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Abstract 8

Background. The study of the deformation of curved rods sub- 9

jected to bending and its associated stress state is a complex task 10

that has not been treated in depth in the literature, which makes dif- 11

ficult to obtain constitutive models or Finite Element Models (FEM) 12

in which it is necessary to know all the components of the stress and 13

strain tensors. 14

Objectives. This study focuses on a new calculation methodology 15

to obtain stress and strain tensors of curved rods under bending. 16

Methods. The stress and strain tensors have been determined based 17

on the theory of continuum mechanics and differential geometry of 18

curves (moving bases), in a general methodology and valid for large 19

strains, curved geometries and variable cross-sections along the spec- 20

imen. This has been applied to the human rib and, in addition, a 21

new experimental method for bending of curved specimens based on22

Digital Image Correlation (DIC) is presented.23

Results. Both the test method and the proposed calculations ap-24

plied to the human rib show results according to expectations, allow-25

ing to know the rib curvature changes along the test, the stresses and26
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strains along the rib and the components of both stress and strain27

in all directions, in order to build the stress and strain tensors. In28

addition, the results of stress, strain and young’s modulus correspond29

to those of previous literature in tensile testing of human rib cortical30

bone.31

Conclusions. The proposed calculations allow the construction of32

the strain and stress tensors of a curved specimen subjected to bend-33

ing, which is of great importance for the development of constitutive34

models. Moreover, since with this method it is possible to calculate35

both tensors along the entire length of the specimen and in all di-36

rections, it is possible to apply this method in finite element models.37

Finally, the new test methodology allows to know the stress and strain38

in curved specimens such as the human rib, from bending tests.39

KEYWORDS: Human rib, mechanical properties, bending testm dig-40

ital image correlation.41

Nomenclature42

CSSR - Cross Sectional Stress Resultants (axial force, bending moments, ...)43

DIC - Digital Image Correlation44

FEM - Finite Element Method45

mCT - micro-Computed Tomography46

47

1 Introduction48

The mechanical characterization of a biological tissue provides relevant infor-49

mation regarding its mechanical behavior and the load that can be applied50

before reaching the fracture or a permanent deformation [1, 2]. The mechani-51

cal properties are the data source for the finite element models (FEM) widely52

used for predicting the behavior of a solid [3, 4]. In fact, FEM include three-53

dimensional constitutive models developed on the basis of experimentally54

determined mechanical properties [5, 6], and that is the reason why simple55

one-dimensional constitutive relations are less useful when the general be-56

havior of a solid needs to be known, specially in non-isotropic materials as57

remarked in some research studies [7].58

The most common mechanical tests from which stress and strain tensors59

can be obtained are the tensile tests [8, 9]. However, in this type of loading 60

the stress and strain tensors take a particularly simple form, which does not 61
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always allow distinguishing adequately the effect of different parameters in 62

constitutive models for nonlinear elastic materials [10, 11, 12]. Due to this 63

fact, other tests such as bending tests can be used [13, 14, 15]. In this more 64

complex loading situation, additional components appear in the stress and 65

strain tensors, and this allows determining more constitutive parameters. 66

However, the implementation of the stress and strain tensor calculations in a 67

bending load is not easy for materials with nonlinear constitutive equations, 68

and the task is even more difficult if the specimen is not a straight rod and 69

does not have constant cross-section. 70

A case of this type of difficulties is found for example in human bones, which 71

present and added difficulty if they are curved, as it happens in human ribs 72

(once the micro-cracking process is advanced). In fact, human rib has been 73

taken as an instance of the general methodology proposed in this article. For 74

viscoelastic or nonlinear elastic materials, the approach based in Euler or 75

Timoshenko beam theories is not suitable, because of the intrinsic nonlin- 76

ear material behavior, which is not taken into account in the ordinary beam 77

theory. In the case of human ribs, these drawbacks are reflected, in the fact 78

that only a limited number of constitutive parameters can be obtained, usu- 79

ally reduced to parameters related to properties in the direction tangent to 80

centerline (barycentric line). In addition, many studies do not proportionate 81

stress and strain in their tensor form [16, 17], and this limits the possibility 82

to use these methodologies for fitting nonlinear constitutive models. 83

Therefore, in many cases the determination of mechanical properties is com- 84

plex in curved rods under bending, but in practice, it is usually a large-strain 85

problem that can be treated by moving frames and differential geometry of 86

curves. This would allow the determination of stress and strain accurately 87

and throughout the specimen. 88

For all the above reasons, this study focuses on the development of a new 89

methodology for the calculation of the strain and stress tensors in curved rods 90

under bending load and where large strain occurs. This methodology is based 91

on the continuum mechanics theory and the differential geometry of curves 92

for dealing with co-moving vector frames. Furthermore, this method has93

been applied to a widely studied, but incompletely solved case: the human94

rib. For this purpose, a new methodology for bending tests of curved rods,95

applicable to complete ribs, has been developed. In this paper, it is detailed96

how to compute stress and strain tensors from the displacements obtained by97

DIC procedures and the measured forces on the rib from a bending test for98

complete ribs. This kind of data make the developed methodology suitable99
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for finding constitutive parameters in the case of nonlinear materials, as it is100

experimentally shown.101

2 Strain and stress calculus for planar curved102

rods103

The three-point bending problem has been extensively analyzed by means of104

beam theory. In this kind of analysis, a dimensional reduction from 3D to105

1D is carried out. This allows us to reconsider the mathematical form of the106

problem in terms of forces, bending moments and displacements, instead of107

in terms of stress and strain components. This dimensional reduction has108

allowed to obtain many exact analytical solutions which are very well docu-109

mented in the literature for the elastic beam problem [18, 19, 20, 21, 22].110

Unfortunately, classical models in beam theory (Timoshenko’s and Euler’s 111

versions) assume a linear relation between stress and strain components, and 112

for this reason are not suitable for characterizations of nonlinear materials. 113

In addition, when DIC techniques are used, the approach based in beam the- 114

ory does not provide information about the distortion of the cross-section. 115

Even interesting works dealing with some degree of nonlinearity do not con- 116

sider nonlinear constitutive equations [19, 20, 23] and due to this, this paper 117

considers some aspects arising in the nonlinear case. 118

2.1 Coordinate system used for curved rods 119

When analyzing a curved rod, it has to be taken into account that its progres- 120

sive deformation produces changes of its curvature and, thus, the geometry 121

of the centerline varies with strain. For this reason, in a curved rod it is more 122

appropriate to use the differential geometry of curves, i.e., the Frenet-Serret 123

frame and its associated formulas, to deal with the change of curvature and 124

the geometry of the barycentric line. The Frenet-Serret vector basis {t,n,b} 125

will change in orientation between different material points on the rod and 126

between different configurations, related to different strain levels. 127

128

For any point on the rod, t is the tangent vector to the barycentric line129

(and therefore is perpendicular to the cross-section of the rod), and the nor-130

mal n and binormal b vectors are contained in the cross-section of the rod: n131

is directed in the vertical towards the curvature center, and b is orthogonal132
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to both t and n, hence “bi-normal” (see Figure 1). The position of a material133

point on the curved rod can be defined with curvilinear coordinates (ξ, η, ζ)134

as the distance ξ (arc length) along the barycentric line from the coordinate135

origin O to the centroid of the section containing the point plus the distances136

η, ζ directed in the n and b directions, respectively.137

138

Figure 1: Location of the Frenet-Serret frame in a curved rod, applied to the rib; the
frame {X,Y,Z} is centered in the extreme of the rib and the tangent vector t is directed
along the barycentric line at any point. A material point on the rib is defined with the
curve coordinates (ξ, η, ζ), where ξ is the arc length from O to the centroid of the section
that contains the point and η, ζ are the distances over the section in the directions n and
b respectively (being n the vertical direction and b the depth direction).

It should be noticed that in a planar problem, the barycentric line is139

always contained in a plane (in this case, the XY plane). This plane is140

chosen to be orthogonal to the binormal vector b, which is constant for a141

planar bending problem. In these circumstances, the barycentric line can142

be defined by a polynomial y(x) that allows to describe its geometry and143

compute the vector trihedron {t,n,b}, with respect to a fixed ortogonal144

basis {ı̂, ̂, k̂}, as: 145
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t =
1

√
1 + [y′(x)]2

ı̂ +
y′(x)

√
1 + [y′(x)]2

̂

n =
y′(x)

√
1 + [y′(x)]2

ı̂ −
1

√
1 + [y′(x)]2

̂

(1)

being b = −k̂. The derivatives of the trihedron define the kinematic properties 146

of a material point or particle through the Frenet-Serret formulas [24]: 147

t′ = τn, n′ = −χt + τb, b′ = −τn (2)

where χ is the curvature and τ the torsion. When dealing with a planar 148

situation, the torsion is τ = 0 and the curvature can be computed as: 149

χ = y′′(x)
[1 + (y′(x))2]3/2

(3)

2.2 Strain computation for curved rods 150

Once defined the reference system and the coordinates to be used, two con- 151

figurations are considered: the initial undeformed curve configuration before 152

the deformation and the deformed configuration after the change in shape, 153

whose curvature has varied. Let us assume then that the deformation from 154

one curve to the next deformed curve involves an intermediate configuration 155

in which the rod has been unbent (reference configuration), see Figure 2. 156

The transitions from the reference configuration to the initial and the
deformed configurations can be defined with the mappings ϕ0 and ϕ respec-
tively:

⎧⎪⎪⎨⎪⎪⎩

(ξ, η, ζ) ↦ ϕ0(ξ, η, ζ) =R(ξ, η, ζ) =Rax(ξ) + ηN(ξ) + ζB(ξ)

(ξ, η, ζ) ↦ ϕ(ξ, η, ζ) = r(ξ, η, ζ) = rax(ξ) +Λ(η)[ηn(ξ) + ζb(ξ)]
(4)

being {T ,N ,B} and {t,n,b} the basis vectors of the Frenet-Serret frame in 157

the initial and deformed configurations respectively, R and r the point posi- 158

tion and Rax, rax the position of the centroid of the cross-section containing159

the material point. The kinematic hypothesis for deformation under bending160

used in equation (4) is similar to the results used in asymptotic analysis of161

elastic curved rods [19, 21]. The function Λ(η) describes the distortion of the162
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Figure 2: Schematic view of the three configurations used: (top) initial undeformed con-
figuration, (center) [straight] reference configuration and (bottom) deformed configuration.
The mappings φ0 and φ apply the reference configuration in the undeformed configuration
and the deformed configuration respectively.

cross-section due to the Poisson effect, and it will be computed later. For the163

moment, it is advanced that the function Λ(η) is representable by a power164

series of the form:165

Λ(η) = 1 +
∞

∑
k=1

fk(ν̄)(χ − χ0)kηk (5)

with ν̄ = ν̄(λ) a Poisson function which depends on the maximum stretch166

λ in the cross-section. Inside the summation term, χ is the curvature in a167

deformed configuration, χ0 the initial curvature (in the undeformed configu-168

ration) and fk(ν̄) are functions to be determined that satisfy fk(0) = 0 [for a169

linear isotropic elastic material ν̄ reduces to ordinary Poisson ratio ν0]. We170

will see in equation (15) that this conjectured form for Λ(η) is correct. 171

172

From the kinematic hypothesis (4), the deformation gradient F = (F i
J) = 173

(∂ri/∂θJ) can be computed as the composition F = Dϕ ○Dϕ−1
0 of both map- 174

pings, where D(●) denotes the Jacobian matrix of a mapping. The columns 175

of the Jacobian matrix are defined as Ui for the initial mapping ϕ0 and ui 176

for the final (spatial) mapping ϕ and correspond to the derivatives of R and 177

r with respect to the coordinates (θ1, θ2, θ3) = (ξ, η, ζ) respectively. 178
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The Jacobian matrix of the map ϕ is given by: 179

Dϕ = [∂r
i

∂θj
] = [u1,u2,u3] = [t +Ληn′ +Λζb′, (Λ +

∂Λ

∂η
η)n +

∂Λ

∂η
ζb, Λb]

(6)
where ui represent column vectors forming together the Jacobian matrix 180

Dϕ. Introducing the well known Frenet-Serret formulas (2) and the planarity 181

condition τ = 0: 182

Dϕ = [u1,u2,u3] = [(1 −Ληχ)t, (Λ +
∂Λ

∂η
η)n +

∂Λ

∂η
ζb, Λb] (7)

Following the same steps for the ϕ0 mapping, with torsion τ0 = 0, and oper- 183

ating its inverse: 184

Dϕ−1
0 = [

∂RJ

∂θj
]
−1

=
1

1 − ηχ0

[U2 ×U3,U3 ×U1,U1 ×U2]T

=
1

1 − ηχ0

[T , (1 − ηχ0)N , (1 − ηχ0)B]T

(8)

The composition of both matrices allows us to obtain: 185

F =
1 −Ληχ

1 − ηχ0

t⊗ T + (Λn + η
∂Λ

∂η
n) ⊗N + ζ

∂Λ

∂η
b⊗N +Λ b⊗B (9)

Now to compute the above expression in the spatial basis {t,n,b}, we ob- 186

serve that vector basis the Frenet–Serret trhiedron in initial configuration is 187

nothing more than a rotation of the deformed basis given by an angle α (see 188

Figure 1), and B = b, therefore: 189

F =
1 −Ληχ

1 − ηχ0

t⊗ (cosα t − sinα n) + (Λn +
∂Λ

∂η
ηb) ⊗ (sinα t + cosα n) + . . .

⋅ ⋅ ⋅ + ζ
∂Λ

∂η
b⊗ (sinα t + cosα n) +Λ b⊗ b

(10)
In order to simplify the above expression, we define a curvature change factor 190

κ, as: 191
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κ ∶=
1 −Ληχ

1 − ηχ0

(11)

Using the parameter κ, the spatial components of the deformation gradient 192

given in equation (10) can be written as: 193

Fs =
⎡⎢⎢⎢⎢⎢⎣

κ cosα −κ sinα 0
(Λ + ηΛ′) sinα (Λ + ηΛ′) cosα ζΛ′

(η + ζ)Λ′ sinα (η + ζ)Λ′ cosα Λ

⎤⎥⎥⎥⎥⎥⎦
(12)

From this form, the (spatial) Eulerian–Almansi strain tensor ε(s) = (I − 194

F−T
s F−1

s )/2 is given by:195

ε(s) =
1

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −
1

κ2
0 0

0 1 −
Λ2

p22(Λ,Λ
′
)

−

(η + ζ)2Λ′

p2(Λ,Λ′)

Λ′Λζ

p22(Λ,Λ
′
)

+

p1(Λ,Λ
′
)(η + ζ)Λ′

p2(Λ,Λ′)

0
Λ′Λζ

p22(Λ,Λ
′
)

+

p1(Λ,Λ
′
)(η + ζ)Λ′

p2(Λ,Λ′)
−

(ζΛ′)2

p22(Λ,Λ
′
)

+

p21(Λ,Λ
′
)

p2(Λ,Λ′)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(13)

where the polynomials p1(Λ,Λ′) and p2(Λ,Λ′) have the form:196

⎧⎪⎪⎨⎪⎪⎩

p1(Λ,Λ′) = Λ +Λ′η ≈ Λ,

p2(Λ,Λ′) = Λ(Λ +Λ′η) − ζ(η + ζ)Λ′2 ≈ Λ2

When ∣(χ − χ0)η∣ << 1 the above approximations in the last equations hold,197

if Λ(η) >> ηΛ′(η) and Λ(η) >> ζΛ′(η). In the same approximation regime,198

the Eulerian–Almansi strain tensor reduces to:199

ε(s) ≈ 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −
1

κ2
0 0

0 1 −
1

Λ2
0

0 0 1 −
1

Λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

The above equation is asymptotically valid for a curved rod of nonlinear200

isotropic material (or of transversally isotropic material where the preferred201

direction is tangent to the centerline, which is the case for human ribs).202
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Because of the Poisson effect in a bending situation we have ε
(s)
yy = ε(s)yy = −ν̄ε(s)xx203

and this conditions allow to find the function Λ(η):204

1 −
1

Λ2
= −ν̄ (1 −

1

κ2
)

Because of the equation (11) for κ, the above equation leads to a fourth-degree205

polynomial equation in Λ. But since we depart from the asymptotically206

valid equation (14), keeping the same order of approximation, the following207

aproximation for κ ≈ (1 − ηχ)/(1 − ηχ0) is used, obtaining the convenient208

asymptotic equation:209

Λ(η) ≈ κ̃√
1 + (1 + ν̄)(κ̃2 − 1)

= 1 − χη
1 − χ0η

[1 + (1 + ν̄)(
(1 − χη)2

(1 − χ0η)2
− 1)]

−1/2

(15)
For a linear elastic material, ν̄ reduces to the Poisson ratio; but for a nonlinear210

material it takes a specific form associated with a plane stress state for the211

planar rod (see section 7). Now, it is clear by calculating the Taylor series in212

η that the function Λ(η) has the mathematical form (5), as it was claimed.213

2.3 Stress computation for curved rods 214

In the calculation of stress from forces, we encounter a difficulty: Navier’s 215

formula for the calculation of stresses from CSSR (axial force and bending 216

moments) is not valid for a nonlinear material. This makes it impossible 217

to determine the stress components σij directly from the section resultants, 218

i.e., axial force and bending moments. This difficulty can be overcome by 219

calculating the CSSR directly from the strains and the parameters of the 220

constitutive equation of the elastic material (every Cauchy elastic material 221

admits a constitutive equation), so one has, for example, that: 222

σxx = f(εsij;µ1, . . . , µn) = f̄µk(εsij) (16)

where εsij is the spatial Eulerian–Almansi strain tensor and µk are the consti- 223

tutive parameters that are intended to be determined through the bending 224

test. For an isotropic or transversely isotropic nonlinear elastic material with 225

deformation given by (14), the above relationship leads to an equation of the 226

form: 227
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σxx = f̄µk(εsxx, εsyy, εszz) = f̄µk(εsxx,−ν̄εsxx,−ν̄εsxx) =∶ Fµk(εsxx) (17)

The equations (14) and (11) allow us to express the stress as a function of 228

the current curvature, the initial curvature, and the coordinate η along the 229

radii of curvature: 230

σxx = Fµk (
1

2
⋅ 1 −Ληχ

1 − ηχ0

) (18)

The function Fµk , typically, is a known function with unknown constitu- 231

tive parameters (µ1, . . . , µn) and the bending test is intended to determine 232

the values of such parameters. This objective can be achieved considering 233

that the axial force and bending moments as a function of the constitutive 234

parameters: 235

N̂
(µk)
x = +∫

Ω
Fµk (

1 −Ληχ

2(1 − ηχ0)
) dηdζ

M̂
(µk)
η = +∫

Ω
Fµk (

1 −Ληχ

2(1 − ηχ0)
) ζ dηdζ

M̂
(µk)
ζ = −∫

Ω
Fµk (

1 −Ληχ

2(1 − ηχ0)
) η dηdζ

(19)

Then, the parameters (µ1, . . . , µn) can be found by minimizing the function: 236

Φ(µ1, . . . , µn) =
N

∑
j=1

[(N (j)x − N̂ (µk)x )2L2
aw

2 + (M (j)
ζ − M̂ (µk)

ζ )2 + (0 − M̂ (µk)
η )2]

(20)
Thus, the difficulty of determining the stress from CSSR in a straightforward 237

way can be circumvented by directly minimizing those forces and moments, 238

rather than trying to approximate the stress with a Navier-like formula. No- 239

tice that in the above residue function Φ, we have taken into account that, 240

for a rod bent in the plane, it is expected that M
(j)
η = 0. In the above for- 241

mula, the length La has been introduced to homogenize dimensionally the 242

function Φ (the factor w is an adimensional “weight” calibrated to ensure a 243

good fitting, and La can be chosen as L2
a = area). 244

Once the constitutive parameters (µ1, . . . , µn) have been determined, the 245

stress σxx can be calculated a posteriori from the constitutive equation (16).246
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In addition, in many cases the complexity of the equations (19) can be247

avoided by considering a Taylor series for Φ(µk) (see appendix section 8).248

Moreover, for a thin wall structure like a rib, the effect of nonlinearity in the249

stress is limited because the third area moments are very low, see example250

computations in the appendix.251

2.4 Application to human ribs252

The characterization of the human rib has been well studied in recent years253

[9, 25, 26, 27], but the mechanical properties of bending tests in the literature254

are based on the linear elastic theory of beams and ignore the distortion of255

the cross-section. These two factors combined can produce large departure256

in the computation of the actual stress and strain in a sample.257

In addition, the human rib has a remarkable and non-constant curvature, as258

well as a variation of the cross-section along the centerline [28]. That is why259

most of the research, both in human rib bending tests and in other curved260

samples, is focused on the determination of the mechanical properties in the261

fracture section once its location is known, without the chance to calculate262

these values in other points of the material before the failure. Moreover,263

given the difficulty of testing curved samples as in the case of the rib, many 264

experimental designs are based on tests of rib sections or the placement of 265

supports whose position on the rib varies throughout the test. 266

Many of the above difficulties can be solved using computations for initial 267

curved rods in the regime of semi-large strain regime, see section 7. 268

3 Data and methods 269

3.1 Materials 270

Human rib specimens were harvested from forensic autopsies conducted at 271

the Forensic Pathology Service of the Legal Medicine and Forensic Science 272

Institute of Catalonia (IMLCFC), which were initially removed for comple- 273

mentary medico-legal investigation. This study was approved by the Re- 274

search and Ethics committee of IMLCFC. For this study, the entire 4th rib 275

of post-mortem human subjects was used. Some human ribs were used for 276

showing how the previous methodology works for curved bones. For the em- 277

pirical validation of the methodology, a total of 17 ribs from 10 PMHS were 278

12



used: 7 male and 3 female individuals (from some individuals, both left and 279

right ribs were used). The average age of the subjects was 51±11 years (from 280

26 to 62 years) and body mass index (BMI) of 30.4± 5.4 kg/m2. Prior to the 281

experimental tests, the soft tissue and cartilage was removed. 282

283

3.2 Experimental tests 284

For the bending test considered in this study, the entire ribs were subjected 285

to three-point bending tests following a new test methodology. The aim of 286

this test is to allow a free sliding and opening of the rib extremes in order 287

to determine the maximum displacements and deflections along the rib and 288

compute the stress and strain. An overview of the experimental test is shown 289

in Figure 3.

Figure 3: Bending test scheme: the rib is placed in the plane, with its extremes inside
the guide and the outer middle region in contact with the impactor. Safety bars protect
against the rib slipping out of the plane.

290

The bending tests were performed with a Zwick® ProLine 20 and loads 291

were measured with a load cell of 2000 N coupled to a data acquisition sys- 292

tem (Spider 8-30 from HBM®). The experimental setting consisted of a guide 293

placed in the upper platform of the test machine, where the extremes of the 294

rib are introduced, and an impactor placed in the lower platform, which ap- 295

plies the force in the outer middle region of the rib, so that the extremes of 296

the rib slide along the guide. The upper U guide was made of steel, inside 297
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which an aluminum guide was fixed to reduce the friction of the rib ends 298

when sliding. To minimize friction, the guide was kept lubricated, and the 299

rib ends were coated with polytetrafluoroethylene band. On the other hand,300

the lower assembly consisted of an aluminum prismatic base to which a pris-301

matic impactor was attached. This type of impactor was chosen because302

in previous tests with cylindrical impactors, localized damage was detected303

that induced a stress concentration, locally damaging the sample; however,304

the objective of this experimental test was to calculate the maximum stress305

of the rib in the macroscopic fracture. In addition, four aluminum bars were306

fixed to the prismatic base to provide protection to the test in case of a lat-307

eral slide of the rib (the bars were never in contact with the sample).308

The whole test was recorded with a high-speed camera and the video was309

then processed following a DIC procedure with Matlab® to determine the310

displacements of the selected points along the contour of the rib during the311

test and to compute the strain tensor as explained in the following sections.312

313

The objective of this experimental testing was to show that the basic me-314

chanical properties obtained from the proposed bending test methodology do315

not differ significantly from a similar sample of coupons machined from the316

cortical part of the ribs and tested in tensile tests. The 83 specimens used 317

for tensile tests were the same specimens considered in some previous papers 318

of the same authors [12]. 319

The comparison of the results obtained from the two different testing method- 320

ologies is intended to show the adequacy of the new proposed bending method- 321

ology. In addition, in some cases, the more complex stress-strain state pro- 322

duced in bending allows to distinguish some constitutive parameter that in 323

a tensile test can be confused. 324

3.3 Digital Image Correlation procedure 325

The bending test is recorded in video, and for each video frame a set of 326

specific points or landmarks are tracked by means of DIC procedures using 327

a Matlab® script. Remarkably the script was originally developed for a 328

different experimental setting related to tensile test[10, 12]; however a clever 329

use of the DIC procedures allows use it for the bending test as explained in 330

sections 2.1 and 2.2 thanks to the formulas of differential geometry of curves. 331

Specifically, for application of the DIC procedure, the video was decom- 332

pressed in frames, and in the first frame of the test a line mesh of points was 333
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Figure 4: Points defined for the motion tracking with DIC procedures; line of points
defined on the guide and at the intersections of the inner and outer contours of the rib
with the rubber bands.

created on the guide to determine its position at each moment. On the other 334

hand, to compute the displacements of the rib, different points or landmarks 335

were defined over in the inner and outer contours of the rib to be tracked by 336

the software. For this purpose, before the test some elastic bands were placed 337

in different positions of the rib, to allow the tracking of their positions along 338

the test (see Figure 4). With the use of a Computerized Tomography (CT) 339

of human rib it has been verified that the error committed in considering the 340

barycentric line as the middle point of the contours is 3%, whose maximum 341

error corresponds to 0.4 mm at the central region where the rib breaks. Thus, 342

the intersections of each elastic band with the upper and lower contours of 343

the rib were tracked by the software, and the middle position of each pair of 344

elastic band intersections was considered to belong to the barycentric line. 345

Those set of the mentioned positions was known in each frame, thus defining 346

the geometry of the barycentric line of the rib throughout the test.347
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3.4 Specific computations for strain and stress348

An accurate computation of the strain requires computing adequately the349

barycentric line. The barycentric line of the rib in each testing time t was350

approximated by a polynomial yt(x) fitted to the points whose positions351

define the barycentric line. On the basis of the positions of each point of the352

centerline, the tangent t and normal n vectors, as well as curvature ξ were353

determined.354

The CSSR could be computed from the reactions in the extremes of the rib of355

each deformed configuration. Defining Lx as the horizontal distance between356

the ends of the rib, we have Lx = a + b and being a the longitudinal distance357

from the anterior end to the application location of the vertical force F and358

b the distance from the force application to the posterior end. The reactions359

were Rp = Fb/Lx ̂ and Ra = Fa/Lx ̂ and so:360

0 ≤ x < a ∶ Nx =Rp ⋅ t, Vη =Rp ⋅n, Mζ =Rp x

a ≤ x < b ∶ Nx =Ra ⋅ t, Vη =Ra ⋅n, Mζ =Rax +F (x − a)
(21)

Being Nx the axial force, Vη the shear force and Mζ the bending moment.361

With these data, a fitting procedure can be carried out by minimizing a func-362

tion of the same form as Φ defined in (20). The strain tensor in the fracture363

region was calculated using equations (14).364

365

On the other hand, for computing explicitly the stress a previous fitting366

of the constitutive parameters from the CSSR is required. Then, from these367

parameters, the stress can be computed from constitutive equation (16).368

4 Results369

The proposed bending methodology has been implemented to 4th level hu-370

man rib bending tests from deceased human subjects to obtain data com-371

parable with other testing methodologies, and to assess the adequacy of the372

proposed procedures. The 4th human rib can be a represented as a curved373

rod [mainly] contained in a plane. The selected coordinate system is shown374

in the Figure 1 and all the computations are implemented in that coordinate375

frame. In the bending tests, the ends of the ribs were coated with polyte-376

trafluoroethylene bands and kept lubricated to reduce friction and introduced377
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in a U guide contained in the plane containing the centerline of the 4th rib.378

The test force of bending was directly applied on the central outer surface of379

the rib and, as the force increases, the rib ends freely slide in opposite direc-380

tions along the guide, resulting in a change in shape. The positions of the381

midpoints of the rubber bands along the test were obtained by following the382

DIC procedure described in the previous section (see Figure 4). As shown383

in Figure 4, the geometry of the rib changes as the load increases. This 384

change of geometry is represented in Figure 5(a), where it can be seen the 385

initial barycentric line of the rib (y0), the barycentric line after a certain test 386

time when the load increased (yf real), and this same central line which was 387

rescaled in length X to the initial length in order to compare the changes in 388

curvature between both initial and deformed configurations (yf ). In Figure 389

5(b), the curvature of the barycentric line along the rib for the initial (χ0) 390

and deformed (χ) configurations is represented. As it can be seen, the higher 391

decreases in curvature are observed in three regions along the rib, which are 392

indicated in Figure 5, where the maximum curvature decrease occurs in the393

central region of the rib. Around this three regions, the rib is being straight-394

ened as the bending force increases.395

396

The spatial strain tensor ε(s) and the Cauchy stress tensor σ were cal-397

culated. For the strain tensor, only the components ε
(s)
xx , ε

(s)
yy and ε

(s)
zz are398

non-zero, while ε
(s)
xy = ε(s)xz = ε(s)yz = 0. Using the proposed procedure, all those399

components can be computed for any point of the rib once the geometrical400

parameters are known. The higher strain and stress occur in the upper and401

lower fibers of the rib, being the longitudinal ε
(s)
xx component those of maxi-402

mum values with respect to the other components.403

404

To show the results obtained from the proposed calculation procedure,405

the inner fiber of the rib was used. The strain tensor in each point defined406

by the rubber bands was computed using its particular geometrical proper-407

ties, which vary in each section. Curvature was previously computed in each408

time of the test and each point along the barycentric line and η was the409

distance from the barycentric line to the upper fiber.410

Figure 6(a) shows the deformation profile along the upper fiber of the rib,411

whose position is indicated by the horizontal initial position X. As expected, 412

the profile is similar to that of curvature change (Figure ??). In Figure 6(b), 413

the strain values are plotted versus the change in curvature, and there is a414
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Figure 5: (a) Initial (gray line), deformed (black dot line) and deformed rescaled (black
line) configurations of the rib. The three regions of maximum curvature variation are
represented with the gray zones, whose maximum variation corresponds to the dotted
vertical lines. (b) Curvature of the rib along the barycentric line, represented with the
horizontal position between the extremes; initial curvatures χ0 before increasing the load
and Final curvatures χ once the maximum force is achieved.

clear correlation between curvature change and strain as expected. On the415

other hand, axial and shear forces, as well as bending moment, were com-416

puted for each time of the test and along the whole rib. With these data and417

the geometrical parameters, the stress component σ
(s)
xx was obtained, being418

the rest of the components negligible. The axial stress profile for the final419

load is shown in Figure 7. As it can be seen, the maximum principal stress420

is reached near the point where the force is applied. The shear component,421

ignored in equation (14), was computed using the well-known Collignon–422

Jorawski formula to ensure its value is not relevant compared to the axial423
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(a) (b)

Figure 6: (a) Final longitudinal strain in each position along the rib and load application
position. (b) Plot of final longitudinal strain along the rib and increase in curvature from
the initial configuration and trend line. The maximum strain occur at the points where
the curvature changes the most.

stress. The shear stress did not exceed in any case 6± 0.6% times the axial424

stress, and can be neglected for determining the principal stress σI . In the425

present case σI = (σxx +
√
σ2
xx + 4σ2

xy)/2 < 1,005σxx.426

427

From the values of strain and stress during the whole test, the stress-428

strain curves and main mechanical properties can be obtained. The Young429

modulus of different bending tests of ribs were computed from the slope of430

the elastic region of the stress-strain curves of the fracture section. The re-431

sults obtained for bending tests were compared with tensile test results from432

coupons (dog-shape) manufactured from cortical rib bone in complementary433

studies [12], which were contrasted with the literature. The average values 434

of the mechanical properties of tensile and bending tests are represented in 435

Figure 8. It can be seen that the mechanical properties of bending tests 436

are similar to those obtained for tensile tests. The strain value obtained is 437

176±62 MPa, within the range of the values of 153−185 MPa obtained by 438

other studies [17, 26]. The same is observed with the Young modulus, which 439

average value is 15.4±5.6 GPa, being the literature values of those studies of 440

11.9−20 GPa. 441

442
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(a) (b)

Figure 7: (a) Axial stress profile along the upper contour of the rib. (b) Stress-strain
curve using the principal components of both tensors in the central section of the rib,
corresponding to the fracture section.

(a) (b) (c)

Figure 8: (a) Axial stress, (b) axial strain and (c) Young Modulus average values for
both tensile and bending rib tests. As it can be seen, the results obtained by the two
methods seem comparable.

Moreover, stress-strain curves for tensile and bending tests are reported 443

in Figure 9. As it can be seen, bending curves are similar to tensile plots. 444
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(a) (b)

Figure 9: Stress-strain curves for the axial components of (a) tensile and (b) bending
tests.

5 Discussion 445

Bending tests are a simple alternative to tensile tests for estimating the 446

Young’s modulus of a material. They can also be used when the maximum 447

strains are small and the nonlinearity of the material is small, since in all 448

these cases the Infinitesimal Strain Theory can be used. However, when 449

the stress distribution over a cross-section is far away from linearity, then 450

Navier’s formula itself is no longer valid and many other formulas based on 451

it do not work properly. So the ultimate stress σu and other magnitudes can 452

be inaccurate. 453

However, some studies based on bending tests seem to assume that Navier’s 454

formula is valid in general [13, 29, 30, 32], even when the material is nonlin- 455

ear elastic. Nevertheless, this assumption may not be adequate for materials 456

with nonlinear behavior and only provides a reasonably approximate result 457

for a small strain regime. Some recent works have insisted on the importance 458

of directly relating the curvature to the bending moment by looking for non- 459

linear relationships [31], leaving aside Navier’s formula, in the same line as 460

the work developed here that seeks to relate the curvature directly to the 461

bending moments. In our work the peculiarity is that we use Finite Strain 462

Theory and the use of Navier’s formula is avoided. An excellent discussion 463

of how Navier’s formula should be modified to obtain more accurate and re- 464
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alistic stress distributions is given in [33]. These types of ideas are not only 465

of theoretical interest, there are some papers that use nonlinear bending for 466

various applications [34]. 467

468

On the other hand, in this work it has been seen that the curves obtained469

for simple tensile tests, based on [35], provide values for the mechanical prop-470

erties that do not differ significantly from those obtained by the new bending471

methodology, see Figure 9.472

The crucial difference is that obtaining specimens for tensile tests requires473

a lot of machining time to fabricate coupons of the right size and shape,474

whereas the bending tests, although they have slightly more complex post-475

processing, it can be automated and this experimental setting do not require476

machining on the rib.477

In addition, the stress-strain state induced in a bending test is less symmetric478

that the state induce in a tensile test, this in principle allows to distinguish479

the effects of different constitutive parameters, which in a tensile situation480

may appear as lumped in with others. In addition, the bending test devel-481

oped induces a non-uniform stress-strain state, so one has cross-sections with482

different levels of stress appear on the same rod, whereas in a tensile test the483

stress-strain state is always homogeneous, which makes it difficult to force484

the macroscopic failure to being in a specific region of the rod for example.485

This could be interesting for developing failure models for materials.486

6 Conclusion487

This paper proposes a bending test methodology, which with certain restric-488

tions, even allows dealing with problems outside the small-strain regime.489

Moreover, the proposed methodology can be implemented even in materials490

with a nonlinear stress-strain response.491

To illustrate how the methodology works, an experimental design has been492

made with human ribs, which during the loading process undergo microc-493

racking before macroscopic failure. The results of this test show that the494

new methodology produces mechanical property values equivalent to those495

obtained by tensile testing. In addition, the most of the samples in this496

study were used in combination with Acoustic Emission Data to develop a497

fracture model of ribs, where the methodology in this paper was used for the498

mechanical testing [36]. 499
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7 Supplement: On the semi-large strain regime636

In the scientific literature concerning continuous media, it is common to dif-637

ferentiate among large-strain problems and small-strain problems.638

Mathematically, this difference is that large-strain problems refer to prob-639

lems which are studied using a strain tensor which is obtained by means of 640

a nonlinear differential operator of the displacements, and small strain prob- 641

lems refer to approaches which use the strain tensor obtained with linear 642

operators of the displacements [37]. 643

On the other hand, large-strain regime and small-strain regime are informally 644

used to refer to the magnitude of the strain. It is obvious that situations 645

with large strain require the use of nonlinear operators of the displacements 646

in order to preserve accuracy, and small-strain situations can be adequately 647

approximated with linear operators. No clear difference between these two 648

regimes has been established. In this paper, a conventional difference is 649

proposed: the stress-strain around a point will be called in the small-strain 650

regime when the full nonlinear Green-Lagrange strain tensor (expressed in 651

the material coordinates) does not differ more than a 5% from the infinitesi- 652

mal strain tensor, a slightly lower limit than the margins of error considered 653

in ordinary structural engineering [38]. 654

This study considered some approximations by ignoring shear stress and 655

making some asymptotic approximations using strain tensor (14) instead of 656

full strain tensor (13). However, even with these approximations the pro- 657

posed procedure allows dealing with large-strain regime in the conventional 658

sense described in the previous paragraph, using an approximated nonlinear 659
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strain tensor with simplifications. The approximations in section 2.2 are typ- 660

ically under the margin of 5% as longer the magnitude ∣(χ−χ0)η∣ < 0.05 even 661

being the actual principal strain larger than 5% greater than the computed 662

infinitesimal strain. We propose to denominate this kind of situation, when 663

some asymptotic approximations are used, but the strain components are 664

large a semi-large strain approach. 665

8 Appendix: Approximations for section forces666

and moments 667

In section 2.3, the exact formulas for computing the axial force and bending
moments from the strain field along the cross-section of a rod are deduced,
see equation (19). When the constitutive model is highly nonlinear the com-
putation can be extremely cumbersome. In some cases, a Taylor approxi-
mation is useful for obtaining successive approximations to the constitutive
parameters. For example, if we consider a second order Taylor series for
Fµk(εxx) ≈ aεxx + bε2

xx, an approximation could be obtained involving not
only second area moments but also third order area moments. In this case:

σxx ≈ (
1 −Ληχ

2(1 − ηχ0)
) + b(

1 −Ληχ

2(1 − ηχ0)
)

2

≈ a(χ0 − χ)η + [(3a − 2b)χ + (2b − a)χ0](χ0 − χ)
η2

2

Then using this approximation in equation (19):

Nx ≈ [(3a − 2b)χ + (2b − a)χ0](χ0 − χ)Ib

0 ≈ a(χ0 − χ)Ibn + [(3a − 2b)χ + (2b − a)χ0](χ0 − χ)J1

Mζ ≈ −a(χ0 − χ)Ib − [(3a − 2b)χ + (2b − a)χ0](χ0 − χ)J2

(22)

where two third area moments have appeared:

J1 = ∫
Ω
η2ζ dηdζ, J2 = ∫

Ω
η3ζ dηdζ

For the computations of the area moments some mCT of human ribs can
be used. These mCT were processed using the sub-package BoneJ® imple-
mented in the software ImageJ®, obtaining the geometrical data along the
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rib, such as cross-sections, area moments, thicknesses among other values
useful in the above computations.
Finally, by minimizing the function ρ(a, b) for all the times tj:

ρ(a, b) = ∑
j

[L2
a(N exp

x (tj) −Nx(tj))2 + (M exp
ζ (tj) −Mζ(tj))2 + (0 −Mη(tj))2]

with respect to a and b one obtains an approximate solution for these pa- 668

rameters, for obtaining a more accurate solution a higher order series needs 669

to be used. 670
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