
Experimental investigation of the return flow instability
in magnetic spherical Couette flow

J. Ogbonna,a) F. Garcia, T. Gundrum, M. Seilmayer, and F. Stefani
Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden,
Germany

(Dated: 16 September 2020)

We conduct magnetic spherical Couette (MSC) flow experiments in the return flow instability regime with GaInSn as
the working fluid, and the ratio of the inner to the outer sphere radii ri/ro = 0.5, the Reynolds number Re = 1000, and
the Hartmann number Ha ∈ [27.5,40]. Rotating waves with different azimuthal wavenumbers m ∈ {2,3,4} manifest in
certain ranges of Ha in the experiments, depending on whether the values of Ha were fixed or varied from different initial
values. These observations demonstrate the multistability of rotating waves, which we attribute to the dynamical system
representing the state of the MSC flow tending to move along the same solution branch of the bifurcation diagram when
Ha is varied. In experiments with both fixed and varying Ha, the rotation frequencies of the rotating waves are consistent
with the results of nonlinear stability analysis. A brief numerical investigation shows that differences in the azimuthal
wavenumbers of the rotating waves that develop in the flow also depend on the azimuthal modes that are initially
excited.

I. INTRODUCTION

The interaction of magnetic fields with the flow of electri-
cally conducting fluids and plasmas is a common astrophys-
ical phenomenon. The dynamo theory postulates that plan-
etary, stellar, and galactic magnetic fields are self-excited in
flows of electrically conducting fluids and plasmas. Another
important effect is the magnetorotational instability (MRI), a
process by which differentially rotating conducting fluids are
destabilised in the presence of magnetic fields. The MRI is
conceivably responsible for the outward angular momentum
transport in accretion disks1, which surround stars and black
holes. Experimentally, the dynamo theory has been success-
fully demonstrated in Riga2, Karlsruhe3, and Cadarache4. Ex-
perimental evidence of the MRI has been found at Helmholtz-
Zentrum Dresden-Rossendorf in Dresden, for both helical5

and azimuthal6 geometries of the applied magnetic field.
However, despite great efforts and promising initial results ob-
tained in spherical Couette7 and Taylor-Couette8 experiments,
as well as in an interesting spring-mass analogue9, the un-
equivocal proof of the standard MRI, with a purely axial ge-
ometry of the applied magnetic field, has not yet been found.

A spherical Couette flow is induced in a fluid filling the
void between two concentric spheres when either or both of
the spheres are rotated so that the fluid rotates differentially.
In the most common case, the inner sphere is rotated while the
outer sphere remains stationary. Such a flow is fully defined
by the ratio of the radii of the inner to the outer spheres ri/ro
and by the Reynolds number Re = Ωri

2/ν , where Ω and ν

are the rotation speed of the inner sphere and the kinematic
viscosity of the fluid, respectively. If the fluid is electrically
conducting and a magnetic field is applied, the flow is said
to be ‘magnetised’. Thus, the hydrodynamical problem of
the spherical Couette flow becomes a magnetohydrodynam-
ical one. This ‘magnetisation’ results in the magnetic spheri-
cal Couette (MSC) flow, which requires the magnetic Prandtl
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number Pm = ν/η (where η is the magnetic diffusivity of the
fluid) and the Hartmann number Ha = B0ri/µ0ρνη1/2 (where
B0, µ0, and ρ are the applied magnetic field, vacuum perme-
ability, and the density of the fluid, respectively) to be con-
sidered as additional governing parameters. The MSC flow
displays different features depending on the geometry of the
applied magnetic field and the electrical conductivity of the
spheres. Detailed explanations of these differences were dis-
cussed by Hollerbach10 and Gissinger11. The base state of the
spherical Couette flow is an axisymmetric flow with the pri-
mary flow driven directly by the rotation of the inner sphere.
As the fluid rotates with the inner sphere, it is driven outward
by inertia, thus creating a secondary meridional circulation
consisting of a narrow jet towards the outer sphere along the
equator, and a return flow from the rest of the outer sphere to-
wards the origin of the jet10. Spherical Couette flows typically
encounter three types of instabilities — referred to as radial
jet, return flow, and shear layer — depending on whether the
kinetic energy of the instabilities are concentrated in the jet or
in the return flow of the meridional circulation, or in the shear
layers along an imaginary cylinder tangent to the inner sphere
that runs parallel to the axis of rotation (the so-called tangent
cylinder). The precise regimes where these instabilities occur
and their descriptions are discussed in Sec. II.

The MSC experiment shares similarities with both the dy-
namo and the MRI experiments. Due to its geometry, the
MSC flow models spherical cosmic dynamos such as the liq-
uid iron within the Earth, the hydrogen plasma within the Sun,
and the metallic hydrogen within Jupiter. Indeed, the MSC
flow exhibits dynamo instability when the magnetic Reynolds
number Rm = Reν/η = RePm is in the order of magnitude
of a few thousands7 and Pm is greater than 112. The funda-
mental feature of the MSC flow, that is, the exposure of dif-
ferentially rotating, electrically conducting fluids to magnetic
fields, is the same as the condition required for the onset of the
MRI. Indeed, Sisan et al.7 observed spontaneous excitation of
oscillating magnetic and velocity field pertubations in their
MSC experiment in Maryland, which have been attributed to
the MRI. Reinforcing their claim was the observation of in-
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creased applied torque accompanying the fluctuations, indi-
cating an increased transport of angular momentum from the
inner sphere to the outer sphere — a key signature of the
MRI. Later on, however, Hollerbach10 numerically investi-
gated the MSC flow with the same configuration as the exper-
iments conducted by Sisan et al., but at much lower values of
Re (between 250 and 3000, as opposed to between 1.7× 105

and 3.4×106). Hollerbach observed the radial jet and the re-
turn flow instabilities and suggested that the results of Sisan
et al. may have been turbulent analogues of these instabili-
ties. Gissinger et al.11 numerically investigated the MSC flow
with a similar configuration as by Sisan et al. Despite observ-
ing several similarities between their results, Gissinger et al.
disputed the claim that the instabilities observed by Sisan et
al. were the MRI. The major concern was that induction is a
prerequisite for the generation of standard MRI, whereas the
instabilities found by Gissinger et al. were basically induc-
tionless. For this reason, and judging from the other similar-
ities in both results, Gissinger et al. concluded that the insta-
bilities observed by Sisan et al. were probably the return flow
and the shear layer instabilities. Furthermore, Gissinger et al.
observed that both the return flow and the shear layer instabili-
ties are capable of efficiently transporting angular momentum
outwards, thus proving that angular momentum transport due
to magnetohydrodynamic instabilities is not restricted to, and
hence, not a sufficient proof of, the existence of the MRI.

Apart from the setup in Maryland where the experiments by
Sisan et al.7 were conducted, the Derviche Tourneur Sodium
(DTS) in Grenoble is another MSC setup that has been used
prominently for several MSC experiments13–19. The setups in
Maryland and Grenoble both use liquid sodium as the working
fluid, but unlike in Maryland, where an axial magnetic field is
applied to the flow, the DTS utilises a dipolar magnetic field
of a magnet inside the inner sphere.

In this work, we present results obtained with the HEDGE-
HOG (Hydromagnetic Experiment with Differentially Gy-
rating sphEres HOlding GaInSn) MSC setup at Helmholtz-
Zentrum Dresden-Rossendorf. As the name implies, the
working fluid of HEDGEHOG is Ga67In20.5Sn12.5, a liquid
metal eutectic alloy. Apart from the difference in the work-
ing fluid, HEDGEHOG differs from the experimental setups
in Maryland and Grenoble in terms of the conductivity of the
spheres. Whereas the other two setups consist of electrically
conducting inner spheres and insulating outer spheres, both
spheres in HEDGEHOG are insulating. HEDGEHOG em-
ploys an axial magnetic field geometry like the setup in Mary-
land. In a first set of experiments with HEDGEHOG, pub-
lished by Kasprzyk et al.20, the radial jet instability, the lower
Ha range of the return flow instability, and the stable transi-
tion region between them were investigated. Our aim is to
investigate the return flow instability in much more detail.

MSC instabilities directly manifest from the base state as
waves travelling in the azimuthal direction with constant ro-
tation frequency, which are known as rotating waves. Golu-
bitsky et al.21 documented the occurrence of rotating waves
in several experiments. They cited rotating waves appear-
ing as wavy vortices in Taylor-Couette systems22, as spiral
waves in the Belousov-Zhabotinsky chemical reaction23–25

and Rayleigh-Bernard convection26, and as cellular patterns
in laminar premixed flames27. Rotating waves have also been
observed in non-magnetic spherical Couette flows. Wulf et
al.28 experimentally investigated the path followed by the base
state of the non-magnetic spherical Couette flow as it under-
went two Hopf bifurcations on its way to chaos, the first of
which resulted in the appearance of rotating waves. In light of
the computation and nonlinear stability analysis of the rotat-
ing waves in an MSC flow conducted by Garcia and Stefani29

at conditions and configuration corresponding to HEDGE-
HOG, we compare their numerical results with our experi-
mental results in a regime where rotating waves with differ-
ent wavenumbers are stable. The present study focuses on the
comparison of the rotation frequencies of the rotating waves.
We conduct the experiments at both fixed and varying values
of Ha. The latter approach helps to investigate the multistabil-
ity of rotating waves through the trajectories of the MSC flow
state as a dynamical system in state space. The multistability
of rotating waves implies that at certain values of Ha, a rotat-
ing wave can assume one of several possibile wavenumbers.

II. EQUATIONS, NUMERICAL MODEL, AND
INSTABILITY REGIMES

If the spheres in the MSC flow rotate about êz, the unit vec-
tor representing the z-axis, the axial magnetic field applied
externally to the flow is given by

B0 = B0 cos(θ)êr−B0 sin(θ)êθ (1)

where θ , êr, and êθ are the magnetic field, the colatitude, and
the unit vectors representing the radial distance and the colati-
tude, respectively. The fluid flow v is governed by the Navier-
Stokes equation

∂tv+v ·∇v =−∇p+Re−1
∇

2v+Ha2Re−1(∇×b)× êz (2)

where b is the deviation of the magnetic field induced by the
interaction of the fluid flow with B0. For Rm << 1, this in-
duced magnetic field is negligible compared to B0. The so-
called inductionless approximation30 applies here, since all
the experiments were conducted at Re = 1000 and the Pm of
GaInSn is in the order of 10−6, giving rise to Rm in the order
of 10−3. The induction equation simplifies to

0 = ∇
2b+∇× (v× êz). (3)

Garcia and Stefani29 discretised and integrated the equa-
tions using a pseudo-spectral method described in Garcia et
al.31 to obtain a numerical model corresponding to experi-
ments with HEDGEHOG.

For any given ri/ro, the parameter space of the spherical
Couette flow governed by Re and Ha can be partitioned by sta-
bility curves of critical Re separating regions of stability from
those of instability. Such curves were computed using linear
stability analysis by Hollerbach10 and Travnikov et al.32 The
stable region of the spherical Couette flow is the axisymmetric



3

base state. Crossing the stability curves from the base state in-
troduces non-axisymmetric instabilities in the flow. The insta-
bilities manifest as rotating waves whose azimuthal wavenum-
bers m depend on the stability curve that is crossed. The rotat-
ing waves result from Hopf bifurcations from the base state. In
the bifurcation diagram of the dynamical system representing
the state of the flow, every point on the branches is a solution
of the rotating wave given by m. Bifurcation diagrams may
be obtained for several time and volume-averaged properties
such as the kinetic energies of the flow and the rotation fre-
quencies of the rotating waves29. The bifurcation diagram of
the non-axisymmetric kinetic energy computed by means of
Newton-Krylov continuation techniques for periodic orbits33

for ri/ro = 0.5, Re = 1000, and Ha ∈ [0,80], is shown at the
top of Fig. 1.

The bifurcation diagram precisely shows the stability re-
gions of rotating waves with m = 2, 3, and 4. In the base state,
the flow is stable and no rotating wave exists. Hence, this
state possesses no kinetic energy in the non-axisymmetric az-
imuthal modes. It is driven by the rotation of the inner sphere,
which flings the fluid outwards by inertia, thus creating a sec-
ondary meridional circulation consisting of a narrow jet along
the equator towards the outer sphere, and a return flow from
the rest of the outer sphere towards the origin of the jet10. The
region with finite values of non-axisymmetric kinetic energy
to the left of the base state in the bifurcation diagram is char-
acterised by an equatorially asymmetric instability known as
the radial jet instability. The non-axisymmetric kinetic en-
ergy of the radial jet instability, as seen in the contour plots at
the bottom left of Fig. 1, is concentrated on the jet along the
equator in the meridional circulation. The jet adopts a wavy
structure, alternatively slightly above and below the equatorial
plane10. We also see in the bifurcation diagram that the radial
jet instability occurs even when no magnetic field is applied.

Increasing the magnetic field from the radial jet instability
regime, while maintaining the rotation of the inner sphere, re-
stabilises the flow. The next regime, to the right of the base
state in the bifurcation diagram, consists of equatorially sym-
metric instabilities. We see that the non-axisymmetric kinetic
energies of the rotating waves with each m continuously in-
crease until they attain their respective maxima, and then con-
tinuously decrease. At the lower Ha range of the equatorially
symmetric instabilities, that is, where the non-axisymmetric
kinetic energies increase, is the return flow instability. The
kinetic energy of this instability is concentrated on the return
flow portion of the meridional circulation, as seen in the con-
tour plot at the centre. At the higher Ha range of the equa-
torially symmetric instabilities, where the non-axisymmetric
kinetic energies decrease, is the shear layer instability. As the
spherical Couette flow becomes increasingly ‘magnetised’,
shear layers begin to concentrate along the tangent cylinder.
We see in the contour plot on the right that the kinetic energy
of the shear layer instability is concentrated in these shear lay-
ers. The feature of the instability consists of series of vortices
in the horizontal flow spawned by shear layers at the outer
edge34.
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FIG. 1. The non-axisymmetric kinetic energies in a spherical Cou-
ette flow for ri/ro = 0.5 and Re = 1000 shown in a bifurcation dia-
gram for Ha ∈ [0,80] (top) and contour plots at different instability
regimes (bottom). In the bifurcation diagram, Kna denotes the non-
axisymmetric kinetic energy. The set of lines to the left and right
of the base state represent equatorially asymmetric and symmetric
kinetic energies, respectively. The dark blue and light blue lines rep-
resent the kinetic energies of stable and unstable rotating waves, re-
spectively.

III. EXPERIMENTAL METHODS

A. Apparatus

Photographs of the HEDGEHOG setup are shown in Fig. 2.
The radii of the inner and outer spheres are 45 mm and 90 mm,
respectively. The spheres are made of acrylic glass. The inner
sphere is rotated by an electric motor shaft passing through the
spheres along their common axis. The diameter of the shaft is
very small (3 mm) relative to the fluid volume, so that its in-
terference with the flow is minimal. A lead weight within the
inner sphere counterbalances the significant amount of buoy-
ancy exerted by GaInSn owing to the high density of the fluid.
A Helmholtz-type coil pair, consisting of 80 wire windings
in each coil, generates a nearly uniform axial magnetic field.
By definition, the radii of the coils and the distance between
them in a Helmholtz coil are all equal. However, this condi-
tion is only approximately satisfied in HEDGEHOG, as the
radius of each coil is 300 mm, while the distance between
them is 310 mm. The outer sphere has five latitudinal rows of
6 azimuthally equidistant provisions for mounting ultrasonic
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FIG. 2. Photographs of the HEDGEHOG setup showing its full view
(left) and a close-up view on the outer sphere (right).

FIG. 3. Meridional cross-section through the axis of one of the 6
azimuthally equidistant ultrasonic transducers installed on HEDGE-
HOG for the experiments. The dotted line extending from the ul-
trasonic transducer represents its line of view along which the flow
velocity components parallel to the line were measured.

transducers for flow velocity measurement. Additionally, the
outer sphere is fitted with 168 needle-like copper electrodes,
providing another justification for naming the experimental
setup ‘HEDGEHOG’. These electrodes were provided for ex-
periments necessitating electric potential measurements.

B. Instrumentation

Ultrasonic Doppler Velocimetry was employed for the
flow velocity measurement. This technique utilises piezo-
electric ultrasonic transducers (Signal Processing SA, model
TR0410LS) and an ultrasonic Doppler velocimeter (Signal
Processing SA, model DOP3010). For our experiments, 6
transducers were installed at a colatitude of 78.9◦. Each trans-
ducer was inclined southwards so that the angle between the
axis of each transducer and the equator was 35◦. Fig. 3 shows
the meridional cross-section through one of the transducers.

An outer sphere wall thickness of 7 mm separates the mea-
suring surface of the transducer and the GaInSn. An ultrasonic
gel was applied between the transducers and the outer sphere
to ensure good coupling between the surfaces and facilitate
the paths for the ultrasonic pulses into the GaInSn. Each trans-

TABLE I. Physical properties of Ga67In20.5Sn12.5 from Morley et
al.37 corrected to two significant figures.

Density Kinematic viscosity Electrical conductivity a

ρ (kg m−3) ν (m2 s−1) σ = 1/µ0 η (Ω−1 m−1)

6.4×103 3.0×10−7 3.1×106

a µ0 and η are vacuum permeability and magnetic diffusivity, respectively.

ducer periodically emitted an ultrasonic pulse at a frequency
of 4 MHz and received the echoes from the particles in the
path of the ultrasonic beam. Each transducer was connected
to an individual channel on the velocimeter. From each chan-
nel, the velocimeter sequentially acquired the echo signals re-
flected by particles in the fluid to determine the distances be-
tween the particles and the transducer using the velocity of
sound in the GaInSn. GaInSn oxidises readily in air35, which
produces solid particles within it, thus eliminating the need to
artificially suspend particles in the fluid36. The velocities of
the particles were determined from their distances after suc-
cessive pulse emissions. Using this information, the velocity
signals of the flow over distances parallel to each transducer
were inferred.

C. Procedure

Before each experimental run, the GaInSn was mixed to
distribute the particles within the fluid for proper velocity
measurement. For this purpose, a peristaltic pump was at-
tached to a tube externally connecting the poles of the outer
sphere. The pump continuously circulated the GaInSn from
the south pole to the north pole, thereby distributing the par-
ticles in the fluid. The particles remained sufficiently dis-
tributed for about eight hours, beyond which too much of the
particles would have sedimented for realistic velocity mea-
surement. Hence, the length of the experiment was limited by
the sedimentation time of the particles.

The magnetic field B0 corresponding to the desired Ha was
produced by the current I supplied to the Helmholtz coil. The
relationship between B0 and I is given by

B0 =

(
4
5

)3/2
µ0nI

R
(4)

where n is the number of wire windings in each Helmholtz
coil and R is the radius of each coil and the distance between
the coils. As mentioned in Sec. III A, the distance between the
coils and their radii are only approximately equal in HEDGE-
HOG. The distance between the coils (310 mm) was used as
R to evaluate B0. The desired Re was set by the rotation of
the inner sphere by the electric motor. The physical proper-
ties of GaInSn, listed in Morley et al.37, were approximated
to two significant figures and used to evaluate all the relevant
parameters. The values of these properties are listed in Table
I.
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IV. RESULTS AND DISCUSSION

A. Test conditions and data analyses

The experimental investigation followed two approaches.
In the first approach, each experiment was conducted at fixed
Ha, while in the second approach, Ha was varied over the du-
ration of each experiment. The first approach enables the flow
to attain a fully saturated state. Meanwhile, the second ap-
proach offers good insight into the trajectory of the dynamical
system in state space. We conducted all the experiments at
Re = 1000 to correspond with the conditions in the numer-
ical investigation by Garcia and Stefani29. At Re = 1000,
Travnikov et al.32 computed Ha = 25.8 as the critical Ha,
above which the flow becomes unstable to the return flow in-
stability. At this critical Ha, the flow is destabilised so that a
rotating wave with m = 4 develops in the flow (see the bifur-
cation diagram in Fig. 1). To ensure that we are in the return
flow instability regime, we selected the lower bound of the
Ha for the experiments to be slightly above this critical value,
at Ha = 27.5. The instability curves and the branches of the
bifurcation diagram for the return flow and the shear layer in-
stabilities are continuously connected10,29, which means that
the upper bound of Ha for the return flow instability, where
it transitions to the shear layer instability, is not clearly de-
fined. The transition from the return flow to the shear layer
instabilities does not occur abruptly, but the flow contains fea-
tures of both instabilities during the transition process29. We
have seen how the non-axisymmetric kinetic energies of the
flow for each m continuously increase, and then decrease af-
ter attaining their maxima in the bifurcation diagram of Fig. 1.
Garcia and Stefani29 suggested that the points at which the
non-axisymmetric kinetic energies reach their maximum val-
ues could be defined as the transition points between the return
flow and the shear layer instabilities. These maxima are dif-
ferent for each of m ∈ {2,3,4}. Of these, the maximum for
m = 2 occur at the highest value of Ha. Furthermore, only
the solution branch of m = 2 represents that of a stable ro-
tating wave at the maximum value of its non-axisymmetric
energy, whereas the rotating waves with m = 3 and 4 become
unstable before attaining their respective maxima. The m = 2
solution attains its maximum value of non-axisymmetric ki-
netic energy between Ha = 40 and 45, the former of which
we select as the upper bound of the Ha for the experiments to
once again ensure that the experiments are conducted within
the return flow instability regime.

Based on the considerations in Sec. III C regarding the sed-
imentation time of GaInSn particles, the length of each ex-
periment was chosen to be 6 hours. The flow velocity signals
from all 6 ultrasonic transducers were analysed at a specific
depth using a two-dimensional fast Fourier transform (FFT)
in time and azimuthal positions of the transducers. The trans-
ducers did not acquire the velocity signals simultaneously, but
instead, successively acquired the signals from one transducer
at a time. There was a time delay of about 1.2 seconds be-
tween successive signal acquisitions. Since this time delay is
about two orders of magnitude less than the rotation periods
of the rotating waves in the MSC flow, the effect on the com-

putation of the rotation frequencies of the experimentally ob-
served rotating waves was deemed negligible. Thus, 6 succes-
sive signals, each from a different transducer, were grouped
into a single time step to form the velocity-time data to be
analysed using the FFT. The FFT was implemented using a
short-time Fourier transform (STFT) to account for the non-
stationarity of the data. The FFT was applied within several
rectangular time windows of fixed length. The window was
initially placed at the start of the data, and the FFT process
was reiterated as the window was shifted by a constant time
interval over the entire data. For our analyses, the length of
each time window was 7200 seconds and the window was slid
by 600 seconds after each iteration. Thus, 25 time windows
were used to analyse the data for each 6-hour experiment, with
the first time window spanning between 0 and 7200 seconds,
and the last time window spanning between 14400 seconds
and the end of the experiment at 21600 seconds. The tempo-
ral frequency resolution of the FFT was 1/7200 Hz.

B. Experiments with fixed Ha

Figure 4 shows the plots of the velocity components par-
allel to the axis of an ultrasonic transducer in HEDGEHOG
at different values of Ha over a period of 30 minutes. The
column on the left of Fig. 4 shows the velocities measured
during the experiments, while the column on the right shows
the numerically simulated velocities. In order to ensure that
the flows have attained saturated state, the velocities were ob-
tained close to the end of each experiment. The velocities
were taken along the line of view of the transducer, repre-
sented by the dotted line extending from the transducer in
Fig. 3. The depth increases as the distance from the trans-
ducer. The transducers were located at the outer sphere above
the equator at θ = 78.9◦, and they pointed towards the inner
sphere. The sign convention is such that flows away from the
transducer and those towards the transducer have positive and
negative velocities, respectively. We observe that the general
structure of the plots for both the measured and numerically
simulated velocities consists of periods of velocities close to
zero separated by periods of negative velocities, although the
separations of the periods in the numerically simulated veloc-
ities is visibly clearer. As explained in Sec. II, the flow feature
of the spherical Couette flow consists of meridional circula-
tion from the inner sphere towards the outer sphere along the
equator (the radial jet), and back from the outer sphere to-
wards the inner sphere over the void between the spheres (the
return flow). The return flow crosses the viewing line of the
transducers nearly perpendicularly (hence, it is measured as
having velocities close to zero by the transducer), while the ra-
dial jet flows from the inner sphere to the outer sphere, where
the transducers are located (hence, it is measured as having
negative velocities by the transducer). Therefore, what we
observe in the velocity plots in Fig. 4 are alternating cells of
return flows and radial jets. The frequency of alternation cor-
responds to the frequency of the rotating waves in the flow. In
all the velocity plots, the regions representing the radial jet are
narrowest at shallower depths, close to the outer sphere. The
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regions of the radial jet gradually widen as the depth increases
until they reach a certain depth, beyond which the regions of
the radial jet begin to narrow. The depths at which the regions
of the radial jet are the widest before they narrow are points
where the transducer’s line of view intersects with the equator
of the spherical Couette sytem. This is as expected, since at
any radial distance, the velocity of the radial jet is maximum
along the equator. As we approach the surface of the inner
sphere (located at a depth of 57 mm), the regions of the ra-
dial jet become more dominant in the velocity plots. This is
again as expected, since the radial jets originate from the inner
sphere.

Due to the multistability of rotating waves, multiple so-
lutions of the numerically simulated velocities exist at cer-
tain values of Ha. Considering m ∈ {0,1,2,3,4}, there are
solutions of m = 2 for Ha ∈ {37.5,40}, m = 3 for Ha ∈
{27.5,30,32.5,35}, and m = 4 for Ha ∈ {27.5,30,32.5}. The
numerically simulated velocity plots in Fig. 4 were selected
from solutions whose periodicities most closely match those
of the experimental velocity plots. These solutions were m= 4
for Ha = 27.5, m = 3 for Ha ∈ {30,32.5,35}, and m = 2 for
Ha ∈ {37.5,40}. Hence, we may make an initial guess that
these were the azimutal wavenumbers of the rotating waves
present in the flow during the experiments conducted at the
corresponding values of Ha.

In order to quantitatively determine the azimuthal
wavenumbers of the rotating waves developed in the flow dur-
ing the experiments, we computed the power spectra of the
velocity-time data. The absolute values of the FFT amplitudes
were squared, and the results were divided by twice the vari-
ance of the velocities in each STFT time window to obtain the
normalised power spectra. Finally, the root sum square (RSS)
of the power spectra in the azimuthal modes were compared.
The depths at which the STFT were implemented was impor-
tant, since as we see in Fig. 4, the experimental velocity plots
were not well-defined in terms of the separation between the
radial jets and the return flows, especially at shallower depths.
Depths with high ratios of the largest RSS of the power spec-
tra to the RSS of the power spectra belonging to the rest of
the azimuthal modes were selected for the implementation of
the STFT. These depths, according to Fig. 4, were 30 mm
for Ha = 27.5 and 45 mm for Ha ∈ {30,32.5,35,37.5,40}.
Depths of 30 mm and 45 mm correspond to (r, θ ) = (64 mm,
90◦) and (53 mm, 99◦), respectively. The RSS of the power
spectra over the duration of the experiments for each Ha are
shown in Fig. 5. The times indicate the beginning of each
STFT time window. In each plot, the azimuthal mode with
the largest RSS of the power spectra is evident. The plots also
corroborate our guesses of the azimuthal wavenumbers of the
rotating waves in the flow based on the matching periodicities
between the experimental and numerical results in Fig. 4.

We now examine the rotation frequencies of the rotating
waves, which are represented by the temporal frequencies ob-
tained from the FFT of the velocity signals. The dimensional
and dimensionless frequencies of the rotating waves are re-
lated by the equation

f =
mων

2π(ro− ri)
2 (5)

where f and ω are the dimensional frequency in Hz and
dimensionless frequency, respectively. Figure 6 shows the
power spectra in each azimuthal mode obtained from the FFT
of the velocity-time data for Ha = 27.5 at m ∈ {0,1,2,3,4}.
The FFT was applied over the time window between 14400
and 21600 seconds. The data points representing the power
spectra for the experimental data concentrate along the largest
peak in the power spectra of the numerical data in Fig. 6(e),
at m = 4. Thus, a rotating wave with m = 4 was present in
the flow. There is a smaller peak in the power spectrum of the
numerical data at m = 2 in Fig. 6(c). Based on the fact that
this peak occurs at a frequency that is twice the frequency of
the peak at m = 4, we deduced that this secondary peak is the
projection of the rotating wave with m = 8 in the flow.

Fig. 7 shows the power spectra obtained from the FFT of the
velocity-time data for Ha ∈ {30,32.5,35,37.5,40}. The FFT
was applied over the time window between 14400 and 21600
seconds in each case. For each experiment, one azimuthal
mode had a peak in the power spectrum. These azimuthal
modes, as can be seen in the figure, correspond to m = 3 for
Ha ∈ {30,32.5,35} and m = 2 for Ha ∈ {37.5,40}. In the nu-
merical data, there are 2 peaks in the power spectra in all cases
except for Ha= 40. The smaller peaks for Ha∈ {30,32.5,35}
occur at temporal frequencies that are each 3 times the fre-
quencies of the larger peaks. Hence, the smaller peaks are
projections of rotating waves with m = 9 in the flow. For
Ha = 37.5, the smaller peak occurs at a temporal frequency
that is 4 times the frequency of the larger peak, implying
that it is a projection of a rotating wave with m = 8 in the
flow. In each case, the peak in the power spectra of the ex-
perimental data concentrate on the larger peak (or on the only
peak for Ha = 40) of the numerical data. Therefore, the az-
imuthal wavenumbers of the rotating waves in the flows are 3
for Ha ∈ {30,32.5,35} and 2 for Ha ∈ {37.5,40}.

We define the rotation frequency of the rotating wave de-
veloped in the flow during the experiments as the temporal
frequency with the largest power spectrum during the final
time windows of the STFT (between 14400 and 21600 sec-
onds as in Fig. 6 and Fig. 7). This was to ensure that the ro-
tation frequencies were evaluated after the flow had attained
saturated states. Fig. 8 compares the rotation frequencies of
the experimental and numerical results. We see in the fig-
ure that in general, the rotation frequencies of both results
are close. We notice the most deviations in the results for
Ha ∈ {35,37.5}, where the rotation frequencies from the ex-
periments were lower than the numerically computed rotation
frequencies. Indeed, these deviations are observed in the ve-
locity plots in Fig. 4, where the number of cells of return flows
and radial jets in the experimental data are fewer than those of
the numerically simulated data for Ha ∈ {35,37.5}. We at-
tribute these differences to uncertainties such as in the physi-
cal properties of GaInSn used to evaluate Ha, Re, and f , and
uncertainties in determining B0.
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FIG. 4. Plots of the experimentally measured (left column) and numerically simulated (right column) velocity components parallel to the
ultrasonic transducer axis. The depth indicates the axial distance from the ultrasonic transducer. Ha = (a, b) 27.5, (c, d) 30, (e, f) 32.5, (g, h)
35, (i, j) 37.5, and (k, l) 40. For the numerical results, m = (a) 4, (d, f, h) 3, and (j, l) 4. Re = 1000 in all cases.

C. Experiments with varying Ha

In this section, we discuss the effect of linearly vary-
ing Ha between regimes where rotating waves with differ-
ent azimuthal wavenumbers evolved based on results from
Sec. IV B. Additionally, we investigate the potential oc-
curence of hysteresis when Ha is increased and decreased
within values where rotating waves with the same azimuthal
wavenumbers were observed in experiments with fixed Ha in
Sec. IV B. We conducted four separate experiments. In the
first one, Ha was increased from 27.5 to 32.5, while in the
second and third experiments, Ha was respectively increased
and decreased between Ha = 30 and 35. In the last experi-
ment, Ha was decreased from 40 to 35. In Fig. 9, the RSS of
the power spectra in each azimuthal mode obtained from the
STFT of the velocity-time data of each experiment are shown.
The times in the figure indicate the beginning of each time
window. The STFT in each experiment was implemented at a
depth with a high ratio of the largest RSS of the power spectra

to the RSS of the power spectra belonging to the rest of the
azimuthal modes. A depth with the spherical coordinates (r,
θ ) = (53 mm, 99◦) fulfilled this criterion for all experiments.

Figure 9(a) shows that a rotating wave with m = 4 was
dominant in the flow throughout the duration of the experi-
ment. This is despite the fact that in the experiment at fixed
Ha in Sec. IV B, the dominant rotating waves in the flow at
Ha ∈ {30,32.5} were m = 3. On the other hand, the domi-
nance of rotating waves with m = 3 in Fig. 9(b) and Fig. 9(c)
is not surprising, since the experiments at fixed Ha within the
interval all displayed dominant RSS of the power spectra at
m = 3. In Fig. 9(d), where Ha is decreased from 40 to 35, the
RSS of the power spectra indicate that a rotating wave of m = 2
is dominant in the flow throughout the time interval. In the
fixed experiment, a rotating wave of m = 3 was instead present
at Ha = 35. These differences in the azimuthal wavenumbers
of the rotating waves at the same values of Ha depending on
whether the experiments were conducted at fixed or varying
Ha, as seen in Fig. 9(a) and Fig. 9(d), demonstrate the multi-
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FIG. 5. Root sum squares of the normalised power spectra in each
azimuthal mode obtained from the STFT of the velocity-time data.
Ha = (a) 27.5, (b) 30, (c) 32.5, (d) 35, (e) 37.5, and (f) 40. Re = 1000
in all cases.

stable nature of rotating waves, that is, the presence of multi-
ple solutions (distinguished by m) of rotating waves at certain
ranges of Ha. This is illustrated numerically by the solution
branches of the bifurcation diagram (in both Fig. 1 and Fig. 8),
where certain ranges of Ha contain several branches. The mul-
tistability of rotating waves in our experiments is a result of
differences in the initial conditions. Specifically, we see that
the dynamical system tends to remain on the same solution
branch it started out on even when Ha is varied linearly with
time until it reaches a value of Ha where, in separate exper-
iments conducted constantly at that value of Ha, the system
was attracted to a different solution branch.

Having determined the azimuthal wavenumbers of the ro-
tating waves in the experiments with varying Ha, we compute
their rotation frequencies in each STFT time window. We de-
fine the temporal frequency with the largest power spectrum
in each time window as the rotation frequency of the rotat-
ing wave. The results are shown in Fig. 10. Since the Ha
was linearly changed over the duration of the experiment, the
value of Ha in each time window was linearly interpolated
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FIG. 6. Normalised power spectra obtained from the FFT of the ve-
locity signal for Ha = 27.5 at m = (a) 0, (b) 1, (c) 2, (d) 3, (e) 4. The
FFT was applied over a rectangular time window between 14400
and 21600 seconds in the experiment. The circles and lines repre-
sent the experimental and numerically simulated data, respectively.
Re = 1000 in all cases.

between the respective Ha intervals at the centre of the time
windows. Similarly to the experiments with fixed Ha as illus-
trated in Fig. 8, the rotation frequencies of the rotating waves
computed from the experimental data follow the numerical so-
lutions quite closely. In spite of the limitation in the frequency
resolution, the experimental results replicate the slopes in the
rotation frequencies within the respective Ha intervals. There
is a significant range of overlap in the experimental rotation
frequencies between m = 3 and 4, once again highlighting the
multistability of the rotating waves resulting from differences
in initial conditions. The intention of conducting experiments
at Ha ∈ [30,35], where rotating waves with m = 3 was ex-
pected to be present throughout the interval, was to observe
potential hysteresis in the rotation frequencies of the rotating
waves depending on whether Ha was increased or decreased
within the interval. However, we observed no hysteresis ef-
fect, as the rotation frequencies were almost indistinguishable
from each other whether Ha was increased or decreased within
the interval.
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FIG. 7. Normalised power spectra obtained from the FFT of the
velocity-time data for Ha = (a) 30, (b) 32.5, (c) 35, (d) 37.5, (e) 40.
The FFT was applied over a rectangular time window between 14400
and 21600 seconds in each experiment. The circles and lines repre-
sent the experimental and numerically simulated data, respectively.
Re = 1000 in all cases.
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FIG. 8. Rotation frequencies of the rotating waves in the flow for
Ha ∈ [27.5,40]. The circles represent the rotation frequencies ob-
tained from the experiments with fixed Ha. The solid and dotted lines
represent numerical solutions of stable and unstable rotating waves,
respectively. Re = 1000 in all cases.

D. Influence of initially excited azimuthal modes on the
multistability of rotating waves

In Sec. IV C, we saw how the initial values of Ha influenced
the azimuthal wavenumber of the rotating waves that formed
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FIG. 9. Root sum squares of the normalised power spectra in each
azimuthal mode obtained from the STFT of the velocity-time data
as Ha was (a) increased from 27.5 to 32.5, (b) increased from 30 to
35, (c) decreased from 35 to 30, and (d) decreased from 40 to 35.
Re = 1000 in all cases.

in the MSC flow. To explore other ways in which the initial
conditions affect the azimuthal symmetry of the flow, we nu-
merically demonstrate how differences in the initially excited
azimuthal modes affect the time evolution of their kinetic en-
ergies. Figure 11 shows the results of this demonstration. The
numerical simulation is for Ha = 27.5 and Re = 1000. Az-
imuthal modes m ∈ {2,3,4} were analysed. In Fig. 11(a),
only m ∈ {0,1} were initially excited, while in Fig. 11(b),
m ∈ {0,1,2,3,4} were all initially excited. Although the nu-
merical simulations for both plots have exactly the same gov-
erning parameters, the kinetic energies possessed by the var-
ious azimuthal modes evolved quite distinctly. In Fig. 11(a),
the kinetic energies began to gradually increase from the start.
After a certain time, the kinetic energy of m = 2 stabilised,
while the kinetic energies in the other azimuthal modes con-
tinuously increased. This is as expected, since at Ha = 27.5,
rotating waves with m∈{3,4} are stable, while that of m = 2 is
unstable. The kinetic energy of m = 3 was higher than that that
of m = 4 during the early time period. However, the kinetic en-
ergy of m = 4 began to increase at a higher rate after a certain
time so that towards the end of the duration, the magnitudes of
the kinetic energies of m ∈ {3,4} were nearly the same. Con-
trary to Fig. 11(a), the kinetic energies of the azimuthal modes
decreased at the start in 11(b). All the azimuthal modes had
nearly the same magnitudes until a certain time, at which the
kinetic energies of m ∈ {3,4} began to increase, with the lat-
ter increasing at a higher rate than the former. Meanwhile, the
kinetic energy of m = 2 continued to decrease, again demon-
strating why the m = 2 rotating wave is unstable at the values
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FIG. 11. Numerical simulation of the evolution of dimension-
less kinetic energies possessed by rotating waves with m ∈ {2,3,4}
in the flow at Ha = 27.5 and Re = 1000 when azimuthal modes
m ∈ (a) {0,1} and (b) {0,1,2,3,4} are initially excited.

of Ha and Re considered.

V. CONCLUSION

We have experimentally identified rotating waves of az-
imuthal symmetry m ∈ {2,3,4} in the return flow instabil-
ity regime. The regimes where the rotating waves with the
respective azimuthal wavenumbers were found corresponded
reasonably well with previous numerical predictions of the
stability regions of rotating waves. In addition, the rotation
frequencies of the waves and the power spectra of the flow
velocities obtained from the experiments showed good agree-
ment with the numerical estimates. In the experiments where
the values of Ha were varied linearly with time, the azimuthal
wavenumbers of the rotating waves partly differed from those
identified during experiments at fixed Ha (even at the same
values of Ha and Re). This experimentally demonstrates the
multistable nature of rotating waves, that is, more than a sin-
gle solution (distinguished by m) of rotating waves exist in
certain regions in state space. Differences in the initial condi-
tions and the tendency of the system to stay on the same solu-
tion branch of the bifurcation diagram play a significant role
in the selection of the specific azimuthal symmetry of each

saturated experimental flow.
In future, it would be worthwhile to investigate the multista-

bility of rotating waves in the other MSC instability regimes,
namely, the radial jet and the shear layer instabilities, much
like we have done here for the return flow instability. Another
potential area of experimental investigation would be the Hopf
bifurcations of the MSC flow beyond the first bifurcation that
results in the appearance of rotating waves, which may lead
the flow to a state of chaos.
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