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Abstract—This paper presents an estimation approach within
the framework of uplink massive machine-type-communications
(mMTC) that considers the energy limitations of the devices. We
focus on a scenario where a group of sensors observe a set of
parameters and send the measured information to a collector
node (CN). The CN is responsible for estimating the original
observations, which are spatially correlated and corrupted by
measurement and quantization noise. Given the use of Gaussian
sources, the minimum mean squared error (MSE) estimation is
employed and, when considering temporal evolution, the use of
Kalman filters is studied. Based on that, we propose a device
selection strategy to reduce the number of active sensors and a
quantization scheme with adjustable number of bits to minimize
the overall payload. The set of selected sensors and quantization
levels are, thus, designed to minimize the MSE. For a more
realistic analysis, communication errors are also included by
averaging the MSE over the error decoding probabilities. We
evaluate the performance of our strategy in a practical mMTC
system with synthetic and real databases. Simulation results show
that the optimization of the payload and the set of active devices
can reduce the power consumption without compromising the
estimation accuracy.

Index Terms—Machine-type-communications, parameter esti-
mation, sensor selection, distributed quantization, mean squared
error, Kalman filter.

I. INTRODUCTION

Machine-type-communications (MTC) play an essential role
in the evolution of future mobile systems [1]. They constitute a
type of network where a set of devices communicate without
human supervision and where the number of connected ter-
minals is expected to grow exponentially in the next decade
[2]. 3GPP standards such as enhanced MTC, also known as
long-term-evolution for machines, and narrow-band Internet-
of-Things (IoT), are only two examples of the impact of MTC
on cellular communications [3]. In many MTC applications, as
those under the umbrella of the IoT, the devices involved can
be power constrained, specially if the replacement or charging
of batteries is difficult [4]. That is why high energy efficiency
is pursued and is one of the key elements in this kind of
networks [5], [6].
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In this work, we will focus on an uplink (UL) scenario
where a serving base station or collector node (CN) estimates
a set of parameters based on the noisy measurements (or
observations) provided by a large number of sensors. This
setup is referred to as massive MTC (mMTC). In mMTC,
according to the type of traffic, we can distinguish two main
classes: event-driven (e.g., emergency scenarios) or periodic
(e.g., smart metering, industrial control networks, among oth-
ers) [5], [7]. In the first case, due to the low or sporadic traffic
arrival patterns, the use of random-access protocols presents
clear benefits [8]. Contrarily, for applications characterized by
periodic patterns (e.g., the information is retrieved by polling
the sensors every certain time) or deterministic arrivals (e.g.,
data is communicated within a given time frame), conflict-free
access mechanisms such as configured scheduling, become
more suitable than random-access strategies [9], [10]. This
paper focuses on this last case and, as in [10], considers a
time-division multiplexing scheduling mechanism.

Given the high spatial density of mMTC deployments, the
data sensed by different devices can be significantly correlated
[11], which can be exploited to improve the accuracy of the
estimation. Hence, a natural question is how to manipulate
all the gathered information to reduce the overall payload and
power consumption of the sensors with still good estimation
accuracy.

Parameter estimation has been widely studied in the lit-
erature and the optimal strategy depends on the scenario
under study [12]–[14]. In the case of Gaussian sources, it
is common to consider the minimum squared error (MSE)
estimation as the optimum approach [15]. However, in most
works, transmission errors are not taken into account, and a
noiseless channel is usually considered [16], [17]. As these
errors may affect significantly the performance of the system,
in this paper we average the MSE over the different error
decoding probabilities.

Based on that, we will consider a communication scheme
in which only a subset of sensors will be selected to transmit
their observations (cf. [12]). The decision concerning which
sensors remain active will be driven by the objective of
minimizing the MSE of the estimate calculated by the CN.
Thereby, the degree of correlation between the measurements
will have an impact on the selection of sensors. In short,
sensors with highly correlated data will not transmit all their
measurements, but some of them will remain silent. This way,
we will reduce the power consumption within the network.
Note that for a Gaussian source, the correlation between the
sensors information is captured by the covariance matrix of
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the observations [18].
Moreover, we will consider that sensors quantize their mea-

surements, which will also help to reduce the network traffic
and, therefore, the overall power consumption [19]. In this
setup, we will consider the use of uniform scalar quantizers,
for which we will characterize the resulting quantization noise
and study its impact on the MSE [20]. In that sense, the
different precision levels in each device (i.e., the number of
quantization bits) will be designed to minimize the MSE,
leveraging the correlation in the sensed data.

Finally, in the cases where the observed parameters can
vary over time (e.g., temperature during the day), the sen-
sor measurements might also be temporally correlated [21].
Thereby, to take into account these situations, we will extend
our study to the case of systems with memory. In that sense, we
will use first-order Markov processes to model these dynamics
and, since the goal is to minimize the MSE, we will consider
the use of Kalman filters to produce the estimates at the CN
[22], [23]. Accordingly, the device selection and the number of
quantization bits will be optimized over time and the resulting
MSE evolution will be analyzed.

A. Prior Work

Based on the fundamentals derived by S. M. Kay in 1993
[15], early works like [12], [24], [25] tackle the problem of
distributed estimation in a scenario where a set of devices
send their spatially correlated data to a fusion center through a
noiseless channel. In particular, considering Gaussian sources,
the authors in [24] derive the optimal minimum MSE (MMSE)
estimator when the measurement noise is inhomogeneous (i.e.,
not equally distributed for all sensors). In [12], the authors
extend these derivations to the case of temporally correlated
data (with noiseless channels). The case of power constrained
devices (and no transmission errors) is analyzed in [25], where
the authors also consider the presence of collaborative clusters.
In the recent work [17], the authors design an estimation
strategy based on distributed compression and dimensionality
reduction to comply with the bandwidth constraints in an error-
free communication environment.

Within this framework, the optimal selection of the sensing
devices has also been extensively pursued (cf. [26]). In fact,
works [12], [25] already introduce this problem by reducing
the message dimension. On the contrary, the authors in [27]
propose the use of data censoring for reducing the information
to be sent (which can be seen as an alternative to sensor
selection). Besides, with the help of kernel regression, a fast
and low-complexity approach based on matrix completion
and extrapolation is studied in [28], which accounts for prior
information in the data. However, these works consider negli-
gible transmission errors, which is an unrealistic assumption in
mMTC networks (where communication resources are usually
limited).

Finally, given their relevance in practical systems, data
quantizers have also been considered in some of these works
(e.g., [27]). The reason is that efficient compression strategies
can be obtained when optimizing the quantization stage [29].
For instance, the authors in [30] derive the set of optimal

quantizers when only 1-bit of resolution is available. Besides,
in [23], the authors study the potential of analog mappings in a
fading multiple-access environment and optimize the precision
levels of the quantizers. Another example can be found in
[31], where the authors rely on encoded sensing to partition
the network into groups of sensors that jointly encode and
transmit their information to the sink. Nevertheless, most of
these works do not take into account the power limitations
of the devices involved (which is crucial in current mMTC
deployments).

B. Contributions

The contributions of this paper are listed in what follows:
1) We introduce a distributed estimation scheme based on

sensor selection and uniform scalar quantization with
different levels of precision. Our approach is firstly for-
mulated for a memoryless mMTC system and benefits
from the spatial correlation in the sensed data.

2) We propose a parameter estimation based on the MMSE
criterion. The MMSE estimate is derived considering
actual data transmission and communication errors. The
analytic closed-form expression for the MSE is charac-
terized and a tractable upper bound is proposed.

3) We design an iterative algorithm to optimize the set of
selected devices and the number of quantization bits, tak-
ing into consideration the power consumption within the
network. Two strategies are presented: separate (alternate)
and joint optimization.

4) We study the extension to temporally correlated data
based on the use of the Kalman filter. Accordingly, the
resulting MSE and the MMSE estimate are derived.

5) We present numerical simulations for synthetically gener-
ated data and real data. In both cases, results highlight the
performance of our approach and justify the selection and
quantization of measurements in mMTC deployments.

C. Organization

The remainder of this work is structured as follows. In
Section II, the system model and the estimation scheme (i.e.,
sensor selection and distributed quantization) are described.
In Section III, the parameter estimation and the MSE are
characterized. In Section IV, the optimization problem is
formulated and the two approaches to find a feasible solution
are proposed. In Section V, the extension to the system with
memory is discussed. Numerical simulations are shown in
Section VI for synthetic and real data and, finally, conclusions
are presented in Section VII.

D. Notation

In this work, scalars are denoted by italic letters. Boldface
lower-case and upper-case letters denote vectors and matrices,
respectively. The transpose, inverse and trace operators are
denoted by (·)T, (·)-1 and tr(·), respectively. The expectation
operator is denoted by E[·]. Im denotes the identity matrix
of size m × m and 1m denotes the all ones column vector
of length m. For a given set A, the cardinality is denoted
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Fig. 1: Illustrative scenario with M = 4.

by |A| and ∅ denotes the empty set. Rm×n and Nm×n
denote the m by n dimensional real space and natural space,
respectively. The multivariate Gaussian distribution with mean
µ and covariance matrix C is denoted by N (µ,C).

II. SYSTEM MODEL

Throughout this work, we consider a scenario with a set of
M sensors connected to a CN. An illustrative example with
M = 4 is depicted in Fig. 1. Each of these sensors measures
a noisy version xi of a parameter θi, with i ∈ {1, . . . ,M}.
More specifically, in vector notation we have [32]:

x = θ +w ∈ RM , (1)

where x = [x1, . . . , xM ]T is the set of observations of the
(physically separated) devices, θ = [θ1, . . . , θM ]T ∈ RM is the
vector containing the different (but correlated) parameters, and
w ∈ RM is the corresponding measurement noise vector. Each
element in x is measured independently by each individual
sensor. We assume that the parameter vector is a realization
of a Gaussian process with mean µθ ∈ RM and covariance
matrix Cθ ∈ RM×M , i.e., θ ∼ N (µθ,Cθ). Both mean
and covariance are assumed to be known. In addition, we
also consider the noise vector w to be independent of θ and
Gaussian distributed with zero mean and covariance matrix
Cw ∈ RM×M , i.e.,w ∼ N (0,Cw). Note that this model also
includes, as a particular case, the scenario where all sensors
measure the same parameter (θi = θj ∀i, j), i.e., µθ = µθ1M
and Cθ = σ21M1T

M (where σ is the standard deviation).
The elements of the covariance matrix Cθ can be modeled,

for example, as [33]

[Cθ]i,j = σiσjK(di,j), 1 ≤ i ≤M, 1 ≤ j ≤M, (2)

where σi is the standard deviation of the parameter θi mea-
sured by sensor i. The term K(di,j) is the correlation factor
between the parameters of sensors i and j with |K(di,j)| ≤ 1,
and that, usually, depends on the distance between them di,j .
Different models can be adopted for the function K(di,j).
As an example, a well-known and accepted model for sensor
networks is an exponential distance (cf. [21], [31]). However,
to keep our analysis general, the expression of K(di,j) will
remain unspecified until the simulations section.

As mentioned before, sensors will quantize their measure-
ments according to different precision levels to reduce the
payload and power consumption. In this setup, we consider

uniform scalar quantizers with step size ∆i. Note that, since
the different scalar observations are available at different
sensors positioned at separate locations, vector quantization
techniques cannot be applied. Thereby, each sensor will use
ni bits of precision and, thus, the quantization step yields

∆i = Si/2
ni , (3)

where Si is the dynamic margin of the quantizer. However,
given the assumption of Gaussian random variables (RVs), the
support of the measurement xi is not bounded. That is why
we will consider Si to be 6 times the standard deviation of
xi since 99.73% of the values lie within that interval. For a
white noise with covariance matrix Cw = σ2

wIM , we would
have Si ≈ 6

√
σ2
i + σ2

w.
As a result, the information to be transmitted by each sensor

reads as [34]

yi = qi(xi) = xi + ηi ∈ R, 1 ≤ i ≤M, (4)

where qi(·) represents the quantization function and ηi is the
corresponding quantization noise.

Note that, for a sufficiently small step size ∆i, this noise
can be shown to be uncorrelated with xi, and that the first and
second order moments can be safely approximated by those
of a noise uniformly distributed in [−∆i/2,∆i/2]. In fact,
for Gaussian RVs, this approximation holds for values of ∆i

smaller than the standard deviation of xi [34].
In order to avoid unnecessary power consumption, only a

subset of sensors will be selected to transmit their information
to the CN. Thereby, the chosen sensors will transmit their
quantized observation to the CN through separate orthogo-
nal channels using different modulation and coding schemes
(MCSs). More specifically, following the 5G standard [35], we
will adopt a communication strategy in which time is divided
into frames of N slots, each of duration Ts seconds and
bandwidth Bs Hertz [36], [37]. Both parameters are assumed
to be fixed and known. Accordingly, each sensor will be
allocated a single slot and, thus, no collisions nor interference
will be experienced (cf. [10]). Hence, with this approach, only
N sensors are allowed to transmit during each frame. Recall
that we focus on applications where sensor information is
generated periodically (and will be transmitted if selected by
the CN). In these scenarios, it is reasonable to assume that the
CN has information regarding how many devices are sensing.
Note that this assumption is valid for this type of sensor-
based mMTC network, but it does not hold for systems with
unpredictable or random traffic patterns.

Let z = [z1, . . . , zN ]T ∈ RN denote the corresponding set
of N measurements from the selected sensors. This vector can
be expressed in terms of the following binary selection matrix:

V = [vT
1 , . . . ,v

T
N ]T ∈ {0, 1}N×M , (5)

where each row vi ∈ {0, 1}1×M , with i ∈ {1, . . . , N}, is
a unit vector indicating which sensor is transmitting (i.e., the
position of the non-zero element determines the active sensing
device). In this work, we consider that the rest of the sensors
remain silent and discard their information.
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As an illustrative example, let us consider M = 5, N = 3
and

V =

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

 . (6)

In this case, the first, third, and fourth sensor are selected to
transmit their measurements. Note that all unit rows in V must
be different, which is equivalent to the constraint V V T = IN .

The vector z can be written as

z = V y ∈ RN , (7)

where y = [y1, . . . , yM ]T is the original set of quantized
measurements. The resulting estimation scheme (prior to trans-
mission) is depicted in Fig. 2.

Finally, based on the correctly received information, the
CN will estimate the parameter vector θ. Thus, as mentioned
before, we need to include the possible communication errors
during the data transmission. This will be discussed in the
upcoming section.

III. PARAMETER ESTIMATION

This section is devoted to characterize the MMSE estimate
in the presence of communication errors. To do so, we first
study the error decoding probability, which will affect the set
of available observations at the CN and the resulting MSE.

A. Error Decoding Probability

Prior to transmission, the information (i.e., quantization) bits
ni of each sensor are transformed into ncod

i coded bits and
later modulated into packets of nsym

i symbols. Defining Ri =
ni/n

cod
i as the coding rate (information bits/coded bits), and

Li = ncod
i /nsym

i as the modulation size (coded bits/symbol),
we have

ni = TsBsRiLi, (8)

where TsBs represents the number of symbols per slot.
Therefore, given that both Ts and Bs are fixed, the number
of (information) bits to be transmitted ni only depends on the
MCS, i.e., the different combinations of Ri and Li. Note that
the product RiLi yields the spectral efficiency (that is, the
ratio between number of information bits and the number of
transmitted symbols).

With the above considerations, the CN will decode the
(selected) quantized observations with individual error prob-
abilities, which depend on the channel quality, the MCS,
and the number of bits ni of each sensor. In particular, the
(coded) packet error rate (PER) corresponding to all the bits
transmitted by sensor i in a single slot can be defined as

PERi = Ci (PERraw
i ) , (9)

where PERraw
i ≥ PERi is the (raw) PER computed at the

output of the channel and before the channel decoder for the
set of ncod

i coded bits. Accordingly, Ci(·) is the function that
relates both probabilities and that depends exclusively on the
coding rate Ri and the channel encoder [38]. For the sake
of generality, the functions Ci(·) will not be detailed until
Section VI.

In the case of PERraw
i , assuming independent bit errors in

the communication (due to channel and noise effects)1, the
expression can be written as

PERraw
i = 1− (1− BERraw

i )n
cod
i

(a)
= 1− (1− BERraw

i )TsBsLi ,
(10)

where (a) follows from equation (8) and the definition of
Ri. The term BERraw

i is the (raw) bit error rate, which is
independent of the channel code, and only depends on the
modulation scheme and the signal-to-noise ratio (SNR) of the
received signal from sensor i, namely

ρi =
GiPi
BsNo

, (11)

where Gi is the channel gain (including the path-loss) associ-
ated to the link between sensor i and the CN, Pi is the sensor
transmit power, and No is the noise spectral density [39].

Note that, under the previous assumptions, the power
consumption and power reduction can be defined as
tr
(
V PV T

)
and tr (P ) − tr

(
V PV T

)
, respectively, where

P = diag (P1, . . . , PM ) is the diagonal matrix with all
transmit powers. As we will discuss in Section IV, tr

(
V PV T

)
will be constrained to a maximum value in order to limit the
network power consumption.

B. MMSE Estimate

Once the transmitted bits are decoded, the CN will use them
to estimate the parameter vector θ. Accordingly, the device se-
lection and the number of quantization bits n = [n1, . . . , nM ]T

will be designed to optimize the estimation accuracy.
To evaluate the whole procedure, in this work, we consider

the MSE as performance indicator. As a result, a suitable
estimate of θ is the linear MMSE estimate given by (we will
first assume that no errors occur in the communication link)
[12]:

θ̂ = E[θ|z] = CθzC
−1
z (z − E[z]) + µθ. (12)

Thereby, considering the uncorrelation between x =
[x1, . . . , xM ]T and the quantization errors η = [η1, . . . , ηM ]T,
the statistical terms in (12) yield

Cθz = E
[
θzT] = E

[
θ(θ +w + η)TV T] = CθV

T, (13)

Cz = E
[
zzT] = V (Cθ +Cw +C∆)V T, (14)

E[z] = V µθ, (15)

where C∆ = diag
(
∆2

1/12, . . . ,∆2
M/12

)
in (14). Note that

this expression corresponds to the second-order moments of
the uncorrelated and uniformly distributed quantization errors.

Consequently, the MSE is given by the trace of the error
covariance matrix Σ [12]

tr (Σ) = tr
(
Cθ −CθzC−1

z Czθ
)
, (16)

where, following the derivations in (13), it can be seen that
Czθ = V Cθ.

Note that, in the previous expressions, we have considered
that there were no errors in the communication. However, as

1In the case of slowly varying channels, this condition can be easily met
with the help of bit interleavers [39].
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+ x1 q1(·) y1

wM

+ xM qM (·) yM

V

z1

zN

Fig. 2: Estimation scheme prior to transmission.

we discussed in the previous subsection, packets might be
incorrectly decoded with probability PERi for the set of active
sensors. In that case, that packet would be thrown away, and
the corresponding elements of z would be discarded as well.
In order to formulate this, we can replace the matrix V by the
following:

UI = AIV ∈ {0, 1}|I|×M , (17)

where I is the set of active sensors with correctly decoded
messages and AI ∈ {0, 1}|I|×N is the corresponding flat
matrix indicating the absence of errors. In that sense, similar
to V , the non-zero positions in the (unit) rows of matrix
AI define the (active) sensing devices with perfectly decoded
messages. This way, UI is a binary flat matrix that represents
the information finally available at the CN (after device
selection and packet decoding).

Considering the decoding errors, now the set of available
measurements at the CN yields

zI = UIy ∈ R|I|, (18)

and, thus, the corresponding MMSE estimate can be written
as

θ̂I = E[θ|zI ] = CθU
T
I
(
UI (Cθ +Cw +C∆)UT

I
)−1

× (zI − E[zI ]) + µθ,
(19)

with MSE:

εI , tr
(
Cθ −CθUT

I
(
UI (Cθ +Cw +C∆)UT

I
)−1

UICθ
)
.

(20)
Hence, we can define the overall MSE by averaging over

the different error probabilities:

ε ,
N∑
k=0

∑
I∈Fk

εI
∏
i∈I

(1− PERi)
∏
j 6∈I

PERj , (21)

where Fk represents all the tuples of size N − k taken
from the set of active sensors defined by V . Thus, the
subindex k indicates the number of incorrect messages. Going
back to the previous example (cf. (6)), we have that F1 =
{{1, 3}, {1, 4}, {3, 4}} and F2 = {{1}, {3}, {4}}. Note that
F0 = {{1, 3, 4}} always refers to the case of no errors.

IV. PROBLEM FORMULATION AND SOLUTION

The purpose of this work is to derive a selection strategy
and a quantization scheme that minimize the MSE in (21) so
that only N sensors are active and transmitting during a single
frame with a limited power consumption. In particular, we are
interested in designing the optimal selection matrix V and the
optimal number of quantization bits n.

Thereby, the optimization problem can be formulated as
follows:

(P1) : {V ?,n?} = argmin
V ∈{0,1}N×M

n∈NM

ε

s.t. V V T = IN

tr
(
V PV T) ≤ δ,

(22)

where, as mentioned before, the first constraint ensures that
only N sensors are selected, and the second one ensures that
the power consumption (of the selected devices) is below a
given threshold δ. Recall that the individual powers in P are
considered to be fixed (not optimized) and can be different
among them. This way, thanks to the second constraint,
we avoid selecting simultaneously sensors with (only) high
powers, yet concentrate on combining devices with high and
low (or simply low) consumption. Besides, note that in realistic
scenarios, the number of bits might be further restricted
to minimum and maximum values, both depending on the
capability of the sensing devices. Hence, the space dimension
of n can be considerably reduced.

Unfortunately, given the expression of the objective function
and the discrete nature of the optimization variables, the prob-
lem in (22) is combinatorial and has exponential complexity.
That is why, in this work, we will use some simplifications
to reduce the optimization complexity and find a (feasible)
sub-optimal solution with still good performance.

First, since we want to minimize ε, let us define the
following upper bound:

ε ≤ pF0εF0 +

K∑
k=1

∑
I∈Fk

pIεI + pKεFN
, ε̄K , (23)

where
pF0 ,

∏
i∈I,I∈F0

(1− PERi), (24)

pI ,
∏
i∈I

(1− PERi)
∏
j 6∈I

PERj , (25)
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pK ,
N∑

k=K+1

∑
I∈Fk

pI = 1−
(
pF0

+

K∑
k=1

∑
I∈Fk

pI

)
. (26)

The upper bound in (23) follows from the fact that εI ≤
εFN

= tr (Cθ), where FN = ∅ represents the case of all
errors. In addition, K ∈ {1, . . . , N − 1} denotes the number
of incorrect packets that are allowed in the decoding process
before estimating θ. As an illustrative example, if K = 2,
only two packets can contain errors; otherwise, the estimation
is not carried out. Besides that, note that equality in (23) is
achieved for K = N − 1.

As a result, we can rewrite problem (P1) as the minimiza-
tion of the MSE upper bound ε̄K :

(P2) : {V ?,n?} = argmin
V ∈{0,1}N×M

n∈NM

ε̄K

s.t. V V T = IN

tr
(
V PV T) ≤ δ.

(27)

Nevertheless, considering the large number of devices in-
volved in mMTC networks and the fact that, for practical
systems, the individual error probabilities PERi tend to be
small, the terms corresponding to K > 1 vanish quickly. This
is because the second product in pI tends to zero for small
PERi and increasing K. Hence, working with small values
of K can yield a tight approximation. The accuracy of this
bound will be further studied and properly justified through
simulations in Section VI-D. Thus, although problem (P2)
constitutes a worse-case scenario (minimization of an upper
bound), its solution approaches that of (P1) even for a small
K.

Finally, the next step is to find the solution of the problem
in (27), i.e., the optimal values V ? and n?. Unfortunately, an
analytic closed-form expression cannot be found, even for a
small N and M . That is why, in order to find the solution
to the previous problem, we will make use of greedy iterative
methods [40]. In that sense, first, we will consider the separate
optimization of V and n and, later, we will concentrate on
the joint optimization. Note that the latter will lead to better
performance, yet at the cost of more computational complexity.

A. Separate Optimization

Problem (P2) can be decomposed into two optimizations,
where V and n are optimized separately. On the one hand,
given the number of bits n, (P2) yields

(P2.1) : V ? = argmin
V ∈{0,1}N×M

ε̄K

s.t. V V T = IN

tr
(
V PV T) ≤ δ,

(28)

which can be solved sequentially. At each step, we consider
that N − 1 rows are given and, thus, the search concerns the
remaining row [41]. For instance, considering the first step,
the matrix V can be expressed as

V = [vT
1 Ṽ

T
1 ]T, (29)

where v1 ∈ {0, 1}1×M is the first row and Ṽ1 =
[vT

2 , . . . ,v
T
N ]T ∈ {0, 1}(N−1)×M are the rest of fixed rows.

Since each row can only contain one non-zero element and all
rows must be different (constraints imposed by V V T = IN ),
the optimal v1 is found by one-dimensional search:

(P2.1s) : v?1 = argmin
v1∈{0,1}1×M

ε̄K

s.t. [vT
1 Ṽ

T
1 ]T[vT

1 Ṽ
T

1 ] = IN

tr
(

[vT
1 Ṽ

T
1 ]TP [vT

1 Ṽ
T

1 ]
)
≤ δ.

(30)
This operation is then repeated for all rows in the same

way as it has been done with the first row, and going back
to the first one, until convergence is reached or when the
MSE reduction is below a given threshold. Note that, as the
optimization criterion is the minimization of the MSE, and one
of the possibilities is to keep the same values (for vi) from
the previous iteration, the new variable selection will always
improve (i.e., decrease) the MSE or, in the worst case, keep
the same. Therefore, convergence is always assured since we
generate a monotonous decreasing sequence of values for the
MSE.

In addition, as the search space is discrete, a closed-form
solution cannot be derived. Consequently, the solution is found
numerically by exhaustive search. In this case, the complexity
grows linearly with the number of search elements since to
solve (30), we only need to evaluate M − N + 1 different
values (i.e., the number of silent sensors that can be potentially
activated).

It is noteworthy that, since the MSE defined in (20) is
invariant to row permutations of the selection matrix V [15],
it can be shown that the total MSE ε and the upper bound ε̄K
are also invariant to row re-ordering. For instance, if M = 3
and N = 2, the results with v1 = [010] and v2 = [100] are
equivalent to those with v1 = [100] and v2 = [010].

Likewise, when the selection matrix V is known, problem
(P2) reads as

(P2.2) : n? = argmin
n∈NM

ε̄K , (31)

which can also be solved through a sequential (and iterative)
procedure. Thereby, considering that the last M − 1 elements
in n are given, at each step the optimization yields

(P2.2s) : n?1 = argmin
n1∈N

ε̄K , (32)

procedure that is also repeated for all elements in n and
iterated until converge is reached. As before, convergence is
guaranteed since each iteration yields the same or a lower MSE
(i.e., we can always keep the previous value for ni, which
will maintain the MSE, or select a new one that decreases
the estimation error). In that sense, similarly to (P2.1s), we
employ exhaustive search to solve (32) given that here the
search space is also discrete and a closed-form solution cannot
be found. Thereby, since the number of quantization bits is
usually limited (i.e., ni ≤ B, where B is the maximum number
of quantization bits), the number of possibilities we evaluate
is given by this upper bound B.

Finally, the two separate optimizations are sequentially
alternated in order to find a (sub-optimal) stationary solution.
This way, the resulting MSE will monotonically decrease until
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Algorithm 1 Separate (alternate) optimization to solve (P2)

1: Initialize2V and n
2: repeat
3: repeat
4: for i = 1 : N do
5: Solve (P2.1s) through one-dimensional search

to find v?i
6: vi ← v?i
7: end for
8: until Convergence is reached (or the MSE is below a

given threshold)
9: repeat

10: for j = 1 : M do
11: Solve (P2.2s) through one-dimensional search

to find n?j
12: nj ← n?j
13: end for
14: until Convergence is reached (or the MSE is below a

given threshold)
15: until Convergence is reached (or the MSE is below a given

threshold)

a local minimum is attained (or when the MSE is below a given
threshold). The entire procedure is described in Algorithm 1.

B. Joint Optimization

Instead of considering the separate approach described
above, we can search for the solution of V and n simultane-
ously through a similar iterative procedure. More specifically,
we will consider that N − 1 rows of V and M − 1 elements
of n are given. Without loss of generality, we discuss the
optimization of the first row of V like in (29), and the
corresponding element in n, which depends on the device
selection. Hence, at each step, we will look for the optimal
solution through a two-dimensional search:

(P2s) : {v?1 , n?i(v1)} = argmin
v1∈{0,1}1×M

ni(v1)∈N

ε̄K ,

s.t. [vT
1 Ṽ

T
1 ]T[vT

1 Ṽ
T

1 ] = IN

tr
(

[vT
1 Ṽ

T
1 ]TP [vT

1 Ṽ
T

1 ]
)
≤ δ,

(33)

where the index i(v1) represents the sensor selected in v1.
For instance, if M = 5 and v1 = [01000], then i(v1) = 2.
Therefore, since we only optimize the quantization bits of
the selected devices, the dimensionality of that search reduces
from M to N (the same applies in the case of the separate
optimization). The rest of M−N quantization bits can remain
unspecified. As before, the other rows of V and elements
of n can be found through the same procedure (i.e., two-
dimensional search), which is sequentially repeated until the
MSE converges.

2One possibility is to initialize the selection matrix V randomly and set the
vector of quantization bits n to nmin1M , where nmin is the minimum number
of quantization bits. Note that, although this will be the case we consider in
this work, our algorithm is independent of the variable initialization.

Compared to the separate case, a higher computational
complexity is required. In particular, for a maximum number
of bits B ≥ ni, each iteration in the separate optimization
requires N(M − N + 1) trials for the selection matrix and
BN trials for the quantization. Contrarily, N(M−N+1)BN
trials are needed in the joint case. To take into account the total
number of iterations, in the simulations section, we will show
the execution time required by each approach.

V. EXTENSION TO TEMPORAL CORRELATION

As mentioned before, the previous analysis can be extended
to the case of scenarios where the parameters θ to be estimated
vary over time with a given temporal correlation (in addition
to the already mentioned spatial correlation). The temporal
evolution of the parameters θ will be modeled through first-
order Markov processes [22], [23].

In this situation, the estimation strategy to be designed at
the CN will have memory to exploit that temporal correlation.
In particular, given the MSE criterion, we make use of Kalman
filters to estimate the parameter vector θ, which is optimum
under the Gaussian assumption.

A. System Model

We start by considering an observation time of T frames.
Thus, now the measurements xi depend on the frame t ∈
{1, . . . , T}, i.e., xi(t) ∈ R is the measurement of the i-th
sensor at the t-th frame. Following the model in (1), at frame
t we have:

x(t) = θ(t) +w(t) ∈ RM , (34)

where x(t) = [x1(t), . . . , xM (t)]T is the set of measurements,
θ(t) ∈ RM is the parameter vector, and w(t) ∈ RM is the
measurement noise vector. Like before, we assume θ(t) to be
Gaussian distributed with (known) mean µθ(t) and covariance
matrix Cθ(t), i.e., θ(t) ∼ N (µθ(t),Cθ(t)). Besides, we
assume that w(t) is independent of θ(t), temporally uncor-
related, and Gaussian distributed with zero mean and (known)
covariance matrix Cw(t), i.e., w(t) ∼ N (0,Cw(t)).

On the other hand, the temporal evolution of θ(t) can be
expressed with the following first-order Markov model [15]:

θ(t) = F (t)θ(t− 1) + ν(t), (35)

where F (t) ∈ RM×M is the transition matrix, which is
assumed to be known, and ν(t) = [ν1(t), . . . , νM (t)]T ∈ RM
is the process noise, uncorrelated and independent of w(t)
and θ(t). We also consider that ν(t) follows a Gaussian
distribution with zero mean and (known) covariance matrix
Cν(t), i.e., ν(t) ∼ N (0,Cν(t)).

Thereby, now the quantized observations also depend on the
frame index, i.e., yi(t) ∈ R is the quantized version of xi(t)
at the t-th frame. Hence, the set of quantized observations
y(t) = [y1(t), . . . , yM (t)]T ∈ RM reads as (cf. (4))

y(t) = x(t) + η(t) ∈ RM , (36)

where η(t) = [η1(t), . . . , ηM (t)]T ∈ RM is the quantization
noise vector. Note that the elements ηi(t) are uniformly dis-
tributed within the quantization interval ∆i(t) = Si(t)/2

ni(t),
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i.e., ηi ∼ U(−∆i(t)/2,∆i(t)/2). Accordingly, ni(t) is now
the number of quantization bits, which may vary in time
according to the MSE minimization.

This way, considering errors in the communication, the set
of available quantized observations at the CN can be written
as (cf. (18))

zI(t)(t) = AI(t)V (t)y(t) ∈ R|I(t)|, (37)

where the selection matrix V (t) ∈ {0, 1}N×M is also allowed
to change over the different frames to optimize the MSE.
In addition, note that I(t) is the set of active sensors with
correctly decoded messages at the t-th frame and AI(t) is the
corresponding matrix indicating the absence of errors.

B. Parameter Estimation

Since we consider the MSE as the design criterion, a
suitable choice for the MMSE estimator is the linear Kalman
filter, which is optimum under the Gaussian assumption [27],
[42], [43]. Thereby, now the estimation will consist in two-
steps, namely prediction and correction. As discussed in [15],
the MMSE estimate of θ(t) at the t-th frame, assuming that
the sensors with correctly detected signals are indexed by I(t),
can be obtained recursively:

θ̂I(t)(t|t) = E[θ(t)|z̄(1), . . . , z̄(t− 1), zI(t)(t)]

= θ̂(t|t− 1)︸ ︷︷ ︸
prediction

+E[θ(t)|z̃I(t)(t)]︸ ︷︷ ︸
correction

, (38)

where z̄(1) ∈ RC(1), . . . , z̄(t − 1) ∈ RC(t−1) are the sets of
C(1), . . . , C(t − 1) available observations (i.e., selected and
correctly decoded) at previous frames 1, . . . , t − 1; θ̂(t|t −
1) ∈ R|I(t)| is the prediction of θ(t) given the available
observations until frame t − 1; and z̃I(t)(t) = zI(t)(t) −
ẑI(t)(t|t − 1) ∈ R|I(t)| is the innovation in zI(t)(t) (i.e.,
information provided by zI(t)(t) but not by the past measure-
ments [z̄(1), . . . , z̄(t − 1)]). Besides, ẑI(t)(t|t − 1) ∈ R|I(t)|

represents the prediction of zI(t)(t) given the observations
until frame t− 1.

Thereby, we first wish to predict the parameters at the t-
th frame based on the observations from the previous frames,
namely the first term in (38). In particular, since the innovation
sequences contain the same information as the original data,
it can be shown that the MMSE prediction of θ(t) reads as
[15]:

θ̂(t|t− 1) = E[θ(t)|z̃(1), . . . , z̃(t− 1)] = F (t)θ̂(t− 1|t− 1),
(39)

where z̃(1) = z̄(1) − ẑ(1|0) ∈ RC(1), . . . , z̃(t − 1) = z̄(t −
1)−ẑ(t−1|t−2) ∈ RC(t−1) are the sets of C(1), . . . , C(t−1)
available innovations at previous frames 1, . . . , t− 1.

Next, we need to correct the prediction with the current
observation, i.e., the second term in (38). Following the
derivations in [15], we have

E[θ(t)|z̃I(t)(t)] = KI(t)(t)
(
zI(t)(t)− ẑI(t)(t|t− 1)

)
,
(40)

where ẑI(t)(t|t − 1) = AI(t)V (t)θ̂(t|t − 1) is the MMSE
prediction of zI(t)(t) and KI(t)(t) ∈ RM×|I(t)| is the so-
called Kalman gain and is given by [15]

KI(t)(t) = Σ(t|t− 1)V (t)TAT
I(t)

×
(
AI(t)V (t)

(
Σ(t|t− 1)

+Cw(t) +C∆(t)
)
V (t)TAT

I(t)

)−1

,

(41)

with C∆(t) = diag
(
∆2

1(t)/12, . . . ,∆2
M (t)/12

)
. Note that

Σ(t|t − 1) ∈ RM×M is the error covariance matrix of the
parameter prediction:

Σ(t|t− 1) = F (t)Σ(t− 1|t− 1)F T(t) +Cν(t), (42)

with Σ(t− 1|t− 1) ∈ RM×M being the covariance matrix of
the parameter estimate at frame t − 1. In general, at the t-th
frame, the following recursive expression holds:

ΣI(t)(t|t) =
(
IM −KI(t)(t)AI(t)V (t)

)
Σ(t|t− 1). (43)

As a result, the MSE yields (cf. (21))

ε(t) ,
N∑
k=0

∑
I(t)∈Fk

εI(t)(t)

×
∏
i∈I(t)

(1− PERi(t))
∏
j 6∈I(t)

PERj(t),
(44)

where PERi(t) is the packet error rate at the t-th frame,
which is given in (9) when considering ni(t) information bits.
Likewise, following expression (20), εI(t)(t) can be obtained
by computing the trace of the matrix in (43).

Finally, since the goal here is to minimize the MSE in
(44), we can simply follow the procedures described in Sec-
tion IV to obtain a sub-optimal solution for V (t) and n(t) =
[n1(t), . . . , nM (t)]T. In short, the MSE in (44) can be upper
bounded by ε̄K(t) (cf. (23)) and the resulting problem can
be solved using a separate or a joint optimization procedure.
Besides, note that the problem constraints could be formulated
for a variable number of slots N(t), i.e., V (t)V (t)T = IN(t),
and a variable matrix transmit power P (t). However, this
analysis is beyond the scope of this work, and we will only
consider the case of N(t) = N ∀t and P (t) = P ∀t.

VI. NUMERICAL SIMULATIONS

In this section, several simulations are presented to illustrate
the performance of our approach. More specifically, the result-
ing MSE ε from (21) after the device selection and information
quantization is analyzed for different setups. Later, we will
concentrate on the results and the evolution of the MSE ε(t)
defined in (44) for the case of temporally correlated data.

To that end, we will consider a realistic mMTC network
for our study. In particular, we will use the parameters and
guidelines specified by the 3GPP and ITU standards [44], [45].
In addition, we will distinguish between the case where the
measurements are generated synthetically and the case where
they are obtained from the database collected by the Intel
Berkeley Research Lab [46]. That is why, in the following,
we dedicate initial subsections to discuss all these practical
issues and to describe the different datasets.



LIESEGANG et al.: SENSOR SELECTION AND DISTRIBUTED QUANTIZATION FOR ENERGY EFFICIENCY IN MASSIVE MTC 9

A. Practical Issues

Throughout all simulations, we consider the micro-urban
scenario described in [45] with Pi = P = 0 dBm and
No = −174 dBm/Hz. Accordingly, the power matrix results
P = P IM and, therefore, the power consumption and power
reduction are given by NP and (M − N)P , respectively.
This way, the ratio of power consumption (i.e., ratio between
consumed power and total power) and reduction (i.e., ratio
between reduced power and total power) are given by the
ratio of active sensors N/M and silent sensors (M −N)/M ,
respectively. In addition, for the optimization problem to be
feasible, we set the threshold δ to NP 3.

Besides, since here we will consider that the information to
be transmitted is rather small (e.g., temperature), sensors will
employ a single resource element, i.e., Ts ≈ 71.4 µs [44] and
Bs = 15 kHz [47]. The channel gains Gi are computed for a
power law path-loss, i.e.,

Gi = D−αi σ2
g , (45)

where Di is the distance between sensor i and the CN, α = 3
is the decay exponent, and σ2

g = 1 is the power of the fading
coefficient. Note that this model is defined for single-antenna
devices but it could be extended to the multi-antenna case
by introducing the corresponding diversity gain in expression
(45). For more information, please refer to [48].

Regarding the spatial distribution, we consider sensors to be
uniformly distributed around the CN within a disk of radius
50 m. This small area helps us to reduce the computational
complexity of the numerical methods, as we can use smaller
values of M while preserving the high spatial density of
sensors and, thus, the high spatial correlation between the
sensed data. Note that this is also the case of the Intel dataset,
where the exact positions of the sensors are not randomly
generated but extracted from the actual deployment in the
laboratory [46].

B. Synthetic Data

As an example of application, we consider temperature
as the phenomenon to be measured. Note that, although in
the upcoming simulations we focus on a single phenomenon
(temperature), the parameters θi measured by the sensors are
the different realizations of this phenomenon at the different
locations of the sensors. In fact, our formulation would still be
valid for the case of multiple phenomena (e.g., temperature,
humidity, etc.) if each sensor only takes a single scalar
measurement of just one of them. In that case, the presented
technique could exploit the potential correlation between these
phenomena.

In the following, we assume a measurement noise with
Cw = diag(σ2

w), σw = [σ2
w,1, . . . , σ

2
w,M ], and σw,i ∈

[0, 10]°C. Also, we make use of an exponential model for
the covariance matrix Cθ [21] with σi = σ = 10 °C and

K(di,j) = exp(−di,j/φ), (46)

3In this particular case, the effect of the power constraint disappears since
tr(V PV T) = P · tr(V IMV T) = NP .

where φ > 0 controls the degree of spatial correlation and
di,j is the distance between sensors i and j. For the sake of
simplicity, we define ϕ = exp(−1/φ) ∈ [0, 1] to study the
impact of this degree, i.e., ϕ = 0 is the case of no correlation
and ϕ = 1 is the case of identical parameters.

In the case of a system with memory, we model the
transition matrix as F (t) = ψIM ∀t, where 0 ≤ ψ ≤ 1
represents the coefficient measuring the temporal correlation
between consecutive observations. Accordingly, we consider
that the covariance matrix of the process noise is given by
Cν(t) = (1−ψ2)Cθ(t)∀t [23]. Likewise, the impact of ψ on
the MSE will be also analyzed. In all cases, we will consider
a period of time of T = 50 frames.

Finally, recall that the number of quantization bits n actually
depends on the MCS available for each device, i.e., Ri and
Li (cf. (8)). In particular, the set of possible values for n can
be derived from Table 5.2.2.1 in [44], where the maximum
number of (information) bits is limited to 8. Accordingly, the
corresponding functions Ci(·) from (9) are obtained following
the indications of the LTE standard [49].

C. Real Data

To further evaluate the performance of our approach, in
this paper we also consider the set of measurements obtained
by the Intel Berkeley Research Lab [46]. This data base
consists of M = 54 deployed sensors transmitting their data
(temperature) to the CN every 31 seconds (s) during D = 38
days. As a result, there are 2.3 million readings available.
However, since the database is not complete (not all time
slots contain samples), we consider that days are divided into
intervals of duration H = 900 s, so that each time instant
contains at least one measurement.

Note that each of these measurements corresponds to the
set of Q observations collected at day d ∈ {1, . . . , D} and
time instant t ∈ {1, . . . , I/H}, i.e.,

X(d, t) = [x1(d, t), . . . ,xQ(d, t)] ∈ RM×Q, (47)

where I corresponds to the day duration (i.e., 86400 s),
and xj(d, t) ∈ RM is the j-th vector of samples, with
j ∈ {1, . . . , Q}, collected at day d during time instant t.
Accordingly, each xj(d, t) can be expressed with the following
observation model (cf. (34)):

xj(d, t) = θj(d, t) +wj(d, t), (48)

where θj(d, t) = θ(d, t) ∈ RM and wj(d, t) ∈ RM are the j-
th parameter vector and noise vector at day d and time instant
t. Similarly to before, we assume both vectors have Gaussian
distributions: θ(d, t) ∼ N (µθ(t),Cθ(t)) ∀j, d andwj(d, t) ∼
N (0,Cw(t)) ∀j, d. Note that we consider stationarity over the
different days.

Thereby, considering the temperature remains constant over
an interval of L = 2700 s, the parameter θ(d, t) can be
obtained by averaging X(d, t) with a sliding window of size
J = L/H intervals centered at t:

θ(d, t) =
1

JQ

t+ J−1
2∑

s=t− J−1
2

Q∑
j=1

xj(d, s). (49)
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Accordingly, the observation noise wj(d, t) can be obtained
by subtracting θ(d, t) to each of the observations in (47):

wj(d, t) = xj(d, t)− θ(d, t). (50)

This way, the statistical moments of θ(d, t) and wj(d, t)
can be obtained as follows:

µθ(t) =
1

D

D∑
d=1

θ(d, t), (51)

Cθ(t) =
1

D

D∑
d=1

(θ(d, t)− µθ(t))(θ(d, t)− µθ(t))T, (52)

Cw(t) =
1

DQ

D∑
d=1

Q∑
j=1

wj(d, t)wj(d, t)
T. (53)

On the other hand, regarding the dynamical model, we have
(cf. (35)):

θ(d, t) = F (t)θ(d, t− 1) + ν(d, t), (54)

where ν(d, t) ∈ RM is the process noise at day d and time
instant t. We also assume that ν(d, t) ∼ N (0,Cν(t)). In
addition, we assume that the transition matrix is a scaled
identity, i.e., F (t) = α(t)IM . Thereby, the factor α(t) can
be obtained as follows:

α(t) =
1

D

D∑
d=1

1T
Mθ(d, t)

1T
Mθ(d, t− 1)

. (55)

Finally, the process noise is given by

ν(d, t) = θ(d, t)− α(t)θ(d, t− 1), (56)

with covariance matrix

Cν(t) =
1

D

D∑
d=1

ν(d, t)ν(d, t)T. (57)

D. Sensor Selection and Distributed Quantization with Syn-
thetic Data

We first start this subsection by evaluating the accuracy of
the upper bound ε̄K defined in (23). For this task, in Fig. 3,
we present this magnitude with respect to (w.r.t.) M and
different values of K, together with the actual MSE ε and
the corresponding relative error. Recall that K represents the
number of incorrect packets we allow when computing the
upper bound.

For better visualization, both metrics are normalized by
tr (Cθ), i.e., the MSE is bounded between 0 and 1. As
mentioned before, small values of K, e.g., K = 3, provide a
tight bound. Therefore, for a safe and consistent analysis, from
now on we will consider ε̄5 as a suitable approximation for
substituting ε in the optimization defined in (27). The same
reasoning holds for the optimization of ε(t), i.e., K = 5 is
used when solving the corresponding problem.

On the other hand, to study the performance of our es-
timation approach in the memoryless case, we will show the
normalized MSE (NMSE), i.e., ε/tr (Cθ), w.r.t. the percentage
of active sensors, i.e., N/M · 100, and different values of ϕ.
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Fig. 3: Original normalized MSE ε/tr(Cθ) and normalized upper
bound ε̄K/tr(Cθ) (left) and relative error (right) versus number of
sensors M .

The results are depicted in Fig. 4, Fig. 5, Fig. 6, and Fig. 7
for ϕ = 0.1 (low correlation), ϕ = 0.9, ϕ = 0.95 (high
correlation), and ϕ = 0.99 (almost identical observations),
respectively. In all plots, we consider M = 30 sensors.
The separate and joint optimizations are denoted by (S) and
(J), respectively. Also, recall that ε̄K is only used in the
optimization step, while ε is the value we actually show in
all figures.

It can be seen that, in both cases (S and J), a better
performance is obtained when the percentage of active sensors
increases. This is not surprising as more sensors are allowed
to transmit and, thus, more data can be retrieved. For instance,
with ϕ = 0.9, the normalized MSE decreases from 0.76
to 0.48 for 10% and 40% of active sensors (or consumed
power), respectively. The same effect can be observed when
the coefficient ϕ that measures correlation increases, i.e., a
smaller loss is attained for the same ratio N/M . This is
because most of the relevant information is contained in less
sensors. For instance, at N/M = 0.1 (i.e., 10% of power
consumption), the MSE with ϕ = 0.1 and ϕ = 0.99 results in
0.79 and 0.38, respectively.

Furthermore, to compare the performance of our system,
the MSE of a random selection with a fixed number of
quantization bits is also illustrated in Fig. 4, Fig. 5, Fig. 6,
and Fig. 7. As expected, a higher error is obtained with this
naive approach, especially for a large percentage of active
sensors. Besides, note that, when increasing a lot the number
of quantization bits (e.g., 8 bits), the MSE also increases. The
reason is that, given the presence of communication errors, a
higher precision (i.e., more quantization bits) implies a weaker
codeword protection (cf. (8)). This translates into a poorer
decoding and, therefore, into larger BER and PER. A larger
MSE is also achieved when the number of bits is too low
(e.g., 1 bit), since the information sent by the sensors is not
precise enough for a good estimation. Like before, when the
correlation increases, the random approach yields less error
since more sensors contain the same information.

Following the previous discussion, in Fig. 8 (ϕ = 0.9)
and Fig. 9 (ϕ = 0.99) we have included some additional
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Fig. 4: Normalized MSE ε/tr(Cθ) versus percentage of active sensors
N/M · 100 with ϕ = 0.1.
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Fig. 5: Normalized MSE ε/tr(Cθ) versus percentage of active sensors
N/M · 100 with ϕ = 0.9.
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Fig. 6: Normalized MSE ε/tr(Cθ) versus percentage of active sensors
N/M · 100 with ϕ = 0.95.
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Fig. 7: Normalized MSE ε/tr(Cθ) versus percentage of active sensors
N/M · 100 with ϕ = 0.99.

comparisons to highlight the performance of our approach.
On the one hand, we have considered a selection strategy,
denoted by (E), in which the number of quantization bits
(or MCS indexes) is chosen to ensure an (almost) error-
free communication, i.e., PER → 0. This way, we reduce
the problem complexity since we only optimize the selection
matrix V . However, reliable communication might be difficult
to ensure in scenarios with poor channel conditions, which
usually require strong codeword protections. Also, it is impor-
tant to recall that this condition translates into a low number of
information bits and, thus, into high quantization errors (which
increase the overall MSE). Additionally, considering the error-
free policy, in both figures, we also illustrate the results
obtained with the selection strategy proposed in [17], which
is based on successive quadratic upper-bound minimization
(SQUM). As we can observe, this approach shows a behavior
similar to (E), and, as before, the MSE decreases with the
correlation degree ϕ. Nevertheless, both strategies perform
poorly when compared to (S) or (J).

On the other hand, instead of the random selection, we can
also consider the approach where sensors are chosen according

to their channel gain. This is included in Fig. 8 and Fig. 9.
To avoid redundancy, only the cases of 4-bit and 8-bit are
shown. We can see that this strategy performs well only when
the correlation is high (i.e., ϕ = 0.99). The reason is that
choosing the devices based on their channel does not consider
the quality and the correlation of the information that they
measure, which ultimately conditions the estimation accuracy.

As discussed in Section IV, we will also compare the
computational complexity of both approaches (S and J). To
do so, we will show the average execution time required to
optimize the selected sensors and the number of quantization
bits. The implementation of both strategies is performed with
MATLAB and the resulting execution time is illustrated in
Fig. 10. Besides, in Fig. 11, we depict the corresponding
speed of convergence (i.e., the difference w.r.t. the final
NMSE) versus the number of iterations. As we can see, the
separate approach requires more iterations (V and n are found
separately). However, despite the higher speed of convergence,
the joint strategy needs more execution time due to the higher
computational complexity (cf. Section IV-B). Thus, since the
performance of the separate optimization reaches the joint
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Fig. 8: Normalized MSE ε/tr(Cθ) versus percentage of active sensors
N/M · 100 with ϕ = 0.9.
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Fig. 9: Normalized MSE ε/tr(Cθ) versus percentage of active sensors
N/M · 100 with ϕ = 0.99.
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Fig. 10: Average execution time versus number of active sensors N .
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Fig. 11: Speed of convergence versus number of iterations.

approach in almost all setups4, the separate approach results
in a better strategy. In fact, given the minor improvement
achieved with the joint optimization, its formulation can be
used to justify the usefulness of the separate approach. Addi-
tionally, in Fig. 10, we also included the average execution
time of the aforementioned error-free strategy and the one
obtained with the approach in [17]. As we would expect, both
methods require similar but smaller values than those of the
separate and joint curves (which is reasonable given that the
quantization bits are not optimized).

Finally, regarding the system with memory, we consider
different degrees of temporal correlation, namely ψ = 0.1,
ψ = 0.9, ψ = 0.95, and ψ = 0.99. The different cases are de-
picted in Fig. 12, Fig. 13, Fig. 14, and Fig. 15, respectively. In
each plot, we consider the previous values for ϕ, N/M = 0.2,
and M = 30. Also, for the sake of clarity in the explanation,
only the case of 4-bit (fixed) quantization and ϕ = 0.9 is

4The reason behind this behavior is that, in the scenario under study, the
impact of the quantization bits on the MSE is smaller than the device selection
since removing information (i.e., silencing a certain sensor) degrades more the
estimation accuracy than reducing the quantization precision. Therefore, both
approaches can distinguish the optimal devices (those with better channel
conditions and good observations) independently of their quantization level.

included as a reference. In addition, following the discussion
of the memoryless case, only the separate optimization is
shown.

As we can see, leveraging the temporal correlation can also
help to reduce the MSE substantially. Obviously, this behavior
is more notorious when larger coefficients ϕ and ψ are used.
However, even in the case of low spatial correlation (i.e., ϕ =
0.1), a large temporal correlation still improves the estimation
performance. This can be easily seen in Fig. 13, Fig. 14, or
Fig. 15, where the MSE decreases more rapidly with high
values of ψ. In fact, note that when ψ is very low (e.g., 0.1), the
MSE barely decreases in time (even if ϕ→ 1). For instance,
in Fig. 12 we can see that the MSE is almost constant over
the different frames. Overall, compared to the 4-bit case, our
approach yields larger optimization gains when the data is
highly correlated.

E. Sensor Selection and Distributed Quantization with Real
Data

Following the discussion in Section VI-D, we will study
the performance of our estimation when the measurements
are obtained from the Intel database [46] as described in
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Fig. 12: Evolution of NMSE ε(t)/tr(Cθ(t)) (ψ = 0.1).
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Fig. 13: Evolution of NMSE ε(t)/tr(Cθ(t)) (ψ = 0.9).
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Fig. 14: Evolution of NMSE ε(t)/tr(Cθ(t)) (ψ = 0.95).
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Fig. 15: Evolution of NMSE ε(t)/tr(Cθ(t)) (ψ = 0.99).

Section VI-B. However, to avoid redundancy, we will omit
the analysis of the accuracy of the upper bound ε̄K since the
previous reasoning is still valid (cf. Fig. 3).

Thereby, considering the memoryless case, we will show the
normalized MSE w.r.t. the percentage of active sensors. This is
depicted in Fig. 16. As before, the performance improves when
more sensors are allowed to transmit. In fact, we can observe
the same behavior as that with a high correlation factor (cf.
Fig. 7): a small error is attained with few sensors. Thus, since
almost all measurements are identical, our approach retrieves
most of the information with 10% of active sensors (equivalent
to a power reduction of 90%). Contrarily, although the random
selection does not yield poor results, it needs a considerably
larger number of active sensors to attain the same performance
(around 50% are needed to obtain the same error as the
optimized case with 10% of active sensors, i.e., a normalized
MSE of 0.1).

Additionally, for the sake of clarity in the explanation, in
Fig. 17 we present the MSE w.r.t. the number of quantization
bits and different percentages of active sensors. A similar
behavior can be observed when the number of bits is small
(e.g., 1 bit) or high (e.g., 8 bits). This is because too few
bits imply a low precision (or high quantization noise) for

the parameter estimation and too much bits represent a small
message protection (or high error probability). This reveals the
need for choosing the proper number of quantization bits.

On the other hand, the evolution of the (normalized) MSE
over time is depicted in Fig. 18 for 3.33% of active sensors.
The frames here indicate consecutive time periods of the day.
Note that, differently from before, the error does not always
decrease monotonically. Instead, there are some frames where
there is a huge increase. The reason behind this behavior
is the dynamical modeling of θ(d, t), presented in (54), in
which we assume a common transition matrix over the days.
However, this model does not capture entirely the nature of
the measurements in [46], i.e., there are some instants where
the evolution is not common over the days.

To illustrate this, in Fig. 19 we show the sensors average
temperature during the day θ̄(t), the standard deviation θ̂(t)
over the days, and the relative error in the second-order
statistics of the dynamical model ξ(t):

θ̄(t) =
1

D

D∑
d=1

1T
Mθ(d, t)/M, (58)
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Fig. 16: Normalized MSE ε/tr(Cθ) versus percentage of active
sensors N/M · 100 (Intel database).
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database).
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Fig. 19: Average temperature θ̄(t), dispersion θ̄(t)± θ̂(t) and relative
error ξ(t) over the day (Intel database).

θ̂(t) =

√√√√ 1

D

D∑
d=1

(
1T
Mθ(d, t)/M

)2 − θ̄(t)2, (59)

ξ(t) = ‖α(t)2Cθ(t− 1) +Cν(t)︸ ︷︷ ︸
model

−Cθ(t)︸ ︷︷ ︸
reality

‖F/‖Cθ(t)‖F.

(60)
Note that a rapid change in the temperature and a large

dispersion (e.g., frame 20) result in a poor dynamical modeling
(i.e., a single α(t) per time instant does not capture properly
the statistical evolution of θ(d, t) across the days) and, thus,
the estimation fails. Despite that, the proposed approach is
able to adapt to these changes as the resulting MSE is reduced
after the peaks. In fact, whenever the relative error is small,
our estimation scheme yields a good accuracy.

VII. CONCLUSIONS

In this paper, we have addressed the problem of estimating
a set of measured parameters in an UL mMTC network.
Considering a scenario where a group of sensors send the
spatio-temporally correlated observations to a CN, we have

derived an estimation strategy based on the MMSE estimate
and Kalman filters that takes into consideration the energy
restrictions of these devices in practical systems. Given that
communication errors may compromise the estimation perfor-
mance, we have averaged the MSE over the different decoding
probabilities and proposed a device selection scheme and
quantization approach that minimize the resulting MSE. This
way, since the number of active sensors and the information to
be transmitted are significantly reduced, we have been able to
decrease the data traffic and improve the power consumption.

Our approach has been evaluated in several setups with
synthetic and real data. Simulation results have shown that in
the case of synthetically generated data, our scheme can reduce
the power consumption by 50% (i.e., number of silent sensors)
without a significant increase in the MSE. This behavior is
more notorious in the case of real data, where the spatial
correlation is significantly higher. With only 10% of active
sensors, we attain a performance in normalized MSE of 0.1.
In both cases, a better performance is observed when including
temporal correlation.
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There are some future research lines that can be considered
to extend the work presented in this paper. Firstly, the study
of non-uniform scalar quantizers could be useful to improve
the distribution of quantization (information) bits. Secondly,
for a more faithful representation of practical systems, mul-
tiple access channels with non-orthogonal resources could
be investigated. Finally, vector quantization techniques could
be used in two scenarios: i) setups where each individual
sensor measures multiple phenomena at the same time; and
ii) multi-hop networks where the CN quantizes the decoded
measurements before retransmission.
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Catalunya (UPC) in 2015, and the master’s degree in
Telecommunication Engineering at the same univer-
sity, in collaboration with the Technical University
of Munich (TUM), in 2017. He is currently pursuing
the Ph.D. degree in the Signal Theory and Com-
munications Department at BarcelonaTech (UPC),
where he already served as research assistant be-
tween 2015-2018. He has participated in the project

5G&B RUNNER-UPC and he is currently working in the project ROUTE56,
both funded by the Spanish Ministry of Science and Innovation. His areas
of interest include signal processing, information and communication theory,
with special concern on 5G technologies and MTC systems.
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