others when necessary, providing them
access to their variables and generated transactions.

All this creates a complex class hierarchy. In a typical UVM testbench, we find the UVM
top module, which instantiates the test harness. Inside this, the DUT is connected to the
virtual interface to which the agent will have access. In addition, the test specified in
the simulation command will be run in the top module, obtaining transactions from the
corresponding sequence.

In our environment, we have all this but with additional particularities. The fact that
we need different sequences for every agent creates new levels inside the class hierarchy.
The virtual sequencer and sequence appear, instantiating the different sequencers and
sequences, respectively.

Figure 4.3: Class diagram of our UVM Testbench

All the previous can be seen in Figure 4.3. In it, we can see the class hierarchy of our
UVM testbench and what class instantiates the other, the connections and other relevant
information. It is worth noting that, to make it easier to read, only full Dispatch related
classes are visible. The basic UVM structure can be seen following the base test, which
instantiates the Top Environment, which contains the actual UVM environment that in-
stantiates the UVM agents. Each of these contains a sequencer, a driver and a monitor.
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These last two are connected to the virtual interfaces in the test harness using the UVM
config database and have access to the values in the DUT interface.

The diagram shows a transaction going from the sequence to the virtual sequencer, specif-
ically its corresponding sequencer, which refers to the sequencer inside the agent. There,
the sequencer will send the transaction to the driver, which will stimulate the interface of
the VPU.

Furthermore, in the figure we can see that the base UVM test instantiates the environment
and how the Spike test, which extends from it and therefore contains its features, is run
using the simulation command. Inside the base test, the virtual sequence overrides the
base sequence, setting the UVM test to produce the corresponding values for the agents.
Finally, we can see that the Dispatch sequence instantiates the Issue sequence singleton.
Aswill be explained later in this chapter, this is necessary because it needs the Issue values
to produce its ones.

To summarize all the previous points, we use the sequences inside the virtual sequence
as the generators of transactions for the corresponding agents. For this, we connect them
to the ports of the necessary sub-interfaces sequencer and react to the sent transactions,
starting the necessary processes or responding to specific data or messages. This way,
the virtual sequences create the transactions and send them to the driver through the
sequencer, which via the virtual interface stimulates the VPU.

The following sections will go through the sub-interfaces needed to execute basic vector
arithmetic-logic instructions; the Issue, Dispatch and Completed sub-interfaces. In them,
we will analyze their particularities and how their specific sequences generate the stimu-
lus to perform their specific purpose in the basic functioning of the VPU.

4.2 Issue sub-interface
As mentioned in Chapter 3, the Issue sub-interface is in charge of providing the vector
instructions to the VPU. As it is the starting point for any instruction in the accelerator,
the Issue sub-interface is almost independent of the rest of the OVI buses. However, as
we will see in this section, it is not entirely independent.

Along with the instructions, additional data to execute the instructions must be provided
through the Issue sub-interface. In Table 4.1 we have all the widths and directions (input
or output) for the signals in the Issue sub-interface. When issuing a vector instruction
through the OVI, the scalar core will need to provide an identifier, so both sides of the
interface can collaborate to execute it together, called sb_id. Sometimes it will also provide
the possibly needed scalar operand, used in instructions such as vadd.vx or vsub.vx, where
the value of a scalar register is operated for the whole vector. This value will only be
considered when one of these instructions is issued.

In addition, the v_csr signal will always be needed. This signal contains the value of the
vector-related CSRs needed to proceed with and configure the execution of the instruc-
tion. It contains several fields, which can be seen in Table 4.2.

None of the above is taken into account if the valid signal from the interface is not set to
’1’, indicating that a new instruction is being issued. Then, all the signals in the inter-
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Signal Width Direction Description
valid 1 input Indicates to the VPU that a valid instruction is being sent.
inst 32 input Contains the instruction to be issued to the VPU.

scalar_opnd 64 input Contains a value from the scalar core registers to be used in a vector
instruction.

sb_id 4 input Indicates the identifier that the scalar core assigned to this instruction.
This will be used to track it during its execution and after its completion.

v_csr 40 input Contains the value of certain Control Status Registers (CSR) from the scalar
core related to vector instructions.

credit 1 output Indicates that the VPU can process a new vector instruction.

Table 4.1: Issue sub-interface signals

Field Width Description
vstart 14 Indicates the first element of the vector that must be operated on for the instruction.
vl 15 Indicates the number of elements that the instruction must be executed with.

vxrm 2 Indicates the fixed point rounding mode in the core CSRs to be used for the
instruction, if necessary.

frm 3 Indicates the floating point rounding mode in the core CSRs to be used for the
instruction, if necessary.

vlmul 2
Indicates the number of vectors to be operated with for the same instruction.
Using vlmul different from zero, by executing a vadd instruction one may write two
vector registers. In the case of the VPU, only VLMUL == 0 is supported.

vsew 3 Indicates the vector element width. In the case of the VPU, element widths of 8, 16,
32 and 64 bits are supported.

vill 1 Indicates whether the issuing instruction is illegal. In this case, the VPU must mark it
as illegal at completion.

Table 4.2: CSR signal fields

face must take a valid value for the instruction to be correctly executed. According to the
Vector Specifications, that is a legal instruction and a valid configuration specified in the
CSRs. Along with them, we provide a sb_id to identify the instruction during its execu-
tion, emulating what the scalar core would do. If we wanted to simulate the VPU more
realistically, these could be random, but we decided to make them sequential as it was
easier to implement and debug later.

In Figure 4.4 there is a diagram of the Issue UVM agent. In it, we have a simplified view
of the previously explained structure, where we only show the sequence and interface-
related UVM components. In addition, we can see the specific interconnections of the
sequence with the rest of OVI. Spike has been coloured red in the figure to indicate that it
is a library. This library is used in the Spike sequence, directly extending from the Issue
sequence. This Spike sequence is the one used for the usual testbench and is in charge of
providing instructions and other issue-related data to the driver of the Issue agent. The
Spike library has a set of DPI functions to obtain specific data from the ISS.

For instance, the body of the Spike sequence calls the run_until_vector_ins DPI function
from the Spike library to obtain a vector instruction until the binary has been entirely
executed in Spike.

When Spike finds a vector instruction, it returns the encoded instruction, results and other
relevant data for its execution in the VPU. This instruction must be sent to stimulate the
VPU. For that, a set of functions save relevant information about the instruction for its
execution, such as operands, memory data or results, among others. In addition, all this
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information is sent to the scoreboard as explained in Chapter 3 to prove the correctness
of the results of the DUT and provide additional debug information.

Figure 4.4: Issue UVM agent and connections in detail

Once the scalar core issues a valid instruction, the VPU will allocate it in its Pre Issue
Queue module. This is the first stage of instructions inside the VPU. It is classified among
arithmetic instructions or memory instructions and sent to the corresponding queue. The
Pre Issue Queue is also in charge of the credit system of the VPU side of the Open Vector
Interface.

As seen in the interface and the OVI explanations, the Issue sub-interface uses a credit
system. This is how the VPU can notify the core whether it can execute a new vector
instruction. In the case of our VPU, it has up to four credits, but it can be configurable as
it depends on the size of the Pre IssueQueuemodule. Therefore, the scalar core consumes
a credit each time it issues an instruction through the sub-interface. In our case, if it issued
four straight instructions without receiving a credit back, it would not be able to send any
more instructions. As said, the Pre Issue Queue is in charge of returning the issue credits.
It does this whenever an instruction leaves the queue, meaning that it can allocate a new
one.

As we are performing the role of the scalar core, we have to issue the instructions, always
taking into account the credit system. For this, we used our UVM agent and integrated
all of its capabilities. After Spike returns an encoded instruction and its related data, it is
then saved in the Spike/Issue sequence, which is now ready to create a transaction for the
DUT.
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At the beginning of the simulation, the scalar core has all the credits ready, which
means we can always issue an instruction. Therefore, a transaction is created using the
uvm_do_on_with UVM function (Code Listing in 4.1) that contains the instruction and
the aforementioned necessary data from Spike. This transaction is then sent to the driver
via the sequencer, which stimulates the DUT. This can be seen in Code Listing 4.2. Since
we initially have four credits, this can be done these times in a row, each consuming one.
If that happens, we will not be able to use a credit again until the VPU returns it.

1 `uvm_do_on_with(m_req, p_sequencer,

2 {

3 valid == 1;

4 instr == instruction.ins;

5 data == tmp_data;

6 sb_id == instruction.sb_id;

7 csr == csr_bits;

8 })

Code Listing 4.1: Transaction generation in the Issue Sequence

1 task drive(issue_trans trans);

2 vif.cb.valid <= trans.valid;

3 vif.cb.instr <= trans.instr;

4 vif.cb.data <= trans.data;

5 vif.cb.sb_id <= trans.sb_id;

6 vif.cb.csr <= trans.csr;

7 endtask : drive

Code Listing 4.2: Issue signals stimulus at the Issue Driver

Hence, if we did not have credits in a later simulation stage, the sequence would not pro-
duce a transaction. To observe the credit return from the VPU, we use the UVM monitor
and watch the Issue sub-interface credit signal. Once the VPU returns a credit by setting
this signal to ’1’, the monitor will encapsulate it in a transaction and send it back to the se-
quence, which will increase its credit counter. This will allow it to send new transactions
to the driver, following the binary execution. At the same time, the issued instructions are
sent to the Dispatch sequence to be treated, which will be explained in Section 4.3.

In addition to this, we needed to ensure that the VPU always received valid values
while issuing an instruction. For that, apart from the UVM agent, we included the
a_no_issue_unk assertion, which can be seen in Code Listing 4.3. This assertion essentially
checks that whenever the Issue valid signal is ’1’, none of the rest of the Issue sub-interface
signals can take unknown values.
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1 a_no_issue_unk : assert property(disable iff(!rsn_i) @(posedge clk_i) issue_if.valid |->

2 !$isunknown(issue_if.instr) and !$isunknown(issue_if.data) and

3 !$isunknown(issue_if.sb_id) and !$isunknown(issue_if.csr))

4 else begin `assertion_level_report($sformatf("error.VU.%m")); end

Code Listing 4.3: Unknown Issue signals assertion

This way, we complete the normal Issue flow as seen in Figure 4.4. However, in that dia-
gram there are two extra inter-sub-interface connections.

The first one is related to vector memory instructions. Although it will be explained in
Chapter 5, it is worth noting that memory operations (which will be called memops from
now on) have a special place in OVI, as they require a higher amount of interaction be-
tween the scalar core and the VPU. Therefore, due to special needs for their execution
explained in the dedicated chapter, we provide necessary data for its execution when is-
suing a memory instruction.

In essence, we provide all the Spike instruction-related information to the Memop se-
quence along with the sb_id with which we issued the instruction to track it down while
in other agents. To do this, we created an instance of the Issue singleton in the Memop
sequence, which may now access all the memory instructions being issued.

The second link is with the Completed agent. This connection is needed because some
memory instructions may finish their execution earlier than expected due to various rea-
sons, to be discussed in Chapter 5. As we will see in Section 4.4, this will be identified by
the Completedmonitor, whichwill capture these and trigger a UVM event. We connected
the Issue Sequence to this event because if one of these happens, we will need to issue the
instruction back and the rest of the issued instructions pending completion. Therefore the
sequence will react to this event and re-build its instruction queue to insert the already
issued instructions.

4.3 Dispatch sub-interface
The dispatch sub-interface is used to confirm or discard the execution of the instruc-
tions. As stated in the OVI specifications, "for each issued instruction, there must be
a dispatch". Even though it assumes such important responsibilities, the dispatch sub-
interface is rather simple. Its signals can be seen in Table 4.3.

Signal Width Direction Description

next_senior 1 Input Indicates that the instruction identified by sb_id is confirmed to
complete execution.

kill 1 Input Indicates that the execution of the instruction identified by sb_id
must be discarded.

sb_id 4 Input Contains the identifier that the scalar core assigned to an issued instruction.

Table 4.3: Dispatch sub-interface signals
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In Figure 4.5 can be seen all details of the Dispatch agent and how it is connected to the
corresponding sub-interface.

The figure shows that Dispatch only has a driver, as this sub-interface is unidirectional.
This is from the scalar core to the VPU. Therefore, we do not need amonitor to watch pos-
sible outgoing transactions. In addition, the figure shows the only connection between
agents. In the case of the Dispatch agent, it is only connected to the Issue Agent, which
provides it with information about the issued instructions and what to send through Dis-
patch for them. Once again, we did this by instantiating the Issue singleton in theDispatch
sequence to have access to issuing instructions.

Figure 4.5: Dispatch UVM Agent and connections in detail

The need for the Dispatch sub-interface comes from the possibility that the scalar core
issues instructions that may not be needed to complete in the end. This happens, for ex-
ample, if the scalar core is executing speculative instructions. If the prediction results
are wrong, the scalar core will discard all the executing instructions, including the vector
ones, through the Dispatch sub-interface. Another option is if a vector memory instruc-
tion causes a recoverable exception, such as a page fault. In that case, the core will actively
give up the instruction to solve the exception and issue it back afterwards. Something sim-
ilar happens if a regular exception occurs, causing the scalar core to jump to an exception
handling routine and discard the potentially issued instructions.

The last casewhere theremight be discarded instructions is whenever an instruction com-
pletes with a vstart value different from zero. To be further explained in Chapter 5, vector
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load instructions can be terminated earlier by the VPU in some cases, which it may indi-
cate by setting a vstart value. If that is the case, the load instruction and the remaining
pending ones will be re-issued. For that, all the previous instances of the instructions
inside the VPU must be discarded using the Dispatch sub-interface.

As seen in Table 4.3, the next_senior signal ensures that a specific instruction will finish
while the kill signal is used otherwise. Considering that for every issued instruction, there
must be only one dispatch sent, if next_senior is sent for an instruction, it is confirmed that
the corresponding one will complete. Likewise, if a kill is sent for an instruction, it is
sure that it will not be completed. This, however, can change if the same instruction is
re-issued, as happens in some of the previous examples.

The dispatch information must be sent only once for instruction and in issue order, but
it may be sent in different time windows. For example, if the scalar core is sure that an
instruction will be completed, it may issue the instruction and send the next senior for it
at the same time. If that is yet to be determined, the scalar core will send the next senior
once that happens.

Another particular case comes when there are instruction issues during the execution of
a memory instruction. If that is the case, as said, the memory instruction may have to
be re-issued again in the future, needing to kill the rest of the issued instructions. For
this reason, instructions after a memory operation are not sent their dispatch informa-
tion until this last is completed. As said, if this one completes but must be re-issued, a
sequence of kills will arrive for the executing instructions. On the other hand, if the mem-
ory instruction completes successfully, many of the following instructions may get their
dispatch information sent in the following cycles.

The Dispatch sequencewill directly access the Issue sequence instance and check for what
instructions it must send the dispatch information. It will do so by using the aforemen-
tioned uvm_do_on_with function and sending the next senior or kill depending on what
the Issue sequence set for the instruction. This depends on various factors, such as mem-
ory instructions not being completed or completing with the need to be re-issued. The
Completed agent tracks whether these must be re-issued or not and communicates it to
the Issue sequence.

To ensure that the VPU receives Dispatch information for valid instructions, that is, that
have previously been issued, we added another assertion. This can be seen inCode Listing
4.4. In it, we can see that the right side of the implication is triggeredwhenever a Dispatch
bit is set, either next_senior or kill. Then, the assertion checks the _valid_id structure, which
among others, contains information about what sb_id have been recently issued. This
structure has as many positions as different sb_ids can be in the environment, in this case,
16. It is in the ISSUED field that it indicates whether the corresponding sb_id is inflight or
not. While it is true that this assertion covers mainly the work of the testbench, which is
necessary to ensure its correct behaviour, it was also helpful when we needed to integrate
the VPU with the rest of the EPAC modules.
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1 property p_dispatch_if_existing_id;

2 @(posedge clk_i) (dispatch_if.kill || dispatch_if.next_sen) |->

3 _valid_id[dispatch_if.sb_id][ISSUED];

4 endproperty

5

6 a_dispatch_existing_id : assert property(disable iff(!rsn_i) p_dispatch_if_existing_id) else

7 `assertion_level_report($sformatf("error.VU.%m"));

Code Listing 4.4: Existing sb_id assertion for dispatch transactions

4.4 Completed sub-interface
The VPU uses the Completed sub-interface to communicate to the scalar core the instruc-
tions finishing, their "completion". The rule for this sub-interface would be that every
next_seniored instruction by the Dispatch sub-interface will make its completion. As fore-
shadowed by previous explanations, there might be different completion conditions, de-
tailed in the following sections. These conditions will be notified using the signals from
the sub-interface, listed in Table 4.4.

Signal Width Direction Description
sb_id 4 Output Indicates the identifier of the instruction that is completing if valid is ’1’.

fflags 5 Output Contains the Floating-point accrued exception flags for the completing instruction,
if applicable.

vxsat 1 Output Contains the Fixed-point accrued saturation flag.
valid 1 Output Indicates that an instruction is completing.

dest_reg 64 Output Contains an scalar result for the completing instruction, if applicable.

vstart 14 Output
In the case that the instruction could not be executed for all elements, it indicates the
next element that should be executed for the instruction. If the instruction was
completed, vstart should contain a zero.

illegal 1 Output If the instruction being completed was illegal, this bit should be set.

Table 4.4: Completed sub-interface signals

For many of the instructions, only a few signals will be used. If the instruction is not a
floating-point one, thefflags signalmust contain a zero. The same happens for instructions
that are not fixed-point ones, for which the VPUmust set a zero in the vxsat signal. Other-
wise, these signals may contain the corresponding resulting values. In addition, dest_reg
must be set to zero if the instruction is not a vector reduction operation with scalar result
such as the vredsum.vs or vredmax.vs instructions. If that was the case, this signal should
contain the result of the reduction. We added assertions in the environment for these
cases. In Code Listing 4.5, the assertion a_floatp_flag checks that for every instruction is-
sued that is not a floating point related one, either a kill is sent or it completes with the
fflag signal equal to zero. A very similar assertion exists for vxsat and dest_reg signals.
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1 sequence s_not_floatp_inst;

2 !(issue_if.instr[INSTR_OPCODE_END:INSTR_OPCODE_START] == 7'b1010111 &&

(issue_if.instr[INSTR_FUNCT3_END:INSTR_FUNCT3_START] == 3'b001 ||

issue_if.instr[INSTR_FUNCT3_END:INSTR_FUNCT3_START] == 3'b101));

↪→

↪→

3 endsequence

4

5 property p_floatp_flag (clk);

6 logic [SB_WIDTH-1:0] _sb_id;

7 @(posedge clk) (s_not_floatp_inst ##0 issue_if.valid, _sb_id = issue_if.sb_id) |->

8 ((dispatch_if.sb_id == _sb_id && dispatch_if.nxt_sen) [->1] ##0

9 ((completed_if.sb_id == _sb_id && completed_if.valid) [->1] ##0 !completed_if.fflags)) or

10 (dispatch_if.sb_id == _sb_id && dispatch_if.kill) [->1];

11 endproperty

12

13 a_floatp_flag : assert property(disable iff(!rsn_i) p_floatp_flag(clk_i)) else begin

`assertion_level_report($sformatf("error.VU.%m")); end↪→

Code Listing 4.5: Fflags signal assertion

The illegal bit will only be set by the VPU if the instruction results to be illegal. This could
be because the scalar core marked it as illegal in the CSRs sent through the Issue sub-
interface. Another possible reason may be that the VPU found an illegal encoding or CSR
configuration during the decoding of the instruction. Otherwise, the VPU would output
a zero through this signal.

Finally, the vstart signal is only set for the memory instructions, which are the only ones
that are allowed to complete before operating on all the elements of the vector. Although
this will be explained more in detail in the following sections, this value is needed for
re-issuing the instruction. If the instruction was executed entirely for all vector elements,
this signal must contain a zero.

However, what the VPUwill use for all completed instructions will be the valid signal set
to ’1’, along with the corresponding sb_id.

As seen, this sub-interface is unidirectional and the scalar core does not have to provide
any value through its interface. Therefore, we decided to go without a driver for the
Completed agent, shown in Figure 4.6.

In addition to this, the figure shows the Completed monitor, which is directly connected
to the Issue Sequence. This connection is through a UVM Event, which indicates to the
sequence that an instruction completed with a vstart value different from zero, as seen in
Section 4.2. This will unleash the re-issue of the instruction with the same vstart output
by the VPU, which will be sent using the trigger data slot of the event.

Furthermore, the Completed monitor is connected to the scoreboard to trigger the com-
parison of the instruction results. This is a regularmonitor functionality, where it observes
the Complete sub-interface. After detecting a ’1’ in the valid signal captures it and the rest
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Figure 4.6: Completed UVM Agent and connections in detail

of the interface signals in a transaction. This transaction is then sent through an export
port to the analysis port in the scoreboard.

1 // Function: write_completed

2 // Function that gets the values from the vpu_completed analysis port

3 function void write_completed (avispado_completed_trans completed_trans);

4 if (completed_trans.valid && m_cfg.enabled) begin

5 comparator_queue.push_back(completed_trans);

6 vdest_queue.push_back(vreg_if.rename_vdest);

7 end

8 endfunction : write_completed

Code Listing 4.6: Scoreboard write function of the port connected to the completed
monitor

In Code Listing 4.6, we have the write function for the analysis port in the scoreboard.
This function is triggered and run whenever a new transaction is written into the export
port of the Completed monitor. Therefore, once the monitor observes a completed valid
at the interface, it will send the corresponding transaction directly to the scoreboard.

In there, it is enqueued in a structure called comparator_queue, that contains all the com-
pleted instructions in order. Later on, a running task will see that the transaction is there
and compare it to the results we obtained in Spike. In the code section, we can also see that
there is another queue called vdest_queue. In this, we store the current value in the vector
registers, where the actual results of the vector instructions are. We obtain them thanks to
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a virtual interface hierarchically connected in the test harnessmodule and passed through
the UVM database to the scoreboard.

We need this structure because due to the register renaming feature of the VPU, we can
only be sure of where the corresponding resulting values are at completion time. The
physical register is indicated through a signal called rename_vdest in the Reorder Buffer of
the VPU. If we compared the vector register contents some cycles after, this signal or even
the values inside the vector might have changed. For this reason, we save the necessary
vector register in the queue at completion time for the comparator task to compare them
right with the correct Spike ones.

Apart from the regular vector register results, all the outgoing values from the Completed
sub-interface arrive through themonitor to the scoreboard. Thisway, we can also compare
different behaviours like scalar results (using the dest_reg signal), illegal instructions and
fflags or vxsat bits.

We can handle and check the execution of basic arithmetic and logic vector instructions
with all the previous mechanisms, which are shown in Figure 4.7. We can start their
execution in the VPU through the Issue interface (step 1 in the figure), along with con-
figurations and other possibly necessary data. We must use the same Issue sb_id to send
the Dispatch information. In the most common case, the Dispatch Sequence will send a
next_senior for the instruction, confirming that it will complete its execution (step 2 of the
figure). Finally, after the VPU executed the instruction, we would notice that it finished
thanks to the Completed Monitor (step 3 in Figure 4.7).

Figure 4.7: Simplified diagram of the arithmetic instructions flow

The monitor will then send a transaction to warn the scoreboard that the pending-to-
compare instruction in the queue must be checked. The scoreboard will, at that point,
obtain the results from the corresponding physical vector register and determine whether
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the instruction was correctly executed or not after comparing them to the Spike ones.

All these connections can also be seen in a simplified way in Figure 4.7. The features
mentioned above only support the execution of arithmetic/logic and other types of non-
memory vector instructions. However, this was our first step and allowed us to test the
environment in the first stages of the process while at the same time managing to find the
first bugs. This was possible given that the environment could supply instructions and
support their execution.

If, in addition to this, we consider that thanks to Spike, we can execute entire binaries, we
can potentially provide any instruction to the VPU. This eases the generation of valuable
stimulus for the design, as we can write our directed tests straight in RISC-V assembly.
Furthermore, if we add Riscv-dv and its random binary generation into the mixture, we
can supply random instructions continuously through Spike to the environment. Finally,
we can check whether the VPU executes them correctly thanks to the scoreboard, which
means we can perform the main basic verification tasks for arithmetic instructions.

In essence, although it might seem complex, it is just three interactions between the scalar
core and the VPU. As we will see in the following sections, memory operations can use
up to six sub-interfaces during one instruction. Therefore, the previously described arith-
metic instructions environment is just the testbench’s starting point. Nevertheless, it pro-
vides the most important or commonly used features of the whole environment: instruc-
tion Issue, Dispatch, and result comparison. These will be used for almost any instruction
that reaches the VPU, whether it is an arithmetic or memory operation.

In the sections in Chapter 5, wewill describe how vectormemory instructions are handled
inside our environment and how we interact with the VPU to be able to execute them.
This includes from Issuing and Dispatching the instruction, as previously detailed, to
providing memory data to execute load instructions.



Chapter 5

Memory operations emulation in the
UVM testbench

This chapterwill describe the execution flow ofmemory operations throughOVI and how
we provided sustenance for them in the UVM. In section 5.1 there is an introduction to
memory operations in OVI and the main issues that they arise. In Sections 5.2, 5.3, 5.4
and 5.5 specific details of each memory sub-interface will be provided, in order to obtain
a better understanding of the whole testbench.

5.1 Memory operations (memops) in the Open Vector Interface
Memory operations are themainways of sending data to and from the Vector Accelerator.
These include the load and store instructions. Specifically, in the EPI VPU implementa-
tion only the "element" version of these instructions are implemented, vle and vse, which
operate with elements of the width specified by SEW. In the context of vector or SIMD
instructions, these are often called scatter and gather operations. In addition to the distinc-
tion between load and stores, we have different types for both memory operations:

• Unit-strided: Memory elements are treated sequentially starting from a base mem-
ory address.

• Strided: Memory elements are treated sequentially with a gap between them, called
stride, starting from a base memory address. If stride is ’1’, the instruction will es-
sentially be a unit stride memory operation, whereas if the stride is ’2’, an element
width gap will be left in memory between valid data.

• Indexed: Vector elements are assigned a memory address according to an index
provided by the values in elements of another Vector register.

Whether a vle or vse is Unit-strided, Strided or Indexed is determined by the bits 26 and 27
of the instruction encoding. If this field of the instruction, called "mop", is equal to "00", the
instruction is a Unit-strided one and if it contains "01" is a Strided memop. Finally, if the
mop field is equal to "11", it means that the instruction is an indexed memory operation.

In a strided memory operation, the stride amount in bytes is determined at Issue time,

54
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when it must be sent through the scalar_opnd signal of the sub-interface. Furthermore,
all these operations can be masked or not, depending on the 25th bit of the instruction
encoding.

Memory operations are critical delay points in vector implementations, as they are for
other accelerators that use DRAM and processor cores. Memory delays depend mainly
on latency, cache misses, and other memory-hierarchy-related reasons for scalar cores.
For vector processing units, however, they depend on additional factors like the amount
of data they operate with.

Inmany Vector Processing Unit projects, the IP is directly connected to a cachememory or
to a module connected to it, ordering the data sent/received. This allows the Accelerator
to have a big cache bus and obtain many elements in one single transaction. In the case of
OVI, the scalar core is connected to the cache and is responsible for handling cache lines
and communicating with the VPU. This causes the memory-related sub-interfaces of OVI
to be very active and busy during the execution of these instructions, as the VPU and the
scalar core have to exchange many transactions and data during them. In the waveform
in Figure 5.1 we can see an example of this, where three memory operations are being
executed. In the figure, all the memory-related sub-interfaces of OVI have much activity.
These sub-interfaces are theMemop, Load, Store andMask_idx ones, detailed later in this
chapter.

Figure 5.1: Memory operation related sub-interfaces during three memops

This also means that any memory-operation-related issue that may appear during the
execution of the instruction will not directly be seen by the VPU, making it agnostic to
how the cache reads/writes are being done.

Considering that we, as the testbench designers, are in charge of reproducing the same
situation as the scalar core would face in actual execution, we have to consider all these
and more aspects. For example, the memory would have values stored by the core in a
real execution. In our case, we need to provide these to the VPU for load instructions. As
we will see in the following sections, we do these using Spike’s memory, as it will act as
the scalar core itself. As explained later in this chapter, we will use this reference model to
extract the data and save it in our memory model. An additional use of the Spike ISS will
be to check the correctness of the values and execution of the Store operations performed
by the VPU.

As one may expect, providing actual data through Spike and sustaining the execution of
the memory instruction already implies facing many challenges. However, these get even
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worse if we consider that we need to reproduce all possible cases that can occur during
their execution. The following sections will explain these cases and howwe tackled them.

5.2 Memop sub-interface
TheMemop sub-interface is used to coordinate the start and finish of amemory operation.
This is necessary because even though the scalar core issues the instructions, thesemay get
enqueued inside the VPU. If thiswas the case and the scalar core started sendingmemory-
related transactions through the interfaces, these could get lost. For example, this can
happen ifmultiplememory operations are issued in a row into the VPU.As only up to two
loads and one store can be executed simultaneously, the rest are put inside a queue. In the
case of our VPU, when instructions are issued, they are distributed among an arithmetic
instruction queue and the load-store queue, where memops are put. Afterwards, once
the memory instruction is at the head of the load-store queue and it is ready to accept or
send transactions for it, the VPU will send a signal to start the operation.

Signal Width Direction Description
sync_start 1 Output Indicates that the execution of a memory operation has started.

sync_end 1 Input Indicates that the execution of the memory operation identified
with sb_id is finishined.

sb_id 4 Input Contains the identifier of an in-flight memory operation that is
being finished.

vstart_vlfof 15 Input
Contains the next element to operate for the instruction in case
the scalar core requires to restart the instruction. If the
instruction was completely finished, it will contain a ’0’.

Table 5.1: Memop sub-interface signals

In Table 5.1 there are the descriptions of the Memop sub-interface signals. As seen, the
sync_start signal will be employed by the VPU to indicate that a memory operation must
be started through the OVI. On the other hand, the scalar core will set all the other signals
together to indicate it once the operation has finished.

At that moment, the scalar core will set sync_end to ’1’ along with the sb_id to indicate
that the corresponding memory instruction has finished the operation. In the standard
case, the vstart_vlfof signal will be set to zero, indicating that the memory operation was
finished without problems in the scalar core and having operated on all the elements of
the vector (as set in the vector length at issue time). However, the scalar core may find
some issue while executing the memory operation that temporarily forces it to stop its
execution, like a page fault exception. If that is the case, the scalar core will notify the
VPU by setting the vstart_vlfof signal to the first element that could not be treated. Later
on, the scalar core would resume the execution of the instruction by re-issuing it with
a vstart value in the corresponding field of the CSR Issue signal equal to the previous
vstart_vlfof.

In addition, there is a different case in the signal for fault-only-first loads (vlfof ). These
are related to a specific type of load that can only trap in element 0. If an element greater
than 0 causes an exception, the vector length is updated through vstart_vlfof and no trap is
taken. Nevertheless, the initial implementations of the VPU did not support these types
of loads, so we did not take them into account for designing the environment. For the rest
of the cases, as the testbench does not suffer from page faults or other possible problems,
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we have to reproduce them through the corresponding agent.

In Figure 5.2 we have a detailed diagram of the UVM agent for the Memop sub-interface.
As it can be seen, it is muchmore complex than the ones that we have seen before because
it needs many connections to other agents in the environment.

Figure 5.2: Memop UVM Agent and connections in detail

The first doubt that may arise from considering all the previous information is why does
the sync_end signal have a sb_id associated and there is not one for the sync_start signal.
The answer to this is because, as explained, the memory instructions are enqueued inside
the VPU and it sends the sync_start for them in issue order. While this is perfectly fine for
the scalar core, as it is the same entity that issues the instructions and sends the dispatch
information, it presents an issue if we want to have a fully distributed and independent
set of agents for the environment.

For this, we also instantiated the singleton corresponding to the Issue sequence inside
the Memop sequence. From it, every time we observe a sync_start through the interface
thanks to the monitor, we extract the first pending-to-start memory instruction. These
are detected and saved in the Issue sequence when retrieved from Spike. In addition to
this, we included an assertion that checks whether the VPU sends the correct amount of
sync_starts. This assertion can be seen in Code Listing 5.1. This portion of the code belongs
to a checker [45] we created for the VPU. A System Verilog checker is often used in these
projects to add verification code such as assertions to the modules.
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1 always_ff @(posedge clk_i) begin

2

3 int tmp_memops_to_sync_start;

4 if (!rsn_i) tmp_memops_to_sync_start = 0;

5 else begin

6 tmp_memops_to_sync_start = memops_to_sync_start;

7 if (dispatch_if.kill && issued_memop(dispatch_if.sb_id)) tmp_memops_to_sync_start--;

8 if (memop_if.sync_start) tmp_memops_to_sync_start--;

9 if (issue_if.instr[INSTR_OPCODE_END:INSTR_OPCODE_START] == LOAD_INST ||

10 issue_if.instr[INSTR_OPCODE_END:INSTR_OPCODE_START] == STORE_INST &&

11 issue_if.valid) tmp_memops_to_sync_start++;

12 end

13 memops_to_sync_start = tmp_memops_to_sync_start;

14 a_correct_sync_start : assert (memops_to_sync_start >= 0) else

15 `assertion_level_report($sformatf("error.VU.%m"));
16

17 end

Code Listing 5.1: System Verilog assertion to check correct Memop sync_start

As shown in the code section, at Issue time, we detect in an always_ff block whether
the issued instruction is a memop (load or store). If so, we increase a counter (mem-
ops_to_sync_start). Afterwards, when a sync_start is received, the counter is decremented,
meaning that there is one lessmemop to be started. The block also covers the case where a
reset or a kill for the instruction happens, meaning that it will not be sync_started. Then, we
have the a_correct_sync_start assertion checking at every point in time that the counter did
not fall to negative numbers. That wouldmean that the VPU sync_statedmore instructions
than it had been issued.

One problem with this is that the sequences do not have direct access to the interface,
causing timing issues. These may happen after the Dispatch sequence sent a kill, known
by the sequence, but not to the VPU yet. It then may set sync_start for this instruction,
which has not been killed yet in its queues but is no longer in the Issue sequence.

All these cases must be considered and were difficult to track down. To tackle them, we
included a UVM event in the Dispatch driver that got triggered at the same time that the
VPUwould receive it, so we could have a better idea of for what instruction the sync_start
was. If the start signal was sent for an already killed instruction, it would get ignored.
However, if it was sent for a ready instruction, the operation would be started.

The first point is determining whether the sync_started operation was a load or a store.
This is needed because they are executed differently and through different sub-interfaces
of OVI. For this, we retrieved all the Issue information, encoded instruction, the results,
the vector length and SEW, and so on. It is through the OPCODE field of the instruction
[23] that the type of operation is determined.

Then, it will be pushed into an "in-flightmemop" queue or another depending on the type.
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These are inside the corresponding Load/Store sequence, and further specific details will
be given in the corresponding 5.3 and 5.4 sections. However, it is worth noting that these
structures hold structs with load or store related fields. These include fields specific from
each type of operation and some common ones extracted from the instruction arriving
from the Issue sequence, which are copied into the struct before pushing it into the cor-
responding queue. Furthermore, additional instruction-specific information is generated
using the corresponding sequences and added to the structs.

Before executing the recently pushed instruction, in the case of a load instruction, wemust
consider possible data dependencies. Even if these instructions take many cycles to be
executed, they usually take an ample address space, making it probable that consecutive
instructions have colliding addresses.

The typical case is a real store-load data dependency, in which the load must have data
that the VPU has previously stored. In fact, in OVI, we can have loads and a store concur-
rently in-flight, potentially having matching addresses, generating these issues. To solve
data dependencies, we decided to save started loads in an additional queue until all the
colliding addresses have been treated for the previous instructions. Once that happens,
we move these loads to the actual in-flight loads queue in the Load sequence. Although
it is a very coarse grain solution, it was much easier to implement and was more similar
to the real case, as the scalar core would rearrange the data appropriately after treating it.

The next step for load instructions is to obtain the data to be loaded into the VPU. This
is needed because if we were going to compare against Spike results, we would need its
data in memory before executing the instruction. Therefore, this is one of the things that
we retrieve from Spike through the Issue sequence. In it, we have a set of functions that
calculate the addresses to be accessed during the execution of the instruction and retrieve
that data, either for feeding the VPU or comparing its results if it is a store operation.

At the moment of the conception of the environment, we thought that what would fit
better our testbench would be simulating a real case. That is, the sequence being the
scalar core and having an entity that acted as the cache or memory system. For that, we
decided to use a memory model.

An entity model, like a memory or register model, is often used in design verification
to simulate the behaviour of the corresponding module and usually to check its correct
functioning. In our case, we only needed to simulate the behaviour of a DRAM-like cache.
This is due to the scalar core and theVPUexchanging complete 512-bit cache lines through
OVI.

The memory model we took as a base is the one from the Opentitan project [31]. It is
entirely configurable and we tweaked it to access it with any granularity, so it fits all our
purposes. Thememorymodel class definition and itsmethods can be seen inCode Listing
5.2.
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1 class mod_mem_model extends uvm_object;

2

3 typedef bit [63:0] mem_addr_t;

4 typedef bit [511:0] mem_data_t;

5

6 // Memory model data

7 bit [7:0] system_memory[mem_addr_t];

8

9 `uvm_object_utils(mod_mem_model)
10

11 mod_mem_model_cfg m_cfg;

12

13 // Singleton definition

14 static mod_mem_model mem_model_single;

15

16 // Creates the singleton instance

17 static function mod_mem_model create_instance(string name = "mod_mem_model");

18 if (mem_model_single == null)

19 begin

20 mem_model_single = mod_mem_model::type_id::create(name);

21 end

22

23 return mem_model_single;

24 endfunction : create_instance

25

26 function new(string name = "mod_mem_model");

27 super.new(name);

28 endfunction : new

29

30 // Returns the byte contained in address addr in the memory model

31 function bit [7:0] read_byte(mem_addr_t addr);

32

33 // Writes a byte in address addr in the memory model

34 function void write_byte(mem_addr_t addr, bit [7:0] data);

35

36 // Writes the 512 bits inside data into the memory model in address addr

37 function void write(input mem_addr_t addr, mem_data_t data);

38

39 // Writes the number of bits of data specified by sew into the memory model in address addr

40 function void write_el(input mem_addr_t addr, logic [63:0] data, int sew);

41

42 // Returns the 512 bits in the memory model starting at address addr

43 function mem_data_t read(mem_addr_t addr);

44

45 // Returns the 64 bits in the memory model starting at address addr

46 function logic [63:0] read64(mem_addr_t addr);

47

48 endclass

Code Listing 5.2: Memory model class derived from Opentitan project
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In our environment, the memorymodel is a singleton class, instantiated in the UVM envi-
ronment and has its instance created whenever used. In Figure 5.2 we have the uses that
the Memop sequence gives it in our testbench. The first one is to save the Load data from
Spike, so when the Load sequence accesses the memory model for retrieving it, the latter
will have the same as Spike used. For this, we store the data in the same addresses of the
memory model as the ones we calculated in the Issue sequence.

The second one is to retrieve the data saved during store operations by the VPU. We use
a similar method as for the load initializations, where we go over all the previously cal-
culated addresses and read the data inside the memory model. We need this data to
compare with the one retrieved from Spike at the scoreboard.

This comparison will be made once the memory operation finishes, once the instruction
meets some criteria, which depends onwhether it is a load or a store. In OVI it is the scalar
core that notifies the end of a memory operation, through the signals seen in Table 5.1;
sync_end, sb_id and vstart_vlfof. In a normal case, once the operation with issue sb_id X is
finished, the scalar core will set sync_end to ’1’, sb_id to X and vstart_vlfof to zero. As said,
the criteria above vary depending on whether the memop was a load or a store. These
are calculated or determined at sync_start time and will be detailed in the corresponding
load and store sections.

The Memop sequence will be analyzing whether the criteria are met or not at any cycle
during which the memory operation is in-flight. Once they are met, it will create a trans-
action containing a sync_end to ’1’ and proceed to collect and tidy up all the "belongings"
of the finishing instruction. Among these, we find store results, which are first saved in
the memory model by the Store sequence. Later, they are collected from the memory
model, packed into a transaction and sent through an analysis port to the scoreboard. If
everything went as expected, the data inside the memory model will be the same as the
one that Spike has for the same addresses.

Moreover, if it was a masked memory operation, at sync_end time the Memop sequence
retrieves the potential masks for the instruction and packs them into a transaction which
is sent similarly as Store results to the scoreboard. There, they are compared to the Spike
vector register that contained the mask used for the instruction. This way, we can assert
that the VPU, responsible for sending the masks, sent the correct values.

The Memop sequence is also in charge of distributing the incoming mask transactions.
This is needed because, as will be explained in Section 5.5, this sub-interface does not have
a sb_id signal in it. If the memory instruction is masked, at sync_start time it is placed into
an extra queue for this type of instructions, which will later be used for distributing them.
Additional details will be provided about the mask distribution in its dedicated section.

In essence, all the previous are the essential functions of the Memop sequence within our
testbench. However, wemust consider that many specific cases only arise when executing
memory instructions in OVI. These are often related to the Dispatch sub-interface and
confirming the completion of the execution of the instructions.

In addition to the previously explained problems that Dispatch timings may cause in the
environment, the fact that this information may be sent at any point of the instruction
creates a broad set of possibilities for memop execution and completion. It is vital to track
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down the possible killing of instructions and obtain the confirmation that the instruction
will complete at any point of the execution timeline. None of this is trivial, as we do not
have a centralized place where this is considered. The Issue/sync_start timing case above
mentioned is an example of the problem that this decentralization causes, increasing the
environment complexity considerably.

Waiting for kills is mandatory, as these may invalidate already sent Memop related data.
However, to ensure the correct behaviour and program order inside the testbench, we
mustwait for completion confirmation to commit the results ofmemory instructions. This
may not be very relevant for load instructions, as even if the scalar core sent more load or
memop data after a kill happened, the VPU would ignore it. However, suppose we want
to emulate the actual behaviour with the scalar core. In that case, we must overcome
the intra-environment delays between Dispatch and memory operations. On the other
hand, Dispatch is a crucial thing to consider for the store instructions. It is similar to
the load instructions, as the VPU might be sending additional store-related information.
Additionally, we will only commit the stored values inside the memory model once we
confirm that the store instruction will complete.

Figure 5.3: Dispatch timing in the memory operation execution timeline

In Figure 5.3 there is a representation of the memory operation execution timeline. This
is basically split in three stages; issued, sync_started and sync_ended. The first stage is
delimited by the instruction issue and the sync_start of the memop and the second one
between the start and the sync_end (thememory operation execution itself). The last stage
starts after the memory operation is finished through OVI and ends when the instruction
completes.

There are four possible time windows to receive the dispatch information for a memory
instruction, each having different repercussions in the way these are executed:

1. Issue time: Only confirmed to complete instructions can be sent the dispatch infor-
mation at the same time as they are issued. Therefore, we only need to pass the
next_senior information along with the instruction all over the environment. This
way, once the memory operation execution finishes, its results may be directly com-
mitted.

2. Before sync_start: As explained, the memory instructions are stored in the Issue
sequence since they are issued and until they are sync_started. Therefore, similarly to
the previous point, the Dispatch information must be added to the instruction once
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the Issue sequence observes it from the Dispatch agent. However, if that happened
at sync_start time, which is something that the UVM does not have control of, we
have the timing problem mentioned above. This forced us to notify the Dispatch
information both at Issue and Memop sequences to catch these.

3. Inflight memop: During all the time that the memop is in-flight, the Memop se-
quence is in charge of detecting Dispatch transactions and marking to complete or
discarding as fast as possible outgoing memop related data from the UVM.

4. After sync_end: There are some instances inwhich theVPUmight obtain itsDispatch
information after the memop has been ended by the scalar core. In our case, this
only happens if there is a previous memory instruction to be completed. If this
load completes with a vstart value different from zero, all the following instructions,
including possibly sync_ended memops, must be killed, invalidating all the results
that they may have provided. This does not affect load operations, but for stores, on
the other hand, it is mandatory to detect the Dispatch information and the Memop
sequence is also in charge of that.

As previously explained, at the Dispatch driver we introduced a set of UVM events that
communicate it with the necessary sequences in the environment. For example, we have
a UVM event instantiated in the Issue sequence to track down the two first possible cases.
Once the Dispatch driver receives a transaction to stimulate the VPU, it creates another
and sends it via triggering the UVM event. When the other side of the event, the Issue
sequence, observes the trigger, it can read the sb_id inside the transaction and whether it
was a next_senior or a kill. This way, the sequence may mark the instruction structure as
next senior or delete it from the queue of memory instructions pending to start.

In addition, we have one event connected to the Memop sequence, which completes the
treatment for the second case. We need to have two of these because otherwise, there
could be a race condition between the two, leading to possible timeouts or problems by not
detecting the Dispatch information. This one is also used for the last two cases, in which
thememory operation has safely arrived or even finished the in-flight stage. It is triggered
in the same way as the Issue one and the Memop sequence has a similar response. It
searches for the sb_id in all the possible in-flight memory operation queues, that is, load,
store and masked operation queues, and marks them as next senior or deletes them from
the corresponding structure. Additional cleaning may be necessary when stopping the
execution of a memop, which is specific to the instruction type.

When the criteria aremet and amemop is sent a sync_end, theMemop sequencewill access
its next senior bit. It will remove the instruction from the sequence if it is a load regardless.
However, if it is a store, this cannot happen until the instruction has been next_seniored.
As explained, this is necessary as we keep the data to be stored in structures for these
operations until we are sure that we are going to commit. Otherwise, if we got a kill, we
should do a rollback of some data inside the memory model, which would undoubtedly
be a big issue for multiple stores in the UVM.

Therefore, when a store instruction finishes, we decided to remove the store struct from
the in-flight one and keep it in another "commit" structure. After every clock cycle, this
structure is searched to check if any of its instructions has had its dispatch information
sent. This is possible because we have the UVM event mentioned above connected to the
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Memop sequence, which also looks for the instruction in the new structure.

As said, if the commit structure is observed and has a "dispatched" instruction, it is pro-
cessed. If it received a kill, the instruction is easily removed, as we did not save anything
in the environment or commit the data into the memory model. In the case that it was
sent a next_senior, the store gets its data saved in the memory model and its results and
masks sent to the scoreboard. After that, the instruction is finished and can be removed
from the structure.

Once we have explored themain capabilities of theMemop sequence, it is time to see how
the other three memory-related OVI sub-interfaces work and interact with it within our
environment.

5.3 Load sub-interface
The Load sub-interface of OVI is used for the instructions with the same name. Through
it, the VPU can obtain data from memory and set values inside the vector registers. The
scalar core is in charge of requesting the necessary memory data and sending it through
the sub-interface signals along with some metadata and masks.

The VPU does not have direct access to the cache providing the data in the OVI scheme,
so the scalar core must retrieve it and forward it to the VPU. In essence, it requests a full
512-bit long cache line, creates a signal that contains the format of the data being sent and
sends it together with a previously received mask. As the VPU does not communicate
with the cache, the scalar core does not provide the real addresses to be accessed at the
memory. Therefore, when forwarding the cache line, the core or the UVM environment
must send the exact location of the valid elements inside the 512-bit signal.

In Table 5.2 there are the signals of the load sub-interface.

Signal Width Direction Description
valid 1 Input Indicates that valid load data is being sent.
seq_id 33 Input Contains different configurations to order the data being sent.
data 512 Input Contains memory data to be stored in vector registers.

mask_valid 1 Input Indicates, for a masked load operation, that the mask being sent
with the data is valid.

mask 64 Input Contains the mask for the current data being sent.

Table 5.2: Load sub-interface signals

For a usual load instruction, many load transactionswill be sent through the interface. For
each of these, at least valid, data and seq_id signals must take valid values. In addition, in
case it is a masked load instruction, each cache line will be sent alongwith amask_valid set
to ’1’ and accompanied with the corresponding mask. For example, for a load instruction
with vector length 256 and standard elementwidth of 64, the VPUwill receive aminimum
of 32 transactions. That is, a maximum of 8 elements in each 512-bit cache line and up to
256 elements, which means that we need 32 cache lines. This is for the case of unit-strided
load operations and if the base address of the vector load instruction aligns to 512 bits.
Otherwise, we would need an additional line. In some cases, which will be explained
later, 256 elements long vector loads could get up to 256 transactions.
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The seq_id signal contains different fields that together locate and format the valid data
inside the cache line being sent. These fields are shown in Table 5.3.

Field Width Description
sb_id 4 Contains the identifier it of the load instruction for the current data being sent.

el_count 7 Indicates the number of valid elements inside the cache line being sent.
el_off 6 Indicates the offset in elements of the first valid element of the cache line.
el_id 11 Contains the identifier of the first valid element of the cache line.
vreg 5 Indicates the vector register in which the load data must be stored.

Table 5.3: Seq_id signal fields

With the seq_id signal, one can find what the first valid element is in the cache line and
where to find it. Afterwards, it is up to the VPU to read the following elements. For
example, for the previous case with a VL of 256 and a SEW of 64, the first load transaction
would arrive with a seq_id of sb_id, 8, 0, 0 and vreg, respectively. If the base address was
not aligned to 512 bits, the el_off field may take other values and also will force other
fields to change. For instance, if it was aligned at the third possible element in the line,
the seq_id would be sb_id, 6, 2, 0, vreg. For the Vector RISC-V ISA, no misaligned accesses
can happen. Therefore, the el_off fieldwill only take values inside the number of elements
that fit in a cache line. In this case, it can take values from 0 to 7.

In the following valid cache lines being sent, the el_id field would contain 8 and 6, respec-
tively. In consecutive valid cache lines for the same load instruction, the el_idwill be equal
to the previous el_id plus the el_count. The previous examples can be seen in Figure 5.4.
In it, we can see a representation of the elements inside a cache line and coloured in light
blue we have those that contain valid elements for the line currently being sent. On the
right, we have the values that the seq_id would contain for each of the lines. Example 1
shows the 512-bit aligned load, while example 2 shows the case where the base address
is aligned to the third possible element.

Figure 5.4: Cache line examples for load operations
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However, el_count taking the maximum value possible every time only happens in unit-
strided loads. As explained, this access all the memory positions after a base address.
For strided loads, however, the seq_id must take different values. For example, if for the
case above we used a stride of 2, the el_count field would take values equal to 3 and 4,
respectively (example 3 in the figure). This would also affect the el_off field, which may
vary from line to line, depending on the stride.

InOVI, there are two types of strided load operations, optimized and non-optimized ones.
This depends on whether the stride used is -4, -2, -1, 0, 1, 2 and 4 or not. If the stride is
in the specified group, the instruction can be executed as expected through the interface.
However, only one valid element may be sent in each cache line if it is a different stride
due to this limitation. Even if there are multiple valid elements inside the cache line, only
one will be taken into account in the seq_id and marked as valid. This way, one cache line
may be sent multiple times to provide different elements to the VPU. If that is the case,
each time the el_off field will point to a different position of the line, where the current
element being sent is. This can be seen in example 4 of Figure 5.4. In it, we can see a
3-strided load aligned to the third possible element. In both lines, the core is sending the
same data, but with different seq_ids, always keeping el_count to one. It is worth noting
that in both lines, element 5 contains the same valid data, but it will only be processed by
the VPU when the seq_id specifies that it is a valid element.

Similarly, for indexed vector load instructions, only one valid element will be sent in each
cache line, and the el_off field will depend on the previously sent index. This is why it is
essential to have memory addresses aligned to SEW in OVI, as offsets must be specified
in elements. If the VPU sent an index that set the address to be accessed aligned at two
elements inside the cache line, the corresponding seq_id would be sb_id, 1, 2, 0, vreg.

The last aspect of the load interface, as seen in Table 5.2, are masks. For these, two signals
are used, mask_valid and mask. If a load instruction is masked, for every cache line sent, it
will set themask_valid signal to one. If this is set, the VPU will take into consideration the
value inside the mask signal.

Only as many as el_count inside the seq_id will be taken into account, so the scalar core
should be partitioning the masks that the VPU sent it before sending them. For example,
suppose the cache line being sent contains three valid elements and starts with the el_id 2.
In that case, the mask signal should only contain the mask related to the following three
elements. For instance, it may contain the value "101", meaning elements 2 and 4 of the
vector must be written while 3 must not be modified. The same happens with indexed or
non-optimized load instructions, where only one bit of the mask may be sent with each
cache line, specifying whether the only element being sent in it must be written in the
vector registers or not.

Additional details about masks and how they are used in memory instructions will be
provided in Section 5.5.

One extra feature that the Load sub-interface inOVI has is that it supportsminimal out-of-
order capabilities. Given that the scalar core requests complete cache lines, it may happen
that its requests hit or miss at the cache. If the cache line containing elements from 0 to 7
was amiss but the one containing the following ones was a hit, the coremay send first this
last through the sub-interface, with the corresponding seq_id signal. This hides possible
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miss penalty delay from the vector memory instructions.

In addition, as said, OVI supports up to one in-flight store and two in-flight load memory
operations. Due to this, cache lines of different instructions could arrive very close in time
or even out of order to the VPU, which is why the seq_id signal contains a sb_id field.

Additionally, load instructions in OVI have what is called retries. Since the VPU does
not have direct access to memory, it will not issue the requests to the cache. The scalar
core will do this at a specific rate, which may sometimes be faster than what the VPU can
handle, creating some problems. Specifically, the VPU has a structure called Load Buffer,
shown in Figure 5.5, whichmight get full if the cache lines are sent too often or in an order
that causes these to get full.

Figure 5.5: VPU Load Buffers structure

As seen in the figure, these structures have the particularity that they receive 64 bits and
output 64 bits per bank, that is 320 bits. This happens because there is a Load Buffer
per lane and the VPU has eight lanes. Therefore the data coming through the OVI load
data signal, which is 512-bit wide, is split into eight 64-bit wide signals. To increase the
throughput of the module and to exploit at maximum every time the buffer gets to write
in the vector registers, it can store up to five elements, one per bank in the vector registers
(as seen in Figure 3.5). Only elements that will go to the determined bank can be stored
in each of these.

For example, for lane 0, the physical vector register 0 has elements 0, 8, 16, 24 and 32 in
banks 0, 1, 2, 3 and 4, respectively. In the optimal case, these elementswould come in order
and be stored in the buffer banks, to later be stored in the vector registers concurrently,
each in its bank. Before that, it could happen that the Load Buffer received element 40.
As this element should go to bank 0 in the buffer but is occupied, it cannot be stored and
one of them should be discarded, either element 0 or 40. For this space of time, the VPU
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has two different buffers to simultaneously prepare two "vector register writes".

However, and considering that OVI supports limited out-of-order capabilities, it could
happen that before writing the first full buffer and with element 40 already in the second
one, the Load Buffer received element 64. A delay in the VPU could not cause this, as it
is a controlled latency. On the other hand, it could happen that the scalar core sent the
corresponding cache line before its time, as explained previously. In this case, the Load
Buffer will have to discard one of the elements.

When the buffer cannot allocate one of the incoming elements, the VPUwill let the scalar
core sync_end the in-flight load operation. After that, it will notify through the vstart signal
of the Completed sub_interface the element following the last one that it could save in the
vector registers. As previously explained, the scalar core would observe this through the
interface and then kill all the following instructions to re-issue the retrying load, this time
with a CSR vstart equal to the one outputted by the VPU.

The fact that the memory transactions are not sent in a request-response manner creates
retries. Even if having to re-issue and kill the following instructionsmight seemvery prob-
lematic, it indeed makes the VPU memory-related modules much more straightforward,
as they do not have to communicate with the cache. Retries are necessary to recover lost
elements. However, they are something that we want to avoid when executing a bench-
mark or actual application because they introduce a considerable delay in the execution.
In our case, as we want to stimulate the maximum possible cases for the VPU, we want to
generate retries.

With all this explained, we can see that this sub-interface is among themost complex ones,
so its agent and connections are crucial to its correct behaviour.

Figure 5.6: Load UVM agent and connections in detail
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In Figure 5.6, there is the diagram of the Load sub-interface UVM agent and its connec-
tions.

The Load sub-interface is a one-way one. Only the scalar core sends information through
it towards the VPU. As explained, each time the valid signal is set to ’1’, a cache line will
be sent along with relevant load metadata. We decided to only include a driver in the
agent for these reasons.

As in most sub-interfaces, the sequence generates transactions and feeds them to this
driver. We pick up here the thread we were following on the Memop sequence. In it,
we explained that after the VPU sync_starts a memory operation, the instruction details
are packed into a struct and sent to the corresponding specific memop sequence. Thus, a
so-called load struct is created and inserted into the in-flight loads structure for the load
operations.

The Memop section also mentioned that each memory instruction has its specific neces-
sary data created and inserted into the corresponding Load or Store struct. For the case
of the load memory operations, we need different data before sending transactions to the
VPU:

• Memory data to provide to the VPU.

• Seq_ids that configure the cache lines.

• Masks from the memory operation.

To obtain the first two, we need the data coming from Spike. For the data, we use a par-
ticular function in the Spike sequence. In it, we use the type of instruction and the base
address to access all the memory positions to be read in the operation to obtain the data
inside Spike. In OVI, there are no addresses and the VPU is utterly agnostic to them, but
we, as the scalar core side of the interface, need to provide the actual data if we want to
sustain the simulation properly. However, as we are using Spike, we can easily access
the base address of the instruction, which is stored inside one of the scalar registers and
specified in the encoded instruction. With it, we can read any memory position of the
instruction.

If it is any strided operation, the positions are accessed starting from the base address and
read sequentially after applying the corresponding stride to the address. However, if it
is an indexed operation, the addresses are calculated by adding the indexes to the base
address. These indexes are located inside the corresponding vector register used as an
index vector for the instruction. We obtain them by directly reading the values from the
Spike registers. This way, we avoid renaming the physical vector register of the VPU and
isolate possible previous failures of instructions that are pending to write in them.

When all the addresses are accessed and this data is ready, it is put into the instruction
struct to be loaded into the memory model at sync_start time. This way, by the time the
load memory operation starts to its execution, the data is present in the memory model
and the Load sequence only needs to access it to provide the actual data. The memory
model uses the same addresses as Spike. Therefore, when accessing it to send the cache
lines, we can use the same as the scalar core. We decided to do it this way because it felt
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the most realistic way possible.

The addresses to be accessed are computed in a function called at sync_start. In that same
function, the seq_ids are generated. For this, the Spike sequence follows a similar process.
The addresses are walked sequentially, starting from the base address. Indexed loads do
not execute this function; instead, they wait for the index to arrive to generate the seq_id
and the address to access. The scalar core provides 512-bit wide cache lines through OVI,
so these addresses will be aligned to 64 bytes.

The first address is obtained in this function by performing a bit-wise AND operation to a
mask that aligns it to 512 bits. From there, thememory addresses are walked sequentially.
For a unit-strided load, the following address used in the loopwill be the first aligned one
plus the SEW in bytes. This is necessary because we need to create the seq_id and give
values to their fields. For that, we must traverse all the valid elements inside each of the
cache lines.

For example, let us set take 0x8000404c as the base address for our 64-bit SEWunit-strided
load instruction. The first valid element will be the one located at the address 0x8000404c
and the second one will be located at 0x80004050. As the first valid element of the line is
not aligned to 512 bits, the el_off field of the seq_idwill contain a two. That is, the address
of the first valid element minus the 512-bit aligned address divided by SEW. The el_count
will also depend on the element offset, lowering in this case from a maximum of eight
elements to six.

If we had a load instruction with a stride equal to two or four, traversing the whole cache
line avoidswriting every independent case. If the base address is aligned to 512 bits, every
offset and element count in the seq_idswill be the same. However, if it is not aligned, each
cache line could start in a different element and have a different amount of valid elements.
Therefore, if we move from element to element and check whether each address should
be accessed or not, the process is easier.

Each time the current address is aligned to 512 bits, a seq_id is generated and the previ-
ous 512-bit aligned address is saved, meaning that a cache line must be sent with those
parameters. This information is stored inside the same queue position in the load struct.
This way, whenever a load transaction is to be sent, whatever seq_id it is, the first pending
one or another one, the seq_id and address to access will match.

In both previous cases, as we send complete cache lines, the first address to be enqueued
for the instruction will be 0x80004040. The following cache line will be that one plus 64
bytes, 0x80004080. However, if we had a non-optimized strided load operation and more
than one valid element in each cache line, these must be sent in different load transac-
tions. This OVI limitation is also covered in the function that implements this algorithm,
which creates the corresponding seq_ids and enqueues the same address as many times
as needed inside the load structure.

Two additional cases to be considered are retrying loads and zero-strided load instruc-
tions. For zero-strided loads, the seq_ids and addresses must be the same for all cache
lines sent, and therefore we provide the same values in each iteration. For retrying loads,
the scalar core must provide a vstart and then start the load operation from it. For this, we
propagate this value from the Issue sequence through the Memop one and use it to gen-
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erate seq_ids and addresses starting at that point. Instead of starting the algorithm from
element zero, we start it from the vstart element.

Once all of the seq_ids and addresses are inside the load structure and the memory model
is filled with the necessary values, the UVM may start sending cache lines to the VPU.
It is worth noting that we could do this cache line by cache line, but then we would lose
the randomness of choosing a different pending one. If we implemented that in such a
manner, the already complex sequence would turn even more challenging.

At this point, every clock cycle a cache line will be selected and sent as a transaction by
the Load sequence. This will be done using the uvm_do_on_with function, which sends the
transaction through the sequencer to the driver. Typically, the seq_id and address used are
in the first position of the corresponding queues, which are stored in expected operation
order. These are popped from the queues inside the load structure and used in the current
transaction, meaning that they may not be used again in further transactions. This way,
we avoid sending the same cache line twice.

Nevertheless, not always the first pending cache line will be sent. As explained, in OVI
a certain out-of-order functionality is supported, which allows seq_ids to be sent out of
order, intra- and inter-operation wise. The scalar core may send cache lines out of order
to hide cache misses in the real case. As we do not have cache misses in our environment,
we have to simulate these situations. For this, we use UVM Configurations.

These are UVM that allow increasing the customizability the engineers can get from an
environment. By setting a configuration object associated with a class, one can direct the
way a test is going or stress a particular design region. In addition, these configurations
may be randomized at the start of the test, achieving a broader range of possibilities when
simulating with the environment.

Figure 5.7: Configuration objects in UVM, based on [39]

The configuration object is instantiated inside a UVM component or object. This instance
is associated with a configuration object at the build phase or during the environment’s
set-up. This way, during the test, the component or object may access specific attributes
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of the configuration object. These may determine certain properties of the behaviour of
the entity.

An example of this can be seen in Figure 5.7. In it, we see an example of a UVM agent with
a configuration object "config" associated with it. In this case, the configuration object has
an attributed named active. This attribute determines whether the UVM agent is active
or passive. That means whether it sends and receives transactions or exclusively receives
them. This can be interesting for integrating the DUT with other modules feeding the
input values. If that is the case, the active attribute will be set up as "UVM_PASSIVE",
for example, meaning that the driver will not stimulate the interface or that it will not be
instantiated. These attributes are often specified in a System Verilog enum construct to be
changed more quickly and it is clearer to read the configuration set up.

Another example could be that the configuration object had an attribute called delaywhich
determines the delay in clock cycles that it applies between receiving a transaction and
stimulating the DUT. Whenever the driver receives a transaction, it can access this at-
tribute through the configuration object and use its content to wait a certain amount of
cycles before driving its values to the signals. When setting up the test, this configuration
object can be modified or randomized to change the values inside its attributes. This al-
lows the driver to apply a different delay at the interface for each simulation. This would
help create scenarios where some buffers in the DUT got full in a random stimulus envi-
ronment.

We use this UVM feature to create out-of-order Load transactions in our environment.
We implemented the environment so that every component and almost every object has
its configuration object associated. These are set with the desired values when starting
the test and will be further discussed in the following sections. To send cache lines out of
order, we have the following configurations.

• Instruction mode: Through this configuration, we enable the chance that a cache
line for the second in-flight load might be sent. There are three main modes:

– Sequential: In thismode, all the first in-flight load cache lineswill be sent before
starting with the second one.

– Random: In this mode, every time the load sequence is about to pick one load
to send a cache line for, it will randomize the index to use in the in-flight loads
queue. This is not a very realistic case but helps in creating very extreme cases
which may still be correct and relevant for the VPU.

– Realistic: In this mode, every time the load sequence is about to pick one load
to send a cache line for, it will randomize whether to use the first in the in-
flight loads queue or another. The chance of obtaining a different load will be
customizable through the instruction change chance configuration.

• Cache linemode: Through this configuration, we enable the chance that a cache line
different than the first pending one is sent. For this configuration, we have the same
main modes as for the instruction mode, but the indexes obtained will be used in
the seq_ids queue of the selected load.



Chapter 5. Memory operations emulation in the UVM testbench page 73

• Instruction change probability: When using the realistic instruction mode, this con-
figuration sets the probability of sending a cache line for the second in-flight load.

• Cache line change probability: When using the realistic cache line mode, this con-
figuration sets the probability of sending a cache line different than the first pending
one.

Typically, we would set realistic modes for both configurations for most simulations and
a low chance of sending an out-of-order cache line, both inter and intra-instruction. We
set these configurations to simulate the real case where the scalar core obtained a miss in
cache. It will always be approximate and never follow the same behaviour as the core, but
by being random, we ensure that all the possible cases happen at some point.

Whenever the Load sequence sends a cache line, it will first select a load for which to send
it. The sequence will do this by accessing the corresponding attribute in its configuration
object, the instruction mode configuration. Depending on the mode, the sequence will
either select the first in-flight load or randomize the load or the fact that a different load
might be used. The latter is randomized using the instruction change chance attribute,
which may be set in the configuration object. This object is accessed from the sequence
and used as a constraint as part of the randomize call.

Once an in-flight load has been chosen, the same process is followed to select a cache
line of the corresponding instruction. It is worth noting that as these are all independent
configurations, they can be used combined and changed; however, we want to create new
cases. In addition, we can set them to be randomized at the start of every test, allowing
us to test more cases automatically.

In the end, these processes provide uswith an index to access first the in-flight load queue
and then an index to select the seq_id inside the corresponding queue from the selected
load. These are what characterize a cache line inside our environment.

After a cache line has been selected to be sent, the sequence is ready to retrieve the data.
For this, it will simply do a read to the memory model with the address popped from the
queue. A full 512-bit wide cache line will be returned, which is already set to be sent to
the VPU. With this, the sequence has the main necessary data to send through the Load
sub-interface of OVI. That is, the seq_id and the data. Therefore, it creates a transaction
using uvm_do_on_with and sends it to the driver.

When these transactions arrive at the driver, it will set the values inside into the corre-
sponding signals of the interface. An additional feature that we added to the Load driver
involved configurations. If we just left the driver to stimulate the interface as soon as it
received the transactions, it would do that every cycle, which is at the rate we generate
them. Considering how the Load Buffers of the VPU work, we may stress the DUT too
much using this approach. To address this, we decided to use a set of configurations.

We have some attributes of the configuration object of the driver that concern the delay
applied to stimulating the VPU. These include modes, such as a random delay mode, a
burst mode and a configurable fixed delay mode. The burst mode sends the stimulus
in the standard way, one cache line per cycle, which is not realistic but may help cause
retries. The secondmode randomly selects a delay inside a determined range to stimulate



Chapter 5. Memory operations emulation in the UVM testbench page 74

the VPU with the incoming transaction. Finally, we have a configuration attribute that,
together with the fixed delay mode, sets the same delay for every transaction.

With these, we can control the rate at which the environment sends the cache lines to the
VPU. Togetherwith the cache line configurationsmentioned above, these create new cases
when randomized and help create custom and specific cases in particular simulations. For
example, an RTL engineer can create a case where the cache lines are sent to fill the Load
Buffermodules inside the VPU. This can be done by using a specific combination of seq_ids
at a very high rate, meaning that the VPU cannot process the operation quickly enough
and that it may need to retry the load.

The previous scheme works for unmasked strided loads. However, OVI supports masks
and indexed memory operations through combining sub-interfaces. The functioning for
both types of operations is similar. The VPU will send indexes or masks through the
Mask_idx sub-interface and the scalar core must use them properly.

For the masked strided loads, the environment will receive 64 bits of masks through the
interface. Then, the load sequence will partition these to fit the cache line to be sent, con-
sidering the element count and the elements already masked. When the necessary mask
bits for the line have been selected, they are set inside themask variable of the transaction.
In it, the mask_valid bit will also be set to one to indicate that a mask is being sent. Then,
when the transaction arrives at the driver, the corresponding values in the interface will
be set.

Figure 5.8: Load memory operations flow between the UVM and the VPU

The index will be sent through the same signal of the Mask_Idx sub-interface for indexed
loads. Thesewill be sent in the standard order andwill determine the offset to the address
of one element of the operation. This index will arrive at the sequence, which will apply
the offset to the base address when ready to prepare a new transaction. With the resulting
address aligned to 512 bits, it will perform a read to the memory model and construct a
seq_id, which will determine where inside the line the valid element can be found. The
data and seq_id will then be packed into a transaction and sent to the driver.
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Additionally, when an indexed load operation is masked, the most significant bit of the
mask signal will contain themask for the element being sent. In this case, the environment
will place it inside the least significant bit of the load_mask variable of the transaction.

Therefore, the masked and indexed operations force the cache lines to be sent in order. In
addition, thismeans that the cache linemust not be sent until it receives the corresponding
mask bits or index. Figure 5.8 shows this, where we can see the entire load operations
execution flow inOVI.While in a regular load operation all cache linesmay be sent directly
and in a possibly short amount of time, in the masked and indexed operations, the UVM
must wait for the necessary masks to arrive before sending the corresponding cache line.
Therefore, the VPU may send the masks optimally or delay the load operation for some
cycles, where the core is waiting for the masks to send the cache line. The diagram shows
how cache lines 1, 2, 3 and 4 are sent one after another in a regular operation. However,
for the masked/indexed load operations, we can see that lines 3 and 4 cannot be sent until
both get their mask bits and the UVM sends them through the interface.

In the Memop section 5.2, it was mentioned that for both loads and stores, the Memop
sequence checks at every cycle whether the memory operation is finished or not. This is
determined by different factors depending on the specific memory operation. For both
unit-strided and strided loads, we know that the instruction ended its activity through
the interface when all cache lines had been sent. That is, when the seq_id queue inside the
load struct is empty.

For the case of indexed loads, this does not work, as seq_ids are created every time an
index is received. To solve this, we use a counter incremented each time a mask or index
is received from the Mask_Idx sub-interface. Every time the Memop sequence checks
whether the operation has finished or not, it will additionally compare if themask counter
is equal to the vector length of the instruction. If this happens, it means that every element
of the instruction got its index and every cache line was sent to the VPU, meaning that the
memory operation was finished.

With all the explained, we support all kinds of load operations. Through Spike and the
Memop sequence, we obtain the data to send to the VPU and to create the seq_ids. We
provide different configurations to ease the generation of new situations, like causing re-
tries. These are one of the trickiest parts of memory operations, but the Load sequence
simplifies its treatment. First, it executes the first time for the full operation just as the
scalar core would. Then, the second time the operation is sync_started, it just generates
the seq_ids and cache lines from the vstart position onwards.

Hence, all the load features are supported through the Load sequence in the environment.
Let us go over the store memory operations in the following section.

5.4 Store interface
The Store sub-interface of OVI is used for the vector store memory operations. The VPU
sends all the data to store in the cache through this sub-interface. As the VPU does not
have direct access to the cache, it will send the data to the scalar core, which is connected
to the cache.

In Table 5.4 there are the signals of the store sub-interface.



Chapter 5. Memory operations emulation in the UVM testbench page 76

Signal Width Direction Description
valid 1 Output Indicates that valid store data is being sent.
data 512 Output Contains register data to be stored in memory.

credit 1 Input Indicates that a credit is returned, allowing the VPU to send
more store data.

Table 5.4: Store sub-interface signals

In this case, the 512 bits of the interface are used exclusively for valuable data. That is, the
VPU does not format the cache line in any way. It sends all the elements of the vector that
it can fit in the width of the bus every time it sets valid to one. This simplifies much this
sub-interface, as no format signals must be sent together with the data. Masks disappear
from the signal table as they are directly sent through the Mask_Idx interface.

The signals table shows that the Store sub-interface has a credit system, such as the Issue
one. In this case, the scalar core side gives credits and the VPU side consumes them. A
credit is consumed whenever the VPU sets the valid signal to one and sends a data burst.
Typically, if the vector is long enough, the VPUwill sendmany bursts in a row, eventually
consuming all the credits and not sending more for some cycles. Then, after the scalar
core has treated the data sent by the VPU, it will set the credit signal to one, meaning that
it may send another burst of data.

This sub-interface is much simpler than the Load one, but this means that the hard work
must be done on the scalar core side. In our case, in the environment and the Store se-
quence.

Figure 5.9: Store UVM Agent and connections in detail



Chapter 5. Memory operations emulation in the UVM testbench page 77

In Figure 5.9 there is the diagram of the Store agent of our UVM environment. In it,
we can see the monitor in charge of receiving incoming data bursts from the VPU and
creating transactions. These are analyzed and treated at the sequence, which produces
its transactions to return the credits whenever it is ready. The credit transactions are then
sent to the Store driver, which stimulates the interface of the VPU through the credit signal.

The main difference between the Load interface and the Store one is that the data comes
packed up, taking the total profit of the 512-bit wide bus. This makes it easier to locate
where the data is. For example, for a 64-bit SEW, up to eight elements might be sent
through the bus each time the valid signal is set. Using the whole width depends on how
long the vector is orwhether it is the last burst corresponding to that vector. For instance, a
vector of 64-bit SEWwith a vector length of three elements will only have a burst through
the sub-interface, containing 192 bits of valid data inside the data signal. A vector of 64-bit
SEW with a vector length of ten elements will have two bursts through the sub-interface;
one containing the full bus as valid data and a second containing only 128 bits of valid
data.

This fact includes all types of store operations; unit-strided, strided and even indexed
stores use the total size of the bus each time if needed. This means, for example, that no
blank spaces will be left between valid elements in strided store transactions.

On the other hand, the sub-interface loses other interesting metadata, like sb_id. Without
it, we cannot know for which instruction the data is sent. The OVI solves this issue by
only supporting one store memory operation in-flight at a time. That is, between Memop
sync_start and sync_end and in issue order. In addition, as we have seen sync_start does not
have a sb_id associated. Fortunately, we solved this problem in the Memop agent, which
has access to the memory instructions in issue order and ensures that the store data is
associated with the proper store instruction.

As there may only be one store in-flight at a time and the UVM as the scalar core is
in charge of finishing them, every time it receives a Store transaction through the sub-
interface, it knows for what instruction it is. These transactions are saved inside the store
struct of the sequence until the end of the memory operation.

Before that happens, if the instruction was masked or indexed, transactions must be re-
ceived through the corresponding interface. For store memops, masks and indexes can be
sent through the corresponding interface at any time. The VPU can send them in different
time windows, unlike with load operations, in which they must be sent before the actual
data.

These masks or indexes can arrive before, at the same time or after its corresponding
element of the vector. This makes the operation possible, as with one store valid many el-
ements may be sent, but in an indexed store, only one indexmay be sent at a time through
the Mask_Idx sub-interface. The scalar core would use these indexes immediately to per-
form stores inside the cache. However, we need first, as seen in the Memop sequence,
to determine whether the instruction is going to be killed or not. For this reason, these
masks and indexes are saved together with the data in the in-flight store struct.

All these cases can be seen in Figure 5.10. In it, there is the difference between the exe-
cution flow of a regular store and a masked/indexed one. First, we can see the base case
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where the mask or index is sent before the data, in which the UVM testbench will au-
tomatically consume the store credit. After that, the VPU sends an additional burst of
data, for which the mask or index is not ready yet. Once it is received and simplifying the
diagram as there should be many other transactions in the middle, the VPU runs out of
store credits. This can happen because the VPU did not send the necessary masks for the
elements, so the UVM is waiting for these to return the store credits. After the VPU sends
the last masks needed, the UVM consumes them and can free a store credit now, which
sends using the credit signal. At this point, the VPU can send the last chunk of pending
store data.

As said in the Memop section, these operations have different criteria that determine that
the interaction through the interface has finished. In the case of the store operations, at
sync_start time andwith the vector length and SEW, it is calculated howmany store valids
must arrive for the operation. Every time data is sent through the interface, a counter is
incremented. That counter is checked at every cycle by theMemop sequence to determine
whether or not it has reached the previously calculated number. If so, the operation is
finished and it is ready to be sync_ended by the Memop sequence. In the case of masked
or indexed memory operations, all necessary Store transactions must have been received
and all the mask transactions. These are also tracked through a counter and compared
with the vector length.

Figure 5.10: Store memory operations flow between the UVM and the VPU

After the operation has been decided to be finished, as explained, the sync_end will be
sent. However, the treatment of the instruction by the Memop sequence has not finished.
First, store data must be written into the memory model. Then, this data must be sent
to the scoreboard to compare the instruction results with the Spike ones. As explained in
theMemop section, due to a possible pending kill to the instruction, theMemop sequence
must have the Dispatch information before committing the store data. Therefore, it saves
the finished store struct into another queue until it receives a next_senior or kill.

When the Dispatch information is determined, the Memop sequence will perform or
not the processes mentioned above. This is also shown in Figure 5.10, where "Dispatch
known"marks the moment the Dispatch information for the instruction is acknowledged.
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That is, because it arrived previous to the sync_end or after that moment. As explained,
if a kill arrives, all data from the store operation will be deleted. On the other hand, if
a next_senior is sent for the instruction, the store struct will be popped from the commit
queue. Then, the addresses for the store operation will be used, either obtained through
the indexes or calculated using the instruction type, to store the data inside the memory
model.

After that, the Memop sequence will use the addresses used to read the memory in Spike
to access the memory model. It will read all the addresses that the operation should have
written and create a transaction with the values inside the model. This transaction will
then be sent to the scoreboard, which will compare element by element and determine
whether the instruction was well executed or not, both by the VPU and the environment.
Once the stored data has been sent out of the Memop sequence, all the store operation
information can be deleted from the commit structure, finishing all the treatment of the
instruction until the Completed monitor observes its completion.

5.5 Mask sub-interface
The VPU uses the Mask_Idx sub-interface of OVI to send masks and indexes of the mem-
ory operations to the scalar core. The core will later use these to treat the data from the
instructions. In Table 5.5 all the signals of the sub-interface are shown.

Signal Width Direction Description
valid 1 Output Indicates that valid mask or index is being sent.
item 65 Output Contains the mask and/or index to be used for an in-flight memory operation.

last_idx 1 Output Indicates that the mask/index being sent is the last for an in-flight memory operation.

credit 1 Input Indicates that a credit is returned, allowing the VPU to send
more masks.

Table 5.5: Mask Idx sub-interface signals

Similar to the Store sub-interface, this is a tiny one. The VPU will set the valid signal to
indicate that a mask or index is being sent through the item signal. This is 65-bits wide
and is composed of two fields, distributed as follow:

• The 64 lowest bits contain up to 64 mask bits in strided masked operations. In
indexed memops, the index will be located in these bits.

• In masked indexed memory operations, the mask corresponding to each element
will be located in the 65th bit of the signal. In the rest of the operations, this bit will
not be considered.

For indexed memory operations, when the VPU is sending the last index for the instruc-
tion, it will set the last_idx signal to one to indicate that the following items sent are for the
next masked instruction. Finally, the credit signal is used by the scalar core to notify that
it is ready to accept new masks or indexes through the interface.

As seen, this sub-interface is not a complex one, as the VPU sends the content of vectors
through it and the scalar core only responds with credits once it has used the mask or
indexes to treat thememory operation data. It is simple but necessary since themasks and
indexes are stored in vector registers. Since the VPU does not have access to the cache and
the scalar core is the one in charge of interacting with it, the core must obtain the masks
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through the interface. However, this causes a significant slowdown for operations. From
the VPU side, store instructions are not always delayed. On the other hand, Loads must
have their masks or indexes sent before the scalar core can respond with the cache lines.

Another big problem that this sub-interface presents is that the mask/index items are
sent by the VPU without a sb_id associated. Once again, they are sent for memops in
issue and sync_start order. Therefore yes, the Mask_Idx sub-interface is one of the most
simple interfaces but at the same time creates issues and complications when trying to
emulate the scalar core.

Figure 5.11: Mask Idx UVM Agent and connections in detail

In Figure 5.11 there is the diagram for the Mask_Idx UVM agent. This is similar to the
Store sub-interface, but the code related to its sequence is much smaller. The reason for
this is that we decided to focus this agent on only distributing incoming items and return-
ing credits. In addition, this part of the environment is only used when masked memory
operations are in-flight, so its behaviour is straightforward and dedicated.

The sequence essentially observes the interface and checks whenever an item is sent
through it to store it into a structure. Additionally, every clock cycle checks the content
of a counter, which if it is not zero means that a credit must be sent through the interface.
This last is done by using the uvm_do_on_with function.

The main reasons for the Mask_Idx sequence being this simple are two. The first one
is that items come through the interface without a sb_id, which means that from the se-
quence, we cannot tell to which memop structure the item will go. The second one is that
due to the structure of the environment and the singleton system we use to have access
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to other sequences, the Mask_Idx one cannot instantiate the Memop one and at the same
time instantiate the Load and Store ones. This is because the Memop sequence already
contains an instance of these and there would be more than one instance accessible from
the Mask_Idx one. This limitation represents an issue because, from the Mask_Idx se-
quence, we would want to send the masks directly to their corresponding instructions
and see when they have consumed these.

For these reasons, we decided to use the Memop sequence as the central point for the
mask and index treatment, connecting it to the rest of the sequences. This duty of the
Memop sequence starts whenever a masked or indexed is sync_started. As said, the sb_id
of the memory operation is pushed into a queue. This way, the incoming items will be
easily associated with the first element.

After that, we included a task in the sequence that checks every clock cycle whether the
structure in the Mask_Idx sequence contains any item. It does this by accessing it directly
through the Mask_Idx singleton instance. These are steps 1 and 2 of Figure 5.12, in which
we can see how the distribution of masks across sequences is done by the Memop one.

If there exists any item inside the structure, the Memop sequence will look for the sb_id
of the first masked memop in the queue (step 3 of the figure). For this, it will access the
Store and Load singletons and the corresponding in-flight instructions structures. When
found, the sequence will push the item inside a specific queue for "pending to treat" items,
which finishes the distribution part of the mask duties.

Figure 5.12: Mask distribution and usage in the UVM testbench

From that point on, the Memop sequence will observe these queues. The corresponding
instructions will continue their execution, applying thesemasks and indexes and deleting
them from the queues. Once the sequence observes that the items disappear from the
queues, it will increase the counter in the Mask_Idx sequence, indicating that a credit
may be returned (steps 4 and 5 of Figure 5.12. We do this in this specific way to try and
emulate how the scalar core would return the credits in the closest way possible. That is,
once these have been used.
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1 always_ff @(posedge clk_i) begin

2 automatic credits_count_t _credits_aux = _credits;

3 if (!rsn_i) begin

4 _credits_aux.issue = INIT_CREDITS;

5 _credits_aux.store = STORE_CREDITS;

6 _credits_aux.mask = MASK_CREDITS;

7 end

8 else begin

9 if (!$rose(rsn_i)) begin

10 a_issue_excess_credits : assert(_credits_aux.issue <= INIT_CREDITS);

11 a_store_excess_credits : assert(_credits_aux.store <= STORE_CREDITS);

12 a_mask_excess_credits : assert(_credits_aux.mask <= MASK_CREDITS);

13 end

14 if (issue_if.credit) _credits_aux.issue++;

15 if (issue_if.valid) _credits_aux.issue--;

16 if (store_if.credit) _credits_aux.store++;

17 if (store_if.valid) _credits_aux.store--;

18 if (mask_idx_if.valid) _credits_aux.mask--;

19 if (mask_idx_if.credit) _credits_aux.mask++;

20 end

21 _credits = _credits_aux;

22 end

23

24 final begin

25 a_issue_credit_return : assert (_credits.issue == INIT_CREDITS);

26 a_store_credit_return : assert (_credits.store == STORE_CREDITS);

27 a_mask_credit_return : assert (_credits.mask == MASK_CREDITS);

28 end

Code Listing 5.3: Mask and Store credits assertions

To control that neither the testbench nor the VPU did not return or use too many credits,
we added a set of immediate assertions that check this for the interface. These can be seen
in Code Listing 5.3. These assertions are also inside the checker explained in Section 5.2.
In this case, we used an always_ff System Verilog construct to update a set of counters at
each clock cycle. These counters control the number of in-flight credits and are increased
whenever a credit is returned and decreased when consumed. Then, they are checked in
different assertions, as seen in the code section. In it, there are two groups of assertions;
excess and return.

• excess: This set of assertions checked that nor the VPU nor the testbench returned
too many credits at any point in time.

• return: The final construct is run at the end of the simulation time. We control that
the VPU and the testbench have returned all credits when the simulation ends with
these assertions.
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We mostly caught errors in the testbench development through these assertions, where
too many credits were returned for store and mask sub-interfaces. Moreover, we could
observe cases where the VPU ignored the number of credits it had for both interfaces
and sent too many transactions, meaning that we found a bug in the DUT. As seen in the
code section, we also had assertions for Issue credits, but these have worked fine since the
beginning of the process.

In addition to the previous, the Memop sequence increments a counter for the instruction
when an item is received. Once this counter reaches the vector length, meaning that all
the necessary items have been sent, theMemop sequencewill delete the sb_id correspond-
ing to the instruction from the first position of the queue. Therefore, when the next item
arrives, it will directly find the next memop in the first position of the queue.

Furthermore, every time an item is received and distributed, it is pushed into an addi-
tional structure inside the instruction. This is done to check whether these have been sent
correctly or not. We do this by creating a transaction whenever the instruction is deleted
from the memop structures and sending it to the scoreboard via an analysis port. There,
all items will be compared to the values that Spike contains inside its vector registers to
determine whether the VPU sent the correct values or not.

These mechanismsmake it possible to execute maskedmemory operations while keeping
the environment structure as it was first thought. The Mask_Idx sub-interface, together
with all the previous ones, allows the execution of all types of instructions through the
environment.



Chapter 6

Evaluation of Contributions

In this chapter, an analysiswill be done of the previouslymentioned contributions and the
verification process results. The latter will be detailed in Section 6.1, while the evaluation
of the two main contributions itself will be done in Section 6.2.

6.1 Results
The contributions to the VPU verification process have been presented during the last two
chapters. The testbench was a team effort, and all members were somehow involved in
all its aspects. The team managed to put together a set of features and techniques that
exceeded expectations, providing a verification environment for the project.

The two contributions mainly discussed in this document, the UVM testbench and its
Memory operation part in detail, were necessary and a central point of the verification
process. The primary way the verification of the VPU is performed, though, is by the
instructions sent by the Issue sub-interface. These were obtained through Spike, which
had a binary loaded randomly generated using Riscv-dv. Therefore, to both send the
instructions and support their execution through OVI, especially for memory operations,
the UVM testbench played its role perfectly.

6.1.1 Test results
As explained, duringmonths, diverse continuous integration pipelines were set up to run
tests on the VPU. Several random tests were generatedwith Riscv-dv and simulated using
the UVM testbench in most of these.

During weeks, wemanaged to findmany bugs in the RTLwith this environment. Among
these, we include design issues and instruction mismatches. That is, either "timeouts",
the VPU not being able to complete the instruction, or a mismatch in the vector registers
after instruction completion compared to the expected values from Spike. We also found
specification errors in the VPU and the OVI interface document. When an error is found,
the necessary information to reproduce it (e.g. binary file or the assembly of the faulty
instruction) is provided in an accessible report along with the results with the rest of the
set tests.
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In Figure 6.1 there is the distribution between faulting instructions in these set of random
tests run every night. In the plot, we focus on memops, which are the most interface
dependent instructions, but "Others" contains all the rest of the arithmetic/logic vector
instructions.

Figure 6.1: Errors encountered per month

These tests include the ones run from April to November of 2020. Twenty-four tests were
run every night between April and July, while fifty tests were run nightly between August
and November. Afterwards, as seen in the chart, almost no bugs were found, and the
CI approach had to be changed. More tests were run from then on, but bugs appeared
occasionally and were often solved the day after.

When we analyse the chart in-depth, we can see that almost every test failed at first. This
means either that a failing feature was used in every test or that there are many bugs. In
our case, it was due to timeouts and the VPU not completing some of the instructions.
Once this was solved, much fewer bugs started appearing.

During the first month of CI, we did not have the memop parts of the UVM environment
ready yet, so these instructions were blacklisted in the test generator. After May, memory
operations were ready and whitelisted in Riscv-dv. These took the top spots of the most
failing instructions list for weeks. This was mainly due to timeouts and problems with
the OVI protocol implementation in the testbench.

For example, many of the issues in the memory operations involved the VPU not send-
ing the sync_start signal for some instructions. In these specific cases, we know that the
problem resided in the memory instruction queue inside the VPU and the sending of dis-
patch information for the operations inside it. Certain combinations of instructions and
its issue order caused the VPU not to be able to send the sync_start for a pending memop.
This caused timeouts in the environment, as it was waiting for that signal and blocking
following memops. This also blocks sending dispatch information, as the environment
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is waiting for its completion to treat a possible retry. Additionally, no more instruction
issues could be done because no credits were returned, which means that other memops
could not be sync_started and so forth. We detected these timeouts by counting cycles
without instruction completion in OVI.

Another bug that we found was concerning the OVI specifications. We found it hard to
create the same behaviour as the scalar core for retries. As explained, instructions after
loads are not sent their dispatch information to cover the case where these have to be
retried. This creates the case where a possible following memop is in the queue waiting
to be dispatched but does not necessarily have to wait to be sync_started. Therefore, a
memory operation might be inflight and sent a kill.

The OVI specifications stated that "a sync_endmust be sent for all memops that have been
sync_started", which includes killed instructions. When we were developing the UVM en-
vironment, we followed this statement and developed it so it could send the correspond-
ing sync_end. However, in the EPAC integrated environment, we could observe that the
scalar core was not sending a sync_end for these operations. Additionally, the VPU was
notwaiting for them as all the killed instructions had already been removed from its struc-
tures. We asked the team in charge of OVI for this detail, so we could all sync and align
to have the same behaviour and they agreed that this aspect of the interface was not clear.
The specifications were changed to be more explicit about this, and since version 1.03 of
the document, it is stated that it is a sync_end must not be sent for killed memops [42].

A different and prolific source of bugs that we found were strided load operations. As
said, when issuing a strided memory operation, we needed to send the stride, which is
determined by the value inside a scalar register, through the scalar_opnd signal of the Issue
sub-interface. The LoadManagement Unit (LMU) from the VPU (seen in Figure 3.4) uses
the stride value directly from the interface to determine the alignment of the elements
inside the cache lines and feed them directly into the banks.

Three different types of bugs appeared related to this. At first, the stride was not cor-
rectly applied by the LMU, causing the vector registers to mismatch with the Spike ones.
Later on, we detected a bug where the VPUwas writing values inside the registers where
it should not for a unit-strided load. The LMU was considering the stride being sent
through the interface for this instruction when it should detect unit-stride from the in-
struction encoding instead, applying the one on the interface to the incoming elements
and causing a mismatch. Finally, we also found a bug where while executing two strided
loads with different strides, the VPU would not correctly apply the corresponding one to
its instruction. The LMU used a direct signal instead of keeping a table with the different
inflight strides, which was added after finding the bug. In general, the RTL team quickly
detected and fixed all these errors.

As the verification level we decided was for the whole Accelerator, we did not have to dig
deeper to find the bugs. In these cases where the error could not be easily seen in the
interface, we filled up a Gitlab issue with related information about the bug and notified
the RTL team.

As seen in Figure 6.2, we added a short description of the bug, the transcript of the error
and the waveform. In the example of the figure, we can see that there was a mismatch in
the vector registers after a strided loadwas executed, where the VPU sets an element to ’1’
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Figure 6.2: VPU Bug Gitlab Issue example

when all elements sent were zeroes. In these cases in particular, if the UVM is sending the
correct data through the interface, which can be seen in the attached waveform in Figure
6.3, it is always an error in the VPU. In addition, we attached the failing binary and the
steps to reproduce the bug in the environment.

Figure 6.3: Issue waveform example



Chapter 6. Evaluation of Contributions page 88

After we published the issues in the RTL repository, it would be assigned to a person of
the RTL team in charge of fixing the bug. In the comments section of the issue, there
would be a discussion if something was not clear and between the different members of
the RTL team working on the problem. After fixing the bug, they would close the issue
and re-run some of the previous tests to ensure that everything was working as expected
before merging the changes to the repository’s main branch.

As explained and it can be seen in Figure 6.1, we saw a dramatic decrease in the number
of bugs found per tests set by the end of June, thanks to finding and fixing the bugs above
along with other arithmetic ones. This is why we decided to increase the number of tests
generated and run per night. Then, some other features were enabled too, that together
with the test increase, mark the growth in the number of errors that we find between July
and August.

In addition, masked and indexed memops were enabled during this period, which were
blacklisted until this point. These introduced new errors in the UVM implementation
of OVI, mainly in terms of protocol. They were causing timeouts and other errors that
affected the normal execution of the instructions through the interface. Furthermore, the
VPU has a limitation when using masks. All these can only be used by accessing the first
vector register v0 in instructions. However, they are stored in a separate register inside
the VPU. Many errors appeared in masked memory operations when we enabled them
due to a bug when writing to this mask register in the VPU. After these errors were fixed,
almost no errors could be seen for memops in the random simulations.

The last high slope seen in the later stages of the chart in Figure 6.1 was caused by two
specific types of arithmetic instructions, widening and narrowing ones. Despite being
generated and executed since the beginning of the simulations, it was not until some spe-
cific cases were allowed in the generator that they started causing many tests to fail. At
that point, very few memops were causing bugs so after the RTL team fixed these errors,
we can see how almost no tests failed during October and November.

Figure 6.4: Errors distribution among instruction types
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In Figure 6.4 we have the distribution of all the failing tests based on the instruction they
failed on. Once again, we focus onmemops, which take around 18% of all the failing tests.
This may not be very impressive at first sight, but this view changes when we assert that
there are only six types of memory instructions among the 400 vector instructions the ISA
has. This means that only 1.5% of instructions causedmore than 18% of the failures in the
tests we ran. This demonstrates how important it was to have a good verification process
for OVI and that we could catch many bugs in memory operations with our testbench.

It is worth noting also that some of the errors that came out during these simulations were
caused by the verification environment, especially at the beginning. In the later stages of
the verification process, when we found bugs in the RTL, these were due to new features,
as the design was stable and the environment had all the necessary features.

After that point, we could barely see a test failing every one or two weeks, so we decided
to change the CI approach and runmore tests using the pipelines explained in Subsection
3.4.6. These took much more advantage of randomisation, as we introduced the config-
urations mentioned in the Memops section, like the load ones. Retries were generated
more often, delays were different for every load valid, and so on. This created new cases
that could not have appeared previously, causing previously hidden bugs to be detected.
Thanks to the simulation tool, these configurations were now randomised along with the
test. After the test was executed, the random seed was kept to re-execute the test in the
same circumstances.

Unfortunately, we do not have all the tests results of that phase as there were too many
to record. However, the design was stable and almost no tests were failing in any case.
We can extract the coverage numbers from the current CI infrastructure, as they are still
being collected today.

6.1.2 Coverage results
In design verification, we use coverage to determine the success of a verification process,
which is how we will determine ours. Even if we managed to find many bugs which
contributed to delivering a correct design, if we do not analyse what parts of it we are
stimulating or observing, we do not know if we found them all. Many errors could be
hidden behind untested cases or unseen conditions.

There are twomain types of coverage in design verification; functional coverage and code
coverage.

For functional coverage, we implemented covergroups and coverpoints that tracked down
this metic in our environment, most of them targeting instruction coverage. As Riscv-dv
generates the binaries, we analyse what cases are not generated. We look for generating
all types of instructions and all possible combinations of SEW and vector length for these
instructions. These may generate new cases each time, especially in memory operations
with high vector length and low SEW, which take much longer to execute.

In Table 6.1 we can see the functional coverage achieved for the interface-related mod-
ules. Indeed, we did not manage to explore all possibilities of the RTL. However, if we
include the rest of the bins outside the scope of this work, we obtained an average func-
tional coverage of 95.79%. We know that we are not driving the design appropriately in
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Design Unit Coverage
OVI/Pre-issue Queue 91.95%
Store Management 87.50%
Load Management 100.00%
Item Management 100.00%

Table 6.1: Functional coverage per design unit, interface-related modules

Type Bins Hits Misses Coverage
Branches 135279 106251 29028 78.54%
Conditions 17908 10353 7555 57.81%
Expressions 95290 52349 42941 54.93%
FSM States 186 170 16 91.39%
FSM Transitions 335 285 50 85.07%
Statements 227695 206982 20713 90.90%
Toggles 2526053 1258760 1267293 49.83%

Total 72.64%

Table 6.2: Code coverage for the whole VPU

some cases, which were difficult to implement in the testbench, which is reflected in the
coverage numbers. These arememory exceptions and other OVI specific cases that we did
not implement. As mentioned, memory exceptions would cause a retry, and although we
support load retries through the testbench, we did not get to support store retries. That is
why we are getting slightly lower numbers in the coverage of the Store Management Unit
and the Pre-issue Queue.

In any case, these are outstanding numbers if we consider it was our first design verifica-
tion project. Furthermore, we are still running tests up to today, so these keep improving
day after day and there are members of the team in charge of analysing the unseen bins.

As we use Riscv-dv for stimulating the VPU, it is our primary source of covering the bins.
However, this only includes the instructions issued through the sub-interface, butwe have
many other sub-interfaces. We have several bins related to them, including seq_id com-
binations in load instructions. These are especially interesting as different alignments in
the cache lines are treated differently inside the VPU.Many cases are randomly generated
through Riscv-dv but do not appear in the Issue sub-interface.

In addition, we can create more cases using randomisation in the sequences and the con-
figurations. These may be caught in functional coverage using the cover property feature
of System Verilog, which we did not use, but they are for sure handy for code coverage.
We can create new unseen cases in the interface by randomising delays or other OVI pro-
tocol features. With these, we might execute a statement that had not been previously
passed or a condition can appear for the first time.

Overall, we have acceptable code coverage numbers, even when looking at the memory-
related modules, which may be some of the hardest ones to stimulate. Additionally, we
have found that often, when a statement or condition is never reached, it is related to a
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problem in the design. Hence, code coverage in simulations helps the RTL team to find
impossible-to-reach sections of the code. This is something that the design team does
not want to find in their modules, so apart from determining how well we stimulate the
design, it may find issues in it. In Table 6.2 there is the detail of the code coverage results
for the whole Vector Accelerator. In it, we can see that they are lower than the functional
coverage ones, with an average of 72.64%. This means that either we are not reaching all
the possible cases or it could indicate some unused data structure or condition in the RTL.
These results are still being worked on, as we need to improve the numbers and test all
possible cases, but we have found both of the previous cases.

For both types of coverage, the optimal goal is always 100%. However, that is not possible
or achieved in every project. Furthermore, functional coverage is a feature to be specified
and implemented, which means that a 100% is not always a guarantee that the design
is fully verified. Many companies have different teams working at different verification
levels and in different stages of the design production, so they can afford to get a slightly
lower coverage number for a particular stage. Moreover, these teams are huge and it is
way more difficult to miss a test case.

In our case, we never had that requirement when building the environment. However, we
still wanted to provide the most complete set of cases possible, and that is why we added
the random features in the testbench on top of the random Riscv-dv binaries. Therefore,
considering the available resources and if we state that at least we wrote all the functional
coverage that we initially expected, achieving the coverage numbersmentioned above has
been one of our greatest successes during the verification process of the VPU.

6.2 Environment evaluation
After evaluating the numbers, it is time to discuss and evaluate the contributions pre-
sented in this work. Not only we provided a large environment full of capabilities, but we
also learned during the process. We tried to use every possible verification technique to
get a taste of all of them and see which fit our needs most. Therefore, we learned many
verification techniques in just one project. That said, we created the needed environment
for the VPU, which was our fundamental goal. Furthermore, this environment has been
beneficial, finding many issues in the design and stimulating it for months.

The continuous integration pipelines still find issues today, although they often are ex-
traordinary and unusual cases. Often, they are related to recent changes in the VPU, out
of the scope of the verification process that we performed for months. However, these
show that the environment can still be used today and that the pipelines are generating
interesting cases and executing useful tests every day. In addition, we are up to today pro-
viding support to the environment and implementing features to handle new versions of
the design and to address the missing cases detected with coverage.

However, not everything is as good as it seems. Yes, the environment and tools work
and provide features to verify the design. It is also true that it is not the most trivial of
environments. The initial idea of subdividing the interface turned out to be a challenging
way to implement the environment.

When we initially thought of the environment, we did not have the knowledge we have
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now about OVI and the VPU. Our idea about OVI was that all sub-interfaces could work
independently. We had the full specifications for the interface, but we made the mistake
of not fully understanding it. Either that or we did not evaluate well what it meant for the
testbench structure that we planned.

For example, one of the main problems we had with the OVI emulation was the sync_start
of the memop interface. Not only it did not carry a sb_id associated, but also, if we wanted
to respond to that signal with the Memop sequence standalone, we had no information
at all. Additionally, it brings the Dispatch timing problems we discussed in Section 5.2.

The workaround for this has already been explained. We used a set of UVM events and
the singleton system described in previous sections to tackle the abovementioned issues.
However, this singleton system caused circular dependencies that meant a big challenge
sometimes, where we had to think at the best way to give sequences access to the others.
The UVM Events set entailed adding communication between agents, which is not the
most optimal way to implement the environment.

Since we completed the initially planned verification process, we have reviewed the test-
bench and compared it to ones directed to similar DUTs. We have seen that all these issues
would not appear if the Issue and Dispatch information were present in structures acces-
sible by the Memop sequence. Actually, the fact that many other sequences depend on
one, like the Memop one, means that currently, the environment is like a spider net. It
does not by any means happen for every feature, but changing any sequence can suppose
that the tests do not finish or significant malfunctions in the testbench. In Figure 6.5 we
can see all the connections between sequences in the testbench explained in this thesis.

Figure 6.5: Inter-sequence communication in the testbench

A clear example of this issue is mask treatment in the environment. In Figure 5.12, ex-
plained in Section 5.5, we can see that the Memop sequence is the center of all the mask
treatment. Not only theMask_Idx interface is not independent of the rest, but theMemop
one basically drives it. If this last failed for this feature, no masked memory operations
could be executed in the environment. The same happens for almost the entirety of the
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load and store instructions execution through OVI.

Therefore, by trying to create a sub-interface divided environment, we ended up reach-
ing completely the opposite, where communicating the sub-interfaces is one of the main
problems of the environment. This not only makes it difficult to understand and extend
but also to maintain.

The conclusions are similar when we focus on the contributions, the UVM and interface
treatment, and the memory operations emulation.

For the UVM and interface treatment, it is tied to what was just described. Sure we can
be proud of what we achieved, but it also has several issues and possible improvements.
The initial goal of providing random instructions and random independent stimulus only
through UVM was not achieved. Nevertheless, we gave it a turn and provided a more
"realistic" approach by using Spike as the scalar core. From that point, the sub-interfaces
agents do a perfect job of driving the correct values to theDUTand following the execution
of the instruction, which is the exact environment we needed.

Certain corner cases cannot be reached by only stimulating the interface through signals
and random instructions, but that is why we have coverage. With it, we can identify them
and try to generate these cases with configurations and direct tests. Overall, we can be
happy with what we managed to do for the interface, as we did a good job considering
our previous experience and how ad hoc these environments tend to be.

There are more things to be said when focusing on memory operations emulation. First,
we can evaluate it in the same way as the previous contribution. We wanted to make an
entirely random environment, but that was not possible in the end. For us, it did notmake
sense to run a random binary using Spike and then use random values generated by the
UVM for the memory operations. Also, most of the problems derived from the structure
of the environment come with memory operations. The singleton and delay issues are
mostly appearing in the memop related sub-interfaces.

However, what we achieved with memory operations is quite realistic in all terms. We
could provide an environment that executed all kinds of instructions, but theOVI protocol
is critical for memory-specific ones. We support all memory operation modes and, in
addition, provide configurationmodes formany of the features to be randomanddifferent
in each simulation. This is especially interesting for the project because we can execute all
instructions and generate a broader range of possible cases, which is really what design
verification is about.

Additionally, a particular mention of the whole memory operation flow of the environ-
ment has to bemade, which was brilliant. The fact that we used amemorymodel to make
cache reads and simulate delays enables many possibilities. Apart from that, we get the
data from Spike to correctly execute the instruction, provide the correct data to the VPU
and later compare results with such a reference model. Therefore, we integrated Spike in
every stage of the execution flow to simulate in the best way possible what would happen
if the VPU was in the real environment. By doing that and taking into account how new
the team was, we think that we provided the best environment possible in terms of the
actual stimulus.
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Still, the whole environment has the structure issues mentioned above, which sometimes
overcome the benefits. For example, the environment is really slow when using all the
features in a simulation and certain combinations of instructions/configurations. We are
confident that these performance issues are caused by the massive amount of communi-
cation in the testbench. This issue should be solved in further projects or iterations of the
VPU, which we are already working on.

When we look at the big picture, though, we are proud of what we accomplished. We
managed to provide a very practical and complete environment that, together with other
tools, is key in the verification process of the design and helped find many bugs. Further-
more, we have the verificationmetrics previously discussed, which show through the cov-
erage numbers and the number of bugs found that our environment succeeded in finding
a wide range of test cases. In that context, the two contributions described and discussed
in this work were crucial, as stimulating the DUT was one of the biggest challenges in the
project.
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Conclusions and Future Work

Verification is one of the critical phases in the life cycle of a design. Without a proper ver-
ification process, an RTL design will likely go to production with many errors, which will
be a massive waste of time and money. Therefore, most companies dedicate a big part of
their resources and efforts to verifying their designs. In this work, we have presented a
different scenario, where the objective was achieving the most complete verification envi-
ronment possible with a minimal amount of resources.

In this thesis, we have described the implementation of a verification environment for a
RISC-V Vector Accelerator. It can provide instructions to the accelerator and handle their
execution through the OVI as if it was the scalar core connected on the other side of the
interface. The UVM environment that does this has a very complex structure that allows
the treatment of eachOVI sub-interface in independentUVMComponents. This structure
is achieved by using different UVM agents and virtual sequences. The testbench is also
capable of comparing the results of the vector instructions and other events of the VPU
thanks to a UVM Scoreboard. Moreover, this environment is embedded within a set of
tools that together complete the verification process of the accelerator.

We have gone into detail about how the interface is handled in the environment in this
work. To begin with, we have described how the general OVI sub-interfaces are and what
challenges they suppose to the verification engineers in charge of stimulating such design.
After that, we have shown the dedicated UVM agent built for each of them and how it
fulfils each sub-interface special needs. Finally, and to complete the execution flow of all
kinds of instructions, we have given details of how the memory operations are handled
in the environment. From Issue to Complete, our environment provides full support for
the VPU to execute the instruction, always ensuring that the final results are the same as
those from our reference model.

This testbench was done by inexperienced verification engineers who delivered an en-
vironment up to expectations. Although we had no previous experience in verification,
we had the correct lead and references to provide a thriving environment. We took the
challenge with willingness and knowledge of what was necessary to verify the design, so
we designed an environment and a set of tools that allowed us to make it come to terms.
Furthermore, we made what we thought was the best option to manage the complex in-
terface. We went straight for a testbench for the whole design, which we considered the
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best way to take advantage of all our resources.

However, some criticism can be made as it is true that the given environment could have
been better. As explained in previous chapters, the environment is complex, making it
hard to expand or sustain whenever a feature is added to the VPU. This complex structure
is also causing performance issues, as UVM is not supposed to have so many components
waiting for each other and there is no trivial way of solving these issues without changing
the whole environment. We want the RTL team or anyone using the testbench to feel
comfortable while simulating the design. These are problems that need to be solved, as
we would like to explain how it works quickly and make it run much faster.

In any case, we can be overall happy with our work. We emulated the scalar core side of
OVImost realistically and broadlywe could usingUVMand provided checks to verify the
design. Through those, we managed to find plenty of errors in the design. This project
also allowed us as juniors to read about and use almost all verification techniques big
companies use. As the team was new, we could build ourselves a way of working. There-
fore, we managed to deliver a successful verification environment and had the chance to
learn and become real verification engineers during the project. To conclude, we can say
that we are very proud of ourselves and how we managed to live up to the expectations
to create a complete verification environment.

7.1 Future Work
As we mentioned in Section 6.1, there are certain missing features in the testbench, like
Store exceptions. These must be implemented in the future to support these kinds of
events, as the VPU might find them when connected to the Avispado core. Another case
we did not explore in the interface is context switches on the core side. These would pro-
voke the saving and posterior restoring of vector registers inmemory. As Spike solves this
kind of events on its own, we would need to generate and issue the necessary instructions
to see this case in the interface.

For future versions of the VPU and OVI, we must also adapt our testbench to handle
more than two in-flight loads. This is a current limitation of the VPU and the testbench
that might be an issue in the future.

Another feature being considered is adding a cachemodel to emulate the real case of load
instructions. This way, we could model real cache misses and the scalar core side sending
a different cache line than the expected one.

Additionally, during the verification process of the VPU and after reviewing our work, we
have learned thatwe coulddo it better andwill do so in future iterations. The BSCplans on
using the VPU formany different projects in the future, so taking this into account, wewill
need to improve the environment as soon as possible. As explained, many of the problems
that we have in the environment are due to its sub-divided nature. If we managed to
centralize all OVI treatment into one entity, we would avoid most communication in the
environment.

For this, we are working on a revision of the testbench. Our idea is to use what is de-
scribed in section "Bidirectional Protocols" of the "UVM Cookbook" [17]. In it, the virtual
interface is replaced with one in charge of responding to the interface and executing its
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protocol. Suppose we use only one UVM agent to send vector instructions and observe
its completion. In that case, we get rid of all the previous inter-agent communication and
the issues it was causing. Additionally, using this approach, we may end up in a more
extendable and reusable environment, as the whole testbench may be independent of the
actual interface of the DUT.

Finally, a kind of tool we did not consider that is widely used in industry is formal verifi-
cation [26]. This uses vendor tools to disprove the correctness of assertions more mathe-
matically. Instead of simulating hours and hours of different tests, the formal tools apply
every possible value inside a previously defined range to the property and check whether
or not it is broken for any of them. This is done using a mathematical algorithm that tries
to disprove the correctness of the assertion, which ismuch faster than generating stimulus
at the module’s interface, as we did. At the time of the development of this project, we
did not have many licenses of formal tools and we were not used to working with them,
so we decided to leave them out of the verification process. Nevertheless, it is a really
interesting methodology and we would like to integrate it more in future projects.
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