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Abstract

In order to reach the goal set in the Paris agreement of limiting the rise in global
average temperature well below 2 °C compared to pre-industrial levels, massive
efforts to reduce global greenhouse gas emissions are required. The building sector
is currently responsible for about 28% of total global CO2 emissions, meaning
that there is substantial savings potential lying in the correct energy management
of buildings and the implementation of renovation strategies. Digital tools and
data-driven techniques are rapidly gaining momentum as approaches that are able
to harness the large amount of data gathered in the building sector and provide
solutions able to reduce the carbon footprint of the built environment.

The objective of this doctoral thesis is to investigate the potential of data-driven
techniques in different applications aimed at improving energy efficiency in buildings.
More specifically, different novel approaches to verify energy savings, characterize
consumption patterns, and recommend energy retrofitting strategies are described.
The presented methodologies prove to be powerful tools that can produce valuable,
actionable insights for energy managers and other stakeholders.

Initially, a comprehensive and detailed overview is provided of different state-of-
the-art methodologies to quantify energy efficiency savings and to predict the impact
of retrofitting strategies in buildings. Strengths and weaknesses of the analyzed
approaches are discussed, and guidance is provided to assess the best performing
methodology depending on the case in analysis and data available. Among the
reviewed approaches there are statistical and machine learning models, Bayesian
methods, deterministic approaches, and hybrid techniques combining deterministic
and data-driven models.

Subsequently, a novel data-driven methodology is proposed to perform measure-
ment and verification calculations, with the main focus on non-residential buildings
and facilities. The approach is based on the extraction of frequent consumption
profile patterns and on a novel technique able to evaluate the building’s weather
dependence. This information is used to design a model that can accurately estimate
achieved energy savings at daily scale. The method was tested on two use-cases,
one using synthetic data generated using a building energy simulation software and
one using monitoring data from three existing buildings in Catalonia. The results
obtained with the proposed methodology are compared with the ones provided by
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a state-of-the-art model, showing accuracy improvement and increased robustness
to missing data.

The second data-driven tool that developed in this research work is a Bayesian
linear regression methodology to calculate hourly energy baseline predictions in non-
residential buildings and characterize their consumption patterns. The approach
was tested on 1578 non-residential buildings that are part of a large building energy
consumption open dataset. The results show that the Bayesian methodology is able
to provide accurate baseline estimations with an explainable and intuitive model.
Special focus is also given to uncertainty estimations, which are inherently provided
by Bayesian techniques and have great importance in risk assessments for energy
efficiency projects.

Finally, a concept methodology that can be used to recommend and prioritize
energy efficiency projects in buildings and facilities is presented. This data-driven
approach is based on the comparison of groups of similar buildings and on an
algorithm that can map savings obtained with energy renovation strategies to the
characteristics of the buildings where they were implemented. Recommendation for
implementation of such a methodology in big data building energy management
platforms is provided.
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Resumen

Para alcanzar el objetivo fijado en el acuerdo de París de limitar el aumento de
la temperatura media mundial muy por debajo de los 2 °C con respecto a los niveles
preindustriales, es necesario realizar esfuerzos masivos para reducir las emisiones
mundiales de gases de efecto invernadero. El sector de la edificación es actualmente
responsable de alrededor del 28% de las emisiones totales de CO2 a nivel mundial,
lo que significa que existe un potencial de ahorro sustancial en la correcta gestión
energética de los edificios y en la aplicación de estrategias de renovación. Las
herramientas digitales y las técnicas basadas en datos están ganando rápidamente
impulso como enfoques capaces de aprovechar la gran cantidad de datos recopilados
en el sector de la edificación y proporcionar soluciones capaces de reducir la huella
de carbono del entorno construido.

El objetivo de esta tesis doctoral es investigar el potencial de las técnicas basadas
en datos en diferentes aplicaciones destinadas a mejorar la eficiencia energética de
los edificios. Más concretamente, se describen diferentes enfoques novedosos para
verificar el ahorro de energía, caracterizar los patrones de consumo y recomendar
estrategias de rehabilitación energética. Las metodologías presentadas demuestran
ser poderosas herramientas que pueden producir valiosos conocimientos para los
gestores energéticos y otras partes interesadas.

En primer lugar, se ofrece una visión general y detallada de las distintas
metodologías más avanzadas para cuantificar el ahorro de energía y predecir el
impacto de las estrategias de rehabilitación en los edificios. Se discuten los puntos
fuertes y débiles de los enfoques analizados y se ofrecen orientaciones para evaluar
la metodología más eficaz en función del caso en análisis y de los datos disponibles.
Entre los enfoques revisados hay modelos estadísticos y de aprendizaje automático,
métodos Bayesianos, enfoques deterministas y técnicas híbridas que combinan
modelos deterministas y basados en datos.

Posteriormente, se propone una novedosa metodología basada en datos para
realizar cálculos de medición y verificación, centrada principalmente en edificios
e instalaciones no residenciales. El enfoque se basa en la extracción de patrones
de perfiles de consumo frecuentes y en una técnica innovadora capaz de evaluar
la dependencia climática del edificio. Esta información se utiliza para diseñar un
modelo que puede estimar con precisión el ahorro energético conseguido a escala
diaria. El método se ha probado en dos casos de uso, uno con datos sintéticos
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generados mediante un software de simulación energética de edificios, y otro con
datos de monitorización de tres edificios existentes en Cataluña. Los resultados
obtenidos con la metodología propuesta se comparan con los proporcionados por un
modelo de última generación, mostrando una mejora de la precisión y una mayor
robustez ante la falta de datos.

La segunda herramienta basada en datos que se desarrolló en este trabajo de
investigación es una metodología de regresión lineal Bayesiana para calcular las
predicciones de línea base de energía horaria en edificios no residenciales y para
caracterizar sus patrones de consumo. El enfoque se probó en 1578 edificios no
residenciales que forman parte de un gran conjunto de datos abiertos de consumo
energético de edificios. Los resultados muestran que la metodología Bayesiana es
capaz de proporcionar estimaciones precisas de la línea de base con un modelo
explicable e intuitivo. También se presta especial atención a las estimaciones de
incertidumbre, que son inherentes a las técnicas bayesianas y que tienen gran
importancia en las evaluaciones de riesgo de los proyectos de eficiencia energética.

Por último, se presenta una metodología conceptual que puede utilizarse para
recomendar y priorizar proyectos de eficiencia energética en edificios e instalaciones.
Este enfoque basado en datos se basa en la comparación de grupos de edificios
similares y en un algoritmo que puede asociar los ahorros obtenidos con las estrategias
de renovación energética a las características de los edificios en los que se aplicaron.
Se recomiendan las aplicaciones de esta metodología en plataformas de gestión
energética de edificios de big data.
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Chapter 1

Introduction

1.1 Background and motivation

The latest reports from the Intergovernmental Panel on Climate Change (IPCC)
have demonstrated how the rising temperatures and extreme weather events that
humanity is experiencing in the last decades are of anthropogenic origin and largely
related to the emission of greenhouse gases (GHG) [1]. Figure 1.1, taken from
the IPCC Summary for Policymakers report, clearly shows the impact of human
activities during the last 150 years on the rise of global surface temperatures [2].
In panel a), changes in observed temperatures from the period between 1850 and
2020 are compared with reconstructed temperatures from paleoclimate archives.
The vertical bar on the left shows the estimated temperature during the warmest
multi-century period in the last 100.000 years, which occurred approximately 6500
years ago. In panel b), observed changes in global temperature are compared with
two climate model simulations, one including both human and natural drivers
(brown) and the other including only natural drivers (green).

In order to limit the potentially disastrous consequences of climate change on
humankind, the representatives of 195 states gathered in Paris in 2015 to draft
an agreement aimed at reducing global GHG emissions, possibly reaching net-zero
in the second half of the 21st century. This international treaty, which goes by
the name of the Paris Agreement, defines a long-term goal to limit the rise in
global average temperature to well below 2 °C compared to pre-industrial levels,
and preferably to 1.5 °C [3]. Unfortunately, despite the efforts made in the last
years, recent analyses have shown how the policies currently in place around the
world are not going to be enough to set us on the 1.5 °C or 2 °C pathway. Figure 1.2
shows data from the Climate Action Tracker, an independent scientific analysis that
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Chapter 1 Introduction

Figure 1.1: Impact of human activities on global surface tempera-
tures, according to the Intergovernmental Panel on Climate Change

studies climate change mitigation pledges and assesses whether countries are on
track to meeting them [4]. From the figure, it appears clear that current policies and
government pledges are not going to be sufficient and that a very steep reduction
in global GHG emissions will be necessary over the next decades in order to reach
the 1.5 °C or 2 °C goals.

Global GHG emissions have been steadily increasing during the last century,
driven by substantial growth of the world’s population and energy consumption. In
parallel with these trends of population and emissions growth, urbanization rates
have also seen a substantial increase. The latest UN projections show that, by 2050,
68 per cent of the world’s population will be living in urban areas. This would
represent an increase in the global urban population of almost 2.5 billion dwellers in
the course of the next 30 years [5]. One of the consequences of this process is that
the world’s economic, societal and environmental challenges of the next century will
have to be tackled mainly within cities and urban areas.

All of this opens vast challenges related to the management of the built
environment. As cities expand and have to face rapid adaptation to new situations,
the task of providing reliable, clean, safe and affordable energy to everyone is
not of simple solution [6]. In this framework, the role played by buildings is of
crucial importance. Figure 1.3 shows a breakdown of the main sources of CO2

emissions for the year 2019 according to data from the Global Alliance for Buildings
and Construction [7]. The building sector accounted for approximately 28% of
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Figure 1.2: Emissions and warming scenarios based on pledges and
current policies, according to data from the Climate Action Tracker

global carbon dioxide emissions (about 10 GtCO2), or 38% if we also include
the construction sector. This shows that enormous potential to avoid emissions
lies in sustainable building design and the implementation of energy conservation
strategies.

From Figure 1.3, it appears evident that buildings have a central role in the
energy transition. While it is important to focus on sustainable design for new
buildings, different studies have highlighted that up to three-quarters of the existing
built environment will still be standing in 2050 [8]. This highlights the vast untapped
energy savings potential that lies in the correct energy management of buildings
and in the implementation of renovation strategies. Efficiency is a topic of great
interest in the energy field, and reports from the International Energy Agency
(IEA) have shown how the right energy efficiency policies could result in more than
40% of the emissions reductions required to reach the Paris Agreement [9]. In
the building sector, the role of efficiency has been highlighted by different reports,
with the European Commission estimating that retrofit projects in buildings have
the potential of lowering Europe’s total CO2 emissions by 5% [10]. The United
States Department of Energy also states that energy efficiency could save up to 741
TWh of electricity until 2035 [11]. At the same time, the integration of renewable
energy generation technologies in buildings and the implementation of demand-side
management solutions is enabling buildings to cover an active role in the energy
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Figure 1.3: Share of global CO2 emissions by sector for the year 2019, ac-
cording to data from the Global Alliance for Buildings and Construction

transition. Several industry and academic projects are now investigating the grid
services that energy efficiency measures can provide and how efficiency can translate
into demand flexibility. Pay for Performance (P4P) [12] and Pay for Load Shape
(P4LS) [13] are two concepts that are being investigated in this regard. In these
innovative energy efficiency schemes, users are dynamically compensated to modify
their electricity usage load shape according to the grid conditions. These new
approaches are the result of a need to reduce the overall energy usage intensity of
the building stock while also creating a permanent shift of the demand curve that
matches the hours of highest renewable energy production [14].

In order to enable improved building energy performance management, informed
decision making for energy retrofitting strategies, and dynamic measurement and
verification of renovation programs, advanced techniques able to harness the data
generated from automated metering infrastructure are required. A recent IEA
report showed how digital tools are having a fundamental role in current energy
efficiency projects, enabling new data sources and facilitating policy-making by
providing quick, cost-effective ways of analyzing energy efficiency potential [15]. In
this thesis, we present a range of novel data-driven techniques that can be used to
analyze and improve the energy performance of the built environment.

4



1.2 Objectives and contribution

1.2 Objectives and contribution

The objective of this thesis is to investigate how the use of novel data-driven
statistical and machine learning techniques can contribute to the improvement of
the energy performance of the existing built environment. More specifically, the
investigated techniques are aimed at finding ways to quantify energy efficiency
savings, analyze energy performance, characterize consumption, and recommend
energy retrofitting strategies.

The specific contributions of this thesis are:

• The detailed review of deterministic and data-driven methodologies present
in literature to quantify energy efficiency savings and predict retrofitting
scenarios in buildings.

• The conceptualization and validation of a novel data-driven technique aimed at
accurately quantifying daily energy savings in non-residential buildings using
weather and energy consumption data from automated metering infrastructure.

• The conceptualization and validation of a novel data-driven technique to
generate hourly baseline energy predictions for non-residential buildings and
characterize consumption, with a special focus on uncertainty estimation to
de-risk investments.

• The conceptualization of a methodology for recommendation and prioritization
of energy efficiency strategies within big data repositories of residential and
non-residential buildings.

All the mentioned methodologies have the final goal of producing actionable
insights that can be used by energy managers and other stakeholders to reduce
the carbon footprint of the building sector and help pave the pathway towards a
sustainable energy transition.

1.3 Outline of the Thesis

The present doctoral thesis by compendium of publications contains six chapters,
including the introduction and a chapter of conclusions. Figure 1.4 shows the
structure of the thesis.

5



Chapter 1 Introduction

Chapter 1: Introduction

Chapter 2: Review of methodologies to quantify energy 
efficiency savings and predict retrofitting scenarios in 

buildings and facilities

Chapter 3: data-driven 
methodology for daily 

measurement and verification 
of energy efficiency savings in 

buildings

Chapter 4: methodology for 
data-driven hourly baseline 
building energy prediction 

and consumption 
characterization

Chapter 5: methodology for recommendation of energy 
renovation strategies  

Chapter 6: Conclusions and future work

Figure 1.4: Thesis overview flowchart

The present chapter serves as an introduction to the topics that are going to
be discussed in this dissertation. The research background is presented, and the
objectives and contributions of the thesis are introduced. Chapter 2 presents an
extended literature review of state-of-the-art methodologies aimed at quantifying
energy savings in buildings and predicting retrofitting scenarios. Both deterministic
and data-driven approaches are classified and analyzed in detail. Chapter 3 and
4 introduce two novel data-driven methodologies, developed in the course of this
thesis research work, that can be used to characterize and predict building energy
consumption at daily and hourly levels. Chapter 2, 3 and 4 correspond to the three
publications that have served as a requirement for the presentation of this thesis.
The articles were published in three different journals: Renewable and Sustainable
Energy Reviews, Applied Energy and Energies. The JCR metrics for the year 2020
of these three journals can be found in Table ??.

Chapter 2 takes as its springboard the concept that the lack of accurate
information regarding the impact of retrofitting actions is one of the barriers
preventing a widespread application of energy conservation strategies worldwide.
For this reason, state-of-the-art methodologies to quantify energy savings from
implemented measures and to predict renovation program scenarios are analyzed in
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1.3 Outline of the Thesis

Table 1.1: JCR journal metrics for Renewable and Sustainable Energy Reviews,
Applied Energy and Energies

Journal Name JIF 2020 Q 2020 Rank Category

Renewable and Sustainable
Energy Reviews 14.982 Q1 Green & Sustainable

Science & Technology
Applied Energy 9.746 Q1 Energy & Fuels
Energies 3.004 Q3 Energy & Fuels

detail, as well as their strengths and weaknesses. The review work shows that, as
more and more building data is collected, with increasing accuracy and granularity,
data-driven approaches can become an exceptional tool to perform low-cost large
scale analyses within building energy management platforms and repositories.

Chapter 3 introduces a novel data-driven methodology aimed at performing
measurement and verification of daily energy efficiency savings in non-residential
buildings. The approach is based on a pre-processing phase in which a charac-
terization of building use patterns is performed thanks to the implementation of
a clustering technique that allows the extraction of typical consumption profiles.
The profiles are then used, in combination with an innovative weather dependence
analysis technique, to design a model that provides accurate dynamic estimations
of achieved energy savings at daily scale.

In Chapter 4, a Bayesian linear regression approach to predict hourly baseline
energy consumption in non-residential buildings is presented. Bayesian inferential
techniques are found to be especially fit to solve measurement and verification
problems because of their intuitive approach and probabilistic nature. The results
obtained show that this novel approach is able to provide accurate high granularity
predictions of baseline energy consumption while also being intuitive and explain-
able. At the same time, a characterization of the consumption of the analyzed
buildings is obtained, that provides actionable information to energy managers.
The possibility of providing results in the form of probability distributions and of
estimating Bayesian credible intervals represents a fundamental feature that allows
the implementation of the results obtained in risk assessments for energy efficiency
projects and programs.

Chapter 5 presents a concept methodology that employs the techniques intro-
duced in the previous chapters to provide recommendations for renovation strategies
within building energy management platforms. Although no real data is analyzed
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Chapter 1 Introduction

in this section, the structure and the data requirements of the algorithms used to
provide recommendations are discussed.

Finally, Chapter 6 presents the conclusions and future work for this doctoral
thesis. The practical contributions of this thesis work are summarized and different
research lines to improve and further validate the methodologies presented are
outlined.

1.4 Projects and publications related

The research carried out for this doctoral thesis has been elaborated in the
framework of multiple international projects developed in CIMNE - BEE Group
between 2018 and 2021 and led to publications in different journals.

Chapter 2

The review of existing methodologies to quantify energy efficiency savings and
predict retrofitting scenarios was carried out in the framework of two projects,
called SHERPA and SENSEI, financed by the European Commission through the
Interreg MED program and the Horizon 2020 research and innovation program
(grant agreements 581 and 847066).

This chapter was also published as a journal article: Grillone B., Danov
S., Sumper A., Cipriano J., Mor G. A review of deterministic and data-driven
methods to quantify energy efficiency savings and to predict retrofitting scenarios
in buildings. Renewable and Sustainable Energy Reviews, 2020; 131: 110027,
https://doi.org/10.1016/j.rser.2020.110027

Chapter 3

The methodology for estimation of daily energy savings was developed in the
framework of the SENSEI project, financed by the European Commission through
the Horizon 2020 research and innovation program.

This chapter was also published as a journal article: Grillone B., Mor G., Danov
S., Cipriano J., Sumper A. A data-driven methodology for enhanced measurement
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1.4 Projects and publications related

and verification of energy efficiency savings in commercial buildings. Applied Energy
2021; 301: 117502, https://doi.org/10.1016/j.apenergy.2021.117502

Chapter 4

The Bayesian methodology for building characterization and hourly energy
baseline prediction was developed in the framework of the EN-TRACK project,
financed by the European Commission through the Horizon 2020 research and
innovation program (grant agreement 885395).

This chapter was also published as a journal article: Grillone B., Mor G., Danov
S., Cipriano J., Lazzari F., Sumper A. Baseline energy use modeling and charac-
terization in tertiary buildings using an interpretable Bayesian linear regression
methodology. Energies 2021; 14, 5556, https://doi.org/10.3390/en14175556

Chapter 5

The recommendation methodology presented in Chapter 5 was designed to
be implemented in the building repositories developed in the framework of the
BIGG and EN-TRACK projects, financed by the European Commission through
the Horizon 2020 research and innovation program (grant agreements 957047 and
885395).
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Chapter 2

Review of methods to evaluate the impact

of retrofitting strategies in buildings

This chapter was published as a journal article:

Grillone B., Danov S., Sumper A., Cipriano J., Mor G. A review of deterministic
and data-driven methods to quantify energy efficiency savings and to predict
retrofitting scenarios in buildings. Renewable and Sustainable Energy Reviews,
2020; 131: 110027, https://doi.org/10.1016/j.rser.2020.110027

2.1 Introduction

Low energy performance of the built environment is one of the main barriers to
reach the 2030 European energy efficiency targets [16]. One of the most successful
ways to address low building energy efficiency is a massive and affordable implemen-
tation of energy renovation strategies [17, 18]. However, at present, there are still
several barriers hindering the adoption of procedures and technologies that improve
energy efficiency, and limiting the investments in this field. Tuominen et al. [19]
found a low impact of renovations on property prices, lack of trusted information,
and small prioritization for energy performance improvements, to be frequently
cited as the main barriers, in the case of privately owned residential buildings. On
the other hand, Kontokosta [20] identified information asymmetry between project
partners, uncertainty over expected savings, and shortage of expertise in energy
technologies, as the main obstacles in the retrofitting decision making process for
commercial office buildings. In the latter case, the author also highlights that these
issues have been worsened by case-study oriented approaches, many times because of
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lack of extensive data and comprehensive pre/post analyses of load profiles following
an energy efficiency measure (EEM) implementation.

For commercial and public buildings, applied EEMs can have a significant
impact, but the evaluation of this impact with certainty and reliability is no easy
task. At the same time, no consolidated framework exists to evaluate ex-ante the
effect of different energy retrofitting strategies over buildings. Several techniques
to find the most cost-efficient set of measures for a particular building have been
developed [21], but scaling up such methods proves to be a major technical challenge,
since the effectiveness of retrofitting actions depends on many parameters and this
is a clear constraint for any evaluation method.

The objective of this review chapter is to establish the state of knowledge
related with the modeling-based approaches used to support the planning and
evaluation of building energy retrofitting strategies. More specifically, the chapter
aims at reviewing methods, as well as tools, to:

• determine the energy savings obtained through an energy retrofitting program
(commonly referred to as measurement and verification).

• support the process of identification of the most appropriate energy renovation
action according to the specific features of the analyzed building (in this
chapter referred to as prediction and recommendation).

Although few reviews already exist, partially covering the topics addressed in
this chapter, to the best of the authors’ knowledge no published review provides an in-
depth and comprehensive analysis such as the one presented here. In no other review
work the measurement and verification, and the prediction and recommendation
processes are analyzed together and in a structured way as in the present review.
The details of this analysis are described in Chapter 2.3. This review work focuses
mainly on data-driven methods, although some deterministic and hybrid methods
are also analyzed. The reason for this is that, in the last years, a surge in the
number of smart energy monitoring devices has significantly increased the amount
of building energy performance data available. This made possible the setting up of
many publicly available databases containing energy consumption data and building
characteristics of hundreds of thousands of buildings. Data-driven methods are
hence becoming of increasing interest, as they are able to harness such huge amount
of information for both evaluating the applied energy retrofitting measures and
predicting the energy savings potential of new EEMs [22]. Moreover, traditional
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deterministic methods not based on data have to face an important issue related
with their scalability, since the results obtained are usually only valid for the specific
building under analysis. This means that using these methods to develop large
scale retrofitting strategies can be a major challenge [23]. It’s also important to
point out that data-driven techniques are being already widely employed in building
energy efficiency, and several interesting applications are arising, such as control
optimization in demand response, efficiency improvement of HVAC systems, energy
efficient operation of different types of buildings, and more [24–26].

Data-driven 
applications for energy 
efficiency in buildings

Prediction and 
recommendation

Measurement 
and verification

Purely data-driven 
methods

Hybrid methods

Deterministic 
Methods (BES)

Non-routine event 
detection

Baseline estimation

Uncertainty 
estimation

Figure 2.1: Illustration of chapter structure

The chapter is organized as follows. Section 2.2 introduces the reader to
different key concepts and how they are used in the context of this review work:
the measurement and verification process, the prediction and recommendation
process, and the distinction between data-driven and deterministic models. In
Section 2.3, a concise overview of previous studies focused on building energy
consumption modeling and forecasting techniques is provided. In Section 2.4, a
review of existing M&V protocols, as well as data-driven energy baseline estimation
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methods is presented. State-of-the-art techniques for non-routine event detection
and uncertainty estimation are also reviewed in that section. Section 2.5 includes a
detailed review of methods to predict the effect of energy efficiency measures and
to plan energy retrofitting strategies. Finally, in Sections 2.6 and 2.7 the discussion
and conclusions of this review work are outlined. The structure of the chapter is
also illustrated in Fig. 2.1, where the two main processes reviewed are highlighted,
together with the different applications studied in each case.

2.2 Background

In this section, some concepts which can help to better understand the full
content of the review, are introduced, namely: the measurement and verification
process, the prediction and recommendation process, and the difference between
data-driven methods and deterministic methods.

2.2.1 The measurement and verification process

Measurement and verification (M&V) is the process of using measurements to
accurately estimate real savings generated in a facility thanks to the implementation
of an energy management strategy [27].

Baseline modeling

Since savings can’t be directly measured, as they represent the absence of
energy usage, they are determined by comparing measured energy consumption
before and after the implementation of a retrofit measure, considering the relevant
adjustments for changes in conditions. In order to carry out a comparison between
the energy usage before and after the EEM application, a model of the consumption
prior to the implementation of the measures needs to be developed. This is model
is called the baseline energy model. The baseline model can be defined as the
energy characterization of the starting situation and has a fundamental role in
the determination of energy savings. In fact, the baseline model allows to isolate
the effects of a retrofit intervention from the effects of other parameters that can
simultaneously affect the energy consumption, therefore reducing the uncertainty
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with which savings are estimated. In this chapter, the most common data-driven
methods used to develop baseline models are reviewed.

Advanced measurement and verification (M&V 2.0)

In recent years, M&V has been transitioning to a new state, known in the
field as “advanced measurement and verification" (or M&V 2.0). This new form of
M&V is a result of the breakthroughs in advanced metering infrastructure systems
and automated analytics techniques. In M&V 2.0, high granularity datasets with
increased sampling frequency, volume, and resolution, are analyzed, in order to
perform an estimation of energy efficiency savings which is almost in real-time [28].
This is enabling M&V to advance from a static and cumbersome process to a more
dynamic one, that translates into hourly energy insights, maximized savings and
great benefit for all the parts involved in the energy retrofitting programs [29]. One
of the main drivers of M&V 2.0 is the development of accurate baseline models for
real-time savings estimation, through the application of advanced statistical and
machine learning techniques. The new features of M&V 2.0 are not only limited to
savings evaluation, in fact, most of the advanced M&V tools currently on the market
also provide a range of different services, such as analysis and visualization of energy
monitoring data, system-level fault detection and diagnostics, and building energy
benchmarking [30].

2.2.2 The prediction and recommendation process

The term prediction refers to a group of techniques used to predict the effect
of an hypothetical EEM application on an individual building or facility. The
prediction results are then used to recommend the application of specific EEMs over
others, and to plan optimal energy retrofitting scenarios. Thanks to prediction and
recommendation techniques, it’s possible to answer many different questions, such
as: “What is the return on investment for a specific EEM?", “Which EEM would
perform best in the selected building, given its characteristics?", “Which low capital
cost measures can be applied to increase the energy performance of the selected
building?", “Of all the buildings belonging to the considered stock, which ones
would benefit the most from an energy renovation program?", “Which EEM would
yield the highest energy savings, in a 30 years time span?" etc. All these questions
are commonly answered by an engineer, after performing a building energy audit,
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although the results obtained with the audit can be very uncertain. In Section
2.5, an overview is provided of practical data-driven and deterministic methods to
predict EEM impact and plan energy retrofitting strategies for an individual facility
or a group of buildings.

2.2.3 Data-driven models and deterministic models

Having clear the goals of the two main processes that are going to be studied
in this review, let’s now define the two categories of methods under analysis:
data-driven models and deterministic models.

Data-driven models are statistical models that find relationships between state
variables of the analyzed system (inputs and outputs) without explicit or detailed
knowledge of its physical behaviour. In the case of models built for M&V, for
example, typical input variables can be external air temperature, wind speed and
direction, solar irradiance, building occupancy rate, while typical output variables
can be the total electrical or thermal load of the building. Depending on the level
of physical significance of the parameters used, these models are usually referred to
as grey-box or black-box models.

The other class of methods reviewed in this work are deterministic methods:
detailed building energy simulation models based on the differential equations of
the energy transfer flows occurring in the control volumes (rooms or spaces) of the
buildings. These physics-based models are usually referred to as white-box models.

While for the measurement and verification process, the methods reviewed
are exclusively data-driven, in the prediction and recommendation section, both
data-driven and deterministic models are analyzed, as well as “hybrid" models, in
various which data-driven techniques are used to analyse results obtained with
deterministic methods.

2.3 Existing review studies

This paragraph gives a concise but complete overview of previously published
review works regarding the different topics treated in this chapter. To the best
of the authors’ knowledge, there is no published review that addresses the same
topics presented in this chapter, that is: an up-to-date and detailed analysis of

16



2.3 Existing review studies

data-driven and deterministic methodologies used to verify the effect of EEMs in
buildings and to predict the impact of future energy retrofitting strategies. The
existing data-driven and machine learning techniques used to model and forecast
building energy consumption have been thoroughly analyzed in a wide range of
reviews published over the last years: [31–38].

Deb et al. [39] divided state-of-the-art forecasting methods in nine different
categories and compared them in terms of length of training, data needed, accuracy,
and computation time required for the estimation. Wei et al. [40] extended this
analysis to other applications, such as energy pattern profile identification, energy-
usage mapping, benchmarking of the building stock, and the definition of extensive
retrofitting plans. Data-driven techniques related to the development of retrofitting
strategies were also studied in the same review(artificial neural networks, genetic
algorithms, and clustering techniques).

Harish and Kumar [41] carried out an analysis of different approaches to
model and simulate building energy systems and to evaluate the impact of energy
retrofitting strategies. Different dynamic modeling techniques were reviewed, includ-
ing the forward approach (white-box), the data-driven approach (black-box) and
the hybrid grey-box approach. The different methods were then classified according
to the model type, the parameters used, the simulation period and, the method of
validating the results. A list of building energy simulation software, together with
their strengths and limitations is also presented in that paper.

Lee et al. [42] reviewed retrofitting analysis toolkits for commercial buildings,
classifying them in 3 main categories: toolkits using data-driven methods, toolkits
using normative calculations, and toolkits using physics-based energy models. From
the analysis, it appears that there is still room for improvement of these methods,
especially regarding: (i) mitigation of the high degree of uncertainty associated with
these tools, (ii) interoperability between the different tools, (iii) incorporation of
human behaviour in the models, (iv) extension of output parameters. An overview
of the current state of advanced measurement and verification tools was also
provided by Granderson and Fernandes [30]. The authors reviewed sixteen different
commercially available tools and classified them according to various criteria: the
standard protocol employed, the type of baseline models used, the input data
granularity required, the possibility to provide uncertainty estimates, and more.
Granderson et al. [43] also compared the accuracy of ten different baseline energy
use models for automated measurement and verification of energy savings. The
techniques were tested on 537 commercial buildings in the US using training periods
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of different lengths and without any non-routine adjustment. Two different error
metrics: normalized mean bias error (NMBE) and coefficient of variation of the
root mean squared error (CV(RMSE)) were calculated and compared, showing
similar performances for the ten models. Results of this analysis showed that
data-driven statistical techniques are better candidates for scaling up the adoption
of whole-building energy savings evaluations using advanced metering infrastructure.
In a subsequent publication [44], the same authors applied one of the ten methods
(the time of the week and temperature baseline model) on a set of 84 buildings, in
an attempt to test the applicability of these M&V approaches on a larger scale. It
was found that 70% of the buildings of the data set were well fit to be analyzed
with the automated approach, and in 80% of the cases savings and uncertainties
were quantified to levels above the minimum acceptable thresholds defined by the
ASHRAE Guideline 14 [45], a standard protocol used for M&V.

Although the presented review works are of great importance, there is still a
shortage of studies covering specifically, and in detail, the processes of measurement
and verification of energy savings, and of energy retrofitting planning. Practitioners
looking at different options for these two processes, will find in this review a
thorough, as well as detailed, overview of the different methods that can be used.
Guidance is also provided to determine which method could work best depending
on the specific case under analysis. At the same time, it’s important to highlight
how this review work is mainly focused on data-driven approaches. Considering the
growing attention that statistical and machine learning techniques are now receiving
in the field of building energy performance analysis, such a study appears essential
to identify the research gaps and to highlight future research lines.

2.4 Measurement & Verification: review of

methods and data-driven applications

This section aims at reviewing the most popular M&V methods currently in use,
with special focus on the data-driven techniques used to estimate baseline energy
models. In the first part of the section, four frequently employed M&V protocols
are introduced. Following, a review of state-of-the-art data-driven techniques to
develop baseline energy models and estimate retrofit savings is presented. The
last paragraphs of the section present a review of data-driven approaches to the
problems of non-routine event detection and savings uncertainty estimation.
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2.4.1 Measurement & Verification protocols

M&V is an evolving science and various methods and best practices were drawn
up and documented in different guidelines. Attempts have been made to create
a unique standard for the M&V process, but depending on the analyzed facility’s
geographical location, principal use (residential, commercial, industrial, etc.), and
type of metering data available, practitioners still employ different protocols. The
optimal degree of standardization that will ultimately be required for advanced
M&V is an open issue and currently under discussion among stakeholder groups
[30].

International Performance Measurement and Verification Protocol
(IPMVP)

The International Performance Measurement and Verification Protocol [27],
proposed by Efficiency Valuation Organization (EVO), defines standard terms and
suggests best practices to quantify energy savings following the application of one or
more energy efficiency measures. According to this protocol, four different options
are available to determine energy efficiency savings:

• Option A: Partially Measured Retrofit Isolation. This option involves the use
of measurement instruments to monitor the consumption of the equipment
affected by the applied EEM, isolated from the energy usage of the rest of
the building. In this option, only partial measurement is used, meaning that
some parameter(s) are estimated rather than measured.

• Option B: Retrofit Isolation. This case is equivalent to option A, with the
exception that no estimations are allowed and full measurement of all the
relevant parameters is required.

• Option C: Whole Building. In this approach, utility meters are used to evaluate
the energy performance of the whole building. Option C determines the total
savings of all implemented EEMs and is only applicable in projects where
savings are expected to have a substantial impact, making them distinguishable
from energy variations unrelated to the applied measures.

• Option D: Calibrated Simulation. This option involves using building energy
modeling software that allows the prediction of energy consumption in different
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scenarios. The models used for this scope are first calibrated, making sure
that the predicted energy load of the building matches the real (metered)
data.

ASHRAE Guideline 14

The ASHRAE Guideline 14 for measurement of Energy, Demand and Water
Savings [45], published by the American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE), also specifies three different approaches to
determine energy savings:

• Retrofit Isolation Approach, similar to IPMVP option B

• Whole Facility Approach, similar to IPMVP option C

• Whole Building Calibrated Simulation Approach, similar to IPMVP option D

Furthermore, the ASHRAE guideline provides different metrics to evaluate the
validity of the applied models, such as thresholds for net determination bias or the
maximum acceptable uncertainty of the estimated savings.

DOE Uniform Methods Project

The US Department of Energy (DOE), is also building a set of protocols to
assess savings due to energy renovation programs. These protocols, joined together
under the name ‘Uniform Methods Project’ [46], provide a simple and clear method
to determine energy savings for residential, industrial, and commercial buildings.
The protocols are based on IPMVP, but supplementary practices are included,
that can be used to aggregate savings from single retrofitting actions and assess
program-wide effects.

CalTRACK

CalTRACK [47] is a protocol that was born from the efforts of the California
Energy Commission and the California Public Utilities Commission to have a
standardized protocol for the evaluation of energy savings in the residential sector.
CalTRACK specifies a set of methods to measure and report changes in the energy
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consumption of a building following the application of an EEM. These methods
have the goal of estimating the energy that would have been consumed in the
building if the intervention had not taken place. The techniques implemented have
been empirically tested by a technical team with several different stakeholders and
developed under an open-source license model. The data required to apply the
CalTRACK methods includes one full year of consumption data before the EEM
application, local weather data, and the date of implementation of the measure.

2.4.2 Data-driven baseline estimation methods

Several baseline energy modeling approaches, using both monthly billing and
interval meter data, are presented in the next paragraphs. The reviewed methods are
classified into statistical learning, machine learning, and Bayesian techniques, Fig.
2.2 shows an overview of how this section is structured, and Table 2.1 summarizes
the characteristics of all the models analyzed.

Statistical learning techniques

Statistical learning is a branch of data-driven modeling that is based on
building a statistical model by inferring relationships between different variables
in the analyzed dataset. This model is then used to make predictions on other
datasets supposed to be similar to the one used to build the model.

Linear and nonlinear regression
Regression analysis has been the first implemented statistical method for the evalua-
tion of energy savings in buildings. Its origins can be traced back to the development
of the PRInceton Scorekeeping Method (PRISM) [48], a statistical procedure formu-
lated to include weather normalization in the estimation (scorekeeping) of energy
savings. This model is obtained by applying a regression technique that takes into
account different variables frequently having an impact on energy usage, such as
occupancy, climate, and equipment operation. Common variables chosen for the
regression can be: average outdoor temperature, relative humidity, cooling degree
days (CDD), heating degree days (HDD), building occupancy and building working
days.
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Figure 2.2: Load profiles identified for the office building

Mathieu et al. [49] used linear regression to estimate building energy baselines
using high granularity (15-min-interval) consumption data. The model proposed
includes an indicator variable that marks the hour of the week and a piecewise-
linear temperature regressor having fixed change points. In addition, two different
regression models are fit for when the building is considered occupied or unoccupied.
This method has been shown to be highly accurate [43] and has been used as
a benchmark model in several recent publications regarding measurement and
verification methods [50][51][52].

Mohd et al. [53] also tested a linear regression approach to evaluate the effect
of an EEM over the HVAC system in an office complex in Malaysia. Both single
variable and multivariate linear regressions were fitted, using monthly billing data,
temperature readings, and occupancy details. A similar approach was followed by
Wang et al. [54] , who tested different linear and nonlinear regression models to
assess the energy savings caused by a mechanical system retrofitting in a healthcare
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facility in Dallas, Texas. The models were fitted with electricity and gas monthly
billing data and using average outdoor temperature and degree-day as independent
variables. The regression model approach was also tested in the industrial sector:
Kissock and Eger [55] built a baseline energy model with multivariable piece-wise
linear regression, that was used to disaggregate savings in an industrial facility. The
facility’s consumption was supposed linearly dependent on its production and on
the outdoor air temperature.

Regression analysis is appealing for its simplicity and the possibility of applying
it even when low resolution data is available. On the other hand, the linear approach
can sometimes be too simple to capture complex relationships between variables.

Kernel regression
Kernel regression belongs to a special class of regression models, called time-
varying coefficient models, where the regressors are not considered constant, but
dynamically changing over time. The use of kernel regression to estimate building
energy consumption baselines was first proposed by Brown et al. [56], with the
goal of improving the predictive accuracy of standard linear regression models. The
idea behind kernel regression is that the regressors are not estimated using the
whole historical dataset. Instead, the regressors are evaluated for each timestep, by
estimating a weighted average of all the timesteps with the nearest values of the
regression parameters (e.g. weather conditions, time of the day, etc.). The main
advantages of kernel regression are an increased estimation accuracy, compared
to standard linear regression, and the ability to provide robust and reasonable
results even in case of small training sets. On the other hand, since the coefficients
are evaluated for a rolling time window and not considering the whole timeseries
dataset, when making predictions for longer time frames (e.g. one year or more) the
model might not be able characterize the existing seasonal variations and generalize
properly .

Transfer functions
Transfer functions have been shown to be capable of accurately estimating the
thermal parameters of buildings [57–60], their application for verification of energy
savings is now also being tested. The great advantage of transfer functions is the
possibility to take into account the building dynamics connected to its thermal
inertia. Furthermore, the coefficients of the transfer function model are coupled
with the features of the building, thus avoiding the requirement of large amounts
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of data to obtain reliable results. One of the drawbacks of the method is that the
calculations are based on the internal temperature of the building, which is not
always known when performing M&V. This baseline estimation methodology was
first suggested by Díaz et al. [61], who combined two transfer function models to
assess energy efficiency savings in a building of the University of Granada.

Machine learning techniques

The term machine learning (ML) identifies algorithms that make use of statisti-
cal models in order learn from data without any specifically programmed instruction.
ML algorithms identify patterns in the dataset through iteration and are then able
to harness the gained information to make predictions.

Artificial neural networks
Artificial neural networks (ANN) have been applied in several cases to develop
baseline energy models [32–35]. The black-box nature of these models makes
them very popular, since they can be easily applied to many different problems
after just a quick data pre-processing phase. But their simplicity comes at the
expense of feature interpretability, making the process of debugging and model
improvement considerably more difficult. Low model interpretability and the need
for large amounts of training data are the main drawbacks of ANNs. Yalcintas
[62] tested ANN models using Levenberg-Marquardt back-propagation to evaluate
energy retrofitting savings in two hotel buildings. Adnan et al. [63] used an Hybrid
Artificial Neural Network, in combination with Evolutionary Programming, to
quantify the savings achieved for a chiller unit in Malaysia, using three different
inputs: operating time, refrigerant tonnage and differential temperature. Chang
et al. [64] also assessed post retrofit energy savings for an air conditioning system,
using ANNs and an energy saving evaluation model based on a parameter named
Refrigeration Operation Energy saving Effect Ratio (ROEER).

Support vector machine
Support vector machine (SVM) was first applied to estimate building energy baselines
by Dong et al. [65]. This machine learning approach is usually preferred when
the training data available is small, since it proves to be very powerful in solving
problems with non-linear formulations, even with small training datasets. The
training time of this technique scales cubically with the size of the dataset [66],
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making SVM not ideal when dealing with large-size problems. In [40], an overview
of the most recent applications of SVM to building energy consumption prediction
is presented.

Random forest
Random forest is an ensemble learning algorithm that constructs several decision
trees and then outputs the mean of their prediction, in order to correct for the
individual trees’ tendency to overfit the data. This powerful methodology has been
used for several applications in the domain of building energy prediction. Ahmad
et al. [67] used random forests to predict hourly HVAC energy consumption, while
Araya et al. [68] proposed their use for fault detection and diagnosis. In the
measurement and verification framework, the use of random forests was outlined
both in [43] and [30]. Random forests prove to be very accurate in the prediction of
building energy usage, although the black-box nature of this algorithm means that
the computational time associated with this calculation is quite high, due to the
necessity of optimizing the hyper-parameters and performing cross-validation to
avoid overfitting.

Gradient boosting machine
Similar to random forest, the gradient boosting machine (GBM) is a powerful
machine learning algorithm based on the concept that a “strong learner", having
high prediction accuracy, can be obtained by iteratively combining several less
complex models, called “weak learners". Touzani et al. [51] used this approach to
build an energy consumption baseline model that can be applied for energy savings
estimation. The algorithm has four hyper-parameters that were optimized using
grid search with 5-fold block cross-validation. The results of the GBM method
were compared to the ones obtained with a piecewise linear regression model and a
random forest algorithm. This analysis showed that the GBM was able to improve
both R2 prediction accuracy and CV(RMSE) in most of the analyzed cases.

Bayesian methods

As an alternative to the more traditional frequentist approach, several re-
searchers studied the application of the Bayesian paradigm to the measurement and
verification process. In Bayesian statistics, a probability model is fit to a dataset,
with the goal of obtaining a probability distribution on the model parameters and on
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other values, like predictions for unobserved data [69]. Then, as new data becomes
available, Bayes’ theorem is used to update these probability distributions. Among
the advantages of Bayesian methods, authors list: the possibility of automatically
and exactly quantifying the uncertainty of the models (including different sources
of uncertainty, like measurement errors and weather variability), lower sensitivity
to outliers, the possibility to have real-time updates of the estimates, and more
[70][71].

Bayesian parameters inference
Lindelöf et al. [72] applied Bayesian inference to analyse energy invoices and climate
data to estimate the impact of the installation of a model-predictive controller for a
heating system in an office building in Switzerland. The approach tries to estimate
the probability density function (PDF) of three parameters: the building’s heat-loss
coefficient, the building’s balance temperature, and the stochastic variations of the
heating demand, conditioned on the information contained in the utility invoices.
The impact of the EEM is assessed by estimating the variations of the heat loss
coefficient, through the analysis of a PDF obtained by fitting a Bayesian model
to the billing data before and after the EEM application. The Bayesian approach
allows to extract high amounts of information from the data and proves to be
especially useful in the case of data with monthly granularity. One of the main
challenges of this method is that the first probability model, called prior, is often
not easy to find and justify, and can be a major source of inaccuracy.

Gaussian process
The application of Gaussian processes (GP) in the M&V process was first proposed
by Heo and Zavala [73], with the goal of solving certain limitations of the linear
regression method. The Gaussian process approach is non-parametric, since its
aim is not finding the parameters of a given function that can best fit the data,
but to look for a distribution over the functions f(x) potentially consistent with
the observations. GPs can capture complex building energy behaviour, such as
nonlinear trends, multivariable interactions and time correlations. At the same time,
since GPs belong to the framework of Bayesian statistics, this method allows the
savings’ uncertainties to be quantified thoroughly. Burkhart et al. [74] suggested the
use of Monte Carlo expectation maximization (MCEM) to enhance GP modeling
and grant more accurate predictions in case of uncertain input data. Maritz et al.
[75] published a guideline to perform M&V using GPs, with special emphasis on
the process of kernel selection. The approach is described step by step and then
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applied to adjust the baseline consumption of an academic facility. A two-stage grid
search technique is used to determine the best fit coefficients for the model, which
is then applied to calculate savings in two different case studies. One of the main
issues associated with this method is its computational and memory complexity,
that increases cubically with the size of the training dataset.

Gaussian mixture regression
Srivastav et al. [76] tested the performance of Gaussian mixture regression (GMR)
for building baseline energy prediction. The approach was tested on both simulated
data from the US Department of Energy and on real data from a commercial
building in California, accuracy was compared with a linear regression model. The
model showed an estimation accuracy comparable with the multivariate regression
approach in both cases, although GMR has the key advantage of allowing the
computation of confidence intervals that adapt locally for different circumstances,
according to the uncertainty of training data. At the same time, GMR seems to be
less sensitive to data sparsity and to regressors correlation. Similarly to GPs, the
main challenges of GMR are linked to its long computational time.

2.4.3 Non-routine event detection

The issue of non-routine event detection is a known challenge in the M&V
research community and is common to all the previously introduced baseline
estimation methods. Non-routine events (NREs) are defined as fluctuations in the
energy usage of a building that are not caused by any variation of the explanatory
variables of the baseline model, and that are not attributable to the applied measure
itself. In order to achieve a precise evaluation of the energy savings, non-routine
events must be detected, and accounted for as ‘non-routine adjustments’ in the
estimation of avoided energy use. This process is usually performed manually and,
depending on the kind of event, it might require some engineering expertise and
knowledge of what the NRE was [44]. This is a considerable issue in automated
M&V, as failing to identify such events could lead to an over (or under) estimation
of the savings. Recently, Touzani et al. [77] proposed an automated technique,
based on statistical change point detection, to identify non-routine events and adjust
the savings calculations. The preliminary results of this study, carried out on a set
of synthetic data created using energy simulation software EnergyPlus, show a high
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identification rate for true positives, as well as for false positives, suggesting that
the algorithm might still be improved to achieve better results.

2.4.4 Uncertainty estimation

In the M&V context, determining the uncertainty of the obtained results proves
to be an issue of major importance. Providing a range of uncertainty, together with
the point estimate result, can help establishing the amount of risk associated with
a given investment, and support stakeholders in making more informed decisions
[78]. Energy savings estimates usually provide results in form of a single point
value, the uncertainty can then be interpreted as the interval of doubt around
this estimate [52]. According to the IPMVP, when dealing with energy savings,
three kinds of quantifiable uncertainties are identified: sampling uncertainty, arising
from the fact that in some projects not all the devices can be monitored, hence
sampling techniques are used, measurement uncertainty, related to the accuracy
of the monitoring infrastructure used to measure the energy consumption, and
modeling uncertainty, related to the errors of the baseline models used to estimate
the savings.

Reddy and Claridge [79] argued that the uncertainty in the consumption
baseline model is the key factor in determining the uncertainty in the measured
savings and proposed a formula to estimate it taking into account the CV(RMSE)
of the employed statistical model and the relative influence of the EEM on the
baseline energy consumption. Koran et al. [80] compared four different methods to
calculate the uncertainty of energy efficiency savings estimated using metering data:
a formula found in the ASHRAE Guideline 14 [45], an improved version of the
ASHRAE formula, an exact formula that can be used in the case of ordinary least
square regression, and a bootstrapping technique. All the four methods presented
provided reasonable results, although the accuracy of the methods was not evaluated.
Subsequently, a work by Touzani et al. [52] compared the accuracy of two different
approaches to determine the uncertainty of energy efficiency savings estimations.
Four different baseline models were applied: two hourly models and two daily ones.
The uncertainty of the model estimates was then analyzed using two methods: the
ASHRAE Guideline 14 approach and the k-fold cross-validation approach, a method
to assess model accuracy commonly utilized in the machine learning community. The
study was carried out on a dataset comprising whole-building electricity consumption
data, sampled every 15 minutes, from 69 commercial buildings located in Central
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California, Northern California, and Washington DC. The results showed that both
methods underestimated the uncertainty of all the four baseline models tested,
although the underestimation proved to be stronger for hourly models, probably
due to higher autocorrelation of residuals.

Among the few authors to take into account other uncertainties than the
modeling one, Olinga et al. [81] proposed a method to optimally allocate budget
and effort in M&V while handling both sampling and modeling uncertainties. The
results of their case study show a 42 % reduction of the sampling cost and an 11
% reduction of the total M&V cost thanks to the implementation of the proposed
approach.
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2.5 Prediction and recommendation: review of the

methods

In this section, various techniques to predict the effect of energy efficiency
measures and to plan energy retrofitting strategies for specific buildings or groups
of buildings, are analyzed. As many methods are involving the combination of
deterministic models based on simulations and data-driven approaches, this section
of the review presents three different categories of methods: deterministic, hybrid,
and purely data-driven. Table 2.2 shows an overview of the methods discussed this
section; the type of buildings where they were applied and the categories of the
analyzed retrofitting measures are also schematized.

2.5.1 Deterministic methods (Building Energy Simulation)

The approaches presented here are based on the application of building en-
ergy simulation (BES) to predict the energy performance of buildings in different
scenarios.

BES models for retrofit and NZEB comparative analysis

Zangheri et al. [82] used building energy modeling software EnergyPlus [83] to
identify which would be the most cost-optimal retrofit combination to reach nearly
zero-energy building (NZEB) levels in different building/climate combinations. The
study analyzes four different building typologies of 60s-70s and ten different climate
areas within the European Union. In order to perform the study, first a “base
refurbishment level" was defined, as the minimum possible level of refurbishment to
which compare the deeper ones. The base refurbishment level was defined following
the assumption that it is not possible to not intervene at all on a building older
than 40 years, and includes the rehabilitation of the building envelope, and the
substitution of the old heating or cooling systems with comparable equipment. It
was found that cost-optimal and NZEB scenarios are characterized by an average
increased investment cost, with respect to the base refurbishment level, of 50% and
115 % respectively. The energy efficiency potential of the cost-optimal cases proved
to be substantial (between 36 % and 88% primary energy savings), with associated
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30 years global costs many times lower than their respective base refurbishment
levels.

Similarly, Rysanek and Choudhary [84] used TRNSYS [85], a simulation tool for
transient systems, to analyse different energy retrofitting scenarios for a mid-sized
office building in Cambridge (UK), while taking into consideration both technical
and economic uncertainty. The authors also provide an analysis of how relevant
the approach is to real-world contexts. TRNSYS was also used by Valdiserri et
al. [86] to evaluate the thermal demand reduction of a tertiary building in Italy,
due to an improvement of the thermal envelope and installation of high efficiency
windows. An investment cost analysis was also performed, using the Net Present
Value (NPV) method.

BES combined with data collected from bills and questionnaires

Another frequently applied method to predict the energy savings of specific
energy efficiency measures is to use building energy simulation tools and compare
the simulation with the real consumption obtained from metering or energy bills.
Suastegui et al. [87] used this method to evaluate potential savings in the residential
sector in Mexico due to replacement of oversized HVAC units. A sample of 300 houses
was analyzed and questionnaires were used to gather data about the households
size and HVAC units capacity. An energy simulation of these buildings was then
run using a model based on the Transfer Function Method. The model provides the
optimal HVAC sizing for the analyzed households, which is then used to calculate
the kWh that could be saved in these households by replacing oversized units.

2.5.2 Hybrid methods

Hybrid methods make use of data-driven techniques to optimize the results
obtained with deterministic methods. The reviewed approaches involve the use of
different data-driven algorithms to scale up the results obtained to a higher amount
of buildings, or to find the optimal solution, within the BES results, according to a
given cost function.
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BES combined with Artificial Neural Networks

This method, presented by Ascione et al. [88], proposes the use of EnergyPlus
simulations and artificial neural networks to predict building energy retrofitting
effects and evaluate different renovation scenarios. The approach takes advantage
of the reliable and rigorous assessment of EEM impact granted by building energy
simulation software and scales the results obtained to a large number of buildings,
through the application of artificial neural networks. This combination grants high
accuracy of results, while keeping the computational times reasonably low. The
method employs two different families of ANNs, one trained with pre-retrofit building
simulation data and one with post-retrofit building simulation data, the difference
between the outputs is considered as the improvement due to the implemented
energy retrofit. The approach was tested on office buildings built in Southern Italy
in the period between 1920 and 1970, about 8800 units, representing approximately
13% of the office buildings in Italy. Three independent networks are modeled in the
first family (pre-retrofit), each of them having a different output: primary energy
demand for heating, primary energy demand for cooling, and percentage of annual
discomfort hours. The second category of neural networks (targeting the refurbished
building stock), consists of four ANNs with single output: the three networks
introduced for the pre-retrofit case, plus a new network included to predict the
electricity produced by photo-voltaic panels and used in the building. The accuracy
of the ANNs were assessed by analysing regressions and distributions of relative
error between the networks’ outputs and the results obtained with EnergyPlus
models. In both cases (pre and post-retrofit), the accuracy of the models showed to
be quite high, with the average absolute value of relative errors ranging between
6.1% and 11%.

Multi-objective and multi-criteria optimization of BES data using
Genetic Algorithms

In the framework of decision aid systems for energy retrofitting strategies, two
very popular solutions are multi-objective and multi-criteria optimizations. Asadi
et al. [89] wrote a detailed review on the topic, explaining also the conceptual
distinction between multi criteria and multi objective models: in multi-criteria
optimization, the group of possible alternatives is finite and explicitly known a priori,
to be evaluated according to multiple criteria, while in multi-objective optimization
models, the potential solutions are implicitly determined by the optimization
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variables and constraints. A very popular technique, frequently used by scientists
in both these cases, is the genetic algorithm (GA). Following, different applications
of genetic algorithms in the building energy retrofitting field are presented.

Siddharth et al. [90] built an IT tool that uses GAs to create several combina-
tions of building variables correlated with energy consumption. For each of these
combinations, the energy consumption of the building is simulated and a nonlinear
regression model is fit between the system characteristics and the annual energy
demand of the building. In this way, different system configurations are determined,
allowing the evaluation of hypothetical energy efficiency measures. The tool was
successfully tested in three different climate zones in India and the US. Genetic
algorithms and other optimization techniques, such as particle swarm optimization
and sequential search, were also applied by Bichiou and Krarti [91] to optimize the
selection of building envelopes and HVAC systems for houses in five different US
cities, with the goal of minimizing their operating costs. The comparative analysis
showed that savings in computational effort could be as high as 70% when using
genetic algorithms in place of particle swarm or sequential search.

Ascione et al. [92–94] also used GAs to analyse EnergyPlus simulation data
in both multi-objective and multi-criteria analyses. The approach was successfully
used first to determine the optimal renewable energy mix in a building and then to
identify optimal energy retrofitting strategies in typical hospital and office reference
buildings.

Multi objective optimization of BES data using NSGA-II

Chantrelle et al. [95] developed MultiOpt, a multi-criteria tool that uses NSGA-
II (a non-dominated sorting genetic algorithm) [96] coupled with environmental
databases and assessment software (TRNSYS), to optimize the retrofitting process of
buildings across a variety of different objectives. NSGA-II was also used by Delgarm
et al. [97], in combination with EnergyPlus, to analyse how different architectural
parameters affect the energy consumption of a building in four different climate
regions of Iran. The analysis shows that the optimization process could decrease
the building’s energy consumption by up to 42.2 %.
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Multi-objective optimization of BES data using Genetic Algorithms
and Artificial Neural Networks

This optimization methodology, that combines different approaches introduced
in the previous paragraphs, was used by Magnier and Haghighat [98] to reduce the
energy usage while keeping the optimal thermal comfort in a residential building.
The approach features the use of NSGA-II to solve the optimization problem and a
multilayer feed-forward ANN to reduce the time of computation required by the
analysis.

More recently, Asadi et al. [99] used a similar technique to analyze TRNSYS
data and identify optimal building energy retrofitting strategies. The set of possible
retrofitting actions was summarized in five decision variables introduced as inputs for
the ANN: external wall insulation materials, roof insulation materials, window types,
solar collector types, HVAC system. The ANN, trained with building simulation
results, had four different outputs: total percentage of discomfort hours, and energy
demands for space heating, space cooling and sanitary hot water. A multi-objective
GA was then applied to analyze the results of the ANN analysis and find the optimal
solutions in terms of energy usage, renovation cost, and thermal discomfort hours.

Mixed-Integer Linear Programming

Iturriaga et al. [100] used a Mixed-Integer Linear Programming model to
design the energy renovation of an existing building, with the goal of achieving the
nearly Zero Energy Building standard. The proposed approach attempts to model
the energy demand of the building through a linear model, introducing the EEMs
as virtual energy sources that produce, at specific points in time, the energy that
would be saved. To calculate the exact demand reduction corresponding to each
EEM, dynamic TRNSYS simulations are run. The linear programming approach is
then used to optimize the obtained results for the optimal cost case and the Zero
Energy Building case. The method was successfully implemented to obtain the
system configuration that minimizes the annual net costs for a real building located
in the city of Bilbao (Spain).
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2.5.3 Data-driven methods

The data-driven methods analyzed in this section have the goal of providing
recommendations for building energy retrofit by drawing conclusions based on the
analysis of collected data from real use-cases.

User-facing Fallen Rule List using audit data

This method, presented by Marasco and Kotokosta [101], proposes the applica-
tion of a fallen rule list classifier to how different building would react to different
groups of EEMs. The classifier uses binary features obtained from energy audit data
for over 1000 buildings in the city of New York and has the goal of providing a tool
for decision-makers with the capability of either supporting, or potentially replacing,
a complete energy audit. The classifier analyzes the correlation between building
specific data and the EEM recommended by energy consultants after performing
a building audit. The model was trained on 764 buildings and then tested on
192 buildings, showing a good overall performance for predicting the EEMs of the
following categories: cooling system, distribution system, domestic hot water, fuel
switching, lighting and motors, representing collectively 62% of EEMs analyzed in
this study.

Artificial Neural Networks using audit data

Beccali et al. [102] implemented artificial neural networks to create a decision
aid tool able to evaluate energy performance and possible refurbishment strategies
for tertiary buildings in Southern Italy. The networks were trained using audit data
from 151 non-residential buildings, located in different regions of Southern Italy.
The audits collected information about the buildings’ geometric and equipment
characteristics, as well as data about ten different proposed retrofitting actions.
This data was employed to determine the ideal architecture configuration for two
ANNs and for their subsequent training. One of the networks estimates the effective
energy performance of any building, while the other assesses key economic indicators,
allowing users to gain information about possible energy savings, payback time and
investment costs per kWh saved.
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Clustering techniques

This method is based on the assumption that clustering techniques can help in
the development of renovation plans for groups of buildings that respond similarly
to the application of EEMs. Geyer et al. [23] tested the application of clustering
algorithms using performance-based indicators of the impact of applied measures.
The impact of the measure on the considered building is described by a parameter
equal to the quotient of the emission reduction caused by the measure, and the
investment costs. To assess the impact of an applied EEM, different calculation
methods are applied: simplified estimations, monthly sums, dynamic simulations
or building energy simulations. Two different clustering methodologies are tested:
hierarchical clustering and partitioning k-means clustering. A set of six different
retrofit measures, as well as their combination, was simulated. To estimate their
effect, simplified calculations using monitored energy consumption and geometric
information about the buildings were realized. This method allows the evaluation of
how buildings with different characteristics react to applied EEMs and to identify
the clusters (groups of buildings) with highest priority for action. Salvalai et al.
[103] also investigated the combination of clustering algorithms and building energy
simulation, to evaluate optimal renovation strategies for a sample of school buildings
in Northern Italy.

Linear regression

Walter and Sohn [104] trained a multivariate linear regression model using
data contained in a large building energy database, to estimate energy savings due
to the implementation of particular retrofits. The model’s input parameters are
both categorical and numerical variables, while the response variable is the annual
source energy usage intensity (EUI). Through this method, it’s possible to analyse
the impact of specific building properties and installed systems on the EUI, predict
for possible combinations of explanatory variables not included in the database
and yield predictions that have clear and well-known statistical properties. The
predictors chosen include the majority of the fields in the US Building Performance
Database[105], in case of highly correlated fields only one of them is chosen. This
method proves to be highly effective, as the data required to perform this type of
analysis is generally affordable and easy to obtain, making this approach cheaper and
faster than other methods that involve the creation of building energy simulation
models.
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Genetic algorithm combined with A* graph search

This method was examined by Yi-Kai et al. [106], with the goal of analysing
all possible retrofitting actions, and their trade-offs, to identify optimal solutions.
Six experienced building renovation stakeholders were interviewed to determine the
assessment scores of different renovation actions, as well as the cost information for
each action. Based on this data, a two-stage hybrid GAA* algorithm (combination
of Genetic Algorithm and the best first (A*) algorithm) was used to test all the
possible scenarios and identify the optimal solutions. This approach was compared
to two commonly adopted methods: zero-one goal programming (ZOPG) and
Genetic Algorithm (GA) proving be better than either of them alone.
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Chapter 2 Review of methods to evaluate the impact of retrofitting strategies in buildings

2.6 Discussion

In this chapter, two fundamental processes required for the improvement of
building energy performance have been studied: the measurement and verification
process, and the prediction and recommendation process. After describing their
goals and main challenges, different methods found in literature were reviewed. The
analysis was focused mainly on data-driven approaches, although for the prediction
and recommendation process, deterministic methods were also considered, since
their combination with data-driven techniques is becoming of increasing interest.

In the first part of the chapter, different methods for energy baseline estimation
were reviewed. For every method, advantages and limitations were examined. The
reviewed articles show that more complex methods generally provide more accurate
estimations, although the bias-variance trade-off should be always kept in mind:
as the models’ complexity increases, they can become more accurate, but also
more likely to overfit (fail to properly fit additional data, as new observations
are added to the dataset) [107]. This said, it was found that different models
still have different specific cases where they work best, regardless of their level of
complexity. Another interesting insight that emerged from the review is that, when
comparing different methods, being able to accurately determine the uncertainty of
the results obtained is a very valuable feature. If the main concern of the M&V
practitioner is to obtain the best possible estimation of model uncertainty, Bayesian
methods seem to be the most optimal choice, as they provide accurate uncertainty
estimations without assuming normally distributed errors. On the other hand,
statistical learning techniques seem to be favoured when the main concern is the
interpretability of the model, and machine learning techniques are most frequently
employed when large amounts of data are available and the practitioner is interested
in optimizing the model’s predictive accuracy.

In the second part of this review, several deterministic and data-driven methods
to predict the effect of energy retrofitting actions on buildings were analyzed and
presented. Although many of the methods reviewed use deterministic building
energy simulations for this task, the analysis of the simulations’ results is often
performed with data-driven techniques. These approaches, classified as “hybrid"
models, appear to be quite popular because of the possibility to combine the
accuracy of deterministic methods and the computational efficiency of large scale
optimization techniques.
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2.7 Conclusions and future work

In conclusion, it’s important to remark that the comparison of the presented
methods is no trivial work, as they were all applied in different use cases, with data
of different granularity, and not using the same explanatory variables. This issue is
a known problem in the building performance research community and was already
pointed out by Miller [108], who proposed and worked on the creation of a public
dataset from electricity meters of non-residential buildings, to test and compare
prediction algorithms and feature extraction techniques [50][109].

2.7 Conclusions and future work

In order to improve the energy performance of the current building stock, it is
essential to implement energy renovation programs. One of the main barriers to the
widespread application of such programs is the lack of information regarding the
impact of retrofitting actions. It appears clear that quantifying energy savings from
implemented measures and determining the uncertainty of the obtained results,
are two key steps towards the achievement of a more efficient built environment.
The set of calculations performed to collect this data, is often referred to as the
measurement and verification process. At the same time, another major task is
to be able to find tailored effective renovation strategies for specific buildings or
groups of buildings, in the chapter this process was referred to as the prediction
and recommendation process.

In this review, the main methods currently utilized for these two processes
were studied, with a special focus on data-driven approaches, as they are innovative
techniques proving to be more effective and scalable than other traditional methods
[31][35]. All of the reviewed techniques have different characteristics and have
been applied in some specific cases, their characteristics were discussed in detail
and then schematized in Tables 2.1 and 2.2. State-of-the-art methods to identify
non-routine events and estimate uncertainty in M&V were also reviewed. Thanks
to the additional analysis provided by these methods, it’s possible to obtain more
accurate estimates of the calculated savings and of their uncertainty.

From the review work, it was also seen that, while the M&V process seems to
have a well defined structure, with different established standardization protocols
and a range of published scientific articles addressing the topic. The prediction
and recommendation process seems to lack such a structure and a considerable
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Chapter 2 Review of methods to evaluate the impact of retrofitting strategies in buildings

standardization effort would be needed in order to establish metrics of comparison
and standardized approaches for the different methods currently in use.

Finally, it appears clear that, with more and more data being collected by au-
tomated metering infrastructure, data-driven methods are becoming a fundamental
tool to plan effective strategies for the energy demand reduction of the existing
building stock. For this reason, it is essential that governments and institutions
quickly operate to develop policies that can facilitate the collection and analysis of
building energy data.
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Chapter 3

Data-driven approach for daily

Measurement and Verification of energy

savings

This chapter was published as a journal article:

Grillone B., Mor G., Danov S., Cipriano J., Sumper A. A data-driven method-
ology for enhanced measurement and verification of energy efficiency savings in com-
mercial buildings. Applied Energy 2021; 301: 117502, https://doi.org/10.1016/j.ape-
nergy.2021.117502

3.1 Introduction

In 2018, 36 % of final energy use and 39 % of energy and process related CO2

emissions worldwide were attributed to the building and construction sector, a
2019 report from the IEA showed [110]. In the same document, it was reported
that the global emissions of the building sector increased 2 % in 2018, reaching a
record amount of 9.7 gigatonnes of carbon dioxide, and marking a 7 % increase
from 2010. Different studies have analyzed the low turnover rate of the existing
built environment and forecasted that up to three quarters of the existing building
stock might still be standing in 2050 [8, 111]. This means that improving the
energy efficiency of the existing building stock is a crucial step to lower the energy
demand of the building sector, and to reach the climate goals set in Europe [112]
and in the rest of the world [3]. In the last years, there’s been many studies that
tried to asses the energy impact of entire sectors and possible carbon reduction
scenarios [113, 114]. On the other hand, it was found that when it comes to the
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Chapter 3 Data-driven approach for daily Measurement and Verification of energy savings

implementation of energy retrofitting measures in individual buildings, one of the
greatest challenges is measuring the savings achieved, this process is commonly
referred to as the Measurement and Verification process [27].

Measurement and verification (M&V) is defined as the process of using measure-
ments to reliably determine energy savings generated within an individual building
or facility by an energy efficiency intervention. Since energy savings cannot be
directly measured, as they represent the absence of energy use, they are usually
determined by comparing the facility’s energy consumption before and after the im-
plementation of a retrofit measure, considering appropriate adjustments for possible
changes in conditions. Different methodologies and protocols have been developed
for this scope, the main being: the International Performance Measurement and
Verification Protocol (IPMVP), and the ASHRAE Guideline 14 [45]. Both these
methodologies are based on the use of a baseline energy model to compare the energy
consumption before and after the Energy Efficiency Measure (EEM) implementation.
The baseline model can be defined as the energy characterization of the starting
situation, and its role is fundamental in the assessment of energy savings. In fact,
the baseline model has the task of segregating the effects of a retrofit program from
the effects of other simultaneous changes that can affect the energy consumption,
hence improving the accuracy with which energy savings are estimated.

Recent breakthroughs in advanced metering infrastructure technologies and
data analytics techniques have initiated a transition of M&V to a new stage, also
known to practitioners as advanced measurement and verification (or M&V 2.0).
The main characteristic of M&V 2.0 is the possibility of performing real-time energy
efficiency savings estimations, thanks to the analysis of datasets having high sampling
frequency and resolution [28]. This translates into the possibility of providing
dynamic energy insights, maximizing the savings estimation accuracy, and obtaining
a detailed characterization of the building’s energy usage and performance [29]. In
the framework of advanced M&V, great effort is being put into the development
of advanced baseline models that can reach high estimation accuracy thanks to
the application of state-of-the-art statistical and machine learning techniques. In
addition to that, many advanced M&V tools are now offering several other energy
services, such as consumption profile data mining, equipment fault detection, and
building energy benchmarking [30].

Comprehensive reviews regarding the state-of-the-art of data-driven measure-
ment and verification methodologies were carried out in the last years [43, 115].
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3.1 Introduction

While different methods have been identified to have different strengths and weak-
nesses, the reviews highlighted the following knowledge gaps:

• none of the reviewed methodologies make use of the typical consumption
patterns detected in the analyzed facilities as a direct predictor variable,

• all of the reviewed methodologies utilise energy baseline models which are
trained only on the data that precedes the EEM implementation. This causes
the loss of valuable information regarding how energy consumption fluctuates
as a consequence of the variations of outdoor climate variables, which is
contained in the data that follows the EEM implementation and which can
be extracted (and uncoupled from the effects induced by the measures) by
means of statistical methods introduced in the present chapter.

As a consequence, the results provided by most of the reviewed methodologies
are affected by a rapid degradation when less than a full year of training data is
available. At the same time, most of the existing methodologies only provide an
estimation of energy efficiency savings, with no additional information about the
energy performance and behaviour of the analyzed facilities. The novel approach
proposed in this publication addresses the presented gaps by developing an enhanced
data-driven methodology able to:

• consider typical building usage profiles as predictor variables in the energy
baseline model, introduced by means of daily consumption patterns detected
with a clustering methodology,

• perform a detailed characterization of the building energy usage, harnessing
also data from the post-measure application period,

• provide accurate results even when less than a full year of training data is
available,

• provide, together with the savings estimation, a range of actionable insights
into the energy performance of the analyzed facilities, such as typical load
consumption profiles, change-point temperature of the building, and weather
dependence analysis.

This represents a significant advance to the state-of-the-art, especially in
practical applications, e.g. implementation of Energy Performance Contracts, where
accurate short-term monitoring with high granularity could be feasible, but year-
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Chapter 3 Data-driven approach for daily Measurement and Verification of energy savings

round data acquisition is not practical from a business point of view. This feature
considerably widens the scope of application of the proposed methodology, also
considering that the calculations performed are based on data that can be easily
obtained, such as energy consumption and climate data, making the method easy
to apply to a wide range of existing buildings.

The viability of the approach was tested in two different case studies: the first
was carried out with a set of synthetic data generated using the energy modeling
software EnergyPlus [116], while the second was performed using a set of real
consumption data from three commercial buildings located in Barcelona (Spain),
where different EEMs have been implemented. For case study 1, the operation of
three commercial building typologies was simulated in different climate locations,
and for each of them two EEMs were introduced, at different points of the time-
series, for a total of 54 unique simulation cases. Each of the buildings was simulated
with and without the energy efficiency intervention, thereby allowing a comparison
between the effective energy savings, simulated with EnergyPlus, and the ones
estimated with the data-driven statistical model. Such a comparison made it possible
to verify that low statistical model errors are translated into accurate estimations of
the energy savings achieved by the EEMs. The proposed approach is also compared
to another method based on the time-of-week-and-temperature (TOWT) model [49],
a commonly employed method in measurement and verification applications that
was the object of different studies to estimate prediction accuracy [43, 44, 109] and
uncertainty [52] in measurement and verification applications. The TOWT model is
also the reference model of the CalTRACK protocol [117]. For the second case study,
data from three existing buildings that implemented EEMs were analyzed. The two
case studies have two complementary objectives: with the first it was possible to
test the methodology and showcase its features in a controlled environment, where
the true savings values are known, since they can be estimated using EnergyPlus
deterministic calculations. This provides a concrete value to compare the results to,
and a benchmark for model performance. Conversely, the second case study has
the goal of demonstrating that the proposed methodology is able to work properly
not only with simulated data, but can also provide accurate results with low error
when analysing monitoring consumption data from existing buildings.

The present study provides significant research contribution to each of the needs
described at the beginning of this section, demonstrating considerable accuracy
improvements, compared to the industry benchmark, which are even more evident
when the training data used is reduced to less than a full year. At the same time, the
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3.2 Methodology

results yielded are easily interpretable even for non experts in statistics, providing
not only energy savings quantification but also a wide range of actionable insights
into the energy performance of the analyzed building.

3.2 Methodology

3.2.1 Methodology overview

The energy savings calculation methodology proposed in this chapter is based
on two main concepts: i) the baseline energy use of a commercial building or facility
can be represented by a statistical model; ii) when an EEM is implemented in that
building, the variation in the energy use caused by this EEM can be represented by
adding supplementary terms to the initial baseline model. This last concept defines
one of the main differences of this chapter’s approach and the M&V methodologies
currently employed in industry: traditional methods are based on the theory that
it’s possible to detect energy behaviour changes by training a model with historical
data of the period that precedes the application of the EEM, and then to predict
energy consumption on the post EEM application period. In contrast, in the
methodology presented in this chapter, the detection of energy behaviour changes
does not happen thanks to the choice of a specific training dataset, but through the
definition and selection of different additive terms in the model itself. There are two
main advantages related to this revised paradigm: the first one is that the whole
time-series data can be used to train the baseline model, which enables an improved
description of the buildings’ energy performance; the second one is that, in case
of more than one EEM implementation, there is no need to fit a different model
for each measure. The technical details of this procedure are further explained in
Sections 3.2.3 and 3.2.4.

With regard to the method to evaluate the impact of EEMs, it is supposed that
implemented measures can have a two-fold effect on the energy usage of a building:
they either cause a change in the daily load profile, or they modify the way the
building consumption increases (or decreases) as a consequence of the variations
of outdoor climate variables. Both effects are considered in the assessment of the
counterfactual consumption, which is the estimated energy consumption following
an intervention, as if the intervention had not taken place. To evaluate the first of
these two effects, when estimating the daily counterfactual usage, instead of using
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the detected load profile for that day, the profile used is the one the building would
have had if the measure was not applied, calculated using a prediction algorithm
based on time of the year and weather variables. On the other hand, to account
for weather related changes of the energy consumption, different additive terms are
considered in the baseline model, that have the goal of capturing how the building
weather dependence changes after the application of a given measure. The technical
details of this process are explained in detail in Sections 3.2.2, 3.2.3, and 3.2.4.

In order to estimate the energy savings due to EEMs, the proposed approach
requires the following data:

• energy consumption data (with hourly or sub-hourly granularity),

• outdoor temperature,

• global horizontal radiation (GHI),

• wind speed,

• public holidays calendar,

• date of application of the analyzed EEMs.

Once these data sets are collected, the procedure to estimate the energy
savings can be initiated. The methodology structure can be divided in three main
phases: data acquisition and preprocessing, model computation, and energy savings
quantification. Fig. 3.1 illustrates the process flow diagram of the methodology.
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Figure 3.1: Methodology flowchart

3.2.2 Phase 1: data acquisition and preprocessing

In this first phase of the approach, different techniques are used to extract
all the variables necessary for the calculation of the baseline model, including the
identification of the load profile patterns, and an analysis of the weather dependence
of the building.
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Time-series partitioning through binary flagging variables

Binary flagging variables are introduced in this model to mark the periods of
application of energy efficiency measures. For every Energy Efficiency Measure,
EEMi, that is eligible for evaluation, the sections of the time-series before and after
the measure application are marked with a binary variable, mi,j , having 0 values
for the days before the measure application date, and values of 1 for the days after
the measure application date. Thanks to this binary flagging variable, it’s possible
to separate the sections of the time series where the EEM is applied and the ones
where it is not. The mathematical definition of this binary variable is expressed as:

mi,j =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, if measure i is not applied on day j

1, if measure i is applied on day j
(3.1)

In addition to mi,j , another variable m is computed and assigned to each day
j of the time-series, indicating the total number of EEMs applied in the building:

mj =
n

∑
i=1
mi,j (3.2)

where n is the total number of measures applied on the building. This means
that if in a building two different measures were applied, one in January and one in
September of the same year, m will have value 0 before January, 1 between January
and September, and 2 after september. m and mi mark which measures are applied
(and which are not) on any given day of the time series, these variables allow for an
easy identification of the consumption trends during the model training phase, and
help in the selection of the additive terms that form the baseline model.

Identification of the daily electrical load profiles

To identify the daily energy usage patterns of the building, a clustering algo-
rithm is applied. The different days of the time-series are separated into clusters
of similar daily behaviour, using as input of the algorithm the building’s energy
consumption values, sampled every hour. Different clustering methods have been
tested in literature for this purpose, with k-means clustering [118], self organizing
maps (SOM) [119], and Symbolic Aggregate approXimation (SAX) [120], being
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popular choices. In this research, the clusters are identified using a Gaussian mixture
model [121, 122], and the optimal number of clusters ak is chosen according to
the Bayesian Information Criterion (BIC) of the model. The result of the clus-
tering technique is a set of k centroid curves for 24 hours electrical load profiles,
which define the typical patterns for the analyzed building. To avoid including any
potential change of profile generated by an EEM application in the clusters, the
profile patterns are identified using only consumption data previous to the first
EEM application. Adopting the symbols introduced previously, the clustering is
run on all the days that have m = 0, while for the days having m > 0, the profiles
are identified by assigning each day to one of the clusters previously detected. This
profile classification is achieved by calculating the cross euclidean distance matrix
between the centroids of each of the clusters and the consumption profiles of each
day.

Prediction of expected daily profiles based on weather and time
variables

Once the daily load profiles have been classified in different clusters, an addi-
tional model predicts, for each day of the time-series, which should be the expected
load profile on that day. The variables on which this model is based are: day of
the week, day of the year, outdoor temperature, global horizontal radiation (GHI),
and the electrical load profiles of the 7 days previous to the considered day. More
specifically, the goal is to predict, based on these variables, which would have
been the load profile of any day after the first EEM application, if no EEMs were
applied in the building. To achieve this, the time-series is split in different sections,
according to the binary flagging variables previously introduced. Then, for every
section of the time-series after the first EEM implementation, the expected profile
of the day is estimated using a model trained on data from the preceding time-series
section. A concrete example follows, to better illustrate this process: in a building
with two applied EEMs, the time series will be split in three parts: the first part,
identified by m = 0, prior to the first measure application, the second part (m = 1),
that includes all the days between the implementation of the first measure and the
implementation of the second, and the third and last section (m = 2), formed by all
the days from the application of the second measure until the end of the time-series.
Once the split is completed, two different models are run: to predict the daily
profiles during section m = 1, the model is trained with all the data contained in
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section m = 0, while to predict the profiles of the section that follows the application
of the second measure (m = 2), the model is trained using the data of section m = 1.

To improve the accuracy of this classification, the input variables undergo a
preprocessing phase: the day of the week and day of the year variables are encoded as
cyclical features using Fourier’s transformation [123], while the outdoor temperature
and GHI are transformed using spline functions. The classification model used for
this task is a gradient boosting machine (GBM), a machine learning algorithm that
has been previously applied in other research works related to building energy, and
has been shown to have strong predictive performance and flexibility [51, 124]. To
execute the model, the XGBoost [125] library was used, in the R programming
environment. The results generated here, are then used in the savings quantification
phase to detect if applied EEMs caused a change in the load profile of the building
and if this lead to energy efficiency savings.

Weather dependence analysis

In the weather dependence analysis, the temperature dependence of the building
is identified, more specifically the change-point temperature of the building is
calculated, and therefore the days of the year when the consumption is directly
dependent on the outdoor temperature values. In order to perform this analysis,
the temperature data is pre-processed by applying a first order low-pass filter [126].
This pre-processing is required to take into account that the energy consumption is
not directly dependent on the short-term outdoor temperature variation because of
the effect of the building’s thermal inertia and the thermal resistance. The low-pass
filter allows to ignore the fluctuations and to consider only the longer-term trend.
The low-pass filtered outdoor temperature is calculated as follows:

Tlp(t) = T (t − 1)α + T (t)(1 − α) (3.3)

where T (t) and Tlp(t) are the hourly average outdoor temperature and the low-pass
filtered temperature at hour t. T (t − 1) is the hourly average outdoor temperature
at hour t − 1, and α is the smoothing factor of the filter (in this analysis a value of
α = 0.1 was chosen). The expression ‘hourly average temperature’ refers to the case
of having more than one temperature measurement per each hour, in which case the
average of these measurements is taken to be the reference temperature for hour t.
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Once the low-pass filtered temperature has been calculated, a piece-wise linear
model is fitted with these input data. The most significant points of this model
are defined by the heating and cooling change-point temperatures, estimated as a
change-point temperature Tcp plus-minus a hysteresis h which can take on positive
or negative values. These two parameters define the outdoor temperatures from
which a significant relationship between the building’s energy consumption and the
outdoor temperature conditions is detected. Tcp and h are calculated using a linear
regression model and should be understood as a measure of how the daily aggregated
electricity consumption varies with the daily average outdoor temperature values.

In order to estimate Tcp and h, three possible building operation modes are
identified, depending on the hourly average outdoor temperature T :

mode =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

heating if T < (Tcp − h)

cooling if T > (Tcp + h)

equilibrium if (Tcp − h) ≤ T ≤ (Tcp + h)

(3.4)

From equation (3.4), it’s visible that the equilibrium mode is only possible for
buildings having h > 0, and that for buildings with h < 0, the heating and cooling
modes can happen at the same time. Figure 3.2 conceptually shows the different
consumption scenarios for a hypothetical building, depending on the possible values
of h. Positive h will result in the building being characterized by an equilibrium
range of temperatures around Tcp, where the energy consumption is not affected
by the change of outdoor temperature. Negative h means that there is a range
of temperatures around Tcp, in which the building can have heating and cooling
dependence at the same time. Finally, h = 0 means that the building has heating
dependence for T < Tcp and cooling dependence for T > Tcp.
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Figure 3.2: Possible consumption scenarios depending on Tcp and h values

Once the mode for each day of the time series has been identified, the daily
mean dependent temperature T ∗mode is calculated, defined as:

T ∗mode =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(Tcp − h) − T if mode = heating

T − (Tcp + h) if mode = cooling

0 if mode = equilibrium

(3.5)

Regardless of the operation mode, a higher T ∗mode represents a higher deviation
from the change-point temperature of the building, meaning higher energy require-
ments to keep the desired internal temperature. The T ∗mode is then used to fit the
step-wise linear model that estimates the temperature dependence of the building
energy usage. It is assumed that the ratio by which the building’s consumption
depends on the temperature T ∗mode varies according to the load profile and the
operation mode of the day, for this reason the model is constituted of K ×3 different
linear terms, where K is the number of clusters identified as described in 3.2.2. The
formulation of the step-wise linear temperature dependence model is the following:

Yd = ∑
mode,k

Ck αk +Ck βmode,k T
∗
mode (3.6)
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where Yd is the daily electricity consumption of the building, αk is the base load for
cluster k, βmode,k are the linear coefficients that mark the temperature dependence
according to the load profile and mode of the day (i.e. βheating,1 is the coefficient
that marks the temperature dependence of the building when it is in heating mode
and the day’s load profile is represented by cluster 1), and Ck is a variable that
marks the cluster of the analyzed day and is equal to 1 if the cluster of the day is
equal to k, or 0 in all the other cases. In this way, only the relevant linear coefficient
is used to describe the temperature dependence of the day (i.e. when the load
profile of the day corresponds to cluster 1, C1 = 1,C2 = 0,C3 = 0, ...,CK = 0). To
identify the linear coefficients βmode,k, the lasso method (least absolute shrinkage
and selection operator) is used. The optimization is initiated with an arbitrary Tcp
and h, that are then optimized with a genetic algorithm that uses as score the R2

of the model in Equation (3.6). Note that a single Tcp is evaluated for the whole
building, regardless of the different load profiles, meaning that effect of the change-
point temperature variation between different clusters on the daily aggregated
consumption is considered to be negligible. Once Tcp and h are optimized, the mode
of the building for each day of the time-series is calculated using equation (3.4).
The building mode identifies the days in which the energy usage of the building is
weather-dependent, since it is considered that the weather variables will only affect
the electricity consumption if the building needs active heating or cooling. Once the
optimized building mode is identified, modified temperature, GHI, and wind speed
vectors are calculated, having non-zero values only on the days where the building
is considered weather dependent, these vectors are marked by the superscript ‘dep’:

T deph =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(Tcp − h) − T if mode = heating

0 if mode = cooling or mode = equilibrium
(3.7)

T depc =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T − (Tcp + h) if mode = cooling

0 if mode = heating or mode = equilibrium
(3.8)

GHIdep =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

GHI if mode = cooling or mode = heating

0 if mode = equilibrium
(3.9)
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Wsdep =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Ws if mode = cooling or mode = heating

0 if mode = equilibrium
(3.10)

where GHI and Ws represent the average global horizontal radiation and average
wind speed of the day. By including these modified vectors T deph , T depc , GHIdep and
Wsdep in the baseline estimation model, it’s possible to take the weather variables
into account only on the days when the building is directly dependent on them.

Finally, a last set of vectors necessary for baseline estimation is calculated, by
multiplying T dep, GHIdep, and Wsdep by the binary flagging variables mi. The
resulting vectors are used to characterize how the weather dependence of the building
changed in time, as different EEMs were applied:

T deph,mi
= T deph ∗mi (3.11)

T depc,mi
= T depc ∗mi (3.12)

GHIdepmi
= GHIdep ∗mi (3.13)

Wsdepmi
=Wsdep ∗mi (3.14)

These vectors have a crucial role in the methodology, as they contain the
information about the effect of the implemented EEMs on the building energy
consumption. It is thanks to these vectors that it’s possible to use the whole
time-series to train the baseline model, while still excluding the energy reductions
caused by the measures when estimating the savings. This process is explained in
more detail in the next section, which presents the characteristics of the baseline
model.
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3.2.3 Phase 2: baseline energy modeling

This phase has the goal of developing a statistical model able to estimate the
daily baseline energy demand of the building under analysis. Among the different
possible statistical models that could be used for this task, the authors decided
to work with generalized additive models (GAM),which is a specific method for
supervised learning originally developed by statisticians Trevor Hastie and Robert
Tibshirani [127]. GAMs are flexible statistical methods that can be used to identify
and characterize nonlinear effects. In the regression setting, a generalized additive
model has the form:

g(E(Y )) = β0 + f1(X1) + f2(X2) + ... + fp(Xp) (3.15)

where X1,X2,. . . ,Xp represent the predictors, and Y is the outcome. The fj may be
functions with a specified parametric form (polynomial or un-penalized regression
spline, for example), or unspecified ‘smooth’ functions, to be estimated by non-
parametric means. This means that the model allows for rather flexible specification
of the dependence of the response on the covariates. The GAM developed in the
framework of this research aims to represent daily electricity consumption as a
function of outdoor temperature, sun altitude, wind speed, daily load profile, and a
holiday flagging variable. The model has the following form:

g(E(Ed)) =αT
dep
h + β T depc + f(GHIdep) + f(Wsdep)

+
n

∑
i=1

[αi T
dep
h,mi

+ βi T
dep
c,mi

+ f(GHIdepmi
) + f(Wsdepmi

)] (3.16)

+
n

∑
i=0
mi(δh,idh + δnh,idnh +

K

∑
k=1

γi,k Ck)

where :

• E(Ed) is the estimator of the daily electricity consumption,

• αT deph + β T depc + f(GHIdep) + f(Wsdep) are the linear and smooth terms
marking the part of consumption that depends on weather variables, evaluated
on both pre and post measure application data,
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• αi T
dep
h,mi

+βi T
dep
c,mi

+ f(GHIdepmi
)+ f(Wsdepmi

) also identify climate-affected con-
sumption, but only during specific sections of the time-series, since the vectors
with the subscript mi, defined in 3.2.2 are non-zero only when measure i is
applied,

• n is the total number of energy efficiency measures applied in the building
during the considered time-frame,

• ∑Kk=1 γi,k Ck is the term representing the effect of the daily load profile on
the consumption, where γi,k is the coefficient that specifies the impact of the
profile, Ck is a variable that marks the profile of the analyzed day, being equal
to 1 if the profile of the day is profile k, 0 in all the other cases, and K is the
total number of daily load profiles identified by the clustering algorithm,

• δh,i dh + δnh,i dnh is the term that marks the effect of calendar holidays on the
consumption: dh is a coefficient equal to 1 if the day is a calendar holiday,
and 0 if it’s not, dnh the opposite, while δh,i and δnh,i are the coefficients that
specify the impact of the holiday variable depending on the EEM applied in a
certain period of the time-series,

• mi are the EEM binary flagging variables, equal to 1 when measure i is
effective, 0 elsewhere (m0 is considered 1 when there are no measures applied,
0 elsewhere).

All the model regressors are estimated in one single training phase, but fitting
on different periods of data depending on the regressor. For each of the weather
variables, two typologies of regressors are defined: baseline regressors, which are
estimated using the whole time-series; and measure effect regressors, that represent
the variation from the baseline and are estimated using the time periods where
the measure is applied. E.g. for the GHI case, there is a baseline smooth term
that represents the building dependence on solar radiation throughout the whole
timeseries: f(GHIdep). Then, additional GHI regressors ∑ni=0 f(GHI

dep
mi

) allow to
estimate the variations from the baseline introduced by the measures. Thanks to
this fitting technique, additional data from the post EEM application date can be
included in the evaluation of the baseline dependence coefficients, since the variations
generated by the EEM are included in the measure effect set of coefficients. This
allows an improved accuracy of the model, even when pre measure implementation
time-series data available is short. The methodology used to harness this model for
the measurement and verification of energy savings is explained in the next section
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3.2.4 Phase 3: Energy savings quantification

In the last phase of the methodology, the baseline model is used to calculate
the counterfactual energy consumption, that allows to estimate the energy savings.
The accuracy metrics used to evaluate the goodness of fit of the model are also
introduced.

EEM savings evaluation

The savings estimation process has different substeps, firstly the whole time-
series is divided in n + 1 sections (P0, P1, ... , Pn), where n is the total number of
measures applied in the building. In order to calculate the savings provided by an
individual EEM during period of time Pi, the model computed in Phase 2 is used to
predict what would be the energy consumption of the building during that period of
time, if the behaviour of the building would still be the one observed in the previous
section of the time series P(i−1) (counterfactual). This prediction is realized by
applying the GAM model with the model coefficients fitted for section P(i−1), but
with the exogenous variables (outdoor temperature, sun altitude, wind speed, etc.)
of period Pi. Additionally, to increase the accuracy of the estimation, the daily load
profiles introduced in the model (marked by the term Ck in (3.16)) are not the ones
identified with the classifier described in 3.2.2. Instead, the profiles predicted by the
classification model detailed in 3.2.2 are used. Thanks to this, if on a given day, the
load profile changed because of the implemented EEM, the baseline consumption
for that day will not be calculated based on the new load pattern, but on the one
the building would have had if the measure was not applied. The estimated baseline
obtained is then compared with the metered energy consumption during the same
period of time Pi. If the measure had a positive effect on the energy usage of the
building, the baseline consumption for the considered period will be higher than
the metered one, and the energy savings achieved can be obtained by calculating
the difference between both time series. The energy savings Si for period Pi can be
described as:

Si = ∑
j∈Pi

g(E(Edj ∣ i = i − 1, Ck = Ckpred)) − ∑
j∈Pi

Edmj (3.17)

where:
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• ∑j∈Pi
represents the sum over the j days of period Pi being the baseline model

a daily model,

• g(E(Edj ∣ i = i−1, Ck = Ckpred)) is the estimated baseline consumption on day
j, calculated with the model coefficients fit for period P(i−1), and substituting
the load profiles identified by the clustering classifier (Ck) with the load
profiles predicted by the gradient boosting machine (Ckpred),

• Edmj represents the metered electricity consumption on day j.

Accuracy metrics

Once the energy savings are estimated, different metrics to evaluate the goodness
of fit of the model (GOF) are calculated. The GOF of the baseline model is assessed
with the coefficient of variation of the root mean square error (CV(RMSE)). It is a
metric frequently employed to evaluate the accuracy of energy baseline models:

CV (RMSE) =

√
1
n ∑

n
i (Ei − Êi)

2

Ē
× 100 (3.18)

where n are the total days of the time-series, Ei is the measured energy
consumption value on day i, Êi is the predicted energy consumption with the
baseline model, on the same day, and Ē is the average daily energy consumption
across the whole time-series. In equation (3.18), it can be appreciated that the
CV(RMSE) is a normalization of the root mean square error by the mean of the
measured energy consumption values Ē, therefore, it represents the size of the
model error in relation to the average energy consumption values. For the scope of
this research work, two additional accuracy metrics are defined, that can be used
to calculate how well different models are performing, compared to the ground
truth provided by the EnergyPlus simulations. The first of these measures is the
normalized percentage difference between the model estimated savings and the
simulated savings calculated with EnergyPlus:

Sdiff =
∣SEplus − Smodel∣

Etot
× 100 (3.19)

where SEplus are the overall savings calculated with EnergyPlus for the time
period under analysis, Smodel are the savings estimated with the data-driven model,
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for the same period, and Etot is the total monitored energy consumption in that
time-frame. Sdiff can be seen as the deviation of the model estimated savings from
the theoretical savings, in terms of percentage of the period total consumption.
The other metric introduced is the baseline CV(RMSE), a parameter similar to
the one presented in equation (3.18). The difference lays in the fact that the
CV(RMSE) of equation (3.18) is generally calculated on data that precedes any
EEM implementation, since, in real world use cases, there is no measured data
about how the energy consumption of the building would have been if the measure
was not implemented. Conversely, being in possession of the ground truth provided
by EnergyPlus, in the setting of the present research work, it’s possible to calculate
the difference between the baseline consumption obtained with the data-driven
models, and the one calculated using the deterministic approach:

CV (RMSE)BL[%] =

√
1
m ∑

m
j (BE+,j − B̂j)2

B̄E+
× 100 (3.20)

where m are the total days after the measure implementation, BE+,j is the
EnergyPlus baseline consumption value on day j, B̂j is the model predicted baseline
energy consumption, on the same day, and B̄E+ is the average daily EnergyPlus
baseline consumption. Sdiff is a quick and intuitive metric that can be used to
evaluate the accuracy of different data-driven models in the estimation of overall
yearly savings, while the CV (RMSE)BL can be used to compare how such models
are performing in the prediction of the daily counterfactual.

3.3 Case study

The enhanced M&V methodology proposed in this chapter was thoroughly
tested on two different case studies: one that uses synthetic data generated with
simulation software, and one that uses monitoring data from existing buildings.
The two case studies are described in detail in this section.

3.3.1 Case study 1: synthetic data

For the first case study, synthetic data was generated with the building energy
simulation software EnergyPlus. Three different building typologies were designed,
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using the 3D design software SketchUp [128] and its plugin Euclid [129]. Each of
the three building typologies was simulated in three different geographical locations
and six different sets of implemented energy efficiency measures were considered,
meaning that 54 unique simulations were carried out, in order to test the performance
of the proposed methodology. Additional white noise was also added to the final
simulation time-series, with the goal of improving their resemblance to the stochastic
behavior of non simulated buildings. For each of the 54 cases, three years of building
operation were simulated, with two different EEMs introduced at different dates
of the time-series. Three sets of simulations were run for each case: i) first, the
whole three years of operation were simulated without any measure applied; ii) then,
with one EEM applied; iii) and finally, with both EEMs applied. Thanks to this
approach, it was possible to simulate the energy savings associated with each EEM.
To estimate the accuracy of the proposed M&V approach, a comparison of the
simulated savings and the ones estimated by the data-driven model, was performed.
The three years of operation that were simulated are 2016, 2017, and 2018, and
the EEMs were considered to be applied each at the end of one year of operation
(January 1st 2017, and January 1st 2018). Historical weather data for the selected
locations was obtained from the Dark Sky weather web service [130] and used in
the simulations. It’s important to point out that, while it’s true that synthetic data
is used in this case study, this is neither an attempt to build a calibrated model,
nor to create a simulation-based M&V framework. The methodology presented in
this chapter is purely data-driven and does not use any information derived from
the simulations’ generation process.

The energy consumption time series of one of the simulated building typologies
is shown in Figure 3.3. The different colors represent the state of the building in
terms of the applied EEMs: for the first year of operation (red) no measure is
applied, for the second year (green) the first of the two measures is applied (m = 1),
while, for the third year (blue), both EEMs are applied (m = 2). A quick view of
this figure shows an appreciable decreasing trend of the energy consumption, which
could be associated with the application of each of the EEMs.

Pilot building typologies

As mentioned before, three different building typologies were analyzed in
this case study: an office, a primary care center, and a hospital. The three
geographical locations considered were Stockholm (Sweden), Berlin (Germany),
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Figure 3.3: Consumption time-series for the office
building, with colors marking the implemented EEMs

and Girona (Spain). The U-values for walls, windows, and roofs were selected
using the information contained in TABULA [131, 132], a WebTool that comprises
information about typical U-values of buildings of different age bands across Europe.
With regards to the buildings’ construction materials and equipment, the buildings
were supposed to be built between the 1950s and the 1980s. In all the three building
typologies, heat pumps are used for both heating and cooling, with a variable COP
ranging between 2.7 and 3.5 depending on the outdoor temperature values. The
construction details of the three pilot buildings are presented in Table 3.1.

EEMs details

Four different EEMs were applied in the pilot building typologies. Their details
are outlined here:

• Electric equipment efficiency improvement: the peak plug load power density
was reduced by an amount ranging between 2 and 6 W /m2, depending on the
building,

• Lighting efficiency improvement: the peak lighting power density was reduced
by 4 W /m2,
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Table 3.1: Characteristics of the building typologies used for Case Study 1
Building Block Pilot 1 - Office Pilot 2 - Primary care Pilot 3 - Hospital

Building shape

Total floor area [m2] 1680 700 9800
Average window-to-wall ratio 30 % 28 % 22 %
Number of floors 3 2 10
Floors to ceiling height [m] 3 3 3

Windows
U-factor [W /m2K] 3 4 3
Solar Heat Gain Coefficient 0.763 0.763 0.763
Visible Transmittance 0.812 0.812 0.812

Infiltration 1 ACH 1 ACH 1 ACH

Ventilation (peak)
[m3/(s ⋅ floor)] 1.32 1.05 2.94

Internal loads (peak)
Lighting power density [W /m2] 13 13 8
Plug load power density

[W /m2] 3.55 5 18

Occupancy (peak)
[W /(m2 ⋅ floor)] 4.8 7.2 14.4

• HVAC set-points shift: the heating temperature set-point was shifted from
21 °C to 19 °C, and the cooling one from 23 °C to 25 °C, additionally, the
functioning hours were changed in order to reduce the HVAC overall usage,

• Building envelope improvement: the total air infiltration was changed from
1 ACH to 0.3 ACH, as well as the UA values for windows, walls and roof.
The values depend on the specific buildings and geographic locations, and
were chosen taking into account the research carried out within the TABULA
project.

These four measures were then combined into six possible combinations of two
measures: one at the end of the first year, and one at the end of the second year of
simulation. The six combinations are shown in Table 3.2. Each building typology
was simulated in the three previously mentioned geographical locations and with
each of the six measure combinations, generating in this way 54 unique simulations.

3.3.2 Case study 2: monitoring data

The second case study is based on real data from two offices and a cultural
building belonging to the regional authority of Catalonia (Spain), and situated
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Table 3.2: Details of the EEM combinations applied in Case Study 1
Combination First year measure Second year measure

1 Equipment efficiency improvement HVAC rescheduling and setpoints shift

2 HVAC rescheduling and setpoints shift Envelope improvement
3 HVAC rescheduling and setpoints shift Lighting efficiency improvement
4 Lighting efficiency improvement Equipment efficiency improvement
5 Envelope improvement Lighting efficiency improvement
6 Equipment efficiency improvement Envelope improvement

in the province of Barcelona. The goal of this case study is to demonstrate that
the proposed methodology works well not only on synthetic data coming from
a controlled environment simulation, but also on monitoring consumption data
coming from real-world buildings. In two of the buildings (that will be named
here Building 1, Building 2, and Building 3 due to the confidentiality of the data
analyzed), a substitution of all the final elements of the illumination system was
realized. While for the third, a pack of different retrofit measures was realized,
including the replacement of all the building lighting devices, the installation of an
intelligent building energy management system, and the installation of solar screens.
A summary of the information available for the three buildings, and the respective
implemented measures, is available in Table 3.3.

Table 3.3: Characteristics of the three pilot buildings analyzed in Case Study 2
Building Building 1 - Office Building 2 - Office Building 3 - Cultural

General information
Total floor area [m2] 4000+ 5000+ 15000+
Date start monitoring 01/08/2018 01/01/2019 01/12/2017
Date end monitoring 31/12/2019 31/12/2019 31/12/2019

EEMs applied

Measure details Lighting efficiency im-
provement

Lighting efficiency im-
provement

Lighting efficiency +
BEMS + solar screens

EEM implementation date 01/06/2019 03/08/2019 01/11/2018

The electricity consumption time-series of Building 3 is presented in Figure
3.4, with the red and blue sections representing the consumption before and after
the implementation of the measures. It can also be seen that one whole month
of training data is missing from the consumption time-series, due to a technical
malfunctioning of the monitoring system.

65



Chapter 3 Data-driven approach for daily Measurement and Verification of energy savings

2000

3000

4000

2018−01 2018−07 2019−01 2019−07 2020−01

Date

T
ot

al
 e

ne
rg

y 
co

ns
um

pt
io

n 
[k

W
h]

m

0

1

Figure 3.4: Consumption time-series for Building 3 of
Case Study 2, with colors marking the implemented EEMs

3.4 Results

This section is dedicated to the presentation of the results obtained in the two
case studies previously introduced.

3.4.1 Case study 1

The results for the first case study are divided into two sections: first a single
simulated building is analyzed in detail, with a comprehensive analysis of all the
intermediate results provided by the methodology. Then, the aggregated results
obtained for all the 54 analyzed buildings are presented and discussed.

Single building analysis

This section has the goal of showcasing the details of the different steps of
the methodology, and is related to the analysis of the office building, simulated
with Berlin weather data, and having equipment efficiency improvement as first
implemented measure and HVAC rescheduling and set-points shift as second imple-
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mented measure. This building will be referred to as the reference building for the
remainder of this section.

The first step of the methodology is the identification of the typical daily
consumption profiles. In Figure 3.5, the 8 profiles identified for the first year of
operation of the office building (before any measure implementation) are displayed:
the red lines represent the profile centroids, while the black lines represent the load
profiles of days belonging to that cluster.
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Figure 3.5: Load profiles identified for the reference building

Once the clusters have been identified, the temperature dependence of the
building is estimated for each cluster of days, after obtaining the optimized change-
point temperature and hysteresis (for the reference building Tcp = 15.2 °C, H = 2.9 °C)
. Figure 3.6 shows the temperature dependence detected for each of the clusters,
as the relationship between the daily energy consumption and the T ∗, introduced
in equation (3.5). Figure 3.7 illustrates the time distribution of the different load
profiles for year 2016. An analysis of Figure 3.6 shows that most of the profiles
have heating dependence, except for clusters 5 and 6, representing typical weekday
summer profiles. Cluster 8 exemplifies the typical unoccupied profile (weekends
and holidays), having very low consumption and slight temperature dependence for
both heating and cooling. Distinction between profiles with heating dependence and
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profiles with cooling dependence can also be drawn by analysing the consumption
peaks in Figure 3.5: winter profiles have peaks in the early morning, while summer
profiles have peaks in the hours of highest solar radiation.
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Figure 3.6: Heating (red) and cooling (blue) temperature dependence by
cluster identified for the reference building (Tcp = 15.2 °C h = 2.9 °C)

The peak consumption values shown in figures 3.5 and 3.6 reveal how the
heating load for this building is considerably higher than the cooling one. This
seems realistic, since the pilot energy use was simulated using weather data from
Berlin, where the climate is characterized by cold winters and moderately warm
summers. A similar conclusion can be reached by studying Figure 3.8, where T ∗cooling
and T ∗heating are shown, with T ∗heating reaching higher values compared to T ∗cooling.

After completing the cluster and weather analyses, the GAM model is fitted
to the input data. In Figure 3.9, it’s possible to see the consumption predictions
obtained for the office building in Phase 2 of the methodology, that is before
applying the savings evaluation technique. The baseline estimated consumption
(in red) is compared to the simulated consumption obtained using EnergyPlus (in
black). Figure 3.9 shows a high GOF of the model, which appears to be able to
capture the energy dynamics of the building, and to accurately predict its electricity
consumption for the three years analyzed. Note that the statistical model developed
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Figure 3.7: Cluster distribution identified for the
reference building in the first year of operation

in this phase has the goal of simulating the normal operation of the building: no
savings are estimated yet at this stage. For the case study proposed, a train/test
split was performed in the GAM fitting phase: the model was trained on 80 %
of the available time-series data, and then tested on the remaining 20 %. This is
a common practice when dealing with predictive techniques and has the goal of
making sure that the model is not over-fitting the training data and is able to provide
good predictions on new observations. Ultimately, once the GAM coefficients are
obtained, the savings for the implemented measures are calculated following the
procedure described in Section 3.2.4.
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Figure 3.9: Predicted (baseline estimated) and real (sim-
ulated) consumption time-series for the reference building

Overall performance analysis

This part of case study 1 is dedicated to the analysis of the model fit and savings
estimation accuracy obtained for the 54 buildings analyzed. In order to compare the
GAM based methodology and the TOWT model, three different accuracy metrics
were calculated:
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• the CV(RMSE), calculated on a random holdout set of the training data,

• Sdiff , the normalized percentage difference between the model estimated
savings and the simulated savings calculated with EnergyPlus,

• the daily baseline CV (RMSE)BL.

Each of these three metrics has a specific objective: the CV(RMSE) calculated
on a holdout set of the training data is a commonly employed metric in the M&V
setting to evaluate the goodness of fit of the model and its ability to generalize to
unseen data. The normalised difference between the aggregated savings calculated
with EnergyPlus and the ones obtained using the data-driven models can be used
for a quick estimation of how well the models perform at estimating overall savings
across a whole year of operation. While the savings difference is really intuitive in
its interpretation, it does not provide information about the accuracy of savings
estimations on the daily scale. For this reason, the baseline CV(RMSE) is also
included in the analysis. These indicators are described in detail in Section 3.2.4.

Figures 3.10, 3.11, and 3.12 show the CV (RMSE), Sdiff and CV (RMSE)BL

values obtained for the 54 buildings analyzed, where each box represents the
distribution of the results for the 18 different simulations belonging to the noted
building use (office, primary care center, hospital). The graphs contain data for the
GAM based methodology, and for the CalTRACK implementation of the TOWT
model, first using a full year of training data, and then reducing the training data to
9 months. The training data reduction was performed in order to test the hypothesis
that one of the main advantages of the methodology proposed in this chapter is
that, thanks to its ability of harnessing data from both the periods before and after
an EEM is applied, it is able to accurately predict energy savings even when less
than one whole year of historical data, before an EEM is applied, is available.

To estimate the CV(RMSE) for the scenarios with less training data, a 10-fold
cross validation approach was used. It is a technique commonly employed within
the machine learning community and was introduced in the M&V environment
by Touzani et al. [52]. The section of the time-series allocated for training was
divided into 10 different sub-samples, called folds. In the first iteration, the baseline
model was calculated using the first 9 folds for training, while the validation error
was calculated on both the held out fold of the training data and the rest of the
time-series which was not used for the training. The procedure was then repeated
10 times, holding out a different fold every time, and the final CV(RMSE) was
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Chapter 3 Data-driven approach for daily Measurement and Verification of energy savings

calculated as the mean of the results obtained in each iteration. It was decided to
use this technique because it allows the CV(RMSE) to better represent how well
the model is able to generalize to a whole year of conditions, when only part of that
year is available as training data.

Figure 3.10: CV(RMSE) distribution for
the 54 buildings analyzed in Case Study 1

3.4.2 Case study 2

The results presented for the second case study are more focused on the
performance of the prediction algorithms, rather than on the intermediate results,
such as profile pattern detection and temperature dependence, which have been
discussed in detail for case study 1. While the first case study has the goal of
showing that the proposed methodology is able to provide actionable insights and
accurately estimate energy efficiency savings, the objective of case study 2 is to
prove that the methodology works well not only in simulated cases, but also with
monitoring time-series data coming from real-world buildings. Synthetic time-series
data generated with simulation engines usually does not include stochastic variability

72



3.4 Results

10

20

30

40

12 12 9 9 12 12 9 9 12 12 9 9
Months of training data

Ba
se

lin
e 

CV
(R

M
SE

) [
%

]

0

5

10

12 12 9 9 12 12 9 9 12 12 9 9
Months of training data

Sd
if

f [
%

]
Office HospitalPrimary care center

GAM

TOWT

GAM

TOWT

GAM

TOWT

Figure 3.11: Sdiff distribution for the 54 buildings analyzed in Case Study 1

observed in the actual energy use of existing occupied buildings, therefore it is
important to test the methodology for real-world use cases and ensure that it still
provides reasonable results with high goodness of fit.

For the three buildings and measures described in section 3.3.2, the methodology
was applied and the results obtained were compared with the ones provided by
the TOWT model, implemented according to the CalTRACK methodology. The
TOWT results were calculated using the Python library eemeter [133]. Table 3.4
summarizes the results obtained for the three test cases. Similarly to case study 1,
the table includes: the optimal number of clusters representing the load profiles,
the change-point temperature and hysteresis of the building, the CV(RMSE) of the
model, calculated on the test set, and the estimated savings for each measure, both
in kWh and as percentage of the total reporting period consumption:
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Figure 3.12: CV (RMSE)BL distribution
for the 54 buildings analyzed in Case Study 1

Table 3.4: Results obtained for the three buildings in Case Study 2
Building Block Building 1 Building 2 Building 3

Building information
Number of clusters 7 7 7
Change-point temperature [°C] 20.8 21.7 21.2
Hysteresis [°C] 3.2 3.8 3

Model metrics
CV(RMSE) 13 % 9.1 % 7.8 %
CV(RMSE) TOWT 18.1 % 11.1 % 10%

Savings
Model estimated savings [kWh] 18592 (8.6%) 16644 (10.9 %) 108619 (8.3 %)
Savings estimated with TOWT

[kWh]
12979 (6%) 26313 (17.2 %) 122280 (9,3%)

The proposed methodology provides 2-5% lower CV(RMSE) than the TOWT
case for all the three analyzed buildings. In Figure 3.13, the overall fit of the model
for Building 1 is also presented, showing high GOF, similar to the one seen for
synthetic data in case study 1.
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Figure 3.13: Predicted (baseline estimated) and real (me-
tered) consumption time-series for Case Study 2, Building 1

For Case Study 2, the limited availability of monitoring data (less than 1 year
for training) didn’t allow to perform an analysis with reduced training data. Also,
the lack of simulated data for this case prevents the comparison of the accuracy of
the final savings estimations for the two tested models.

3.5 Discussion

The two analyzed case studies provide important results that showcase the
proposed methodology’s strengths. The detailed single building analysis of the
first case study presents the additional insights that the methodology provides,
such as the consumption profiles clustering and weather dependence analysis. The
patterns and dependence detected are coherent with the prior knowledge about
the building and the implemented measures, and represent actionable insights that
energy building managers can use to improve the operational efficiency of the
building. The CV(RMSE) values represented in Figure 3.10 show that the GAM
based methodology represents a solid GOF improvement compared to the TOWT
model, with lower median CV(RMSE) for each of the analyzed cases. It’s also
possible to see that the training reduction from 12 to 9 months marks a definite
increase in the model error for the TOWT model, while in the GAM case the median
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error increase between the 12 and 9 months case is almost negligible. Only in the
case of the hospital building, some isolated cases are performing better in the TOWT
case than in the GAM, but in terms of median error and distribution, the GAM
is still performing better. Figure 3.11 shows the savings difference Sdiff (defined
in Section 3.2.4): while the 12 month results are generally comparable between
the two models, in two of the three building typologies the training data reduction
results into a steep increase in the savings estimation error, with errors higher
than 10% of the total building consumption in some cases. While the primary care
center seems to provide more robust results in this sense, likely thanks to a reduced
variance in the energy consumption values, which makes it less prone to over-fitting
when removing training data, for the other two pilot buildings the TOWT model is
characterized by lack of robustness in the estimations, when working with less than
a full-year of training data. It’s also important to note that the Sdiff parameter
shouldn’t be blindly trusted, since good predictions of aggregated yearly savings do
not necessarily imply accurate daily baseline estimations. This is evident since a
model that underestimates the consumption during certain days of the time-series,
and overestimates it during others, will have the same aggregated result as one
that provides accurate daily baseline estimation for all of the analyzed days. In
order to gain a deeper insight into the estimation capabilities of the proposed
methodology, and taking into account the mentioned issues of the Sdiff parameter,
an additional metric, CV (RMSE)BL was calculated for all of the 54 analyzed
cases. The CV (RMSE)BL distribution is shown in Figure 3.12, and illustrates
again the two trends seen in Figures 3.10 and 3.11: the median of the GAM model
is always lower than its TOWT counterpart and, for two of the three buildings, the
training data reduction marks a steep increase in the model error. While in terms
of overall aggregated yearly savings, the two analyzed models are comparable, with
each seemingly performing better in certain cases, the CV (RMSE)BL distributions
show that in terms of daily savings estimations the GAM model is more accurate
than the TOWT model in the majority of the cases, with the TOWT model reaching
very high error values when the training dataset is reduced.

The results of case study 2 show that the proposed methodology retains high
accuracy also when used to analyze monitoring data from real-world buildings. The
CV(RMSE) of the model was below 10% for two of the three buildings of case study
2, and below 15% for the third one. Even though for this case study there is no
simulated ground truth to compare the estimated savings, it’s still possible to see
that even with missing data, and the inherent stochastic variability of real-world
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buildings, the proposed methodology is able to provide accurate results with high
goodness of fit.

The results from both case studies show an overall superior accuracy of the
proposed GAM-based methodology on the CalTRACK implementation of the
TOWT model, which was taken as the industry benchmark. There might be different
factors driving this performance difference: firstly, the proposed methodology
implements different techniques to accurately describe the energy usage of the
building before modeling the energy consumption and counterfactual. Secondly,
the GAM-based methodology is able to harness part of the post EEM application
data to increase the accuracy of the energy baseline model. Moreover, the improved
performance of the proposed model is also achieved thanks to its ability to harness
additional variables which are ignored by the TOWTmodel, such as global horizontal
radiation and wind speed, and to aggregate and transform known variables into
information valuable for the prediction, such as typical consumption profile patterns
and weather dependence. Another feature that grants the proposed model increased
accuracy is the preprocessing that some of the explanatory variables undergo, before
being employed in the model. Specifically, time features such as day of the week
and time of the year are transformed using Fourier decomposition, and temperature
is treated with a low pass filter. Additionally, thanks to the weather dependence
analysis module, the weather variables are only included in the model for those
days when they are supposed to be affecting the building consumption. Finally, the
methods described in this chapter are specifically aimed at estimating savings on
the daily timescale, while the TOWT provides hourly savings which can then be
aggregated on a daily level. This means that the TOWT model may have wider
applicability, but lower accuracy on the daily timescale.

On a more general level, the results show that with only the use of consumption
monitoring and weather data, the proposed methodology is able to achieve low
model errors, with CV(RMSE) lower than 15% for all the buildings in both case
studies. Regarding the availability of the necessary weather data, accurate historical
GHI data can be obtained for European locations through the the Copernicus
Atmosphere Monitoring Service (CAMS)[134]. Other weather services and APIs are
also available both in Europe and globally, providing historical wind speed, GHI,
and outdoor temperature data free of charge, some of them are: DarkSky[130],
Meteonorm[135], OpenWeatherMap[136]. Given the relative ease of acquisition of the
necessary weather data through different weather services and APIs, the proposed
methodology is able to accurately detect savings, having as only requirement the
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availability of hourly electricity monitoring data. Including in the models additional
variables such as occupancy levels or technical details of the different systems in
use in the building is likely to increase the accuracy of the savings estimation, but
at the same time would highly reduce the applicability of the methodology.

3.6 Conclusions and future work

In this chapter, an innovative methodology for the measurement and verification
process of energy efficiency savings in commercial buildings was presented. The
proposed approach has three main phases: first a data-preprocessing phase, where
different algorithms are used to characterize the building and extract valuable
information such as typical electricity load profiles, change-point temperature, and
climate dependence. In the second phase, a generalized additive model is fit, using
daily consumption and climate data, as well as the variables obtained in the previous
phase, to estimate the baseline energy usage of the analyzed building. Finally, in the
last phase, for each energy efficiency measure applied, the savings are estimated as
the difference between the metered energy consumption and the estimated baseline
consumption for the same period. The presented approach was tested to detect
savings in two separate case-studies. The first case study analyzes three different
building typologies over a three-year period. The buildings’ electricity consumption
time-series were simulated using the energy modeling software EnergyPlus. Each
pilot had a different use (office, primary care center, hospital), and they were
simulated with different climate conditions (oceanic, Mediterranean, continental),
and implemented EEM combinations, for a total of 54 unique simulated cases. The
second case study involves the analysis of monitoring data from three real-world
buildings located in Barcelona (Spain). In both case studies, the model proved to
be able to capture the dynamics of the buildings, providing CV(RMSE) below 15
%. For case study 1, the median difference between the savings estimated with
the proposed methodology, and the ones obtained with the deterministic approach
never exceeded 3% of the total reporting period consumption. The results were
also compared to the ones obtained by applying the time-of-week and temperature
(TOWT) model, following the CalTRACK methodology, with the proposed model
showing overall superiority, with up to 10% lower CV(RMSE) than TOWT in both
case studies.

To conclude, four main strengths were identified for the proposed methodology,
linked with the ability of this approach to provide:
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1. high accuracy in the estimation of savings associated with the predictions;

2. a robust savings quantification that, for the pilot buildings analyzed in case
study 1, does not reduce drastically when less than a full year of training data
is available;

3. wide applicability, since the data required is limited to hourly metered elec-
tricity consumption and weather data, gradually more available for most
commercial buildings;

4. additional actionable information to stakeholders, such as: typical load con-
sumption profiles, change-point temperature of the building, and weather
dependence evaluation.

Although the preliminary results obtained in this study seem promising, it
is clear that more work is needed in order to further validate the approach, and
accurately define its strengths and weaknesses. Future work might include the
use of automated feature selection techniques to include or omit certain weather
variables depending on the specific building analyzed. An additional level of insight
could also be added by estimating an independent change-point temperature for
each detected load profile cluster in the building. At the same time, it appears clear
that all the listed benefits come at the expense of adding more complexity to other
commonly used approaches. Although the proposed methodology provided high
accuracy of estimation in both the synthetic and real data use-cases, it would be
optimal to test the presented techniques on a large cluster of real-world buildings, in
order to assess how well the model generalizes to new buildings, and if the predictive
accuracy is similar to the one obtained with simulated data in this study.
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Chapter 4

Bayesian approach for hourly baseline

estimation and consumption

characterization

This chapter was published as a journal article:

Grillone B., Mor G., Danov S., Cipriano J., Lazzari F., Sumper A. Base-
line energy use modeling and characterization in tertiary buildings using an in-
terpretable Bayesian linear regression methodology. Energies 2021; 14, 5556,
https://doi.org/10.3390/en14175556

4.1 Introduction

In 2019, CO2 emissions related with the operation of buildings have reached
a historical peak of 10 GtCO2, representing 28% of total global carbon dioxide
emissions, as shown in the latest reports of the Global Alliance for Buildings and
Construction [137]. While the energy intensity of the building sector has been
steadily decreasing since 2010, an average annual floor area growth rate of around
2.5% has been enough to offset this trend [138]. This highlights a vast energy
efficiency potential, linked with building energy codes lacking behind in emerging
economies and renovation rates remaining low in developed nations. In Europe, only
about 1% of the existing building stock is renovated each year, but energy retrofitting
projects might have the potential of lowering the EU’s total CO2 emissions by 5%
[10].
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The lack of methods to accurately quantify the savings generated by energy
efficiency projects represents a significant barrier towards the attraction of financial
investments in this field [139]. In recent years, investments in renewable energy
worldwide have been higher than those in energy efficiency by approximately 20 %
[140]. One of the reasons is the possibility of directly metering the energy generated
(and therefore the return on investment), as opposed to rough estimations of savings
in the case of energy renovation projects. Afroz et al. highlighted how the use of
different baseline models can provide very different savings results, and how it is
becoming a usual practice in the industry to prefer practical and intuitive models
to more sophisticated ones with higher accuracy but poor interpretability [141].
Additionally, different studies have shown that accurately quantifying the uncertainty
of obtained savings estimates is of utter importance in energy efficiency projects,
but that the commonly employed methods have a tendency to underestimate said
uncertainty[142].

Alongside traditional energy efficiency programmes, in recent years new business
schemes are arising from the intersection between energy efficiency and demand
side flexibility[143]. Projects with these characteristics require advanced baseline
estimation techniques, able to accurately and dynamically estimate both energy
savings and dynamic uncertainty bands at hourly or sub-hourly level. Two schemes
worth mentioning in this field are Pay for Performance (P4P) [12] and Pay for Load
Shape (P4LS) [13], in which customers are dynamically compensated for changing
their consumption load shape in order to match the evolving conditions of the grid.
These new approaches that combine energy efficiency and demand side flexibility
arise from a necessity of not only lowering the overall energy usage intensity of the
built environment, but also creating a permanent shift of the consumption curve
in order to match the hours of highest energy production from renewable sources
[14]. These findings highlight that novel measurement and verification (M&V)
methodologies able to accurately estimate achieved hourly savings and uncertainty
bands, as well as displaced loads, have the potential of unlocking considerable
investments in energy efficiency [144].

4.1.1 M&V background

One of the main applications building energy baseline models are used for is
the measurement and verification of energy efficiency savings. The International
Performance Measurement and Verification Protocol (IPMVP) defines measurement
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and verification as the practice of using measurements to reliably determine actual
savings generated thanks to the implementation of an energy management program
within an individual building or facility [145]. Being energy savings a result of
not consuming energy, they can’t be directly quantified. The usual approach for
estimating savings achieved by energy efficiency initiatives is to compare the energy
usage of the facility before and after the application of the intervention, while
also implementing the required adjustments to account for possible changes in
conditions. In M&V, there are two main guidelines which are globally recognized:
the International Performance Measurement and Verification Protocol (IPMVP),
and the ASHRAE Guideline 14 [45]. Both these protocols are based on the adoption
of a baseline energy model to compare the energy performance of the investigated
facility before and after the implementation of an energy efficiency measure. The
baseline model has the goal of characterizing the starting situation of the facility
and it is used to separate the impact of a retrofit program from other factors that
might be simultaneously impacting the energy consumption.

4.1.2 Bayesian paradigm in M&V

Bayesian methodologies have been proved to hold great potential for M&V,
by providing richer and more useful information using intuitive mathematics [146].
Being this article mainly focused on Bayesian applications in the M&V setting, a
full explanation of the theory behind the Bayesian paradigm is out of its scope.
Readers are instead referred to the following texts: [69, 147, 148]. The added value
provided by Bayesian inferential methods is linked to their coherent and intuitive
approach to the M&V questions, as well as to their probabilistic nature, that
enables automatic and accurate uncertainty quantification when estimating energy
savings [70]. Shonder and Im [71] showed the Bayesian approach to be a coherent
and consistent methodology that can be used to estimate savings and savings
uncertainty when performing measurement and verification calculations. Lindelöf et
al. [72] tested the Bayesian approach to estimate the savings coming from an ECM
implementation, and stressed the clear interpretability and communicability of the
results obtained with the Bayesian method. The advantages of communicating to
decision makers not only point estimate results, but whole probability distributions
with the additional information included. Grillone et al. [115] gathered together the
latest Bayesian specifications for M&V. Among the different reviewed techniques,
Gaussian mixture regression [76] and Gaussian processes [73] stand out because of
their ability to capture nonlinear relationships between variables.

83



Chapter 4 Bayesian approach for hourly baseline estimation and consumption characterization

4.1.3 Multilevel models

One of the model specifications implemented in this work is multilevel regression.
Multilevel (also known by the names of hierarchical, partial pooling, or mixed effects)
models are interesting model specifications that prove useful when the analyzed
data can be grouped into clusters of similar behavior. More specifically, multilevel
models allow the pooling of information between the different clusters present in
the data, meaning that the model learns simultaneously about each cluster while
learning about the population of clusters [147]. In recent years, also thanks to the
increase in computing power, multilevel models have gained great interest and have
been applied in many different fields of science and technology [149]. In the energy
field, they have found application in the calibration of building energy models [150,
151], forecasting of electricity demand [152–154], estimation of overhead lines failure
rate [155], estimation of photovoltaic potential [156], and to analyze the degradation
of electric vehicle batteries [157]. In the M&V setting, Booth et al. [158] used a
hierarchical framework to generate energy intensity estimates for various dwelling
types. These estimates were then used to calibrate the parameters of an engineering
based bottom-up energy model of the housing stock.

4.1.4 Present study

Although some research has been carried out on the use of Bayesian methods
for M&V, to the best of the authors’ knowledge, no paper introduced a Bayesian
linear regression model, with clear interpretability of the parameters and providing
high granularity predictions. Some published works proposed a Bayesian approach
with physical interpretability of the coefficients [72], but only providing predictions
with monthly granularity, while others focused on extending the Bayesian approach
to high frequency time-series predictions, at the cost of reducing the model inter-
pretability [73, 76]. Our scope in the present work is to introduce a Bayesian linear
regression model that can be easily interpreted and explained to stakeholders, but
that at the same time can be applied to time-series with high granularity and can
provide accurate and dynamic hour by hour consumption and uncertainty estimates.
The model proposed was tested on one of the largest publicly available datasets of
non-residential building energy consumption, creating in this way a benchmark for
future studies.
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The model proposed in this chapter uses time features and coefficients marking
the temperature dependence of the building, while also including information about
its typical consumption profile patterns, detected using a clustering algorithm. All
the parameters of the model have a clearly interpretable meaning, and the Bayesian
approach is able to automatically estimate what are the heating and cooling change-
point temperatures of the building, that is the outdoor temperatures below/above
which a significant relationship between the building’s energy consumption and the
outdoor temperature conditions is detected. The methodology comes with several
advantages:

1. The model is explainable and its coefficients have a clearly interpretable
meaning, a feature which is highly valued by investors in building energy
renovation and other stakeholders of the industry.

2. Being the model probabilistic, uncertainty is estimated in an accurate, auto-
matic, elegant and intuitive way.

3. The model coefficients and target variable are expressed in terms of probability
distributions instead of point estimates, providing a range of additional
actionable information to stakeholders.

4. The provided uncertainty ranges are characterized by dynamic locally adaptive
intervals, reflecting how the uncertainty is not symmetrically distributed
around the mean of the predictions, and that the values can vary depending
on the distribution of the explanatory variables.

5. The methodology provides extra useful information for stakeholders such
as the typical consumption profile patterns of the building, as well as the
probability distributions of the heating and cooling change-point temperatures
and of the heating and cooling linear coefficients.

6. Since Bayesian models are fit to provide reasonable results even when the
training data available is scarce, the methodology is well-fit to solve M&V
problems, where it is not always feasible to obtain long training time-series
with high granularity. Furthermore, the model also has high applicability since
the data required is limited to hourly electricity consumption and outdoor
temperature values, which are fairly easy to obtain.

The mentioned advantages represent a significant advance to the state-of-the-
art, widening the scope of M&V applications and providing the necessary risk
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mitigation required by financial institutions, thanks to an automatic, dynamic
and accurate estimation of uncertainty intervals. Furthermore, the possibility of
computing locally adaptive uncertainty ranges can be of fundamental value in those
projects where the time-allocation of the savings is as important as the savings
themselves. The approach was tested on an open dataset containing electricity
meter readings at an hourly frequency for 1578 non-residential buildings. The
dataset was collected within the framework of the Building Data Genome Project 2
[159] and was partly used in the Great Energy Predictor III competition hosted in
2019 by ASHRAE [160]. Different model specifications were tested on the buildings
contained in the dataset, in an attempt to identify their effect on the final accuracy
of predictions. This model comparison process was structured in four consecutive
phases, which are described in detail in Section 4.2.2. The chapter is structured
as follows. First the methodology is described in detail, together with the model
comparison process. Then the case study is presented and the results obtained are
displayed and discussed. Finally, conclusions and future work recommendations are
drawn.

4.2 Methodology

In the present chapter, a Bayesian linear regression methodology capable of
providing detailed characterization of building energy consumption, as well as high
granularity baseline energy use predictions, is introduced. Different Bayesian model
specifications were tested and mapped to changes in the accuracy of hourly energy
consumption predictions for a dataset of more than 1500 buildings. Various model
variables, prior distributions, and posterior estimation techniques were compared,
as well as the effect of implementing a multilevel regression in place of a classical
single-level model. The different model specifications were tested on the same
dataset, and the results were compared in terms of CV(RMSE) and coverage of the
uncertainty intervals. In the following paragraphs, first, the characteristics of the
proposed Bayesian approach are presented in detail. Then, the the procedure and
metrics used to perform the model comparison are discussed.

4.2.1 Bayesian methodology

The main aim of the Bayesian inference methodology proposed in this research
work is to characterize the energy consumption dynamics of individual buildings by
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means of a linear regression model that uses time and weather features as predictors.
The development of such a model enables a deeper understanding of the analyzed
buildings’ energy performance and the generation of baseline energy use predictions.
In the framework of Bayesian inference, this model is estimated by applying Bayes’
theorem [69] as follows:

P (M ∣D) =
P (D∣M)P (M)

P (D)
(4.1)

where M are the model parameters and D are the measured data. P (M ∣D) is
the conditional probability of the model parameters’ values, given the measured
data from the building, this is also called posterior distribution. P (D∣M) is the
probability of measuring the observed data, conditional on the model parameter
values, it can also be called likelihood. P (M) represents the prior knowledge
of the modeler about the plausible distribution of the model parameters, this is
referred to as the prior probability distribution. P (D) represents the probability of
observing the data and is usually called marginal probability or marginal likelihood.
In practical terms: we define a regression model, aimed at estimating building
energy consumption values based on time and weather features, then we provide to
this model a set of measurement data, a prior probability distribution of the model
parameters (based on our previous knowledge of building physics) and a likelihood
function for the observed data. Through the formula in (4.1), the Bayesian inference
model is then able to provide a posterior probability distribution of the model
parameters and of the target variable (electricity consumption). The model and
target variable posteriors can then be used to characterize the energy consumption
of the analyzed building and to generate baseline energy consumption predictions
and uncertainty bands. The flowchart in Figure 4.1 represents a the structure of
the proposed methodology, including the initial phase of data pre-processing in
which a clustering algorithm is used in order to detect recurrent daily load profiles
in the building, which then are used as data for the regression model. Following,
the technical details of the presented methodology are presented and discussed.
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Figure 4.1: Methodology flowchart

Data pre-processing

The first step of the proposed Bayesian approach is a data pre-processing
phase that is critical in order to build the dataset that is used in the analysis. The
pre-processing workflow consists in the detection of clusters of days that have similar
electricity usage patterns. In order to implement the pattern recognition algorithm,
the data is first transformed through the following steps:

1. The original frequency of the consumption data is resampled (aggregated) to
have one value per 3 hours (8 values per day).
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2. For each day in the time-series, the consumption values Qabs are transformed
into daily relative values Qrel. Qrelt =

Qabs
t

∑t∈dayQ
abs
t

3. A matrix of relative consumption values is generated, having as rows the days
of the time-series and as columns the 8 parts of the day defined in point 1.

4. The values in the matrix are transformed with a normalization between 0
and 1. This enables more accurate predictions with the clustering algorithm.
Qnorm,relday,dh =

Qrel
day,dh−min(Q

rel
dh )

max(Qrel
dh

)−min(Qrel
dh

)

To detect the profile patterns, a spectral clustering methodology is implemented
[161]. This specific clustering technique is performed by embedding the data into
the subspace of the eigenvectors of an affinity matrix. This is done through the use
of a kernel function, specifically, the one used in this application was a radial basis
kernel, also known as Gaussian kernel. Using this kernel, an affinity matrix Ai,j
that is positive, symmetric, and depends on the Euclidean distance between the
data points is defined:

Ai,j ≃ exp(−α∥xi − xj∥
2
) (4.2)

Then we define the degree matrix D = ∑
n
j ai,j , a diagonal matrix that summa-

rizes the affinity of each element of A with all the other elements of the matrix.
Using the affinity and the degree matrices we can calculate the unnormalized graph
Laplacian:

L =D −A (4.3)

If the analyzed data is actually spaced so that there are different clusters, the
Laplacian L will then be approximately block-diagonal, and each block will define a
cluster. From the analysis of the eigenvalues and eigenvectors of L, it’s possible to
estimate what is the optimal number of clusters.

Once the recurrent daily profiles have been detected for the training year, a
classification algorithm calculates the cross euclidean distance matrix between the
detected cluster centroids and the load curve of each day of the test year, assigning
them to one of the identified clusters.
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Regression model

The linear regression model developed in this work is based on several coeffi-
cients aimed at capturing the dynamics that drive the energy consumption of the
analyzed buildings. The hourly energy consumption of the building is supposed to
be partially dependent on time-features such as the hour of the day, and partially
on thermal dynamics driven by outdoor temperature variations. In the estimation
of the temperature-dependent term, a heating change-point temperature and a cool-
ing change-point temperature are defined: the outdoor temperatures below/above
which a significant relationship between the building’s energy consumption and the
outdoor temperature conditions is detected. This model structure is based on the
concept of linear change-point models, first introduced in literature with the PRISM
method [162]. The coefficients of the model, with the exception of the change-point
temperatures, are supposed to be varying depending on the load profile of the day
(detected with the clustering algorithm previously introduced), or on the day-part,
a fictitious variable generated after dividing the day in 6 day-parts of 4 hours each.
The mathematical description of the Bayesian linear regression model used follows,
where the square brackets notation has been used to represent the variables that
have a different value for each profile cluster k or day-part j. The likelihood assigned
to the observed variable (hourly electricity consumption) was a normal distribution
with mean µi and standard deviation σ:

yi ∼ Normal(µi, σ) (4.4)

µi = αk[i]+fdh,i+βc,j[i] ⋅ (To,i−Tcpc)⋅ dc ⋅ depc,k+βh,j[i] ⋅ (Tcph−To,i)⋅ dh ⋅ deph,k (4.5)

σ ∼ Exponential(1) (4.6)

where:

• αk[i] is the intercept of the model, one for each profile cluster k detected,

• fdh,i = ∑
n
p=1 δk,p[i]sin(2πp

hd,i

24
) + γk,p[i]cos(2πp

hd,i

24
) represents the effect of

the hour of the day hd, following a Fourier decomposition with n harmonics.
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δk,p[i] and γk,p[i] are the linear coefficients that mark the weight of each hour
on the final electricity consumption, one for each profile cluster k detected
and for each harmonic p.

• βc,j[i] and βh,j[i] are the coefficients that represent the piece-wise linear
temperature dependence of the model, one for each daypart j previously
defined.

• (Tcph − To,i) and (To,i − Tcpc) are the difference between the outdoor temper-
ature and the change-point temperatures detected by the model for heating
and cooling.

• dh,k and dc,k are logical variables making sure that the temperature-dependent
term is only evaluated when the outdoor temperature is above/below the
cooling/heating change-point temperature

dh =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if (Tcph − To,i) > 0

0 if (Tcph − To,i) ≤ 0
dc =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if (To,i − Tcpc) > 0

0 if (To,i − Tcpc) ≤ 0

• deph,k and depc,k are two logical coefficients that are automatically optimized
by the model and that mark whether or not a certain profile cluster k has
heating or cooling dependence.

The predictors used in the regression model were one of the model specifications
that were evaluated in the model comparison stage. More specifically, the inclusion of
a wind speed predictor was also tested when comparing different model specifications.
The mathematical formulation of the second model tested in the comparison stage
(with the addition of the wind speed term) follows:

µi =αk[i] + fdh,i + βc,j[i] ⋅ (To,i − Tcpc) ⋅ dc ⋅ depc,k

+βh,j[i] ⋅ (Tcph − To,i) ⋅ dh ⋅ deph,k +Ws,i ⋅ βws,j[i] (4.7)

Where linear dependence between the energy consumption and the wind speed
Ws was supposed, with coefficient βws, depending on the daypart j. Finally, it’s
important to note that for both regression models a log-transformation of the target
variable was performed, in order to improve the prediction accuracy.
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Prior probability distributions

An important step of Bayesian modeling is to choose the prior probability
distributions of the model parameters. These values express the belief the modeler
has about the probability distribution of the parameters before analysing the
data. If no previous information is known about the probability distribution of the
parameters, then a uniform prior with a lower and an upper bound is a common
choice, meaning that all the values contained between the two boundaries have the
same prior probability. In order to test the effect of more or less informative priors
on the accuracy of the model predictions, the model was first run with uniform
priors on most of the parameters. The uninformative priors set were the uniform
distributions with different lower and upper bounds:

αk ∼ Uniform(−100,100) (4.8)

δk,p , γk,p , βc,j , βh,j ∼ Uniform(−5,5) (4.9)

depc,k , deph,k ∼ Uniform(0,1) (4.10)

Tcph , Tcpc ∼ Uniform(−50,50) (4.11)

In the model comparison stage, a set of regularizing prior distributions was also
implemented, in order to test their impact on the accuracy of the model predictions.
A presentation and discussion of the regularizing priors used follow:

αk , δk,p , γk,p ∼ Normal(0,1) (4.12)

βc,j , βh,j , βws,j ∼HalfNormal(1) (4.13)

deph,k , depc,k ∼ Bernoulli(0.5) (4.14)
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Tcph , Tcpc ∼ Uniform(Tmin, Tmax) (4.15)

For the model intercept αk and the time features coefficients δk,p and γk,p,
a weakly regularizing normal prior distribution, centered in 0 and with standard
deviation equal to 1 was set. For the heating and cooling coefficients βc,j and
βh,j , a half-normal prior with standard deviation equal to 1 was used. This prior
distribution assigns zero probability to negative values of the temperature coefficients,
according to the intuition that outdoor temperature deviations above the cooling
change-point temperature or below the heating change-point temperature, will result
in the electricity consumption of the building either increasing (β > 0) or staying
unchanged (β = 0). For the change-point temperatures, a uniform prior was used,
ranging between the minimum and the maximum outdoor temperatures observed in
the training data Tmin and Tmax. The priors of the dependence coefficients deph,k
and depc,k were modeled as a Bernoulli distribution with probability p = 0.5, giving
them an equal prior probability of being either 0 or 1.

Pooling techniques

Previously, a description was provided of how, in the pre-processing phase, the
days of the time-series are clustered according to the shape of the load curves. In
the construction of a model for observations which are grouped together on a higher
level, there are two conventional alternatives: either modeling all the observations
together independently of the clusters they belong to, or calculating independent
coefficients for each of the clusters. Advantages and disadvantages of these two
approaches have been widely analyzed in the framework of the bias-variance trade-
off discussion [107]. In this chapter, we decided to explore a third option as well,
that is referred here as partial pooling, and that goes also by the name of multilevel,
hierarchical, or mixed effects regression. The term partial pooling refers to the
action of pooling information between different clusters during the modeling phase.
In our case, a complete pooling approach would be equivalent to the first of the
previously mentioned alternatives: to assume that there is no variation between
days having different load shapes, and to produce a single model estimate for the
model parameters, independently of the clusters. The no pooling approach, on the
other hand, would be to assume that the variation between the clusters is infinite,
therefore nothing learned for days with a certain load shape can help predict days
belonging to a different cluster. The partial pooling approach produces estimates
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by including in the model individual coefficients for each of the detected clusters
(similarly to the no pooling case), but with the additional assumption that these
same coefficients have a common prior distribution that is adaptively learned by
the model [147]. In other words, in multilevel regression, although individual model
parameters are estimated for each cluster, the information provided by each cluster
can be used to improve the estimates for all the other clusters.

When translating this into mathematical formulation, the only difference from
a traditional Bayesian regression model without multilevel structure is that, instead
of the usual prior distributions, an adaptive prior is defined. The adaptive prior is
a function of two additional parameters, often referred as hyperparameters, and
that in turn have a prior distribution, called a hyperprior. In the context of this
chapter, we decided to test whether pooling information among different clusters
when estimating the intercept and time features coefficients could improve the model
performance. The following adaptive priors were tested in the model comparison
stage, in place of the regularizing priors defined in the previous section:

αk ∼ Normal(ᾱ, σ) (4.16)

δk,p ∼ Normal(δ̄, σ) (4.17)

γk,p ∼ Normal(γ̄, σ) (4.18)

ᾱ , δ̄ , γ̄ ∼ Normal(0,1) (4.19)

The advantage of multilevel regression is that it’s still possible to include in the
model the variability caused by the higher level variables (load shape clusters in this
case), but at the same time overfitting is avoided, by stating that the priors of the
model coefficients related to those variables are drawn from a common distribution.
The partial pooling estimates will be less underfit than the average coefficient from
the complete pooling approach, and less overfit than the no-pooling estimates. This
turns out to be particularly strong when there is not so much data available for
some of the categories, because then the no pooling estimates for those clusters will
be especially overfit [147]. On the the other hand, when there is plenty of data for
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each of the groups, the effect of implementing multi-level regression turns out to
be less influential on the final result, this is why we decided to test whether or not
implementing this technique might have a positive effect on the accuracy of the
model predictions.

Posterior estimation methods

According to the theory of Bayesian statistics, after defining the required
variables, Bayesian models update the prior distributions previously set to obtain the
posterior distribution. A unique posterior distribution exists for each combination
of data, likelihood, parameters, and prior. This distribution represents the relative
plausibility of the possible parameter values, conditional on the data and the
model. Historically, being able to effectively estimate the posterior has always been
one of the main practical issues of Bayesian modeling. Starting from the 1990s,
thanks to the access to cheap computational power, Markov chain Monte Carlo
(MCMC) [163] methods started being the prevailing technique used for posterior
estimation purposes in Bayesian modeling. MCMC approaches follow the idea
that, instead of computing a direct approximation of the posterior, which is many
times unfeasible from a computational point of view, such an approximation can be
obtained by drawing samples from the posterior. The samples drawn provide a set of
possible parameter values, and their frequency represents the posterior plausibilities.
One of the most popular MCMC algorithms used in practical applications is the
Hamiltonian Monte Carlo (HMC). Originally proposed in 1987 by Duane et al. ,
this algorithm is able to draw samples more efficiently by reducing the correlation
between them thanks to the simulation of Hamiltonian dynamics evolution [164].
In the present research, HMC is one of the techniques used for posterior estimation.
More specifically, the No-U-Turn Sampler (NUTS) algorithm was used: an extension
of the HMC algorithm that provides accurate and efficient posterior samples without
needing user intervention or tuning runs [165].

One of the drawbacks of MCMC methods is that when models start having a
very high number of variables and data points, their computational cost becomes
extremely high. Automatic Differentiation Variational Inference (ADVI) is an
alternative technique that resolves the problem of the computational bottleneck by
turning the task of computing the posterior into an optimization problem [166]. First,
for a given set of model parameters θ and observations x, a family of distributions
q(θ), parametrized by a vector φ ∈ Φ is hypothesized. The optimization is then
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aimed at finding the member of that family that minimizes the Kullback-Leibler
(KL) divergence to the exact posterior:

φ∗ = arg min KL(q(θ;φ) ∥ p(θ∣x)) (4.20)

Since the KL formulation involves the posterior, and therefore does not have an
analytic form, rather than minimizing the KL, the analysis is aimed at maximizing
the evidence lower bound (ELBO):

L (φ) = Eq(θ)[ logp(x, θ)] −Eq(θ)[ log q(θ, φ)] (4.21)

L (φ) is equivalent to the opposite of the KL divergence, up to the constant
logp(x), hence maximizing the ELBO is equal to minimizing the KL divergence
[167].

When comparing MCMC methods to ADVI, the first are often more computa-
tionally intensive, but they have the advantage of providing (asymptotically) exact
samples from the posterior. Variational inference, on the other hand, is aimed at
estimating a density which is only close to the target and tends to be faster than
MCMC. This makes ADVI the best choice when the objective of the analysis is
testing many different models on large datasets. MCMC is often used with smaller
datasets, when computational time is not an issue, or in specific situations where
the higher computational cost is not considered a problem compared to the added
value of obtaining more precise posterior estimations [168].

In this chapter, the computational cost of MCMC methods was recognized as a
possible issue, therefore ADVI was used as the main posterior estimation technique.
Only in the last phase of model comparison, considering the fact that ADVI is an
optimization algorithm that does not guarantee to provide exact samples from the
target density, the posterior was estimated with both ADVI and MCMC sampling
techniques. This allowed to evaluate whether or not the ADVI approximation was
producing models that performed significantly worse for our use-case.
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Uncertainty intervals

One important difference between Bayesian statistics and traditional frequentist
methods is related to how they quantify uncertainty. More specifically, when
defining uncertainty intervals for model predictions, Bayesian methods give rise to
credible intervals while frequentist methods generate confidence intervals. Although
having similar names, the meaning and interpretation of these statistical concepts
are profoundly different. This is connected to the inference problems these two
approaches to statistics are seeking to answer. The Bayesian inference problem is the
following: given a set of model parameters θ and observed data D, what values of θ
are reasonable given the observed data? On the other hand, the inference question
asked by the frequentist approach is: are the observed data D reasonable, given the
hypothesised model parameter θ? This results into two different approaches to the
modeling process: while frequentists consider θ to be fixed and D to be random,
Bayesians consider θ to be random and D to be fixed [169]. This gives rise to the
different interpretation the credible and confidence intervals have: computing a 95
% credible interval is equivalent to stating “given the observed data D, there is 95%
probability that the model parameter θ will fall within the credible interval”. On the
other hand, since in the frequentist approach the parameters are fixed, while the data
is random, computing a 95% confidence interval means stating “If the data-generating
process that produced D is repeated many times, the computed confidence interval
will include the true parameter θ 95% of the times”. Therefore, while the Bayesian
solution represents a probability statement about the parameter values, given fixed
interval bounds, the frequentist solution concerns the probability of the bounds,
given a fixed parameter value. Credible intervals capture the uncertainty in the
parameter values and can therefore be interpreted as probabilistic statements about
the parameter. Conversely, confidence intervals capture the uncertainty about the
computed interval (i.e., whether the interval contains the true value or not). Thus,
it is not possible to interpret confidence intervals as probabilistic statements about
the true parameter values. The frequentist method is not wrong, it’s just answering
a different question, that usually tells us nothing about the specific dataset we have
observed. In fact, when dealing with one specific dataset (which is usually the case
in the M&V setting), all that a confidence interval can say is: “for this specific
dataset, the true parameter values are either contained or not contained in the
confidence interval”.

In order to better clarify these concepts, a practical example for the energy
baseline modeling case will be presented. We suppose that two energy baseline
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models have been estimated, one Bayesian and one frequentist, with the correspond-
ing uncertainty intervals. In the Bayesian case we’re able to state the following:
given the training data observed (energy consumption and outdoor temperature
time-series), there is 95% probability that the estimated model parameters (and
therefore the predictions) will fall within the calculated credible interval. On the
other hand, the corresponding frequentist statement would be: if we could repeat
many times the data-generating process that lead to the energy consumption and
outdoor temperature values that we observed, 95% of the times the estimated model
parameters would be included in the calculated confidence interval. It is evident
that, for the case in analysis, the Bayesian interpretation is the one which is the
most reasonable and coherent. In spite of this, it is fair to state that for many
common problems, such as linear regression, the Bayesian and frequentist intervals
can coincide. This is also the reason why, in many contemporary scientific studies,
Bayesian interpretation is (erroneously) applied to frequentist confidence intervals.
Unfortunately, this match many times ceases when the models start becoming more
complex than standard linear regression [170]. An additional feature of Bayesian
credible intervals is that, while confidence intervals are delimited by two (random)
numbers, credible intervals are represented by probability density functions, which
are visibly more suited to risk assessment or uncertainty quantification problems
[146].

In many Bayesian studies, including this research work, credible intervals are
represented as highest posterior density intervals (HDI or HPDI), defined as the
narrowest interval containing the specified probability mass. This means that
a 95% HDI will be represented by the narrowest interval containing 95% of the
probability mass. Frequentist confidence intervals are equal-tailed, since they are
generally computed by adding or substracting a fixed number from the mean. While
this can work for symmetrical distributions, real data is often asymmetrical and
frequentist equal-tailed intervals will lead to including unlikely values on one side,
while excluding more likely values on the opposite. HDIs solve this problem by
providing local adaptive uncertainty bands with equally likely (but not symmetrical)
lower and upper bounds [70].

4.2.2 Model comparison

In this section, the structure of the model comparison that was performed is
discussed. The comparison was carried out in four consecutive test phases, that
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are summarized in Table 4.1. The specifications which are tested in each phase
are highlighted in the table. The first model run was the benchmark model, to
which the others were compared. In the second phase the goal was to test the
use of regularizing priors, while in the third phase the inclusion of a wind speed
feature in the regression model was assessed. Finally, in the fourth phase, two
different techniques for the posterior estimation were tested, and a comparison was
performed between regular regression and multilevel regression. In each consecutive
phase, the best performing specification previously tested was then implemented.

Table 4.1: Model comparison overview.

Phase Prior Wind speed
feature

Posterior
estimation

Pooling

1 Uninformative No ADVI No pooling
2 Regularizing No ADVI No pooling

3 Best according to
previous results

Yes ADVI No pooling

4 Best according to
previous results

Best according to
previous results

ADVI,
NUTS

Partial pooling,
No pooling,
Complete pooling

Model comparison phases

Phase 1

The first test was run using the benchmark regression model with time and
temperature features and uniform priors. The coefficients were supposed to have
different values according to the detected load profile cluster, but no pooling was
performed between the different clusters. The posterior distributions were estimated
using the ADVI technique. This is the benchmark model specification to which the
following versions were compared.

Phase 2

In the second test, the same regression model of Phase 1 was used, but this
time with regularizing priors in place of the flat priors previously used. Again
no pooling was performed, and the posterior distributions were estimated using
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ADVI. This phase was aimed at understanding whether the use regularizing priors,
selected using domain knowledge about building energy consumption modeling,
could improve the prediction accuracy.

Phase 3

In the third set of model tests, a wind speed predictor was added to the linear
regression model, as described in Section 4.2.1. Regarding the prior choice, it was
decided to use whichever priors were granting higher accuracy between the ones
tested in Phase 1 and 2. The pooling and posterior estimation techniques used were
the same used in the previous phases. This model comparison phase was aimed at
understanding whether adding a wind speed feature could improve the prediction
accuracy.

Phase 4

In the last model comparison phase, the regression model providing the best
accuracy between the one including and excluding the wind speed predictor was used.
The best performing priors, already used in Phase 3, were selected again. Different
pooling techniques were now compared (partial pooling, no pooling, complete
pooling), as well as two different methods to estimate the posterior distributions:
ADVI and a HMC sampling through the NUTS algorithm. This phase had the goal
of testing whether implementing multilevel regression in place of regular regression
could bring added value in terms of model accuracy or uncertainty bands estimation
for our use case. At the same time, it was possible to evaluate the goodness of
the ADVI posterior approximation by comparing it to the one obtained with the
sampling approach.

Comparison metrics

Three main metrics were used in order to compare the different models tested.
The CV(RMSE) was used to assess the prediction accuracy of the model, while
the coverage and adjusted coverage parameters were analyzed to evaluate the
uncertainty bands estimated.

100



4.2 Methodology

CV(RMSE)

The coefficient of variation of the root mean square error (CV(RMSE)) is a
metric frequently employed to evaluate the accuracy of energy baseline models:

CV (RMSE) =

√
1
N ∑

N
i (yi − ŷi)2

ȳ
× 100 (4.22)

with N being the total number of hours of the time-series, yi the measured
energy consumption value on hour i, ŷi the energy consumption predicted using the
regression model, on the same hour, and ȳ the average hourly energy consumption
across the whole time-series. Equation (3.18) shows how the CV(RMSE) is nothing
but a normalization of the root mean square error by the mean of the measured
energy consumption values ȳ, representing a comparison between the model error
and the average energy consumption values for the selected building or facility.

Coverage

In order to compare the accuracy of the uncertainty intervals estimated with
the tested model specifications, the concept of coverage probability was used. When
evaluating uncertainty intervals, the coverage probability represents the proportion
of times that the real observed value is contained within the estimated interval.

Coverage =
1

N

N

∑
i=0
ψi × 100 (4.23)

where:

ψi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if ŷ lowi < yi < ŷ
high
i

0 else
(4.24)

with N being the total number of hours of the time-series, yi the measured
energy consumption value on hour i, ŷ highi and ŷ lowi the higher and lower bounds
of the predicted uncertainty bands for hour i. One problem of this metric is that,
in its evaluation, it doesn’t take into account the size of the estimated uncertainty
intervals. A disproportionately large interval would always have 100% coverage, but
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this can be an indication that the model that generated such interval is misspecified.
In order to solve this issue a new metric, called adjusted coverage, was defined.
This newly defined metric modifies the traditional coverage concept with additional
terms that have the objective of penalizing larger intervals.

Adjusted coverage =
1

N

N

∑
i=0
φi
log(ŷ highi )

log(ŷ lowi )
(4.25)

where:

φi =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

log(yi−ŷhigh
i )

log(yi) + 1 if yi > ŷ highi

log(ŷ low
i −yi)

log(yi) + 1 if ŷ lowi > yi

1 else

(4.26)

This additional metric enables a more accurate comparison of the different
Bayesian inference models tested. The traditional coverage concept, which simply
checks whether the real value lies within the predicted uncertainty interval, does not
provide enough information to correctly compare the bands. The adjusted coverage
solves the issues of the coverage metric by adding two penalization terms. The
first of these terms is included in φi, a variable representing whether or not the
metered value yi is contained in the interval. If yi is within the interval, then φi is
equal to 1, otherwise it’s equal to 1 plus a term that is proportional to the distance
between the closest bound and the metered value. In this way ’bigger errors’ of
the model are penalized more. The second penalization term is log(ŷhigh

i )
log(ŷ low

i ) , which
is proportional to the size of the predicted uncertainty interval. Both terms are
expressed as a ratio of logarithms, in order to prevent the adjusted coverage from
reaching very high values when the metered yi or the ŷ lowi are close to zero. This
metric, although not suitable for a comparison between different buildings, serves
well the purpose of comparing uncertainty intervals predicted by different models
for the same building. Among models with equal coverage, those having smaller
adjusted coverage are to be preferred, since this represents a lower overall model
uncertainty.
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4.3 Case Study

The presented approach was tested on an open dataset containing electricity
meter readings at an hourly frequency for 1578 non-residential buildings. It was
decided to test the approach on this dataset because of the generally recognized
need, in the building performance research community, of testing novel techniques
on common datasets [108]. This helps providing meaningful comparisons of accuracy,
applicability, and added value between methodologies. The dataset is part of the
Building Data Genome Project 2, a wider set that contains readings from 3,053
energy (electricity, heating and cooling water, steam, and irrigation) meters from
1,636 buildings. Of the original 1636 buildings, only the 1578 containing electricity
meter readings were selected, since the proposed methodology has the goal of
modeling hourly electricity consumption. A thorough description and exploratory
data analysis of this dataset is available in Miller et al. [159]. A summary of the
remarks that might be of interest follows:

• the buildings belong to 19 different sites across North America and Europe,
with energy meter readings spanning two full years (2016 and 2017),

• there are 5 main primary use categories: education, office, entertainment/public
assembly, lodging/residential, and public services,

• the weather data provided includes information about cloud coverage, outdoor
air temperature, dew temperature, precipitation depth in 1 and 6 hours,
pressure, wind speed and direction,

• for most of the buildings, additional metadata such as total floor area and
year of construction is available.

Table 4.2 contains an overview of the sites present in the dataset and the
number of buildings having electricity meter readings. Each site is assigned an
animal-like site code name and each building is characterized by a Unique Site
Identifier consisting of the site code name, an abbreviation of the building primary
space usage, and a human-like name unique for each building. An example of a
building’s unique site identifier is: Rat_health_Gaye.

In this case study, the year of 2016 was used to train the model. Validation
of the model prediction accuracy was then performed on data from 2017. The
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Table 4.2: Overview of the sites from which the meter data was collected and
number of buildings having electricity meter readings for each site.

Site Actual Site Name Location Buildings

Panther Univ. of Central Florida (UCF) Orlando, FL 105
Robin Univ. College London (UCL) London, UK 52
Fox Arizona State University (ASU) Tempe, AZ 137
Rat Washington DC - City Buildings Washington DC 305
Bear Univ. of California Berkeley Berkeley, CA 92
Lamb Cardiff - City Buildings Cardiff, UK 146
Eagle Anonymous N/A 106
Moose Ottawa - City Buildings Ottawa, Ontario 13
Gator Anonymous N/A 74
Bull Univ. of Texas - Austin Austin, TX 123
Bobcat Anonymous N/A 35
Crow Carleton Univ. Ottawa, Ontario 5
Wolf Univ. College Dublin (UCD) Dublin, Ireland 36
Hog Anonymous N/A 152
Peacock Princeton University Princeton, NJ 45
Cockatoo Cornell University Cornell, NY 117
Shrew UK Parliament London, UK 9
Swan Anonymous N/A 19
Mouse Ormand Street Hospital London, UK 7

CV(RMSE), coverage and adjusted coverage were calculated between 2017 model
predictions and observed meter readings.
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4.4 Results

The Results section is divided in two parts. First, the model comparison results
are analyzed and the model specifications that produced the highest prediction
accuracy are pointed out. Then, the results obtained for two individual buildings
are presented in detail, highlighting the outputs of the methodology, such as the
clustering of the daily profiles, the change-point temperatures and coefficients
detected, as well as predictions for the full test year. All the coverage and adjusted
coverage estimations provided in this section are referred to 95% HDIs. Regarding
the software used for the analysis, the consumption profile clustering was performed
with the kernlab library [171] in the R programming environment, while the Bayesian
models were calculated using the python library PyMC3 [172].

4.4.1 Model comparison

The results obtained for each of the model comparison phases are presented here
in form of boxplots for the CV(RMSE), coverage and adjusted coverage variables.
It’s important to note that the dataset that was selected for the case study contains
various buildings for which the test year data is very different from the training
year data. Examples of this are buildings with flat consumption in the whole
test year or in large parts of it, as well as buildings having completely different
energy consumption trends in the training and test year, meaning that no baseline
model could provide accurate predictions. In Figure 4.2, the electricity consumption
time-series of one of these ‘outlier’ buildings is shown. In order to not manually
exclude any building from the analysis, while the results for all the buildings were
calculated, in the boxplots the outlying values were hidden, meaning values 1.5 IQR
above the upper quartile or below the lower quartile are not shown. The analysis
performed in this section is based on median values and boxplot analysis that are
not affected in any way by the exclusion of the outlier buildings from the plots.
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Figure 4.2: Electricity consumption time-series for the building
Lamb_assembly_Delilah.

Figures 4.3 and 4.4 show the results in terms of CV(RMSE) and coverage for
the first three phases of model comparison. In the second phase of the analysis, the
benchmark model of Phase 1 was updated with regularizing priors in place of the
uninformative ones previously used. In the third phase, the model from Phase 2,
which proved to be better than the benchmark model both in terms of CV(RMSE)
and adjusted coverage, was complemented with an additional term marking the
effect of wind speed. From Figures 4.3 and 4.4, we can see that while the use of
regularizing priors caused only a slight decrease of CV(RMSE), the uncertainty
bands were highly affected by this change. A quick analysis of Figure 4.4 shows
that, while the model with uninformative priors had the highest coverage, this
was mainly due to the estimation of disproportionately large uncertainty bands.
The addition of the wind speed term, on the other hand, seems to have no effect
on neither the CV(RMSE) nor the coverage of the model, meaning that for this
dataset using wind speed as a predictor variable for electricity consumption does
not provide any benefit.
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Figure 4.3: CV(RMSE) results obtained in Phases 1,2 and 3 of model comparison.
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Figure 4.4: Coverage and adjusted coverage for the 95%
HDIs obtained in Phases 1,2 and 3 of model comparison.
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The first three phases of model comparison helped prove that the regression
model and prior distributions used in Phase 2 were the ones providing the highest
accuracy with the smallest number of predictor variables. Phase 4, on the other hand,
was aimed at testing the performance of multilevel regression and different posterior
estimation techniques. In Phase 4, the model of Phase 2, originally characterized
by the use of a no pooling approach and ADVI estimation, was compared with
specifications that used the same regression model and prior distributions of Phase
2, but implementing complete and partial pooling as well. The use of the NUTS
(MCMC sampling) algorithm for the estimation of the posterior distribution was
also tested, using 2000 tuning steps and then sampling 4 chains with 5000 samples
each. Figures 4.5, 4.6 and 4.7 show the boxplots obtained for the final phase of
model comparison, while Figure 4.8 allows to simultaneously analyze the CV(RMSE)
and adjusted coverage metrics. The first clear conclusion that can be drawn is that
complete pooling is the least performing of the three pooling approaches, which is
coherent with the method used to build the regression model (giving high value to
the clustering approach to detect different consumption trends). At the same time,
the results obtained show that the use of partial pooling marks a definite coverage
improvement over no pooling for the NUTS estimation case, while when using
ADVI the two models are practically equivalent. When comparing the posterior
estimation techniques, the use of MCMC sampling yields comparable CV(RMSE)
and slightly better adjusted coverage over the variational inference approach: Figure
4.8 provides a helpful visualisation in this regard.
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Figure 4.5: CV(RMSE) results obtained in Phase 4 of model comparison.
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Figure 4.6: Coverage for the 95% HDIs obtained in Phase 4 of model comparison.
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Figure 4.7: Adjusted coverage for the 95% HDIs obtained in Phase 4 of model
comparison.

NP ADVIPP ADVI

CP ADVI

NP NUTS

PP NUTS

CP NUTS

2.1

2.4

2.7

3.0

21 24 27

Median CV(RMSE) [%]

M
ed

ia
n 

ad
ju

st
ed

 c
ov

er
ag

e

Figure 4.8: Median CV(RMSE) vs median adjusted
coverage obtained in Phase 4 of model comparison.
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Regarding the computational time difference between ADVI and NUTS, the
analysis was run on a remote server with 125 GB of RAM and an Intel Xeon
Processor with 2.60GHz base frequency, using 12 of the 32 available cores. The
average computational times required for the analysis are summarized in Table
4.3, which presents also the median CV(RMSE), coverage, and adjusted coverage
obtained with each model of phase 4. It appears that NUTS estimations require
around 35 times more computational power than the ADVI case, while providing
only modest improvements in terms of adjusted coverage. It’s worth mentioning
that, for the no pooling and partial pooling cases, the computational time required
to model one building is directly proportional to the number of different load profile
patterns detected by the clustering algorithm, since each additional load profile
increases the number of variables that need to be estimated in the model.

Table 4.3: Results obtained in Phase 4 of model comparison. Median CV(RMSE),
coverage and adjusted coverage are shown, as well as the average computational

time required to estimate the model for a single building of the dataset.

Model CV(RMSE) (%) Coverage (%)
Adjusted
coverage

Computational time

NP ADVI 18.95 92.54 2.03 15 seconds
PP ADVI 18.93 92.61 2.04 16 seconds
CP ADVI 28.62 93.25 3 9 seconds
NP NUTS 20.34 90.82 2.06 8 minutes
PP NUTS 18.95 89.94 1.87 9 minutes
CP NUTS 27.56 91.18 2.57 1.5 minutes

4.4.2 Individual buildings

In this section, the model results obtained for two individual buildings are
analyzed, in terms of consumption predictions, weather dependence and posterior
distributions identified for the model parameters. The results shown are the ones
obtained using partial pooling and ADVI posterior estimation.

The first building analyzed is Rat_health_Gaye, a healthcare facility located
in Washington DC with a total floor area of 2220 square meters. The five recurrent
load profiles identified by the clustering algorithm for this building are represented
in Figure 4.9, with the red lines representing the profile centroids and the black lines
the load profiles of days belonging to that cluster. In Figure 4.10, the electricity
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consumption time-series for both the training and test years (2016 and 2017) is
shown.
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Figure 4.9: Recurrent daily load profiles identified for the building
Rat_health_Gaye.
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Figure 4.10: Electricity consumption time-series for the building
Rat_health_Gaye.

At first glance, it appears that this building is using electricity for the cooling
system, while a different energy source is used for heating, since the consumption is
quite constant during winter months and peaks in the summer period. An analysis
of the change-point temperatures estimated by the Bayesian regression model can
help confirm this hypothesis. Figure 4.11 shows the posterior distributions estimated
for the heating and cooling change-point temperatures, both the mean value and
the 94% HDIs are marked.

𝑇!"! 𝑇!""

Figure 4.11: Posterior distributions estimated for the heating and
cooling change-point temperatures for the building Rat_health_Gaye.
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In order to better understand these results, it can be useful to visualize the
electricity consumption and outdoor temperature time-series, together with the
heating and cooling change-point temperatures estimated by the model. Figure
4.12 shows this relationship for the training year, with the estimated mean heating
and cooling change-point temperatures marked as a dotted line, and their 94%
HDIs represented by the shaded area. This plot confirms the initial hypothesis
and validates the results of the model. The building has cooling dependence: it
can be seen how the electricity consumption starts increasing once the outdoor
temperatures exceed the estimated cooling change-point temperature. At the
same time, the model detected no heating dependence, showing that the heating
change-point temperature would correspond to the lowest temperature observed
in the training year. This conclusion is confirmed by studying how the electricity
consumption does not react to changes in temperature below Tcpc .
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Figure 4.12: Electricity time-series vs outdoor temperature
values for the building Rat_health_Gaye. The heating and
cooling change-point temperatures estimated by the model

are shown in red and blue with the corresponding 94% HDIs.
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In Figure 4.13 the electricity consumption time-series of the test year is shown
(in black), together with the model predictions and 95% uncertainty bands (in
red). In order to better visualize the uncertainty bands and predictions, Figure 4.14
shows a segment of this same plot that includes only predictions for the month of
July 2017, where the building energy consumption is being affected by the outdoor
temperature values. Overall, the model is able to accurately predict the consumption
time-series of the test year and to capture the temperature dependence dynamics of
the building. This model was characterized by a CV(RMSE) of 15.2%, a coverage
of 96.7% (for the 95% HDI) and an adjusted coverage of 1.94.
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Figure 4.13: Test year metered electricity time-series (in
black) and model predictions (in red) for Rat_health_Gaye.
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Figure 4.14: July 2017 metered electricity time-series (in
black) and model predictions (in red) for Rat_health_Gaye.

The second case presented is that of a building which has both heating and
cooling consumption dependence. The building analyzed is Rat_education_Royal,
a school in Washington DC with a total floor area of 7218.6 square meters. The
building electricity consumption time-series for the training and test year is shown
in Figure 4.15, where it’s possible to observe that the consumption is peaking both
in summer and winter months, a tendency which is more pronounced in the training
year than in the test year.
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Figure 4.15: Electricity consumption time-series for the building
Rat_education_Royal

Figure 4.16 shows the posterior distributions estimated by the model for
the heating and cooling change-point temperatures Tcph , Tcpc and for the linear
coefficients βh, βc. The estimated heating impact on the consumption is lower than
the cooling one, with a mean βh of 0.0066 vs a mean βc of 0.021. Another interesting
point is that the cooling dependence posterior has a multimodal distribution, while
the heating dependence posterior is unimodal. Since the βh and βc were supposed
to be changing according to the part of the day, as explained in Section 4.2.1,
this characteristic of the posteriors means that while the heating dependence was
estimated to be very similar for each day-part, the impact of cooling on the overall
consumption was detected to be stronger in certain parts of the day rather than
others.
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Figure 4.16: Posterior distributions estimated for the heating and cooling
change-point temperatures (upper panels) and for the heating and cool-

ing linear dependence coefficients (lower panels) in Rat_education_Royal.

In Figure 4.17, the electricity consumption time-series is represented, together
with the outdoor temperature values and the Tcp. From this graph, the heating and
cooling dependence of the building appears evident, and it’s also possible to notice
the increased effect of cooling over heating depicted by the estimated βh and βc, by
comparing the consumption peaks with the corresponding temperature differences.
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Figure 4.17: Electricity time-series vs outdoor temperature val-
ues for the building Rat_education_Royal. The heating and
cooling change-point temperatures estimated by the model

are shown in red and blue with the corresponding 94% HDIs.

In Figure 4.18, the electricity consumption time-series of the test year is shown
(in black), together with the model predictions and 95% HDI (in red). Overall,
the model provides a good fit to the metered electricity consumption time-series,
with most of the data points being included within the 95% HDI. The model was
characterized by a CV(RMSE) of 10.9%, a coverage of 95.2% (for the 95% HDI)
and an adjusted coverage of 1.55.
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Figure 4.18: Test year metered electricity time-series (in
black) and model predictions (in red) for Rat_education_Royal.

4.5 Discussion

The results obtained in the four model comparison phases provided important
insights into the predictive capabilities of various model specifications. The first
three phases enabled an analysis of the effects of different prior distributions and of
the potential improvement generated by the inclusion of wind speed as a predictor
variable in the model. The last phase of comparison used the best performing priors
and regression model identified in the previous phases in order to test the effect
of multilevel regression and different posterior estimation techniques. The main
conclusions that can be drawn from the results obtained are the following:

• The use of regularizing priors based on building physics knowledge improves
the model both in terms of CV(RMSE) and coverage.

• The addition of a regression term to take into account the wind speed did not
improve the model predictive capabilities.
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• The use of MCMC sampling techniques to estimate the posterior distribution
yields comparable results to the variational inference method, despite being
characterized by a more than 30-fold increase in computational time.

• When looking at the ADVI case, partial pooling has an almost negligible effect
on the prediction accuracy, providing only a very modest median CV(RMSE)
and coverage improvement, and a slightly worse adjusted coverage.

• In the NUTS case, the partial pooling regression seems to have a stronger
impact, improving the CV(RMSE), but at the same time reducing the coverage
of the model.

• The computational requirements of the partial pooling regression are compa-
rable to the ones of the no pooling case.

The individual building analysis also provided interesting insights that showcase
the strengths of the proposed methodology. The results of the profile clustering
algorithm and of the Bayesian regression model unlock insights that can be used
to depict a clear image of the consumption habits of the building in analysis. The
results allow for a detailed characterization of the energy consumption trends,
including the typical daily load profile patterns, the heating and cooling change-
point temperatures, as well as the impact of the heating and cooling terms on the
total electricity usage. For the buildings analyzed, the posterior distributions of the
model coefficients obtained, shown in Figure 4.11 and 4.16, accurately represented
the trends depicted by the consumption and outdoor temperature time-series. These
posteriors allow to gain insight on the weather dependence of the analyzed buildings,
unlocking actionable information in terms of energy performance. In Figures 4.12
and 4.17, it’s possible to see how the posteriors identified for Tcpc , Tcph , βc, βh are
actually an accurate representation of the relationship between outdoor temperature
and electricity consumption for the two showcased buildings. Such results open very
interesting possibilities in terms of energy management improvement, as well as
recommendations for energy retrofit plans. Comparing change-point temperatures
and heating and cooling coefficients from a portfolio of similar buildings can disclose
actionable insights about the analyzed buildings, enable targeting and prioritization
of energy renovation strategies, and help energy managers make decisions backed
by data.

The model also proved to be very accurate at predicting the electricity consump-
tion baseline for the showcased buildings, while also providing small uncertainty
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bands, as seen in Figure 4.13 and 4.18. The accuracy of this baseline means that
this model can be implemented in several practical applications, such as anomaly
detection, energy performance analysis, or dynamic measurement and verification of
energy efficiency savings. In fact, valid estimations of the effects of implemented en-
ergy conservation measures are impossible without a model able to provide accurate
baseline model predictions. Nevertheless, it’s important to highlight that, because
of the daily profile classification used, the proposed methodology is only able, in the
form presented in this chapter, to detect hourly changes in consumption within days
that kept an overall similar load shape compared to the one they had before the
implementation of the measure. In the case of being interested in evaluating energy
retrofit actions that completely altered the consumption profile of the building
energy use, the present methodology should be coupled with an algorithm able
to predict, depending on time and weather features, the consumption profile that
a building would have had, on a certain day, if the energy retrofit measure was
not applied. Such an algorithm was devised and presented in [173], and could be
seamlessly coupled with the proposed methodology.

4.6 Conclusions and future work

In this research work, a Bayesian methodology to model electricity baseline
use in tertiary buildings was presented. The methodology has the feature of being
based on Bayesian linear regression with interpretable terms, while at the same
time being able to accurately predict electricity consumption time-series with high
granularity. In order for the proposed approach to work, the only required data are
historical electricity consumption and outdoor temperature values. The approach
is based on a data pre-processing phase, in which the training data is analyzed in
order to identify recurrent electricity load profiles, a modeling phase, in which the
Bayesian linear regression model is run, and a results analysis phase, in which the
posterior distributions estimated by the model are used to obtain a characterization
of the building energy consumption and to generate baseline predictions.

When performing Bayesian regression, the quality of the results can depend
on many different factors, such as the prior distributions specified, the covariates
included in the regression model, or the technique used to estimate the posterior
distribution. In order to compare different possible model specifications, a model
comparison strategy, structured in four consecutive phases, was devised. The
methodology was tested on the Building Data Genome Project 2, an open dataset
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containing 3,053 energy meters from 1,636 non-residential buildings. Within this
dataset, 1578 buildings having electricity meter readings at hourly frequency for the
years 2016 and 2017 were selected. For each building of the dataset, the Bayesian
regression model was trained on the first year of data and then validated on the
second year. The model comparison stage provided valuable results: regularizing
priors performed better than uninformative ones, while the wind speed predictor did
not have any effect on the model. Regarding the posterior estimation, the use of an
MCMC sampling technique provided comparable results to the variational inference
case, despite the almost 30-fold increase in computational time required, while
multilevel regression provided a slight improvement in terms of CV(RMSE) and
adjusted coverage, with differences that are more evident when using the MCMC
sampling technique to estimate the posterior. At the same time, a more in-depth
analysis of the results presented for the two showcased individual buildings demon-
strated that the proposed methodology is able to provide a detailed characterization
of the analyzed buildings’ energy use, as well as accurate baseline predictions, char-
acterized by effective uncertainty intervals. The possibility of associating Bayesian
credible intervals to the estimated posterior distributions represents a fundamental
feature that allows to implement the results obtained from this methodology in risk
assessments for energy renovation projects.

The results presented highlight several possible applications for the proposed
methodology, including energy performance improvement, energy use intensity
characterization, quantification of energy conservation measures and risk mitigation
in energy retrofit projects. An accurate, non-intrusive and scalable methodology,
such as the one presented in this research work, can help driving down measurement
and verification costs for energy efficiency projects, hence increasing their feasibility
and profitability. Furthermore, reliable real-time measurement and verification is a
requirement for many innovative energy efficiency models in which payments are
handed out only when the savings are demonstrated and verified. To conclude, four
main strengths were identified for the presented approach:

1. the explainability of the model and the interpretability of its coefficients even
for non-technical audiences;

2. an elegant, efficient, dynamic and coherent estimation of uncertainty, that
makes it apt to be used in financial risk assessments of retrofit strategies;

3. the ability to provide a detailed building energy use characterization that can
employed by energy managers to improve the performance of their facilities;
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4. high scalability to big data problems, because of the low computational
complexity and the limited data requirements.

The features presented for the proposed methodology make it appealing for
many different real-world applications in the field of energy efficiency, but at the
same time it is also evident that this research is still in an initial stage and more
work is needed in order to refine the approach. Future work might involve the
testing of different likelihoods, such as the Student-t likelihood, which might be
helpful in specific cases where high resiliency to outliers is required. The intersection
of this methodology with Bayesian Additive Regression Trees (BART) might also
be tested, as well as the effect of different predictors, such as solar radiation, or
the implementation of alternative clustering techniques. The posterior estimation
techniques could also be an object of further study: understanding whether the
quality of predictions can improve by increasing the number of MCMC samples
would be of great interest, as well as a quantification of the computational power
that would be required for such estimations. Finally, it would be valuable to see
this methodology in action in a real-world measurement and verification protocol,
in order to evaluate how it ranks compared to other similar methodologies built for
this purpose.

124



Chapter 5

Concept methodology for recommendation

of energy retrofitting strategies

5.1 Introduction

In this chapter, a concept methodology is presented, with the goal of rec-
ommending and prioritizing energy efficiency strategies in tertiary buildings by
combining many of the techniques discussed in this thesis. This methodology was
designed to be implemented in big data building repositories that are currently in
development in the framework of the EN-TRACK and BIGG projects [174, 175]. As
such, the methodology is intended as a recommendation for future work more than
a completely developed study. The availability of organized, clean, and trustworthy
building and consumption data is crucial to the correct implementation of the
techniques presented. Therefore the present methodology is also meant to be a
guideline to enable a fruitful data collection process for any platform aimed at
building energy management and efficiency improvement.

Given the fundamental importance of data availability, the methodology was
conceived as a scalable process in which the recommendations presented change
depending on the amount of data available in the platform. The main goal was to
create a conceptual methodology that can provide some preliminary results even in
the initial stages of the data collection process, but that, as more and more data is
fed into the repository, will improve the quality and the accuracy of the provided
recommendations. The system is aimed at providing actionable information for
decision-makers in various ways:

1. provide a rough estimate of savings potential for the analyzed buildings,
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2. help understanding which measures are the best fit for a certain building and
will yield the highest savings,

3. enable prioritization for a portfolio of buildings, identifying the buildings
with the highest savings potential and for which the renovation strategies will
produce the best results.

Recommendation systems have been the object of a wide range of research studies
during the last three decades. Their application has also been extended to the field
of smart sustainable cities, and a detailed review of these systems can be found in
Quijano Sánchez et al. [176]. When it comes to energy efficiency, the main use-cases
that have been explored are related to smart homes and user behavior recommender
systems [177, 178]. While the general purpose and definition of recommendation
systems is to address the problem of estimating ratings for items that have not been
seen by a user [179], in the present research, we extend this concept to the problem of
the energy efficiency management of a portfolio of buildings. The recommendation
system that we describe and propose in this chapter is a tool that analyzes the
results obtained by implementing different energy conservation strategies in a group
of buildings or facilities, in order to predict their effect in new buildings and possibly
recommend their implementation.

In the building energy modeling research community, several articles have
addressed the problem of predicting the effect of energy retrofitting strategies in
buildings by using deterministic techniques. A detailed review of these approaches
is presented in Chapter 2 of this thesis. Unfortunately, a considerable drawback
of such methodologies is their poor scalability, linked to the complexity of the
building energy modeling process and their problematic generalizability. Data-
driven techniques offer a different and innovative approach to this problem, but
research in this field is still in an initial stage. A first interesting data-driven solution
to this problem was provided by Walter and Sohn, who used the data contained in
the United States Building Performance Database to build a multivariate regression
model able to estimate changes in energy usage intensity (EUI) due to retrofit
implementations and depending on building characteristics [104]. More recently,
Miller and Meggers have studied the possibility of leveraging smart meter data
and building characteristics to predict potential energy savings and characterize
buildings, producing very interesting results and demonstrating that there is highly
valuable information that can be brought to light by analyzing big data repositories
of tertiary buildings [109, 180]. Finally, a significant contribution to this new
research field has been provided by Xu et al., that implemented a tree-based
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machine learning algorithm to study a portfolio of commercial buildings located in
the US, with the goal of predicting the effect of different retrofit options based on
building characteristics and weather data [181].

In the rest of this chapter, we first describe the characteristics of the concept
methodology proposed, then provide a mock-up of the recommendation system, to
finally present some conclusions and future work guidelines.

5.2 Methodology

The recommendation system described in this chapter is based on the insights
that can be inferred by analyzing energy conservation strategies implemented in
peer buildings. It is built on different modules that can be implemented depending
on the amount of comparison data available from other buildings. A flowchart
describing the presented methodology is shown in Figure 5.1, where the models and
calculations are highlighted in yellow and the provided results in green.

To begin, the building for which the recommendations are built is analyzed
in order to exclude measures that are not compatible with its characteristics; this
process is named compatibility check. Then, according to a list of similarity criteria
specified by the user, the group of comparison buildings is defined in a process
called similarity check. These buildings are then analyzed, together with the list of
measures identified by the compatibility check, in order to understand which is the
most appropriate recommendation module to be implemented.

Depending on the amount of data available from similar buildings, three
independent recommendation modules can be implemented, that provide results
with different levels of detail:

1. Building energy benchmarking → savings potential and area of focus

2. Retrofit effect prediction → estimation of expected energy savings by measure

3. Multi-label classification → list of relevant measures for the analyzed building

The first module implements benchmarking techniques in order to estimate
the potential savings that can be achieved and the measure categories that would
yield the highest results. The second module aims at quantifying, in the most
accurate possible way, the impact that an energy renovation strategy will have on
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Figure 5.1: Recommendation methodology flowchart

the analyzed building. The third module has the objective of providing a list of
popular implemented measures in similar buildings and is implemented in case of
not having a big enough sample of similar buildings to implement the first or the
second recommendation modules. For the rest of this section, the building energy
benchmarking module will be referred to as Module 1, the retrofit effect prediction
as Module 2, and the multi-label classification as Module 3.

5.2.1 Data requirements

This section briefly presents the data requirements for the three different
recommendation modules previously introduced.
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Building energy benchmarking

In order to successfully implement the first module of recommendation, the
energy usage intensity (EUI) of all the buildings available in the platform needs
to be calculated. This is represented by the ratio of the total energy load of the
building and a normalization parameter of choice, usually the building’s total floor
area. The first module also depends on the results of a load segmentation and a
characterization algorithm. The first separates the base-load of the building from
the portions that depend on the heating and cooling operations, while the second
is aimed at determining the change-point temperatures, the heating and cooling
coefficients, as well as the load profile patterns of the buildings. Different load
segmentation methodologies are present in literature [182], while an example of a
data-driven characterization model that can be used for such purpose is the one
introduced in Chapter 4.

Retrofit effect prediction and multi-label classification

The second and third recommendation modules are similar in their goal, but
while the retrofit effect prediction represents a quantitative analysis aiming at pre-
dicting the potential savings that can be obtained by implementing a certain energy
renovation strategy, multi-label classification is a simple qualitative analysis, usually
carried out when there is not enough data available to perform the calculations
of Module 1 and 2. The features used for these two recommendation modules are
various, but they can be mainly divided into building features, usually information
about the building that can be introduced by the building owner or manager, and
temporal features, which can be extracted by analysing the energy consumption and
weather data available. This feature characterization was first introduced by Miller
and Meggers in [109]. Tables 5.1 and 5.2 present a list of the possible building and
temporal features that might be used for retrofit effect prediction and multi-label
classification. The features related to the measure effect in Table 5.2 are exclusively
used in Module 2, and their availability marks the main distinction between the
recommendations provided in the second and third recommendation modules. A
short description of the temporal features presented in Table 5.2 follows:

Mean, max, min EUI : energy usage intensity, corresponding to the average,
maximum, and minimum energy load of the building, divided by a normalization
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parameter of choice, usually the total floor area of the building. Can be calculated
at hourly, daily, or monthly levels.

EUI variance: variance of daily minimum and maximum consumption values.
It can be calculated across the whole time-series and separately for the heating and
cooling seasons.

Load ratio: the ratio of the minimum and maximum load. It can be calculated
at hourly, daily, or monthly levels.

Heating and cooling change-point temperatures : the outdoor temperatures from
which a significant relationship between the building’s energy consumption and the
outdoor temperature conditions is detected.

Heating and cooling dependence: the impact of temperature differences above
and below the change-point temperatures on the total energy load of the building.

Minimum and maximum consumption hours: hours at which the minimum
and maximum consumption occur, can be calculated across the whole time-series
and separately for the heating and cooling season.

Pattern volatility : a metric that analyzes how consistent are the load profile
patterns of the building are over the course of a whole year. A building that
frequently changes daily load shapes during the year is considered more volatile.

Load shape category : the building load profile patterns can be assigned a
different category depending on their shapes, then these categories can be used to
detect buildings having similar patterns.

Average annual number of days with temperature within different ranges: dif-
ferent ranges of temperatures can be defined (i.e. less than -10 ºC, between -10 and
0 ºC, between 0 and 10 ºC, between 10 and 25 ºC, between 25 and 35 ºC, more
than 35 ºC), the number of days per year belonging to each temperature range will
help recognize regions with similar climate.

Average monthly precipitation, cloud cover, and solar radiation: more weather
variables that can help classify climate regions.

Measure effect : the data entries in this category are aimed at estimating the
effect of a certain implemented measure on the buildings where it was implemented.
For each measure implemented, the size of the investment is registered, together with
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the building EUI before and after the measure implementation, and the total energy
savings achieved. Savings directly calculated with measurement and verification
techniques, such as the one presented in Chapter 3 are given a higher weight than
deemed or estimated savings manually introduced.
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5.2 Methodology

5.2.2 Checks

Similarity and compatibility checks are two pre-processing calculations that
have the goal of increasing the robustness of the provided results. While the
compatibility check is aimed at discarding potential recommendations that are not
compatible with the characteristics of the building, the similarity check has the goal
of selecting the most accurate similar building sample from the buildings in the
repository, according to user-specified similarity criteria.

Compatibility check

The compatibility check is based on the concept that, when providing recom-
mendations within a platform, robustness should be ensured at all times. Giving
unrealistic recommendations that are not compatible with the characteristics of
the building is likely to reduce user engagement and cause skepticism towards the
results provided by the platform. For this reason, before performing any kind of
modeling or calculation, the compatibility of the list of analyzed measures with
the characteristics of the building is checked. The list of compatibility decisions
includes, but should not be limited to, the following statements:

1. Exclude measures related to fuel-based heating systems if the building uses
electricity for heating.

2. Exclude heating or cooling measures if the building has no heating or cooling
dependence.

3. Exclude lighting measures if energy-efficient lighting is already implemented.

4. Exclude insulation measures depending on the last date of full refurbishment
of the building.

5. Exclude PV installation recommendation if there is no available area for it.

6. Exclude scheduling changes if the schedules have already been optimized.
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Similarity check

The similarity check is aimed at the selection of the most similar sample of
buildings among the ones available in the repository. Users should be able to change
the similarity criteria that they want to use, as well as the minimum number of
buildings selected for comparison. Similarity criteria that can be used include:

1. Building category and subcategory

2. Type of construction

3. Year of construction

4. Total floor area

5. City

6. Climate region and other weather-related variables

Similarity criteria can be used individually or combined into groups. As more
and more buildings are included in the repository, it will be possible for users to use
more stringent criteria without having to sacrifice the number of buildings included
in the comparison.

5.2.3 Savings potential and area of focus through building
energy benchmarking

The first recommendation module is based on the energy consumption char-
acterization of the analyzed buildings and is aimed at providing areas of possible
improvement rather than specific measures. This module is only implemented if
a big enough selection of similar buildings is identified in the platform, according
to the criteria discussed in 5.2.2. Initially, the building is compared to its peers,
and a range of potential savings is estimated by comparing its EUI with the ones of
the average and best performing buildings in the selection. This enables a rough
estimation of whether the building is a good target for potential retrofit strategies.
This calculation will be more accurate if more stringent criteria are selected for
the similarity check: i.e. the potential savings that can be obtained will be more
credible if we select all offices having a certain construction typology, same approx-
imate schedule, and same geographic location, rather than just all the offices in
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the repository. It is evident that by selecting more stringent comparison criteria,
fewer buildings will be available for the comparison, which could result in biased
conclusions. A good trade-off must be found for the criteria, which will depend on
the total amount of buildings present in the platform: as more and more buildings
are included, it will be possible to select more stringent criteria while not sacrificing
the size of the building sample.

After the first initial stage, where the general savings potential is assessed,
an analysis of the categories of measures that can yield the highest savings is
performed. This is obtained by taking advantage of the results of load segmentation
and characterization algorithms introduced in Section 5.2.1. The load segmentation
model allows to differentiate the base-load of the building from the consumption
that depends on heating and on cooling activities. On the other hand, thanks to the
characterization techniques, it’s possible to determine the change-point temperatures,
the heating and cooling coefficients, as well as the load profile patterns of the
buildings. The results obtained for the selected building are compared with the
ones obtained for its peers. By comparing the load segmentation, the change-point
temperatures, and the heating and cooling coefficients, it’s possible to determine if
the highest savings are achievable by targeting the base, heating, or cooling load
of the building. A joint analysis of the load segmentation and EUI can help to
determine the potential savings that could be achieved by implementing different
categories of measures. At the same time, a study of the load profile patterns of
the selected and peer buildings can unveil possible scheduling and management
measures that can be implemented.

5.2.4 Retrofit effect prediction

The retrofit effect prediction module enables predictions of the potential savings
that might be obtained by implementing certain energy conservation strategies in
the buildings or facilities in analysis. The goal of this module is to identify the
relationship between the energy efficiency savings obtained with certain measures
and the characteristics of the buildings where the measures were implemented.
While the algorithm can work even when little data is available, the accuracy of
this module is connected to the level of detail of the set of characteristics available
for the buildings. The possible features that can be used for this recommendation
algorithm are displayed in Tables 5.1 and 5.2. It is evident the list mentioned goes
in a deep level of detail and that not all of this information might be known for
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the buildings in the platform. Nevertheless, as mentioned before, the proposed
methodology is scalable, in that if the data is available, it will be possible to harness
it to obtain more accurate results, while if some of the features are missing, it will
still be possible to obtain results, just to a lesser degree of accuracy. The algorithms
that have been shown to work best for this kind of tasks are tree-based model [181],
therefore a recommendation for a first implementation of this module can be to use
causal forests, random forests, or a gradient boosting methodology.

5.2.5 Selection of relevant measures with multi-label
classification

This module of recommendations has the goal of providing a list of possible
relevant measures for the selected building without including a range of potential
savings associated with these measures. This calculation is carried out only in
the case of not having a big enough sample of similar buildings to perform the
benchmarking-based recommendation or if there is not enough data about achieved
energy savings to perform a prediction of potential retrofit impact. Recommenda-
tions from this module are provided with a system similar to collaborative filtering.
A collaborative filtering system suggests to users items preferred by ‘similar’ people.
In the present application, the system suggests retrofit actions implemented by
similar buildings. Hence, the task of this module is two-fold: selecting buildings
similar to the one in analysis and selecting the most relevant measures implemented
among those buildings.

The approach chosen for this recommendation module is to treat the problem
as a multi-label classification problem. Each building in the platform is labeled with
m classes, equal to the total number of available measures present in the platform
that could potentially be applied in the analyzed building. A binary output is
assigned to each class for each sample: if the measure was implemented in the
building, this is represented by a value of one. Otherwise, a zero is assigned. The
model then learns from all the other buildings in the platform and tries to predict,
based on their characteristics and the characteristics of the building in analysis, the
most relevant measures to recommend. The result obtained for the target building
is, for each possible measure that could potentially be implemented, a rank between
zero and one, with the measures that are a better fit reaching a rank closer to
one. This could be comparable to running m separate binary classification tasks,
one for each measure considered, but multi-label classifiers have the advantage of
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allowing the treatment of multiple classes (measures) simultaneously, accounting for
correlated behavior among them as well. There are several algorithms that can be
used for multi-label classification. Some of the most renowned are: decision trees,
k-nearest neighbors, neural networks, and random forests [183].

5.3 Recommendation concept designs

In this section, some illustrations are shown of how the results from the concept
methodology presented in this chapter could be displayed in a platform containing
enough data to perform all the calculations described in the previous paragraphs.
In Figure 5.2, the results of the building energy benchmarking module are shown:
the EUI of the building is compared to the one of buildings of similar use and
geography, and then to all the buildings of similar use in the entire database. A
rough estimation of the savings potential for this building is performed by comparing
its EUI to the average EUI of the group of buildings selected for comparison.

Figure 5.2: Energy benchmarking for a hypo-
thetical educational building located in the UK
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In Figure 5.3, a heating and cooling benchmarking is performed, supposing
that by using load segmentation and characterization techniques it was possible to
estimate the heating and cooling load of all the analysed buildings, as well as their
change-point temperatures. From the analysis, it appears that the heating system
is a potential candidate to be targeted by energy conservation measures, since the
heating EUI of the analysed building is above the average EUI for the comparison
group.

Figure 5.3: Heating and cooling benchmarking for a
hypothetical educational building located in the UK

Finally, in Figure 5.4, the retrofit effect prediction calculations are shown,
where a scenario is given for the installation of a ground source heat pump in
the building. Information about expected energy, CO2, and economic savings is
presented, as well as some basic data about the selected building. Together with the
point estimates, uncertainty ranges for the expected savings are provided. These
uncertainty bands would depend on the amount of data used for comparison and
the affinity between the target building and the buildings where this measure was
also implemented.
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Figure 5.4: Retrofit effect prediction scenario for the installation of a ground
source heat pump in a hypothetical educational building located in the UK

5.4 Conclusions

The problem of recommending energy efficiency measures tailored to specific
buildings and predicting the effect of energy renovation strategies has been the object
of a wide range of studies. Most of these studies employ deterministic approaches
based on building energy simulation models. In recent years, the emergence of
several platforms containing smart meter energy data and building characteristics
has increased the interest of the research community towards the possibility of using
data-driven approaches to solve this kind of problems.

The methodology presented in this chapter analyzes big data contained in
building energy management platforms to determine savings potential for specific
buildings and recommend the implementation of suitable energy renovation strate-
gies. The process is based on the analysis of groups of similar buildings: through
the implementation of different algorithms, the savings potential of the analyzed
buildings is evaluated, and the relationship between the effect of energy retrofit
strategies and the characteristics of the buildings in which they were implemented
is estimated. The proposed methodology is highly dependent on the amount and
quality of the data available in the platform but has been designed in a way that
ensures scalability and robustness. When the available data is limited, preliminary
results are provided indicating the most relevant retrofit strategies for the building
in analysis, while increasingly accurate recommendations become available as more
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and more data from other buildings is included in the analysis. The robustness
of the presented recommendations is also ensured, by excluding from the analysis
the list of measures that are not compatible with the characteristics of the target
building.

The presented methodology goes in the direction of enabling the analysis of
large quantities of data from building energy management platforms and drawing
conclusions based on insights presented by the data. The proposed recommendation
methodology also enables the process of energy renovation prioritization within a
certain portfolio of buildings. Building managers and institutions frequently face the
challenge of having a financial budget for energy renovation programs but without
a clear way of determining which measures, and in which buildings, would yield the
highest savings and return on investment. The techniques discussed in this chapter
can help decision-makers with targeting the buildings which could benefit the most
from an energy renovation program and help to perform a preliminary screening
and financial analysis of the project.

While the research interest towards the topics discussed in this chapter is high,
the proposed methodology is still in a very initial stage. The presented analysis is at
a conceptual level, and in order to validate it a considerable work of data collection
is required. Nevertheless, knowing the potential results of the techniques presented
and the data required for their implementation is an important first step, meaning
that the methodology can serve as a guideline for the data collection process when
setting up a building energy management platform.
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Chapter 6

Conclusions

6.1 Summary and concluding remarks

This thesis is a study of how data-driven techniques can be used to reduce the
carbon footprint of the existing built environment and help the global transition
towards a sustainable future. Latest research trends have shown that digital tools are
becoming a fundamental asset to harness the energy savings potential of buildings
and facilities. This research aims to analyze state-of-the-art techniques in this field
and propose novel methodologies that can be used to evaluate and recommend
energy conservation strategies.

The lack of information about the impact of previously implemented and
planned retrofitting actions has been found as one of the main barriers to the
widespread implementation of energy renovation programs in buildings. Data-
driven approaches present a quick and cost-effective way to perform this kind
of analysis without the need for costly ad-hoc engineering studies or intrusive
monitoring. As more and more data is being collected in the buildings ecosystem,
statistical and machine learning techniques have the potential of harnessing this
data to provide actionable insights that can aid stakeholders and policymakers.

When it comes to performing measurement and verification calculations of
achieved savings in energy renovation projects, baseline energy models cover a
pivotal role. Thanks to these models, the counterfactual energy consumption can be
calculated, which represents the estimated energy consumption of the building if the
renovation actions did not take place. The accuracy of baseline model calculations
is representative of the accuracy of estimated energy savings, meaning that a more
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detailed and precise model can translate into increased confidence in the results
obtained and make energy efficiency more attractive to investors.

In this thesis, two novel data-driven methodologies are introduced, to estimate
energy consumption baselines in non-residential buildings. Both these approaches
are based on the results of a range of other statistical learning techniques that allow
to use different data sources to estimate typical consumption patterns, evaluate
weather dependence and characterize the consumption of the analyzed buildings.
The first of these two techniques is aimed at producing an accurate and robust
estimation of daily energy efficiency savings harnessing the information provided
by the recurrent daily consumption profiles identified in the buildings. The second
approach utilizes a Bayesian framework to generate hourly baseline predictions with
a special focus on accurately quantifying the uncertainty of the obtained results.

In the final part of this work, the possibility of combining the different data-
driven techniques introduced in the thesis to provide recommendations for the
implementation of energy conservation strategies in buildings is also studied. A the-
oretical description is provided of how a recommendation and prioritization system
could be implemented in a big data building repository to support stakeholders in
the planning of energy retrofitting projects.

6.2 Contributions

The main contribution of this thesis is a study of the value of data-driven
methodologies to reduce the energy consumption of the built environment, and more
specifically to evaluate and recommend energy efficiency strategies in buildings and
facilities. Each chapter of this work contributed to the development of this goal.

Chapter 2 presents a detailed review of state-of-the-art techniques currently
used to verify energy efficiency savings and predict retrofitting scenarios in buildings.
Special attention is given to data-driven techniques, as they prove of high interest
because of their cost-efficiency and easy scalability. The data-driven baseline
estimation methods analyzed are classified in statistical learning techniques, machine
learning techniques, and Bayesian methods. The strengths and weaknesses of each
of these approaches are also studied and schematized.

The third chapter presents a novel approach for the measurement and verifi-
cation of energy efficiency savings at daily scale in non-residential buildings. This
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methodology is tested in different case studies with simulated and real data and is
compared to one of the main state-of-the-art methodologies used for measurement
and verification, showing comparable or better accuracy and higher robustness to
missing data. The approach is also characterized by low minimum data requirements
and the ability to provide additional actionable insights to users together with the
savings estimations.

In Chapter 4 another data-driven methodology is introduced. This novel
approach can be used to estimate hourly energy baseline predictions and characterize
the consumption of the analyzed buildings. The methodology is based on a Bayesian
linear model that uses clearly interpretable terms, making it easily explainable to
technical as well as non-technical stakeholders. The Bayesian framework also offers
a coherent and robust estimation of uncertainty, meaning that this approach could
potentially be employed to perform de-risking assessments in the energy efficiency
field. The techniques presented in this chapter were tested on one of the largest
open repositories of non-residential building energy data.

Chapter 5 presents a concept methodology to recommend and prioritize energy
efficiency strategies in buildings. This kind of analysis is usually performed with
deterministic methods, tailored to the specific buildings in study. The approach
proposed in Chapter 5, on the other hand, is data-driven and its core principle
is to harness the information contained in big data building repositories. The
process is based on the analysis of groups of similar buildings and the possibility to
map achieved savings from certain retrofit programs to the characteristics of the
buildings where the programs were implemented. The potential data requirements
for implementing this recommendation and prioritization module in a building
energy management platform are also outlined, meaning that they can be used as a
guideline for the data collection process when building a platform of this sort.

6.3 Future research

The research carried out in this thesis opens different lines of research work for
the future.

1. The measurement and verification methodologies presented in Chapter 3 and
4 could be enhanced by including a module that assesses the extra benefits
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associated with the achieved savings, depending on the grid conditions at the
day and hour in which the savings occurred.

2. An improvement of the Bayesian methodology introduced in Chapter 4 could
be attempted by using the obtained change-point temperatures to perform load
segmentation calculations in the analyzed buildings. Techniques to aggregate
the uncertainty estimated at hourly level to the one associated with whole
energy efficiency programs could also be investigated.

3. The methodology presented in Chapter 5 for recommendation and prioritiza-
tion of energy retrofitting projects should be validated with collected data
from buildings. This would mainly consist of a big dataset that includes
building energy consumption data, information about implemented retrofit
measures with relative savings, and characteristics of the buildings.

4. Finally, all of the techniques introduced are based on data and, as such, could
benefit from further validation and testing with different data from the one
that was analyzed in this thesis. This could be obtained by integrating the
presented techniques as analytics modules within a big data building energy
management platform.
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Three different articles were published in peer reviewed scientific journals
stemming from the research work of this doctoral thesis. The mentioned journals
are Renewable and Sustainable Energy Reviews, Applied Energy and Energies. The
table below shows the JCR metric characteristics for these journals, for the year
2020.

JCR journal metrics for Renewable and Sustainable Energy Reviews, Applied
Energy and Energies

Journal Name JIF 2020 Q 2020 Rank Category

Renewable and Sustainable
Energy Reviews 14.982 Q1 Green & Sustainable

Science & Technology
Applied Energy 9.746 Q1 Energy & Fuels
Energies 3.004 Q3 Energy & Fuels

1. Grillone B., Danov S., Sumper A., Cipriano J., Mor G. A review of determin-
istic and data-driven methods to quantify energy efficiency savings and to
predict retrofitting scenarios in buildings. Renewable and Sustainable Energy
Reviews, 2020; 131: 110027, https://doi.org/10.1016/j.rser.2020.110027

2. Grillone B., Mor G., Danov S., Cipriano J., Sumper A. A data-driven method-
ology for enhanced measurement and verification of energy efficiency savings in
commercial buildings. Applied Energy 2021; 301: 117502, https://doi.org/10.10
16/j.apenergy.2021.117502

3. Grillone B., Mor G., Danov S., Cipriano J., Lazzari F., Sumper A. Baseline
energy use modeling and characterization in tertiary buildings using an in-
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One conference article related to the work developed in this thesis was also
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