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Abstract: As the dynamicity of the traffic increases, the need for self-network operation becomes
more evident. One of the solutions that might bring cost savings to network operators is the dynamic
capacity management of large packet flows, especially in the context of packet over optical networks.
Machine Learning, particularly Reinforcement Learning, seems to be an enabler for autonomicity
as a result of its inherent capacity to learn from experience. However, precisely because of that, RL
methods might not be able to provide the required performance (e.g., delay, packet loss, and capacity
overprovisioning) when managing the capacity of packet flows, until they learn the optimal policy.
In view of that, we propose a management lifecycle with three phases: (i) a self-tuned threshold-
based approach operating just after the packet flow is set up and until enough data on the traffic
characteristics are available; (ii) an RL operation based on models pre-trained with a generic traffic
profile; and (iii) an RL operation with models trained for real traffic. Exhaustive simulation results
confirm the poor performance of RL algorithms until the optimal policy is learnt and when traffic
characteristics change over time, which prevents deploying such methods in operators’ networks.
In contrast, the proposed lifecycle outperforms benchmarking approaches, achieving noticeable
performance from the beginning of operation while showing robustness against traffic changes.

Keywords: reinforcement learning; autonomous network operation; offline/online learning

1. Introduction

Autonomous network operation evolves from software-defined networking (SDN) [1]
and promises to reduce operational expenditures by implementing closed loops based
on data analytics [2,3]. Such control loops can be put into practice based on policies that
specify the action to be taken under some circumstance (policy-based management), e.g.,
allocate the capacity of a packet flow so that the ratio traffic volume over capacity is under
80%. In packet flows, this ratio is related to the average delay that the packets in the flow
will experience because of queuing, and thus to the Service Level Agreement (SLA) in the
case that the packet flow is related to some customer connection. Although such policies
can be modified, they are purely reactive. Under high traffic variations, they might entail
either poor Quality of Service (QoS) (e.g., high delay or even traffic loss) and SLA breaches
or poor resource utilization, which in both cases represent large costs for network operators.
Note that policy-based management does not define the desired performance and thus,
agents implementing those policies are unable to learn the best actions to be taken. Another
approach for network automation is Intent-Based Networking (IBN) [4,5]. IBN allows the
definition of operational objectives that a network entity, e.g., a traffic flow, has to meet
without specifying how to meet them. IBN implements and enforces those objectives, often
with the help of Machine Learning (ML) [6]. Although many ML techniques could be
potentially applied for the autonomous capacity operation of traffic flows, in this paper,
we rely on Reinforcement Learning (RL) [7]. We consider several RL methods of different
complexity and analyze their performance, in particular: (i) Q-learning; (ii) dueling double
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deep Q-learning (denoted D3QN) [8], and (iii) Twin Delayed Deep Deterministic Policy
Gradient (TD3) [9].

With the deployment of network slicing [10] and the support to time-sensitive ap-
plications [11], the flow capacity autonomous operation (hereafter referred to as CRUX)
focuses on answering a major problem that network operators are facing nowadays: how
to allocate the right capacity to every traffic flow, so as to provide the desired QoS (e.g., by
preventing traffic loss and ensuring a given maximum average delay), while minimizing
overprovisioning (i.e., capacity–traffic).

The next subsections provide the needed background, review the related works, and
present the main contributions of this work.

1.1. Background on RL methods

RL considers the paradigm of an agent interacting with its environment for learning
reward-maximizing behavior (learning agent). At every discrete time step t, with a given
state s, the agent selects action a with regard to a policy, and it receives from the environment
a reward r and the new state s’. The objective is to find the optimal policy that maximizes
the expected return.

The simplest RL is Q-learning [7], which is a model-free discrete RL method that is
able to learn the optimal policy represented by a Q-table of pairs <s, a>, each containing a
q value. Being at state s, an action a is taken—either the one corresponding to the highest
q value, or chosen randomly. After the action is implemented, it is evaluated by receiving
the new state, s’, and the gained reward r from the environment. The agent then updates
the corresponding q value in the Q-table. Q-learning works efficiently for problems where
both states and actions are discrete and finite. However, it suffers from two main problems:
it introduces overestimation, which leads to suboptimal policies, and the Q-table grows
with the number of states.

Deep Q-learning (DQN) substitutes the Q-table by a feed-forward deep neural network
(DNN) that receives a continuous representation of the state and returns the expected
q value for each discrete action [7]. Because the DNN tends to make learning unstable,
countermeasures need to be taken. The most extended measure is to keep a replay buffer
storing the last experiences, i.e., tuple <s, s’, r, a> that is used to retrain the DNN. In addition,
double DQN [12] uses two different DNNs (learning and target) to avoid overestimation,
which happens when a non-optimal action is quickly biased (due to noise or exploration)
with a high q value that makes it preferably selected. Thus, the learning model is updated
using the q values retrieved from the target DNN, which is just a simple copy of the learning
model that is periodically updated. Finally, dueling double DQN (named D3QN in this
paper) [8] uses two different estimators to compute the q value of a pair <s, a>: (i) the value
estimator, which can be intuitively seen as the average q value of any action taken at state s;
and (ii) the advantage estimator, which is the specific state action-dependent component.
The sum of both value and advantage components returns expected q values.

DQN-based methods assume a finite discrete action space. If continuous state and
action spaces are required, other approaches such as Actor–Critic methods [9] can be used.
The main idea behind Actor–Critic methods is that two different types of models are trained
separately: (i) actors, who are in charge of computing actions based on states, and (ii) critics,
who are in charge of evaluating the actions taken by actors, i.e., to compute q values. Both
actor and critic models can be implemented by means of DNNs. Among all different Actor–
Critic methods, the Twin Delayed Deep Deterministic Policy Gradient (TD3) method [9]
considers one single actor and two different critic models, where the minimum value from
the two critics is used to learn, aiming at reducing overestimation.

1.2. Related Work

Several works have proposed the application of RL algorithms for autonomous net-
work operation. In the context of optical networking, the authors in [13] proposed the use
of Actor–Critic-based algorithms running in the SDN controller for dynamic lightpath pro-
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visioning. They showed that changes in the traffic profile impact the obtained performance.
The authors of [14] extend their work from [13] to multi-domain scenarios where multiple
RL agents improve their learning by transferring knowledge. The authors of [15] studied
the application of several deep RL algorithms (including DQN) and reward functions to
increase network availability in SDN-controlled wide area networks. In the context of IBN,
the work in [16] applied Q-learning to the autonomous operation of optical connections
based on subcarrier multiplexing. Their RL algorithm, running in the optical transponder,
activated and deactivated subcarriers to adapt the capacity of the optical connection to
the upper layer packet traffic. The authors of [17] proposed an IBN solution based on
Q-learning, which demonstrated the ability to learn the optimal policy based on the speci-
fied operational objectives related to the allocated capacity or the delay. Finally, the work
in [18] proposed an RL algorithm for autonomous bandwidth allocation in the context
of multilayer optical networks. They proposed a centralized algorithm running in the
SDN controller that supervises the network performance. When the network performance
degrades, the centralized algorithm tunes parameters in the RL algorithms.

One of the key issues in the previous works is the time needed to learn optimal policies,
as exploration entails low-reward decision making (i.e., far from optimal operation), as
shown in [13]. In view of this, the performance of RL methods is typically evaluated
after some training phase, i.e., when reward achieves a stationary behavior. However, a
subject that is poorly or not even considered in the literature is when RL algorithms need
to operate before they are properly trained. Note that this happens in our case, as the
actual characteristics of the traffic flow are unknown until it is provisioned. Moreover, it
is not realistic to assume, in general, the same conditions during training and operation
phases, due to mid/long-term traffic evolution, which makes it difficult to reproduce highly
accurate operation conditions during training. To solve these issues, the authors of [19]
proposed a general learning lifecycle that included both offline training (e.g., in a sandbox
domain [20]) and online learning, in the context of supervised ML. The objective of that
work was to accelerate autonomous operation by deploying accurate models that are firstly
trained offline and fine-tuned while in operation, thus adapting pre-trained models to
actual in-field operation conditions.

1.3. Contributions

In this paper, we apply the main lessons learnt from the previous works to IBN
agents based on RL. We assume that a packet flow (alternatively, referred as traffic flow
or simply flow) conveying traffic with unknown characteristics is established and the
allocated capacity needs to be set to ensure the required QoS (from the set-up time), while
minimizing resource utilization. To this end, a policy-based management is used at the
set-up time to start operating the capacity of the flow; meanwhile, traffic measurements are
collected to characterize the traffic. Note that policy-based operation can be highly reliable,
as it is based on specific rules that can be defined and understood by human operators.
However, such an operation usually obtains poor resource utilization. Therefore, it would
be useful to substitute policy-based operation by an RL model as soon as possible. To that
end, pre-trained generally applicable models for the partly observed traffic characteristics
are loaded and the RL algorithm starts operating. A per-flow algorithm supervises the
performance of the RL algorithm and tunes model parameters to ensure the required QoS.
Once enough traffic measurements are available, offline training is carried out in a sandbox
domain to produce a specific model well-suited for that particular traffic flow, which then
substitutes the generic one. Since the traffic characteristics can change over time, analysis
must be continuously performed to detect them and change the operating model when
needed. By iterating that cycle, the proposed RL agent will be able to adapt to traffic
changes that would otherwise degrade performance.

The rest of the paper is organized as follows. The pros and cons of applying RL to real
network operation are highlighted in Section 2, which include poor performance during the
initial set-up and during changes in the traffic flow. The CRUX problem and the proposed
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approach are as follows: it targets operating a traffic flow and ensuring the required QoS
from set-up time without previous knowledge of the traffic characteristics. The motivation
behind the different phases of operation and the proposed lifecycle is presented, where
pre-trained models and offline–online RL cycles aim at solving the identified issues. The
CRUX problem is formally defined in Section 3. Several RL approaches can be used to solve
CRUX, and each one requires different settings of states and actions. A methodological
approach is provided to model the problem with different RL algorithms, and how the QoS
targets are related to parameters in the reward function. Section 4 presents the algorithms
that analyze the traffic characteristics, supervise the performance, and make decisions
regarding the model and parameters to be used for operation. The discussion is supported
by the results presented in Section 5. Finally, Section 6 concludes the paper.

2. The Flow Capacity Autonomous Operation (CRUX) Problem
2.1. Flow Capacity Autonomous Operation

Let us start by analyzing the result of the autonomous capacity operation of a traffic
flow. A flow manager might collect monitoring data from the network and expose some
interface, so an RL algorithm can take action. For illustrative purposes, Figure 1 shows a
typical RL framework [21], where the learning agent is separated into two different blocks,
the learner and the agent.
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Figure 1. Flow capacity autonomous operation. RL framework with learner, agent, and environment.

Let us assume that the monitoring data include the byte count since the last monitoring
sample (amount of traffic) and the actual capacity allocated to the flow. The actions to
be taken are related to the actual capacity allocated to the flow, which can be increased
or decreased as needed with some granularity to meet the required QoS. For instance, a
customer connection can manage the capacity of the flow with granularity 1 Gb/s by
configuring some packet node, whereas in a virtual link supported by the optical layer, the
capacity can be increased/decreased by establishing or tearing down parallel lightpaths,
each with a capacity of 100 s Gb/s. It seems clear that the time to change the capacity is
also different, ranging from seconds to minutes. The RL algorithm should then decide the
capacity to be allocated to the flow to absorb variation in the traffic from one monitoring
sample to the next, plus the time to increase the allocated capacity, with the objective to
avoid any traffic loss and ensure some additional QoS metric. Then, the traffic variation
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becomes a major feature for a flow, together with the traffic pattern, i.e., the evolution of the
mean traffic with time.

This approach can provide excellent performance once the policies that avoid traffic
losses meet the desired QoS, and minimize overprovisioning are learned; however, online
learning of such policies requires time. In addition, there are several issues that can impact
the aforementioned online learning performance, e.g., (1) changes in traffic variability
might produce loss before new policies are learned; (2) smooth model fine tuning could
not be enough to mitigate persistent errors in taking some specific actions; and (3) online
learning tends to forget valuable learning in the long run, thus reducing the model’s
accuracy [7].

Figure 2a represents a possible evolution of the traffic variation (the traffic pattern
is omitted here for simplicity) and the obtained performance—overprovisioning, traffic
loss, and some other QoS metric. The path supporting the flow is established at time t0 and
the desired QoS is specified, so the RL algorithm needs time to learn the traffic variation
(and the traffic pattern); meanwhile (until ta in Figure 2a), poor performance, including
traffic loss, can be expected. Once a good model is obtained, it is expected that an RL
algorithm can provide the target performance. However, a steep change in the variation
of the traffic (times t1 to t2) can impact the performance until the new variation is learned.
Nonetheless, it might happen that the performance does not converge to the desire level
even after learning the new traffic variation.
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Figure 2. Operation lifecycle. (a) Online learning RL operation. (b) Offline training with online fine tuning RL operation.

It seems clear that the above behavior is unacceptable for network operators, as it
would provide poor performance and might incur penalties due to SLA breaches. Specifi-
cally, it seems of paramount importance to start the operation with already trained models.
To that end, an initial model can be trained offline using a network simulator in a sandbox
domain. Once in operation, the model will be improved by the online learner. However,
there are traffic characteristics, e.g., traffic pattern, that are observed after a long period of
time, e.g., several days. Therefore, some alternatives are needed to operate the flow during
that initial time.

Our solutions go beyond training offline and propose implementing offline–online
learning cycles to deal with large changes in traffic flow, i.e., to provide guaranteed per-
formance during the whole lifetime of the traffic flow (Figure 2b). Specifically, (i) a policy-
based management implemented as a self-tuned threshold-based algorithm is in charge of
managing the flow capacity during the time immediately after the path is set up (Phase I:
time interval [t0, ta’], where ta’-t0 should be short, e.g., 1 h). That algorithm tunes a thresh-
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old for the flow capacity and accurately determines the traffic variation. This approach
enables dynamic flow capacity allocation by fixing the right values for the threshold that
minimize overprovisioning. However, avoiding traffic loss and guaranteeing that the
required QoS is met is not a straightforward task, as it depends on the variance in the traffic
flow—defined as the difference between maximum and minimum amount of traffic during
some period. Therefore, during this period, the threshold is set conservatively to avoid un-
derprovisioning (i.e., traffic exceeds capacity, and some traffic is loss) at the expense of large
overprovisioning. (ii) Once the variation of the traffic has been determined, a pre-trained
generic model can be used for flow operation (Phase II: time interval [ta’, tb’]). The model is
general as it has been pre-trained assuming a given traffic pattern, e.g., sinusoidal with
daily periodicity, but supporting the measured traffic variation. Once in operation, the
pre-trained model starts to fine tune with the observed samples. (iii) Once enough measure-
ments are available to determine the characteristics of the flow, including the traffic pattern,
a specific model can be trained in a sandbox domain by using a simulator set to operate
at time tb’ (Phase III). That model should improve the performance or be easier to operate
than the pre-trained one. (iv) Assuming that the traffic pattern does not change, any change
in the traffic variation that cannot be absorbed by the current model can trigger returning
to Phase II for more intensive parameter tuning for the new traffic variation, while a new
specific model is trained and is set to operate at time tc’ (Phase II—Phase III cycle).

2.2. Proposed Architecture

This work extends the basic RL-based flow capacity operation (Figure 1) and pro-
poses a scheme based on (Figure 3): (i) analyzing the traffic to obtain meaningful traffic
characteristics; (ii) making decisions regarding the allocated capacity when no model is
in operation (Phase I); (iii) selecting pre-trained models that fit with the observed traffic
characteristics; (iv) training new models in a sandbox domain (offline learning), where real
traffic measurements are used to generate traffic in a simulation environment and the QoS
can be realistically estimated; a replica of the RL algorithm in operation is used here for
training new models; and (v) once accurate models are obtained, they are used for flow
operation and will be progressively fine-tuned online. As in Figure 1, a Flow Manager
collects monitoring data from the forwarding plane and enforces flow capacity.
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The models include some parameters that need to be tuned as a function of the traffic,
to provide the desired performance while meeting the required QoS. Such parameter tuning
can be carried out during offline learning, as well as during online operation to deal with
small traffic changes. Based on the analysis of the traffic and the reward, the Analyzer
block decides when to tune parameters and when to update the model with an offline
learned one (labeled Set() in Figure 3) to meet the given QoS. Note that both parameter
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tuning and the offline–online cycle can be completed several times during the operation to
improve the learned models, which will also enable adaptability to changes.

The next section details the RL approaches used to solve the autonomous flow capacity
management problem, CRUX.

3. CRUX Problem Definition and RL Methodology

This section formally defines the CRUX problem, and introduces the main parameters
and variables used hereafter. Next, it introduces the methodology to solve the problem
using RL, and finally defines the different RL approaches under study. The used notation
is summarized in Table 1, where parameters and variables are defined.

Table 1. Notation.

Capacity and QoS Params for the Flow

zmax Maximum capacity (Gb/s)
dmax Target maximum delay (s)

l* Optimal load (unleashing dmax) ∈ [0, 100]%
qa QoS Assurance (%)

Traffic and Capacity

xmax(t) Maximum traffic at time t (Gb/s)
xvar(t) Traffic variation at time t (Gb/s)

z(t) Capacity allocated at time t (Gb/s)
o(t) Capacity slack/surplus at time t (Gb/s)
y(t) Overprovisioning margin (Gb/s)
ρ Traffic variance multiplier
b Granularity of capacity allocation (Gb/s)

w(t) Traffic loss margin (Gb/s)

Autonomous Capacity Allocation

a(t) Action time t (b/s)
na Number of discrete actions
s(t) State at time t
ns Number of discrete states
r(t) Reward at time t
k Threshold-based scaling factor
βi Reward function coefficients (≥0)

3.1. Problem Definition and Basic Modeling

Let us consider that the autonomous flow capacity management problem is solved
periodically, when a new set of measurements, statistics, and parameters for the traffic
flow x are collected and computed. Along this section and the following, we adopt the
informational representation of time, where t represents a point in time that refers to the time
interval [t − 1, t) [22]. Specifically, x(t) represents the traffic measurements collected in
[t - 1, t), and statistics, such as the maximum (xmax(t)) and variation (xvar(t)), summarize
traffic dynamicity during that time interval. Additionally, decisions made at time t, e.g.,
the capacity to be allocated (z(t)), consider data that arrived up to time t.

The main objective of the CRUX problem is to find the optimal (minimum) capacity
z(t) at time t that satisfies a desired QoS. In this work, we assume that that the QoS is
defined by a desirable maximum end-to-end delay dmax; this also entails that packet loss is
not tolerated during flow operation.

Without loss of generality, we assume that the delay can be modeled as a function of the
traffic volume, the allocated capacity for the flow, the load (ratio traffic/capacity), and other
components such as the transmission delay (load–delay models). Such load–delay models
can be obtained during the commissioning testing phase using, e.g., active monitoring
techniques [20]. Once the model is available, a target load l* unleashing the target maximum
delay dmax can be selected. Figure 4 illustrates an example of a load–delay model, where
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dmax has been selected to a value where queueing delay becomes the predominant delay
component, e.g., for l* = 80%.
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A policy (threshold)-based approach can be used to make decisions from the currently
available monitoring data, as defined in Equation (1), where k is a constant factor that
is related to the traffic dynamicity and variability; k needs to be tuned to guarantee the
required QoS. However, finding the proper value of k is not a straightforward task: if the
value of k is high, QoS is ensured at the cost of high overprovisioning, whereas if the value
of k is low, QoS requirements might be not met. In addition, decisions are reactive, so
altogether, sub-optimal solutions are usually obtained.

z(t) = k·xmax(t)/l∗ (1)

The optimal capacity allocation to the CRUX problem requires knowledge of the
expected traffic to allocate the capacity of the flow at time t − 1 to the value that fits the
expected maximum load for the period [t − 1, t) (proactive decision making):

z∗(t− 1) = xmax(t)/l∗ (2)

In the case that the capacity allocation is not optimal, some capacity slack/surplus (o)
will exist, which can be formally computed at time (t) as follows:

o(t) = z(t− 1)− xmax(t)/l∗ (3)

Figure 5 sketches an example of a traffic flow x(t) for which some capacity allocation
z(t) is required. In the figure, the optimal capacity z*(t) that should be allocated at time
ti−1 is shown. The different colors provide a visual representation of the values of o(t). In
particular, two different sub-optimal capacity allocations can be distinguished (see labels
in Figure 5a): (i) if z(t) > z*(t) (i.e., o(t) > 0), QoS requirements are met at the expense of an
excess of overprovisioning; (ii) if z(t) < z*(t) (i.e., o(t) < 0), QoS requirements are violated.
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The width w(t) of the high delay area is formally defined as a function of the maximum
traffic in Equation (4). Therefore, traffic loss appears if o(t) ≤ −w(t).

w(t) = xmax(t) ∗
1− l∗

l∗
(4)

It is worth noting that the quality of a solution taken at time t − 1 can only be
evaluated at time t, which motivates the use of RL to learn the optimal policy that allocates
the minimum value of z(t) to meet the QoS requirements. The details of the RL-based
methodology are presented in next subsections.

3.2. Generic RL-Based Methodology

Figure 6 illustrates the RL workflow, where the main three elements involved are
represented, namely: (i) the learner in charge of learning the optimal policy; (ii) the agent
in charge of taking actions to adjust the capacity allocated to the flow; (iii) the environment
adaptation module in charge of implementing and evaluating the actions taken; and (iv)
the flow manager, which enforces the capacity and collects traffic measurements. Three
time periods are specified, from t0 to t2; let us assume that some initial policy model has
been set in the agent before operation starts at time t0, when the agent applies the first
action a(t0).
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For the sake of simplification and to reduce complexity, action a(t) is defined in
Equation (5) as the differential capacity with regard to the current one. Actions are pro-
cessed by the environment, which computes the new capacity z(t) to be allocated.

a(t) = z(t)− z(t− 1) (5)

The flow manager periodically sends traffic monitoring data to the environment,
which processes them at the end of every time interval to compute state s(ti) and reward
r(ti). Upon receiving the state, the agent finds the action a(ti) to be taken with the current
policy. In addition, the learning process uses state, reward, and action to improve the
model, which is updated in the next time interval. The state function s(t) is defined in terms
of o(t) normalized by a parameter y(t) (Equation (6)), which is conveniently set up using
parameter ρ to absorb the traffic variation observed in the flow (Equation (7)).

s(t) = o(t)/y(t) (6)

y(t) = ρ · xvar(t) (7)

As for the reward r(t), the objective is to minimize overprovisioning, without pro-
viding high delay. To ensure that, the higher delay must be obtained by producing some
overprovisioning. To that end, we have defined a piece-wise function with four different
regions in the range of o(t), representing the sub-optimal cases. Such division allows
for individual modes of operation that correspond to an adequate reward in each case.
The reward function r(t) is formally expressed in Equation (8) and illustrated in Figure 7.
The first and second components of r(t) penalize traffic loss and high delay, respectively.
Both components are linear functions of o(t), where coefficients β1 and β2 can be tuned
to penalize traffic loss and high delay. The third component gives the maximum reward,
which is slightly shifted to the positive values of o(t) to reduce the risk of QoS violation.
This segment is concave quadratic with regard to the relation o(t)/y(t), with the maximum
value weighted by coefficient β3. Finally, overprovisioning above y(t) is linearly penalized
by coefficient β4.

r(t) =


β1·(o(t)− w(t)) + β2·w(t), o(t) < −w(t)
β2·o(t), −w(t) ≤ o(t) < 0
β3·
(

1− o(t)
y(t)

)
· o(t)y(t) , 0 ≤ o(t) < y(t)

−β4·(o(t)− y(t)), o(t) ≥ y(t)

(8)
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3.3. Specific Adaption of RL Approaches

As introduced in Section 1, three RL methods are considered to solve the CRUX
problem, namely: (i) Q-learning, (ii) D3QN, and (iii) TD3.

For each method, the main adaptation of the generic problem definition is to discretize
state and action spaces. Q-learning requires discretizing the continuous state function s(t)
in Equation (6) into a number of discrete states (ns). Such discrete state function s’(t) can be
formally expressed as Equation (9). Discrete states 0 and ns − 1 indicate underprovisioning
and overprovisioning above margin y(t), respectively, whereas the rest states ns − 2 are
used to evenly discretize the overprovisioning below margin y(t).

s′(t) =


0, s(t) < 0

(ns − 2)·s(t), s(t) ∈ [0, 1]
ns − 1, s(t) > 1

(9)

In addition, Q-learning and all DQN variants require a discrete space of na actions.
Let us define a’(t) as the set of discrete actions, where a discrete action is defined by an
integer number of units of capacity b to update (add or subtract) the current capacity. The
discrete set of actions that depend on both na ∈ 2 *
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Table 2 summarizes the main characteristics and parameters to be configured for
each method.

Table 2. Summary of RL approaches.

Approach State Space Action Space Parameters

Q-
learning Discrete, Equation (9) Discrete. Equation (10) ns, na, b

D3QN Continuous, Equation (6) Discrete. Equation (10) na, b, DNN config,
Replay buffer

TD3 Continuous, Equation (6) Continuous, Equation (10) Actor/critic DNN config
Replay buffer

4. Cycles for Robust RL

This section is devoted to the details of the operation lifecycle presented in Figure 2b.
Let us assume that when a new path for a flow is set up, an instance of every element in the
architecture in Figure 3 is instantiated. The characteristics of the instances depend on the
flow requirements, e.g., pre-trained generic models loaded in the Offline Learning block are
those that were trained with similar QoS requirements (dmax and qa) to those of the current
flow. When the operation starts, no online RL models exist and the maximum capacity for
the flow zmax is allocated. All the algorithms presented next run in the Analyzer block (see
Figure 3), which makes decisions and orchestrates the rest of the blocks based on some
analysis results.

Algorithm 1 shows the Analyzer initialization that receives the pointers to external
modules that interact with the Analyzer, i.e., offline learner, online RL, and flow manager, and
stores them (line 1 in Algorithm 1), and initializes the main variables used by the rest of
the procedures. In particular, DB contains the needed traffic-related data for the analysis
carried out at every phase (line 2), params is a vector with the parameters that characterize
flow’s requirements and some configuration and that are used during the different phases
(line 3), and phase records the current phase, which is initialized to Phase I (line 4).
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Algorithm 1. Analyzer Initialization

INPUT: offlineLearn, onlineRL, flowMgr
OUTPUT: -

1: store(offlineLearn, onlineRL, flowMgr)
2: initialize DB
3: params← [<l*, zmax, k, eps>, // Phase I
<qa, cfl, ∆ρ>, // Phase II
<var_l, var_h, r_l, m>] // Phase III
4: phase← PhaseI

Before describing the algorithms for the different phases, let us present a specific
procedure for traffic variance analysis. Algorithm 2 is applied to the set of observed traffic-
related measurements, stored in DB, with the objective of characterizing and quantifying
the fluctuation of the traffic around its observed average. After retrieving data time
series contained in DB, the average pattern on the given traffic time series X is computed
(lines 1–2 in Algorithm 2). Note that the result of this operation produces time series Xavg,
with the smoothed average that better fits X. Without loss of generality, we assume that a
combination of regression techniques including polynomial fitting, spline cubic regression,
and sum-of-sin regression is applied, returning the best result in terms of accuracy and
model complexity [23]. The relative residuals are computed (line 3) and the difference
between maximum and minimum of these residuals (var) is considered as the traffic variance
measurement (line 4). This value together with the previous var measurements stored in
DB (time series Y) are used to compute the derivative drv of var in time, i.e., the first-order
difference [24] (lines 5). The last value in drv denotes the current derivative, which is later
used for the identification of the traffic variance (line 6). In addition, a variance score is
computed as the maximum absolute derivative value normalized by the observed variance
(line 7). The score approaches 1 if the traffic fluctuates around its maximum range between
two consecutive time measurements. This score will be used later for generic model tuning
purposes. The computed variance results are eventually returned (line 8).

Algorithm 2. varianceAnalysis().

INPUT: DB OUTPUT: V
1: <X,Y >← <DB.traffic, DB.var>
2: Xavg ← computeAveragePattern(X)
3: Xres ← (X—Xavg) � X−1

4: var←max(Xres)—min(Xres)
5: Y.append(var)
6: drv← computeDerivative(Y)
7: score←max(|drv|)/var
8: return <var = var, curdrv = drv[−1], score = score>

Algorithm 3 specifies the main procedure running in the Analyzer block and it is
called periodically every time t. First, new traffic monitoring data are gathered from the
flow manager (line 1 in Algorithm 3). Then, the specific procedure for each phase is called
with the current time and the collected data, and the phase changes only when the called
procedure returns True (lines 2–10); DB is initialized every time phase changes (line 11).

Algorithm 4 defines the operation of the Analyzer block during Phase I. Recall that dur-
ing this phase, flow capacity allocation is managed following a threshold-based procedure,
defined by Equation (1). First of all, DB is updated with the new monitoring data and the
variance analysis described in Algorithm 2 is executed, storing the result in variable V (lines
1–2 in Algorithm 4). Then, the absolute value of the current derivative is compared with a
small epsilon value (param eps) to decide whether enough traffic data have been already
analyzed to estimate variance with high accuracy (line 3). If so, a generic pre-trained model
f0 for the computed variance is retrieved from the offline learner and factor ρ0 is scaled with
the ratio of scores between the generic model and the observed traffic (lines 4–5); the scaled
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factor increases (decreases) if the computed score is higher (lower) than the score of the
generic model. The rationale behind such factor correction is to achieve a more robust
and conservative operation of the generic model under the actual traffic variance behavior.
Then, the online RL module is updated with new model f0 and scaled factor ρ1 and Phase I
ends (lines 6–7).

Algorithm 3. Main Analyzer Procedure

INPUT: t OUTPUT: -
1: x(t)←flowMgr.getMonitoringData(t)
2: if phase = PhaseI then
3: changePhase← thresholdBased(t, x(t))
4: if changePhase then phase← PhaseII
5: else if phase = PhaseII then
6: changePhase←modelSelectionAndTuning(t, x(t))
7: if changePhase then phase← PhaseIII
8: else // phase = PhaseIII
9: changePhase← specificModel(t, x(t))
10: if changePhase then phase← PhaseII
11: if changePhase then initialize DB

Algorithm 4. thresholdBased() (Phase I)

INPUT: t, x(t) OUTPUT: changePhase
1: DB.traffic.append(x(t))
2: V←varianceAnalysis(DB)
3: if |V.curdrv| < eps then
4: <f 0, ρ0, sc0>← offlineLearn.getGenericModel(V.var)
5: ρ1←ρ0·(sc0 / V.score)
6: onlineRL.setModel(f0, ρ1)
7: return True
8: DB.var.append(V.var)
9: k(t)←max(1, V.var / (1−l*))
10: if k(t)>k then k←k(t) else k←k − (k(t) − k)/2
11: flowMgr.setupCapacity(max(k ·max(x)/l*, zmax))
12: return False

In case the current derivative is still high, the threshold-based capacity allocation
procedure continues. Here, factor k in Equation (1) is adapted from its input value as soon
as more traffic data are available and traffic variance is better estimated. With the estimated
variance and target load l*, factor k(t) is computed. Then, k is updated in two different
ways: (i) reducing by half between k and k(t) if k is larger than needed; or (ii) replaced
by k(t) if is k is lower than needed (lines 8–10). The flow manager is requested to modify
the flow capacity to the computed z(t), which is bounded by the maximum capacity zmax
(line 11) and Phase I continues (line 12).

Algorithm 5 details the procedure during Phase II. Traffic data collected from the flow
manager are sent to the offline learner block for updating a historical traffic database used to
train RL models offline in the sandbox (line 1 in Algorithm 5). The offline model training
procedure runs in parallel in the sandbox domain. When enough traffic measurements are
collected and processed and an accurate and robust offline-trained RL model is available,
it is sent to the online RL block to be used for flow capacity operation; this ends Phase II
(lines 2–5). Otherwise, Phase II continues, aiming to identify whether the RL model
currently in operation needs some parameter tuning (in addition to model updates that the
RL algorithm performs during operation). In particular, this procedure aims to supervise
the degree of QoS assurance (as compared with the target value, qa) obtained by the current
model and modifying factor ρ when needed to achieve the target performance. Note that
low overprovisioning is the secondary objective and therefore, QoS assurance analysis
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requires computing whether the current capacity violated maximum delay (o(t) < 0) or not
(o(t) ≥ 0). The result is stored in DB (lines 6–10). Next, two different one-sample proportion
binomial hypothesis tests [25] are conducted to detect whether the observed degree of QoS
assurance is significantly below (test 1) or above (test 2) the target value qa (lines 11–13).
In the case that some of the hypotheses can be confirmed (on the contrary, it is assumed
that QoS assurance is in the target), ρ needs to be tuned. If hypothesis test 1 is confirmed,
some extra capacity allocation is needed, which is achieved by increasing ρ with a given
step size ∆ρ. On the contrary, if hypothesis test 2 is confirmed, allocated capacity can be
reduced, so ρ is decreased by the same step size.

Algorithm 5. ModelSelectionAndTuning() (Phase II)

INPUT: t, x(t) OUTPUT: changePhase
1: offlrn.updateTrafficDB(x(t))
2: if offlineLearn.newModelAvailable() then
3: <f, ρ>← offlineLearn.getModel()
4: onlineRL.setModel(f, ρ)
5: return True
6: xmax(t) = max(x)
7: z(t − 1)← flowMgr.getCurrentCapacity(t)
8: o(t)←computeSlackSurplus(xmax(t), z(t − 1))//Equation (3)
9: if o(t)<0 then DB.QA.append(0)
10: else DB.QA.append(1)
11: pobs←avg(DB.QA)
12: pval_l←BinomialTest1(“pobs < qa”)
13: pval_g←BinomialTest2(“pobs > qa”)
14: if min(pval_g, pval_l) > cfl then
15: DB.QA←∅
16: if pval_l < cfl then onlineRL.tuneParam(‘ρ’, ∆ρ)
17: else onlineRL.tuneParam(‘ρ’, −∆ρ)
18: return False

Finally, Algorithm 6 describes the procedure running in the Analyzer during Phase
III. This algorithm analyzes the last m traffic measurements and the reward obtained by
the online RL (lines 1–6 in Algorithm 6). The objective of this analysis is to check whether
both the current traffic and reward follow the expected behavior (line 7). Let us assume
that an extended estimation of the working variance with range [var_l, var_h] is found
during the offline training phase—with a minimum and maximum variance that the RL
model can support without losing either robustness or desired performance. Bear in mind
that operating a traffic flow with more variance than what is supported by the model can
lead to poor QoS assurance and even traffic loss. On the contrary, a traffic flow with less
variance can produce large overprovisioning, which the online RL can hardly decrease
with its fine adaption configuration. In fact, online RL continuously adapts the model to
smooth traffic changes with controlled reward fluctuations, so that a minimum reward
(rw_l) can be considered as the reasonable limit of a normal RL operation. Therefore, Phase
II is triggered back when traffic variance leaves the working range of the RL model or the
observed reward goes below that limit; otherwise, Phase III continues.

Algorithm 6. specificModel() (Phase III)

INPUT: t, x(t) OUTPUT: changePhase
1: rw(t)← onlineRL.getReward(t)
2: DB.traffic.append(x(t))
3: DB.reward.append(r(t))
4: if |DB.traffic| > m then DB.traffic.pop(0)
5: if |DB.reward| > m then DB.reward.pop(0)
6: V←varianceAnalysis(DB)
7: return V.var NOT IN [var_l, var_h] OR rw(t) < rw_l
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5. Illustrative Results

For the ongoing evaluation, a Python-based simulator reproducing the modules
described in Figure 3 was implemented. Realistic traffic flow behavior was accurately
emulated using a simulator based on CURSA-SQ [26]. CURSA-SQ combines statistically
based traffic flow generation and continuous G/G/1/k queue model based on the logistic
function; multiple queuing systems can be numerically analyzed and related statistics,
such as traffic magnitude, queuing delay, and packet loss, be computed. CURSA-SQ
was validated with the experimental measurements in [20] and was used to successfully
reproduce realistic packet scenarios [11,27]. In the context of this work, CURSA-SQ is used
as: (i) a lightweight network simulator to emulate a flow manager and the forwarding
plane; and (ii) a flow simulator running in the ML sandbox domain for offline RL training
purposes. It is worth highlighting that both CURSA-SQ instances have been independently
configured and managed in order to reproduce the actual separation between the physical
network and the sandbox domain.

Traffic was randomly generated according to different traffic configurations. Each
traffic configuration is the combination of traffic pattern and variance. Two different daily
patterns were considered: a simple sinusoidal pattern for offline training purposes, and a
realistic pattern [16] to emulate the real traffic in the forwarding plane. In both cases, traffic
fluctuates between 5 Gb/s (valley) and 40 Gb/s (peak) throughout the day. Regarding
variance, it is defined as a percentage of the mean, so the magnitude of traffic oscillations
changes in time (heteroscedasticity). For the sake of a wider analysis, we considered five
different variance values: 1%, 3%, 6%, 12%, and 25%.

RL algorithms running in the RL-based operation and offline learning modules have
been implemented in Python3 using libraries such as pytorch. A general epsilon decay
strategy was implemented in all the RL methods for balancing between exploration and
exploitation [7], with decay factor equal to 0.00125. Moreover, a discount factor equal
to 0.95 was set up. Q-learning was configured with ns = 14 states and na = 3 actions,
as well as capacity allocation granularity b = 1 Gb/s. In the case of D3QN and TD3,
every DNN consisted of two hidden layers with 100 neurons each implementing the
Rectified Linear Unit activation function. All DNNs were trained by means of the Adam
replacement optimizer with learning rate equal to 0.001 and maximum replay buffer equal
to 1e6 samples.

Finally, the capacity and QoS parameters for the flow under study are maximum
capacity zmax = 100 Gb/s, optimal load l* = 80%, and QoS assurance qa = 99%.

In the next two subsections, we first focus on comparing the different RL methods
for the scenario where the pure online learning RL-based operation is performed (see
Figure 2a). Next, we evaluate the offline leaning + online RL-based operation (Figure 2b),
including the three proposed phases.

5.1. Online RL-Based Operation

Let us first analyze the reliability of the RL operation under real traffic; we focus
specifically on the traffic loss. For this study, low (1%) and high (25%) variances were
considered. Figure 8 plots the traffic loss as a function of time from the path set-up time.
We observe extremely poor performance (high loss) at the beginning of operation, as it was
anticipated in Figure 2a. Interestingly, we observe that the simplest Q-learning method
provides the fastest convergence time to achieve zero loss, although it needs more than one
day to achieve zero loss operation when traffic variance is high. Note that D3QN is the
most sensitive to traffic configuration (zero loss operation time increases three times from
low to high variance). TD3 is the method with the slowest convergence (around 4 days).
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Figure 9. Q-Learning operation. Traffic and allocated capacity for low (a), moderated (b), and high (c) traffic variance. 

Figure 8. Achieving zero loss operation.

As all the RL methods have achieved zero loss operation, the rest of the results analyze
the performance after 5 days of operation. As an illustrative example of the RL-based
operation, Figure 9 shows one day of real traffic x(t) and variance from low to high, as well
as the capacity z(t) allocated using Q-learning; optimal ρ for each variance is configured.
The optimal capacity allocation (o(t) = 0) and the margin for overprovisioning y(t) are
also plotted. We observe that the allocated capacity is close to the optimal one, absorbing
fluctuations with enough margin to meet the target QoS.
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Let us now analyze the impact of the margin multiplier ρ to achieve the desired
QoS. Figure 10 shows the obtained QoS assurance as a function of ρ. For the sake of
a comprehensive study, all traffic configurations for sinusoidal (Figure 10a–c) and real
(Figure 10d–f) traffic patterns have been analyzed. The minimum ρ value has been set to
1. The ρ values for which the target QoS of 99% is achieved are highlighted with a round
marker. We observe in the results that ρ depends not only on the traffic characteristics, but
also on the RL method.



Sensors 2021, 21, 8306 17 of 24

Sensors 2021, 21, 8306 17 of 24 
 

 

Let us now analyze the impact of the margin multiplier ρ to achieve the desired QoS. 

Figure 10 shows the obtained QoS assurance as a function of ρ. For the sake of a compre-

hensive study, all traffic configurations for sinusoidal (Figure 10a–c) and real (Figure 10d–

f) traffic patterns have been analyzed. The minimum ρ value has been set to 1. The ρ values 

for which the target QoS of 99% is achieved are highlighted with a round marker. We 

observe in the results that ρ depends not only on the traffic characteristics, but also on the 

RL method. 

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4

var=1%

var=3%

var=6%

var=12%

var=25%

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4

0.95

0.96

0.97

0.98

0.99

1

1 2 3 4

0.95

0.96

0.97

0.98

0.99

1

1 2 3 44  1 4  1

Q
o

S 
A

ss
u

ra
n

ce

Margin Multiplier (ρ)

Q-learning

Q
o

S 
A

ss
u

ra
n

ce

(a)

D3QN TD3

[r
ea

l]

(b) (c)

(d) (e) (f)

[s
in

u
so

id
al

]

0.95
1

1.75 2.95

1.9

6.4

1.0

1.45

1.0

1.37

1.0

1.67

1.0

1.85

var = 1%

var = 3%

var = 6%

var = 12%

var = 25%

 

Figure 10. QoS as a function of ρ models trained with a sinusoidal traffic pattern (a–c) and real traffic (d–f). 

Interestingly, Q-learning needs the widest range of values for all traffic configura-

tions, requiring a smaller ρ as soon as variation increases. It is worth noting that the large 

range of values ([1.9, 6.4]) makes it more difficult to adjust ρ for different traffic configu-

rations. Conversely, D3QN and TD3 show a smaller ρ range and opposite behavior as ρ 

increases with the traffic variance. 

The detailed evolution of the optimal ρ with respect to the traffic variation is plotted 

in Figure 11a, and Figure 11b shows the total overprovisioning introduced by every RL 

method operating with the optimal ρ. We observe that overprovisioning increases with 

traffic variation, with a slightly different trend depending on the traffic pattern (sinusoidal 

and real). Moreover, every RL method introduces different amounts of overprovisioning 

as shown in Figure 12, where the relative overprovisioning per RL method with respect 

to the minimum one for every traffic configuration is represented. Q-learning is the 

method that requires larger overprovisioning in general terms, whereas D3QN and TD3 

show better performance. Interestingly, the differences are proportionally larger when 

traffic variation is small. 

Figure 10. QoS as a function of ρ models trained with a sinusoidal traffic pattern (a–c) and real traffic (d–f).

Interestingly, Q-learning needs the widest range of values for all traffic configurations,
requiring a smaller ρ as soon as variation increases. It is worth noting that the large range
of values ([1.9, 6.4]) makes it more difficult to adjust ρ for different traffic configurations.
Conversely, D3QN and TD3 show a smaller ρ range and opposite behavior as ρ increases
with the traffic variance.

The detailed evolution of the optimal ρ with respect to the traffic variation is plotted
in Figure 11a, and Figure 11b shows the total overprovisioning introduced by every RL
method operating with the optimal ρ. We observe that overprovisioning increases with
traffic variation, with a slightly different trend depending on the traffic pattern (sinusoidal
and real). Moreover, every RL method introduces different amounts of overprovisioning as
shown in Figure 12, where the relative overprovisioning per RL method with respect to the
minimum one for every traffic configuration is represented. Q-learning is the method that
requires larger overprovisioning in general terms, whereas D3QN and TD3 show better
performance. Interestingly, the differences are proportionally larger when traffic variation
is small.

Let us analyze the effect in terms of extra-overprovisioning when ρ is fixed to a con-
stant value, high enough to assure reliable QoS performance in online RL operation under
traffics with a wide range of characteristics. The squared purple markers in Figure 10a
indicate the QoS that could be achieved under different traffic characteristics for the largest
ρ. Table 3 summarizes the relative and absolute increment of overprovisioning (computed
in total Tb per day of operation) produced with the most conservative ρ configuration for
all traffic configurations and RL methods. When the fixed ρ happens to be the optimal
one for the traffic and RL method, no additional overprovisioning is set up (values in
boldface); otherwise, additional overprovisioning is introduced. Q-learning is the method
that adds the largest extra overprovisioning (exceeding 200% and 30 Tb/day). In any case,
it is worth highlighting that achieving optimal performance in terms of QoS assurance
while achieving efficient capacity allocation requires some method to find the optimal ρ for
the traffic characteristics.
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Figure 11. Optimal margin multiplier (a) and overprovisioning (b). 
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Figure 12. Relative extra overprovisioning. 
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Table 3. Additional overprovisioning when fixing ρ conservatively. 

Traffic  

Pattern 

Traffic 

Variance 

Q-Learning D3QN TD3 

% Tb/Day % Tb/Day % Tb/Day 

Sinusoidal 

1% 0.00% 0 0.88% 0.02 2.49% 0.05 

3% 19.18% 0.67 6.04% 0.16 20.67% 0.51 

6% 38.71% 1.85 5.21% 0.21 15.38% 0.63 

12% 44.15% 3.56 0.00% 0.00 4.01% 0.32 

25% 60.40% 8.29 0.00% 0.00 0.00% 0.00 

Real 

1% 0.00% 0 0.05% 0.00 4.95% 0.11 

3% 106.68% 3.94 9.52% 0.28 0.39% 0.01 

6% 192.50% 9.52 12.72% 0.60 2.90% 0.14 

12% 200.69% 18.37 0.00% 0.00 0.00% 0.00 

25% 219.35% 34.46 0.00% 0.00 0.00% 0.00 

Figure 11. Optimal margin multiplier (a) and overprovisioning (b).
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Figure 11. Optimal margin multiplier (a) and overprovisioning (b). 
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est ρ. Table 3 summarizes the relative and absolute increment of overprovisioning (com-

puted in total Tb per day of operation) produced with the most conservative ρ configura-

tion for all traffic configurations and RL methods. When the fixed ρ happens to be the 

optimal one for the traffic and RL method, no additional overprovisioning is set up (val-

ues in boldface); otherwise, additional overprovisioning is introduced. Q-learning is the 

method that adds the largest extra overprovisioning (exceeding 200% and 30 Tb/day). In 

any case, it is worth highlighting that achieving optimal performance in terms of QoS as-

surance while achieving efficient capacity allocation requires some method to find the 

optimal ρ for the traffic characteristics. 

Table 3. Additional overprovisioning when fixing ρ conservatively. 

Traffic  

Pattern 

Traffic 

Variance 

Q-Learning D3QN TD3 

% Tb/Day % Tb/Day % Tb/Day 

Sinusoidal 

1% 0.00% 0 0.88% 0.02 2.49% 0.05 

3% 19.18% 0.67 6.04% 0.16 20.67% 0.51 

6% 38.71% 1.85 5.21% 0.21 15.38% 0.63 

12% 44.15% 3.56 0.00% 0.00 4.01% 0.32 

25% 60.40% 8.29 0.00% 0.00 0.00% 0.00 

Real 

1% 0.00% 0 0.05% 0.00 4.95% 0.11 

3% 106.68% 3.94 9.52% 0.28 0.39% 0.01 

6% 192.50% 9.52 12.72% 0.60 2.90% 0.14 

12% 200.69% 18.37 0.00% 0.00 0.00% 0.00 

25% 219.35% 34.46 0.00% 0.00 0.00% 0.00 

Figure 12. Relative extra overprovisioning.

Table 3. Additional overprovisioning when fixing ρ conservatively.

Traffic
Pattern Traffic Variance

Q-Learning D3QN TD3

% Tb/Day % Tb/Day % Tb/Day

Sinusoidal

1% 0.00% 0 0.88% 0.02 2.49% 0.05
3% 19.18% 0.67 6.04% 0.16 20.67% 0.51
6% 38.71% 1.85 5.21% 0.21 15.38% 0.63
12% 44.15% 3.56 0.00% 0.00 4.01% 0.32
25% 60.40% 8.29 0.00% 0.00 0.00% 0.00

Real

1% 0.00% 0 0.05% 0.00 4.95% 0.11
3% 106.68% 3.94 9.52% 0.28 0.39% 0.01
6% 192.50% 9.52 12.72% 0.60 2.90% 0.14
12% 200.69% 18.37 0.00% 0.00 0.00% 0.00
25% 219.35% 34.46 0.00% 0.00 0.00% 0.00

To conclude this section, we can highlight (i) that the CRUX problem proposed in
Section 2 can be tackled using RL; under different traffic characteristics and RL methods, the
target QoS is assured with reduced overprovisioning; (ii) online RL operation leads to traffic
loss at the beginning of flow capacity operation; this fact prevents us from using RL until
online learning has come up with a robust and reliable model to guarantee autonomous
flow operation; and (iii) the comparison of the RL methods shows interesting differences
among them. While Q-learning learns fast, it also produces larger overprovisioning. D3QN
and TD3 need more time to ensure zero loss and adjust QoS at the benefit of reducing
overprovisioning.
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5.2. Offline Leaning + Online RL-Based Operation

Let us now focus on evaluating the operational approach detailed in Section 4
(Figure 2b), which consists of three phases. Before emulating flow operation, we gen-
erated synthetic data for all the traffic variances following the sinusoidal traffic pattern and
used them to pre-train generic models independently for each traffic configuration and RL
method. We ran every offline RL training for 14,400 episodes to guarantee QoS assurance
with minimum overprovisioning.

Starting with the analysis of Phase I, Figure 13a shows an illustrative example of
the evolution of the capacity during the operation of the threshold-based algorithm
(Algorithm 4) for the real traffic pattern and variation 12%. Actual traffic x(t), allocated
capacity z(t), and the evolution of the self-tuned k parameter are also shown. Note that
k quickly evolves from its initial value (k = 4) to reach a capacity closer to actual traffic.
However, as soon as the load exceeds the optimal one l*, k is increased until reaching
a stable value (1.47), which happens after 60 minutes of operation. The inset table in
Figure 13a details the values of k after one hour of operation for all traffic configurations. It
is worth noting that the self-tuned threshold-based algorithm operates with zero traffic
loss for all the cases.
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Figure 13. Phase I: Self-tuned threshold (a) and traffic variance analysis (b). 

Parallel to the threshold-based operation, traffic variance analysis (Algorithm 2) is 

conducted in order to compute the true variance of the traffic. Figure 13b shows the com-

puted traffic variation as a function of time for all traffic configurations. Round markers 

highlight when the derivative of traffic variance reached a small eps = 0.01 and labels show 

the final computed variance value. The low error between computed and true variances 

is noticeable. Such estimation is achieved within two hours in all the cases. 

After two hours of operation, Phase II (Algorithm 5) can start and an RL method with 

a generic pre-trained model for the true traffic variance is set to operate. The tuning of 

parameter ρ (∆ρ = 0.1) and the resulting QoS are shown in Figures 14a and b, respectively, 

for traffic variance equal to 12%. To detect whether the measured QoS is considerably 
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Figure 13. Phase I: Self-tuned threshold (a) and traffic variance analysis (b).

Parallel to the threshold-based operation, traffic variance analysis (Algorithm 2) is
conducted in order to compute the true variance of the traffic. Figure 13b shows the
computed traffic variation as a function of time for all traffic configurations. Round
markers highlight when the derivative of traffic variance reached a small eps = 0.01 and
labels show the final computed variance value. The low error between computed and true
variances is noticeable. Such estimation is achieved within two hours in all the cases.

After two hours of operation, Phase II (Algorithm 5) can start and an RL method with
a generic pre-trained model for the true traffic variance is set to operate. The tuning of
parameter ρ (∆ρ = 0.1) and the resulting QoS are shown in Figure 14a,b, respectively, for
traffic variance equal to 12%. To detect whether the measured QoS is considerably below
or above the desired qa value, a significance level cfl = 0.05 was used to be compared
against the obtained p-value from the binomial tests. We observe that ρ decreases up to a
magnitude that produces QoS below 99%; just after that, ρ increases and remains stable
from that point on. As shown in Figure 14a, the time to converge to the best ρ is 3960, 1440,
and 3600 min (2.75, 1, and 2.5 days) for Q-learning, D3QN, and TD3, respectively.

The above analysis, however, needs to be complemented with the overprovisioning
to extract meaningful conclusions. Figure 15 presents the overprovisioning obtained
by every RL method before and after tuning ρ in Phase II. For reference purposes, the
overprovisioning introduced by the threshold-based algorithm during Phase I is also
included as a dotted line. The large benefits in terms of overprovisioning reduction for
the RL-based operation with regard to the threshold-based algorithm are remarkable—up
to 45% of capacity allocation reduction and 11 Tb/day of total capacity savings for one



Sensors 2021, 21, 8306 20 of 24

single flow. After ρ tuning, D3QN shows the worst performance, as Q-learning and TD3
achieved significantly lower overprovisioning (24%, ~3 Tb/day). Figure 15 also shows
the obtained overprovisioning when the specific model (trained offline with the collected
traffic) is loaded in Phase III after 10 days of operation. We observe that Q-learning and
TD3 reduce overprovisioning slightly, whereas a larger reduction is achieved with D3QN;
we conclude that the former RL methods are less dependent on an accurate model of the
specific traffic to achieve optimal capacity allocation.
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Finally, let us analyze the performance of Algorithm 6 to detect traffic changes while
flow is operated in Phase III; recall that such detection immediately triggers Phase II.
To this end, we generated four different scenarios, combining two different types of
changes in traffic variance while keeping traffic profile unchanged. We evaluate gradual
and sudden/increase or decrease traffic variance changes. Figure 16 illustrates two out of four
scenarios: gradual increase (variance gradually increases from 1% to 25% along 5 days) and
sudden increasing (from 1% to 25% in just one minute); an inverse trend is configured for
gradual and sudden decrease scenarios.
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Figure 16. Phase III: Traffic variance change scenarios. Gradual increase (a) and sudden increase (b). 
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Table 4 details the time to detect the traffic change when the variance range was
configured as [var_l, var_h] = [−10%, +10%]; the current traffic variance and minimum
reward rw_l was set to 5% of the minimum observed reward (see Algorithm 6). We
observe that the proposed mechanism ensures prompt reaction under any of the studied
changes—immediate detection is achieved when a sudden change happens, and no more
than one hour is required for gradual change detection.

Table 4. Phase III: Analysis under traffic changes.

Traffic Change
Scenario

Detection
Time (min)

QoS at Detection Time (%) Reward Degradation
(Min from Detection)

Q-L D3QN TD3 Q-L D3QN TD3

Gradual increase 45 99.30 100 100 419 595 585
Gradual
decrease 650 99.86 99.44 99.72 3354 2440 2233

Step increase 1 99.17 99.86 99.86 332 413 433
Step decrease 1 99.03 99.44 99.44 494 683 212

To evaluate the promptness of detection, Table 4 considers the observed QoS at the
detection time, as well as the elapsed time between detection time and the time when
reward begins to degrade (reveals whether the RL module is working properly). Note that
the detection happens when the QoS is still above the target value in all the cases. This is
proof of anticipation of the change detection, which is key to guarantee robust and reliable
RL-based operation.

6. Concluding Remarks

The Flow Capacity Autonomous Operation (CRUX) problem has been introduced to
deal with online capacity allocation of traffic flows subject to dynamic traffic changes; it
guarantees precise QoS requirement assurance and minimizes capacity overprovisioning.
RL-based operation was proposed to learn the best policy for the traffic characteristics and
QoS requirements of a given flow. RL allows adaptive and proactive capacity allocation
once the optimal policy is learnt. However, pure RL operation lacks robustness during
online learning (e.g., at the beginning of flow operation and in the event of traffic changes)
and might result in undesirable traffic loss. However, this can be avoided using simpler
reactive threshold-based capacity allocation.

In view of the above, an offline + online learning lifecycle was proposed, aiming
at providing guaranteed performance during the entire lifetime of the traffic flow. The
proposed management lifecycle consists of three phases. Firstly, a self-tuned threshold-
based approach was proposed to operate just after the flow is set up and until enough
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evidence of the traffic characteristics are available (Phase I). Secondly, an RL operation based
on models with a pre-trained generic traffic profile but meeting specific traffic variance that
was measured during Phase I was executed (Phase II). Lastly, an RL operation with models
trained for the real measured traffic, while allowing an online RL to adapt to smooth traffic
changes (Phase III). In addition, during Phase III online traffic analysis and RL performance
tracking was conducted to detect sharper traffic changes that might require moving back
to Phase II to keep high reliability.

The proposed lifecycle was implemented under three different RL models, namely, Q-
learning, D3QN, and TD3. While Q-learning allows for simple and easy-to-learn definition
of policies under discrete spaces of states and actions, D3QN and TD3 enable the application
of more complex policies based on deep learning models with continuous state space
(D3QN) and continuous action space (TD3).

Numerical evaluation of the proposed offline + online lifecycle under different RL
techniques was carried out, reproducing realistic traffic flows in a simulation environment.
For benchmarking purposes, comparative results against basic threshold-based operation
and online RL operation were also presented. The main conclusions extracted from the
numerical evaluation are summarized in Table 5, where colors are used to highlight
the results. As expected, online RL produces moderate to high loss (reaching peaks of
1–10 Gb/s) at the beginning of the network operation. Among the different methods,
Q-learning reached the required QoS operation earlier (up to 6 times faster than TD3) at
the expense of moderate to large overprovisioning (up to 40% larger than TD3). On the
other hand, D3QN and TD3 needed more time to converge to the required QoS operation
but resulted in considerably better capacity allocation efficiency.

Table 5. Summary of results for policy-based and RL operation with and without offline learning.

Approach Concept Threshold-
Based Q-Learning D3QN TD3

Policy-based
Traffic loss Zero traffic loss

QoS assurance Since path
set-up

Over-provisioning Very large

Online RL
Operation

Traffic loss Moderated loss Moderated loss High loss
QoS assurance After 2 days After 2 days After 5 days

ρ range for QoS assurance Wide Narrow Narrow
Over-

provisioning
conservative ρ Large Small Small

optimal ρ Moderate Small Small

Offline +
Online RL
Operation

Traffic loss Zero traffic loss Zero traffic loss Zero traffic loss Zero traffic loss

QoS assurance Since path
set-up

Since path
set-up

Since path
set-up

Since path
set-up

ρ fine tuning effectiveness Large Moderated Large

Over-
provisioning

Gain

Phase I None
Phase I→ Phase II Moderated Large Large

Phase II Large Small Large
Phase II→ Phase III Small Large Small

Reliability (Phase III→ Phase II) High High High

The analysis of the numerical results of the proposed lifecycle leads to several conclu-
sions. Firstly, zero traffic loss and QoS assurance is guaranteed from path set-up regardless
of the chosen RL method. Secondly, Phase II allows a very efficient and robust operation
based on pre-trained generic models that were tuned with specific traffic characteristics.
Phase II clearly outperformed threshold-based operation in terms of capacity utilization
since it remarkably reduced overprovisioning (up to 45%). Thirdly, all the methods reached
outstanding capacity efficiency (more than 50% of capacity reduction with respect to
threshold-based operation) without losing QoS performance in Phase III; Q-learning and
TD3 behaved slightly better than D3QN. Finally, the continuous analysis and tracking
conducted during Phase III to detect traffic changes allowed a prompt detection of sharp
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changes (between 1 and 650 minutes), triggering Phase II from several hours to days before
online RL operation suffered any significant degradation.
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