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Intermittent chaotic flows in the weakly magnetised spherical Couette
system
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Experiments on the magnetised spherical Couette system are presently being carried out at Helmholtz-Zentrum Dresden-
Rossendorf (HZDR). A liquid metal (GaInSn) is confined within two differentially rotating spheres and exposed to a magnetic
field parallel to the axis of rotation. Intermittent chaotic flows, corresponding to the radial jet instability, are described. The
relation of these chaotic flows with unstable regular (periodic and quasiperiodic) solutions obtained at the same range of
parameters is investigated.
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1 Introduction

The magnetised spherical Couette system (MSC) system is of relevance in the study of the dynamics in the interior of stars
and/or planets since it models two essential ingredients occurring in some celestial objects: differential rotation and magnetic
fields. Because of its relevance, the MSC problem has motivated several experimental (e. g. [1]) and numerical (e. g. [2])
studies. Aside its astrophysical importance, the MSC problem is of interest in the study of large scale dissipative dynamical
systems with symmetry [3,4] as it is SO(2)×Z2 equivariant, i. e., invariant by azimuthal rotations and reflections with respect
to the equatorial plane.

2 Model and numerical method

A fluid of constant density ρ, kinematic viscosity ν, magnetic diffusivity η = 1/(σµ0) (where µ0 is the magnetic permeability
of the free-space and σ is the electrical conductivity) is filling the space within two concentric spheres (of radius ri and ro).
The outer sphere is at rest and the inner sphere is rotating at angular velocity Ω around the vertical axis êz. In addition, a
uniform axial magnetic field of amplitude B0 is imposed. This is the setup of the HEDGEHOG experiment [1]. The system
is governed by the non-dimensional Navier-Stokes and induction equations:

∂tv +Re (v · ∇)v = −∇p+∇2v +Ha2(∇× b)× êz, (1)

0 = ∇× (v × êz) +∇2b, ∇ · v = 0, ∇ · b = 0,

which are obtained using d = ro − ri, d2/ν, riΩ and B0, as scales of length, time, velocity and magnetic field, respectively.
The Reynolds number is Re = Ωrid/ν and the Hartmann number is Ha = B0d(σ/(ρν))

1/2 (v and b are the velocity field and
the magnetic field perturbation, respectively). The inductionless approximation –valid in the limit of small magnetic Reynolds
number Rm = Ωrid/η ≪ 1– is employed. This approximation makes sense in the case of the liquid metal GaInSn (with
magnetic Prandtl number Pm = ν/η ∼ O(10−6) [5]) at moderate Re = 103, since Rm = PmRe ∼ 10−3. We choose an
aspect ratio χ = ri/ro = 0.5 and no-slip (vr = vθ = vφ = 0) at r = ro and constant rotation (vr = vθ = 0, vφ = sin θ, θ
being colatitude) at r = ri boundary conditions for the velocity field. For the magnetic field insulating boundary conditions are
considered. The equations are solved by means of a pseudo-spectral method –spherical harmonics in the angular coordinates
and a collocation method in the radial direction– with a high order implicit-explicit backward-differentiation (IMEX–BDF)
time integration.

3 Preliminary results and discussion

The solutions of Eq. (1) are obtained by means of direct numerical simulations (DNS) with nr = 40 radial collocation
points and a spherical harmonic truncation parameter of Lmax = 84. Each solution has then a dimension of n = (2L2

max +
4Lmax)(nr − 1) = 563472. Here we describe intermittent chaotic long transients corresponding to the commonly known
“radial jet instability” (e. g. [6]), described as an equatorial radial jet directed to the outer sphere with a posterior meridional
circulation moving back the fluid to the inner sphere. The intermittent transients are found in a regime exhibiting a rich variety
of periodic and quasiperiodic unstable states [3, 4]. For a spherical shell of aspect ration χ = 0.5 and Re = 103, this regime
occurs for Ha < 12.2; these are the paramters considered in this paper. The time and volume-averaged kinetic energy density
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2 of 2 Section 10: Turbulence and reactive flows
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Fig. 1: Kinetic energy Km of the modes with azimuthal wave numbers m = 1, 2, 3, 4 versus time at two different Hartmann numbers. (a)
Ha = 0.1 (b) Ha = 0.2.

Km corresponding to the azimuthal wave number m is employed as a proxy of the spatio-temporal dependence of the flows.
Only the multiples of m0 are nonzero in the spherical harmonics expansion of a m0-fold azimuthally symmetric flow.

Figure 1 displays Km(t) for the azimuthal wave numbers m ∈ {1, 2, 3, 4} and two different solutions at Ha = 0.1 and
Ha = 0.2. For these solutions the energy is mainly contained in the m = 4 azimuthal wave number, with K4 being roughly
an order of magnitude larger. There are however time intervals for which the energies of the modes m ∈ {1, 2, 3, 4} are of
similar magnitude and time intervals for which the energies K1, K2 and K3 are even smaller than K4, roughly by two orders
of magnitude. In the latter case the flow azimuthal symmetry is basically m = 4 and K4 displays a nearly quasiperiodic
behaviour. Notice that these events occur randomly, as it is characteristic of intermittent flows (e. g. [7]). In some cases,
intermittent behaviour is driven by the existence of unstable invariant objects in the phase space (on-off intermittency of [8])
which may be the case of the solutions analysed in Fig. 1. This is feasible since unstable quasiperiodic solutions with azimuthal
symmetry m = 4 are present in the system for Ha < 2.4 (see [4]).

Our preliminary investigations point to the existence of on-off intermittent behaviour for MSC flows, when rotation effects
dominate over the applied magnetic field. On-off intermittency has been also described in [9] for purely spherical Couette
dynamos close to the onset of dynamo action. Our intermittent flows may be related to unstable symmetric quasiperiodic states
previously described in [3, 4]. The phase-space trajectory of the chaotic intermittent flow may approach these quasiperiodic
states, which organise the dynamics around it, but eventually could be repelled since the quasiperiodic states are unstable.
The latter have certain spatio-temporal symmetries which may be identified from the time series of Km. In addition, on-off
intermittent flows can be also characterised from time series since their power spectral properties are well known (e. g. [10]).
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