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Abstract— A multi-agent optimization problem motivated by
the management of energy systems is discussed. The associated
cost function is separable and convex although not necessarily
strongly convex and there exist edge-based coupling equality
constraints. In this regard, we propose a distributed algorithm
based on solving the dual of the augmented problem. Fur-
thermore, we consider that the communication network might
be time-varying and the algorithm might be carried out asyn-
chronously. The time-varying nature and the asynchronicity are
modeled as random processes. Then, we show the convergence
and the convergence rate of the proposed algorithm under the
aforementioned conditions.

Index Terms— multi-agent optimization, stochastic time-
varying network, asynchronous method

I. INTRODUCTION

We consider an optimization problem of multi-agent sys-
tems. Specifically, the agents in the network cooperatively
optimize a separable convex cost function subject to convex
local constraints and equality coupling constraints. Further-
more, the set of decision variables of each agent is partitioned
into shared decisions, i.e., variables that are involved in the
coupling constraints and can be shared with other agents,
and private decisions, i.e., variables that must be kept private
and cannot be shared with other agents. The objective of the
paper is to develop a distributed method for this problem.
In addition, we also consider imperfect operation where
the communication network might be time-varying and the
algorithm might not be carried out synchronously.

The optimization problem considered is mainly motivated
by the economic dispatch of large-scale energy systems [1]
and belongs to a subclass of network flow problems [2],
where we seek an optimal flow of certain goods from some
sources to some sinks. Specifically, it is a convex network
flow problem with a particular control structure, where each
node has a computational unit and these units cooperatively
solve the problem of the network. As a convex network flow
problem, it represents an optimization problem of flow-based
networks, such as electrical [1], thermal energy [3] and water
networks [4]. Moreover, the problem also represents a convex
relaxation of network flow problems of indivisible goods.
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Solutions to a convex relaxation can be used as a lower bound
of the optimal solution to the original problem.

The first challenge of developing a distributed method
to solve the problem considered is how to deal with the
coupling constraints. To address this issue, we employ the
Lagrangian relaxation [5]-[7]. The main idea of this concept
is to relax the coupling constraints such that the relaxed prob-
lem is decomposable. In this regard, Lagrange multipliers as-
sociated with the coupling constraints are introduced. In the
dual problem, we aim to maximize such multipliers. Many
distributed optimization methods, including those for energy
management problems, e.g., [8]-[11], are developed based
on solving the dual problem. Such distributed algorithms
are iterative and require the exchanging of information. In
particular, the agents that are coupled through link-based
constraints must communicate certain information at each
iteration. In this article, we consider the case when the in-
formation exchange process might be imperfect. In particular,
we study the possibility of having a randomly time-varying
communication network and asynchronous updates, which
are relevant to the applications that we consider [12].

Therefore, in this paper, we develop a distributed op-
timization algorithm suitable for the previously explained
problem. The algorithm is based on the Lagrange dual
approach. Furthermore, we also consider that the commu-
nication network might be stochastically time-varying and
the algorithm can be implemented asynchronously. Then,
we show analytically that the sequence generated by the
proposed algorithm converges to an optimal solution almost
surely with the rate of O(1/k).

Now, we position the contributions of this work with
respect to the existing literature. As previously mentioned,
the problem that we consider is suitable to be decomposed
using the Lagrangian dual approach. Although it is possible
to reformulate the problem into a consensus-based problem
[13], the latter approach can become impractical when the
number of agents is large because the information that must
be exchanged is unnecessarily large. In order to deal with
a larger class of cost functions, particularly those that are
not necessarily strongly convex, we consider augmenting
the problem. In this regard, the proposed algorithm is more
closely related to the accelerated distributed augmented La-
grangian (ADAL) method, discussed in [14], [15], than to
the alternating direction method of multipliers (ADMM) [5],
[7]. Similar to the ADAL method, we use some information
from the neighbors in the local optimization step and require
a convex combination step to update the primal variable. Dif-
ferently, in the proposed method, each agent only performs



a convex combination step to update the shared variables
instead of all the decisions. Moreover, since we consider
a different augmented Lagrangian function, the condition of
the step size, which guarantees convergence, is also different.
Finally, we also note that the ADAL method in [14], [15]
considers perfect communication, i.e., with a fixed neighbor-
to-neighbor communication graph.

In this work, we are interested in developing a distributed
method that works over a time-varying communication graph
and asynchronous updates, implying imperfect information
exchanges. To that end, we consider the communication
network and asynchronous updates as random processes,
similarly to the work in [16]-[19]. It is important to note
that the distributed algorithm developed in this manuscript
is different from those in [16]-[19] as they consider the
ADMM approach and, to the best of our knowledge, the
ADAL approach that we consider has not been employed on
stochastically time-varying networks. We note that, unlike
the ADAL approach, distributed ADMM methods require
the introduction of auxiliary variables associated with the
coupled variables, as shown in [17], [18]. In addition, for
energy management problems, distributed methods that have
been proposed, e.g., [9]-[11], [21]-[26] typically assume a
perfect communication process, i.e., the necessary informa-
tion required to execute the updates is available at each
iteration. Therefore, for the considered applications, this
technical note provides a more resilient distributed method
than those in the aforementioned papers in dealing with
potential communication problems.

II. PROBLEM FORMULATION
A. Preliminaries

Notations: We consider all vectors as column vectors.
A stack of column vectors z;, forall i € N = {1,2,...,n},
denoted by [z;]ienr, is also a column vector. The inner
product of vectors z and y is denoted by (z,y). The
Euclidean norm of vector x is denoted by ||x||2. Moreover,
for a diagonal matrix D € R¥*?, the square of a weighted
vector norm induced by D is denoted by ||-||%, i.e., ||z]|% =
(x, D), for a vector z. The all-ones vector with the size of
n is denoted by 1,, whereas the identity matrix with the size
n x n is denoted by I,. Furthermore, the block-diagonal
operator, which construct a block diagonal matrix of the
arguments, is denoted by blkdiag(-).
Definition 1: (Convexity) A differentiable function f :
R™ — R is convex, if, for any z,y € R", it holds that

fly) = f2) = (Vf(2),y —x).

Definition 2: (Strong convexity [27, Theorem 5.24.iii]) A
differentiable function f : R™ — R is strongly convex with
strong convexity constant m > 0, if, for any z,y € R", it
holds that

(Vf(y) — Vf(x),y—z) >mly— |

B. Multi-agent optimization

We consider a group of interconnected agents that is
represented by an undirected graph G = (N, £), where N =

{1,...,n} denotes the set of agents and £ C A" x N denotes
the set of links that connect the agents, i.e., {i,j} € &
means that agent ¢ is coupled with agent j in a constraint.
Furthermore, denote the set of neighbors of agent i by
N; = {j : {i,j} € £}. The optimization problem that all
agents consider to solve cooperatively is

n

L Plu,) 4 f5 (o, |
minimize ; (fP (i) + £ (v)) (la)
subject to v{ + v;- =0, VjeN, iecN, (1b)

where each agent ¢ has private/local decisions denoted by
u; € R" and a shared decision denoted by vf € R"s, for
every neighbor j € ;. The vector v; collects all the shared
decisions of agent i, i.e., v; = [v]];cn;,. For each agent i,
the cost function in (la) is divided into two parts: fF and

7, which depend on w; and wv;, respectively. Furthermore,
the decisions of agent i (u;, v;) are constrained by the local
set C;. Moreover, the shared decisions of agent i are also
coupled with the shared decisions of its neighbors through
the equality constraints (1b). Additionally, we suppose that
the following assumptions hold.

Assumption 1: The functions f} : R™ — R and 2
RVl R, for each i € N, are differentiable and convex.
Moreover, f(u;), for each i € N, is strongly convex with
strong convexity constant, denoted by m;,. O

Assumption 2: The set C;, for each i € N, is polyhedral
and compact. O

Assumption 3: The feasible set of Problem (1) is non-
empty. O

Remark 1: By Assumption 1, the cost function is continu-
ous. Based on the Weierstrass theorem, since the problem is
feasible (Assumption 3) and C;, for each i € NV, is compact,
the optimal value is finite and the problem has a solution. O

Remark 2: As practical examples, we refer to [21]-[26]
for energy management problems that consider the same
problem structure, i.e., polyhedral and compact local set
constraints and edge-based coupling constraints. O

C. Time-varying communication and asynchronicity

We model the communication network as a random graph
[17]. To that end, let the communication network be de-
scribed as an undirected graph G¢(k) = (N, E¢(k)), where
E°(k) C & denotes the set of communication links that are
active at iteration k—1, i.e., {i,j} € £°(k) means that agents
i and j can exchange information between each other. Thus,
the random model of the communication network is defined
in Assumption 4.

Assumption 4: The set £°(k) is an independent and iden-
tically distributed random variable. Furthermore, any com-
munication link between two coupled agents ¢ and j, where
{i,j} € &, is active with a positive probability denoted by
Bij» ie., P ({i,j} € €°(k)) = Bi; > 0. O

Moreover, we also allow asynchronous updates, i.e., not
all agents might update their decisions at each iteration. The
asynchronous updates are also modeled as a random process,
as follows. Denote the set of agents that are active and update



their primal and dual variables at iteration k—1 by A(k).
Then, we consider the following assumption.

Assumption 5: The set A(k) C A is an independent and
identically distributed random variable. Moreover, an agent
i € N is active and updates its primal and dual variables
at iteration k£ with a positive probability denoted by ~;, i.e.,
P(ie A(k)) =~ > 0. O

III. PROPOSED METHOD
A. Algorithm design

We consider the augmented problem of (1) in the following
form:

n

minimize Plu) + () + v 4 w2
(ui,v:)EC; iEN Z; fZ( ) f’( ) Z H i ]||2
= JEN;
subject to v! + vi=0, VjeN;, ieN. )

We use the dual approach to decompose Problem (2). To this
end, we denote the decisions of all agents by u = [u;]ien
and v = [v;];en and we introduce the Lagrangian of the
augmented problem (2), denoted by L(u, v, ), as follows:

Liw,w,A) = 3 (fP(w) + i (v)+
ieN

> (Aol +vd) + ol +wil3)),

JEN;

3)

where the coupled constraints in (1b) are relaxed and )\{ €
R™s, for all j € AV}, are the Lagrange multipliers associated
to them. Note that, for convenience, the Lagrange multipliers
are compactly written as A = [\;];enr, where A; = [A] e,
Now, we introduce the dual function, denoted by ¢(\), as
follows:

¢(A) = minimize L(u,v,\). 4)

(wi,v,)EC; iEN
Since each C; is assumed to be compact (Assumption 2) and
the Lagrangian function is continuous (Assumption 1), by
the Weierstrass theorem it follows that a minimizer in (4)
exists and the value ¢(A) is finite for every A. Hence, the
domain of g(\) is the entire space of A. We also know from
the duality theory that g(\) is concave and continuous.

The dual problem associated with (2) is stated as follows:
maxi}\mize q(A). 5)

Note that the dual optimal value is finite. Furthermore, the
strong duality holds and the set of dual optimal points is non-
empty since, in the primal problem (1), the cost function is
convex and the constraints are linear [28, Proposition 5.2.1].
In other word, there exists a saddle point of the Lagrangian
function L(u,v, ), ie., a point (u*,v*,A*) € [[,cnCi ¥
Rien "Nl such that, for any (u,v) € [];cr-Ci and X €
R e <Vl it holds that

L(u*,v*",A) < L(u*,v*, \*) < L(u, v, \*). (6)

The dual function ¢(A) has separable constraints and all
the terms in the Lagrangian function are also separable,
except for the quadratic term D ;D i n, [v] + v} 2. In

Algorithm 1: Distributed augmented Lagrangian

Initialization: For each agent i € AV, v;(0) = ;o € RWVilne
and \;(0) = Ajo € RWilne,
Iteration: For each agent i € N,

1) Update u;(k + 1) and v;(k) according to

(u;(k +1),9;(k))
SP(wi) + f7 (vi)+ (8)

=arg min
(wqi,v;)€C;

> () + i k), v]) + o] + v (R)]3) -
JEN;

2) Update vf(k + 1), for all j € NV;, as follows:
ol (b+1) =n/o](k) + (1= ) ol (k). ©)
3) Send v/ (k+1) to and receive v’ (k+1) from neighbors
JjEN;. ,
4) Update the dual variables X! (k + 1), for all j € N,
according to

N (k+1) =X (k) +n! (v{(k +1)+vi(k+ 1)) :
. (10)
5) Send A/ (k+1) to and receive X} (k+1) from neighbors
jeN;.

this regard, each agent will use the information from its
neighbors as a way to approximate that quadratic term and
decompose g(A). For each agent i € N, denote by f); the
information associated to 'uj- from neighbor j € N;. Thus, the
minimization on the right hand side of (4) is approximated
by

- , S
minimize ; 7 i %
(ui,vi)eci,ieNZ <fz (U ) + f ('U )+
1EN
> (42500 + ! +9513)). @
JEN;

We are in the position to state the proposed distributed
approach, which is shown in Algorithm 1. In step 1 of
Algorithm 1, each agent updates the local decisions w;(k+1)
and an auxiliary variable, which is denoted by ¥;(k) and used
to update the shared decisions, by solving the decomposed
problem (7), where ¥} = v’ (k). Then, the update of v; (k+1)
by (9), where n] € (0,1), uses a convex combination
of ¥;(k) and the value at the previous iteration wv;(k).
Meanwhile, the dual variables are updated by (10), using
the step size 7!, for all j € N;. We will discuss the choice
of 7 later in the convergence analysis.

Now, we consider the time-varying nature of the commu-
nication network. Based on Assumptions 4 and 5, agent @
can only exchange information to its neighbor j € A if
both agents are active and the link {7, j} is also active. In
this regard, for each agent i, we denote the set of coupled
neighbors with which agent ¢ can exchange information by
A (k) ={j e NinA(k) : {i,5} € £°(k)}. In this situation,
an active agent i € A(k+1) might not have v’ (k) and X} (k)



Algorithm 2: Distributed augmented Lagrangian with imper-
fect communication

Initialization: For each agent 1 € NV, v;(0) = v € RIVilns

and X;(0) = Xjp € RWilne Moreover, 2/ (0) = v5(0) and
£](0) = Xi(0), for all j € N; and i € N.
Iteration: For each agent i € A(k + 1),
1) Update (u;(k + 1),v;(k)) according to
(wi(k + 1),0;(k))
=arg min fP(w;) + f7(vi)+
(wqi,v;)€C;
> () + (k) v + o] + 21 (k) ]3)
JEN;
2) Update vf(k + 1), for all j € NV;, as follows:
640+ (1) i)
Vi€ Ai(k+ 1),
otherwise.

Y

vl(k+1)= (12)
v] (k).

3) Send v} (k+1) to and receive v’ (k+ 1) from neighbor
JjeAi(k+1).

4) Update the auxiliary and dual variables z;(k + 1) and
Ai(k + 1) according to:

vi(k+1), VjeAi(k+1),
=] (k),

N (k) + ] (0] (k + 1)+ 2 (k+ 1)),
Vje Ai(k+1),
otherwise.

2Z(k+1)= { (13)

otherwise,

N(E+1)=
X (k),
(14
5) Send )\g (k+1) to and receive A’ (k+1) from neighbors
JjeAi(k+1).
6) Update the auxiliary variable &;(k + 1) according to

y Xk +1), Vje Ai(k+1),
Glkt1)= {Ef](k), otherwise.
For agent i ¢ A(k + 1), ui(k+1) = u;(k), vi(k+1) =
’Ui(k), Zi(k’—f'l) = Zi(k), Al(k/’-i-l) = )\l(k), and €z(k+1) =
&i(k).

15)

at iteration k. Therefore, it needs to track v’ (k) and N (k).
In this regard, this information is captured by the auxiliary
variables z] (k) and & (k), for all j € N;, respectively. The
proposed distributed method follows Algorithm 2.

Remark 3: In order to initialize the auxiliary variables
2;(0) and &;(0), either agent i € A receives v(0) and A’ (0)
from all neighbors j € N or it is set such that, for each
i € N, ’UZ(O) = ZZ(O) = 'Uoﬂ‘Ni‘nS and )\1(0) = 61(0) =
Aol ns|n, > fOr any vg, Ag € R. O

Remark 4: The case where the algorithm is performed
under perfect communication, as stated in Algorithm 1,

can be considered as a special case of Algorithm 2 where
Bij =1, for all {i,j} € £ and ; =1, for all i € V. O

B. Convergence statement

The convergence of the sequence produced by Algorithm
2 is stated in Theorem 1, as follows.

Theorem 1: Let Assumptions 1-5 hold. Furthermore, let
the sequence {(u(k),v(k),v(k),A(k))} be generated by
Algorithm 2. If i} = 1} = ny; € (0,%), for all j € N,
and ¢ € NV, then, with probability 1,

a. (Feasibility) limy_,oc [|v] (k) +vi (k)| = 0, for all j €

N;and i € N,

b. (Primal and dual variable convergence) There ex-

ists a saddle point of L(u,v,A) (see (3)), denoted

by (u*,v*,A*), such that limj,.u(k) = u*,
limg 00 (k) = v*, and limg_,00 A(k) = A%, O
Proof: See Section IV-B. [ ]

Notice that, if the dual variables X;(0), for all i € NV, are
initialized such that A}, = )‘;‘0’ then, we have that X} (k) =
A;(k), for all £ > 0, since ng = 172 = ;. In this setup,
the second round of communication (Step 5) in Algorithm
2 is not necessary and each agent ¢ € A(k 4+ 1) can update
&l (k+1) = M (k+1), forall j € A;(k+1), and & (k+1) =
&l (k), otherwise.

We also state the convergence rate of Algorithm 2 in terms
of the ergodic average of the primal and auxiliary variables,
which are defined, for all ¢ € A" and k > 1, as follows:

k—1 k—1 k-1 .
£=0 £=0 £=0

(16)
Theorem 2: Let Assumptions 1-5 hold. Furthermore, let
the sequence {(u(k),v(k),v(k),A(k))} be generated by
Algorithm 2 with 7/ = ni = n;; € (0,3), for all j €
N;. Then, the ergodic average of the primal variables (16)
converge to a solution to Problem (1) with the convergence
rate O().
Proof: See Section IV-C. |

IV. CONVERGENCE AND RATE ANALYSIS

This section is devoted to proving Theorems 1 and 2. Prior
to that, we establish some intermediate results that are useful
for proving these theorems.

A. Intermediate Results

Lemma 1: Let Assumptions 1-3 hold. Furthermore, let
(u;(k + 1),0;(k)) be the attainer of the local optimization
in (8) and (u*,v*,A*) be a saddle point of L(u,v,\) as
defined in (3). Then, it holds that

0< > (=millus(k+1) — w3

ieEN
+ D (N = A (), 9] (k) + 0} (k)

JEN;

- - (17)

= D 19l (k) + 85 (k)3

JEN;
=2 3" (Wi(k) - i(k), 9 (k) - v]")).

JEN;



Proof:  Since (u},v}) € C;, the optimality condition

[29, Theorem 20] of the local optimization in (8) yields the
following relation:

0 < (Vf7(ui(k + 1), uj —ui(k+1))

+ (V£ (0i(k)), v] — 0i(k))

+ Y R+ XN (R), 0] =8l (k) (18)
JEN;

+ Y26 (k) +vj (k), vl — 6] (k).
JEN;

Now, we consider the second inequality in (6), which implies
that (u*, v*) = argmin(y, v,)ec,,ien L(u, v, X*). Based on
the optimality condition of this minimization and the fact that
(u;(k+1),v;(k)) € C;, we obtain that

0<Z(pr

i€EN
(Vi (v7), 0i(k) — v;)
O T AT 0L (k) — vl
JEN;

), ui(k+1) —ul)

19)

By summing up (18) over all agents i € A/ and combining
with (19), we obtain that

0< Y (VP
PEN
+ (Vi (0]) = Vi (0i(K)), bi(k) — v})
O T X = N (k) = N (k), 0 (k) — v!%)
JEN;

—2 ) (0] (k) + v

JEN;

= VP (wi(k + 1)), wi(k +1) — uf)

(k). 8]()—v]"). Qo)

Applying the convexity and strong convexity relations (cf.
Definitions 1-2 for ff(v;) and fP(u;), for all i € N,
and adding the term D=, > ic v, 2(0 (k) — 0! (k), o] (k) —
v!*) = 0 to (20), it follows that

0= 3 (“milluik+1) - ]
ieEN
3 NS = AL () — A (k) 9] (k) — )
JEN;

—2 ) (]

JEN;

=2 3" (0} (k) — 9 (k), 8] (k) — v7") ).

JEN;

21

Now, we consider the second term on the right-hand side
of the inequality, i.e., 35;cn D icn, A+ X — X (k) —
Xi(k), © o7 (k) —v?*). By considering the summation over all
lmks and since at each link there exist two inner products
associated to both agents coupled by that link, that term is
equivalent to -, > ican (A — N (), o (k) + o % (k).
Similarly, the third term on the rlght -hand side of the 1nequa1-
ity 21), i€, 23,00 ZJGN (] (k) + 0} (k), 0] (k) —v!") is
equivalent to Z{”}es (0] (k) + 0! (k) (k) + 0i(k) =
dien 2jen: 107 (k )-I—’UJ( )13 Thus, we obtain the desired
inequality (17). [ ]

Now, we define the auxiliary variables, 5\3 (k), for all j €
N; and i € NV, as follows:

X (k) = X (k) + (1 = n]) (v] (k) + v} (k)),

and obtain a useful estimate in Lemma 2.

Lemma 2: Let Assumptions 1-3 hold. Furthermore, let
(u;(k+1),0;(k)) be the attainer of the local optimization in
(8), (u*,v*,A*) be a saddle point of L(u,v,\) as defined
in (3), and 5\2 (k) be defined as in (22). Then, it holds that

D> (Nk) = N, 0] (k) + 05 (k)

(22)

i€EN FEN;
+2> 0> (@ (k) — vl (k) vl (k) — v]")
i€EN jEN;
<3 (—millwi(k + 1) — w3
ze/\/( (23)
- Z fll — v (k)[I3
JEN;
J i J i\2
nA+ns— (0 +n5)° L
D e LACR I )]
]E

Proof We omit the proof due to the space constraint.

It follows a similar line of analysis as that of the proof of

Lemma 3 in [14]. |

As the next building block to show the convergence

result, we define a Lyapunov function, denoted by V (k).

For any given saddle point of L(u,v,A) (see (3)), denoted
by (u*,v*, A*), we can construct V (k) as follows:

* (12 15
lo(k) = o7 [ + 5[IAK) —

where X = [N(B)iews Ai(k) = (N()]ens, M)
is defined in (22), H = blkdiag({H;}ien) and H; =
blkdiag({(n]) ~'1,.}jen;), for all i € N. Now, we show
that {V(k)} is non-increasing under Algorithm 1 and obtain
an estimate that will be used in the main theorems.

Lemma 3: Let Assumptions 1-3 hold. Furthermore, let the
sequence {u(k),v(k),v(k),A(k)} be generated by Algo-
rithm 1, (u*,v*,A*) be a saddle point of L(u,v, ) as
defined in (3), and V' (k) be defined in (24). If ] = 77;'- =
nij € (0,%), then {V/(k)} is a monotonically non-increasing
sequence and the following inequality holds:

V(k+1)—-V(k)

<= miflui(k+1) —uf|3
ieN

Vi(k)= XE, (24)

DIDIE S

] (k) + 9 (k) |3-
iEN JEN;

Proof: Firstly, notice that X (k 4 1) can be expressed

as X (k4 1) = (k) + 7l (9 Z(l’c) + 0%(k)). Thus, we have
that
I (k1) = X113
= [IX] (k) = A7 (13 + 20] (N] (k) — AT, 9] (k) + 95 ()
+ ] (8] (k) + 95 (k) 13- (26)



Moreover, we also have that

— ol (k)3
J*

(27)
By using the expression of V(k + 1) from (26)-(27) and
using the inequality in (23), we obtain that:

lv] (k + 1) = o713 = |lv] (k) — v“llz + IIm’(fJ
+ 20} (8] — ] (k), v} (k) —

V(k+1)—V(k)
< [lo(k) — v(k ||H1+ZZ’%|| 81(k))II3
iEN JEN;
- fuv< RIZ =37 mallu(k + 1) — uf)3
iEN
3 S 2RO i a2
i€EN jEN;

Thus, the inequality (25) follows and V (k) is monotonically
non-increasing if 7} = 1} = n;; € (0, 1) [ |

The function V' (k) is used to construct a Lyapunov func-
tion for Algorithm 2. Moreover, the estimate obtained in
Lemma 3 will also be used to obtain the result in Lemma
4. Therefore, now consider the function f/(k), defined as
follows. For any saddle point of L(u, v, A) (see (3)), denoted
by (u*,v*, A*), we have that

lo(k) — ol + 5 (k) -

where v(k) = [v;i(k)]ien, vi(k) = [Vf(k)]jeM.,
vl (k) = X (k) + (1 = n)) (v] (k) + 2] (k)),

for all j € N; and i € N, H = blkdiag({H;}ien),
and H; = blkdiag({(c;n)) " I,.}jen;), for all i € N,
where o;; = Bi;77; € (0,1]. Recall that §;; and ~; are
the probability of link {i,;} being active and agent ¢ being
active, respectively.

Lemma 4: Let Assumptions 1-5 hold. Furthermore, let the
sequence {u(k),v(k),v(k),A(k)} be generated by Algo—
rithm 2, (u*,v*, A*) be a saddle point of L(u,v,A) a
defined in (3) and f/(k) be defined as in (28). If ] = n; =
nij € (0,1), for all j € N; and i € N, then the sequence
{V(k)} is a non-negative supermartingale and it holds with
probability 1 that

V(k) = I (28)

o

E (f/(k+ 1)\}"(k)) — V (k)
- Z ml|ui(k + 1) — u} |3
iEN
- X (5w ww-vwr
lENJEN
-3 > O ey + w13 <0
iEN JEN;

Proof: Since V(k) is a sum of norms and 7/ and «;; are
positive, the sequence {V'(k)} is clearly non-negative. De-
note by F (k) the filtration up to and including the iteration k,
ie., F(k) = {A),E(0),u(l),v(l),A\(£),z(£),E(0), £ =

0,1,...,k}. Now, we show that the conditional expecta-
tion of the sequence with respect to F(k) is always non-
increasing. Based on Assumptions 4 and 5, a proper initial-
ization in Algorithm 2, and the update rules (12), (13), and
(14), the variables v} (k + 1), 2/ (k + 1) = v}(k + 1), and
X! (k+1), for each j € NV;, are only updated when agents i
and j are active and link {z j} is active. Therefore, we can
denote the probability of v} (k+1), 2/ (k+1) = vi(k+1),
and /\f(k + 1) being updated by a;; = Bi;vv; € (0,1],
whereas, with probability 1 — oz”, they are not updated and
the values remain the same as v (k;) 2l (k) = v! %(k), and
X (k). Thus, we also observe that v/ (k +1) = X! (k +1)=

T(k+1)+v! (k +1)) with probablhty

X (k+1) + (1 =) (v]
a; or the value v (k) = X (k) is kept with with probability
F (k‘)>

1 — o;. Hence, we obtain, with probability 1, that
E(V(k+ DIF(R)) = V(k) = =V (k)

Notice that since the scalings of the remaining quadratic
terms do not involve «;;, we can use the weighted vector
norm induced by H. Based on the definition of V (k) given
in (24), we obtain with probability 1 that

E (f/(k + 1)|]-‘(k:)) —V(k)=V(k+1) - V(k).

* ]‘ *
E <||v(k+1) —v*|% + §||l/(k+1) - AM1%

lv(k) —v*|[%

* L3
NI - SIAGK) -

= [[o(k+1) —v*|[7 -

1 < *
—|—§||/\(k:+1)— X%

Therefore, by applying (25) to this relation, the desired
relations in (29) follow, with probability 1, when 7] = 77;- =
mi; € (0,1). Thus, (29) also shows that the sequence {V (k)}
is non-negative supermartingale. [ ]

B. Proof of Theorem 1

Now, we are ready to prove Theorem 1. Recall the function
V(k) defined in (28) and the inequality (29) in Lemma 4.
Rearranging and iterating (29), for £ =0, ..., k, and taking
the total expectation, we have that

k
SOSTE (mallwi (€ + 1) — uf]]3)

= OieN
55> > (5-m) B (10 - 013)
= OzGNJGN
Mij 2771 ] A
LYYy s G “E (67 + 503
L=04ieN jEN;
k
<) E (f/(f) —V(+ 1))
=0
= V() -E(V(k+1)) < V(0),
where the last inequality is obtained by dropping
the non-positive term —E (V(kJr 1)) The above

inequalities imply that {E(m;|u;(k + 1) — u}[3)},



for all 7 € N, is summable and converges to 0. Similarly,
{E([|o] (k) — v](k)I[3)}, and {E(|o](k) + ©}(k)[[3)}.
for all j € N; and i € N, are also summable and
converge to 0. Using the Markov inequality, for any
e > 0, we have that limsup;,_, . P(¥(u,v,0)>¢) <

lim sup,_, o E (¥(u, v, ?)) = 0,  where
Y(u,v,9) = Feymilluilk + 1) — ufl3
ZieN Zje/\/i (% - nm)Q””f(k) - "Ajf(k)”% +
Sien Sjen BE 6 (k) + wi(k)|3. Thus, it
holds with probability 1 that
Jim [lu (k) = uill3 =0, Vi€ N, (30)

Jim (o] (k) — o] (K)|I3 =0, Vj € Ni, VieN, ()

—00

Jim 0] (k) + 95 (k)||3 =0, Vj €N, ViEN,  (32)

Moreover, based on (31) and (32), it follows with probability
1 that
: J
Tim {7 (k) +

vi(k)|3=0, Vi EN;, VieN. (33)

Based on (29) and the martingale convergence theorem,
the sequences {||lv(k) — v*[|%} and {|lv(k) — A*[|%} are
bounded with probability 1, i.e., there exist accumulation
points of the sequences {v(k)} and {v(k)}. Furthermore,
{A(k)} is also bounded with probability 1 and has accumu-
lation points due to the boundedness of {v(k)}, the relation
in (33), and the fact that z] (k) = vi(k), for each k € Zx,
which follows from the initialization of z/ (k) in Algorithm
2 and the update rule (13).

Let {(v(ke),A(k¢))} be a convergent subsequence
and assume that (v* A?) is its limit point. There-
fore, due to the initialization of the variables in Al-
gorithm 2 and the update rules (13) and (15), it fol-
lows that limy o 2] (ke) = limy e vj(ky) = v}* and
limgo0 & (ke) = lim, oo Ai(ke) = AP with probability
1, for each j € N; and i € V.

Now, we need to show that (u*, v*, A?) is a saddle point
of L(u,v,A), ie., (u*,v*, A") satisfies the inequalities in
(6). Based on (33), v]* + % = limy_, o0 (v] (k¢) + v (ky)) =
0, with probability 1, for all j € N; and i € N Thus,
we have that, for any A € R ien "S‘Ni‘, L(u*,v* ) =
L(u*,v®, A?), satisfying the first inequality in (6). Now, we
show the second inequality in (6). Consider the update step
(11), for all i € NV, ie.,

(uk+ 1), 0(0) =arg - min S (FP(w) + £ ()
v ieN
+ 3 (k) + & (), 0]) + [lv] + 2 (B)]3) ).

JjEN;

By substituting k with k, and taking the limit as ¢ goes to
infinity on both sides of the equality, it holds with probability

1 that
<Wm%;gwg%$££Ng%ﬁmn+ﬁmH
> (N (ke) + € (k) v]) + 0] + 21 (k) I3))
JEN:
=a@wWﬁgﬁN§;UHWHﬁﬂwH
> (A 0]) + o] +03) )
JEN;
=g, I 2 () i)t
DIRC VAR Y >) (34)

JEN;
The left-hand side of the first equality is obtained by using
limy—y oo (u(ke + 1), 0(ke)) = (u*,v?®), with probability 1,
due to (30) and (31), which implies that lim,_,, ©(k;) = v?,
with probability 1. The second equality is obtained since
limy_, o0 27 (ko) = véa and limy o &/ (ke) = AJ?, with
probability 1, for all j € N; and i € N. Then, the Tast
equality holds since the term Y7\ >y [lv] + v3?|3
is zero at (u*,v*) due to the fact that v/* + vt =
0, for all 5 € N; and i € N. Addi_tionally, va is
also an attainer of ming > ;car > en, 07 + vi||3 since
v{a + v = 0, for all j € N; and i € N. There-
fore, the pair (u*,v®) also minimizes L(u,v,A?), ie.,

(u*,v®) € argmin(y, v,)ec,icn Doien | fi (wi) + f3(vi) +

djen: (()\za,vz + vl ) + ||'vf +v;||§) , where the cost
function in the m1n1rn1zati0n is obtained by adding the
quadratic term ;- >~ - [|v] +-0} |13 to the cost function
on the right-hand side of the last equality in (34). Hence, the
preceding relation implies the second inequality in (6). Thus,
(u*, v®, A?) is a saddle point of L(u,v,\). Finally, we can
set v* = v® and A* = A\? in V(k) (see (28)). Since the
subsequence of f/(kg) converges to 0 with probability 1 and
V(k) is non-negative supermartingale, the entire sequence

{(v(k),A(k)} converges to (v*, A*) with probability 1.
C. Proof of Theorem 2
By rearranging the summation of (29) over £ =0,..., k—

1 and taking the total expectation, we have that

k—1
SO E (millui(f + 1) — uf3)

(=0 ieN
- E (lo(0) - o} (0)3
LE % ()= )
LYY S 0l (151 o) O
L=0ieEN jEN;
k—1
<) E(VW)-V({+1)) =V(0)-E(V(k)
S ) - o5 (10}
< 2[10(0) = 0" By + 5 13(0) - X[y



where the last inequality is obtained by dropping the
non-positive term —E (V(k) and by defining o =
ming; j1ee Vi, Bi . Furthermore, due to the convexity of
the squared of the Euclidean norm, it follows that, for
B> L RE(Jaik) — ufl3) < 0o E(lui(f + 1) ~
wr(13), KE(9) (k — 1) — o] (k — 1)[3) < Sy E(8(0) -
ol (0)[3), KE(|[8 (k—1)+8 (k= 1)[3) < 302, E(|[8] () +
05(£)||5). By applying the above relations to (35) and using
the fact that m; > 0, for all + € N, and % —ni; > 0,
L;nﬁ > 0, for all j € N; and i € N, we have the
desired convergence rate, i.e., for k > 1,

> E (millwi(k) — w|3)

ieN
Yy (g’ _ m.j> E (1150 — 1) = 5/ (k= 1)13)
iEN JEN;
R )2 =i =g
+ WIE (||@g(k — 1)+ 0t (k — 1)H5)
1EN JEN;

1 1+
< — (Jl0(0) = w3 + S1IA0) = A"[13). 36
< o (@ = w3 + 51%0) =X (36)
Remark 5: The inequality (36) implies that if the acti-
vation probabilities of agents and links are larger, then the
convergence is achieved faster. O

V. CONCLUSION AND FUTURE WORK

This technical note discusses a distributed algorithm for
a multi-agent convex optimization problem with edge-based
coupling constraints, which is related to energy management
problems. The proposed method works asynchronously over
time-varying communication networks. We model the asyn-
chronicity and the time-varying nature of the communication
network as random processes and show the convergence
and the rate of the proposed algorithm. As future work, we
consider generalizing the problem that can be dealt with,
such as by introducing global objectives of control, coupling
inequality constraints, or non-convex coupling constraints,
which is relevant to the optimal power flow problems.
Moreover, we also consider the implementation of inexact
minimization to the proposed algorithm to reduce computa-
tional burden.
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