
Foodie environment MEAN web application

A Degree Thesis
Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya
by

Alicia García Sanz

In partial fulfilment
of the requirements for the degree in

TELECOMMUNICATION ENGINEERING

Advisor: Marcel Fernandez Muñoz

Barcelona, June 2021

mailto:marcel.fernandez@upc.edu

Abstract

Currently, human beings are constantly in a rush. Nobody has the time to be
conscious of their eating habits. This thesis aims to unify the cooking responsibilities on a
website. Hence, the user is in control of the food intake while saving time. A MEAN
project is developed to accomplish such a purpose, a web application based on an
Angular client-side. Then, the resources come from a MongoDB database connected
through an Express server-side. Everything is in a NodeJS runtime environment.

Thus the result is a Single Page Application. The user can browse through any recipe
in the database. To write personal recipes is an option too. Planning a weekly menu,
writing the grocery list or having a food expenses imprint are the different features
available. Therefore, it unifies the cooking duties in a highly responsive, multiplatform
application.

1

Resum

Actualment, els humans viuen en tensió constant. Ningú té temps de ser conscient
dels seus hàbits alimentaris. Aquesta tesi pretén unificar les responsabilitats lligades a la
cuina en una aplicació web. D'aquesta manera, l'usuari controla la seva ingesta
alimentària i estalvia temps. Un projecte MEAN és desenvolupat per aconseguir aquest
objectiu, una web amb un client formulat en Angular. Seguidament, els recursos són
obtinguts d'una base de dades de MongoDB connectada a través d'un servidor
implementat en Express. L'entorn d'execució és NodeJS.

Per tant, el resultat és una aplicació de pàgina única. L'usuari pot consultar qualsevol
recepta de la base de dades o escriure una de nova. Les diferents funcionalitats són
planificar un menú setmanal, fer la llista de la compra o tenir un seguiment de les
despeses en l'entorn alimentari. Aconseguint així unificar les responsabilitats lligades a la
cuina en una aplicació multiplataforma, altament responsiva.

2

Resumen

Actualmente, los humanos viven en tensión constante. Nadie tiene tiempo para ser
consciente de sus hábitos alimenticios. Esta tesis pretende unificar las
responsabilidades en el entorno de la cocina. De esta forma, el usuario tiene el control
sobre su ingesta alimentaria mientras ahorra tiempo. Un proyecto MEAN es desarrollado
para cumplir este propósito, una aplicación web basada en un cliente formulado en
Angular. Seguidamente, los recursos son extraídos de una base de datos implementada
en MongoDB conectada a través de un servidor definido con Express. El entorno de
ejecución utilizado es NodeJS.

Por lo tanto, el resultado es una aplicación de página única. El usuario puede
consultar todas las recetas de la base de datos, o aportar nuevas personales. Las
diferentes funcionalidades también son planear menús semanales, escribir la lista de la
compra o llevar un seguimiento de los gastos en comida. De esta forma, se unifica todo
el entorno alimenticio en una aplicación multiplataforma, altamente receptiva.

3

Revision history and approval record

Revision Date Purpose

0 19/03/2021 Document creation

1 04/04/2021 Document revision

2 27/04/2021 Document revision

3 11/05/2021 Document revision

4 01/06/2021 Document revision

5 16/06/2021 Document revision

6 21/06/2021 Document revision

DOCUMENT DISTRIBUTION LIST

Name e-mail

Alicia García Sanz alicia.garcia.sanz@estudiantat.upc.edu

Marcel Fernandez Muñoz marcel.fernandez@upc.edu

Written by: Reviewed and approved by:

Date 19/03/2021 Date 21/06/2021

Name Alicia García Sanz Name Marcel Fernandez Muñoz

Position Project Author Position Project Supervisor

4

Table of contents

Abstract 1

Resum 2

Resumen 3

Table of contents 5

List of Figures 7

List of Tables 8

Glossary 9

1. Introduction and Statement of purpose 10
2. Time plan 11

2.1. Work Packages 11

2.2. Time plan and milestones 11

3. Overview 12
4. State of the art 13

4.1. Related commercial works 13

4.2.Technologies applied 14

4.2.1 TypeScript 14

4.2.2 Angular 14

4.2.3 HTML and CSS 15

4.2.4 NodeJS and Express 15

4.2.5 MongoDB 15

5. Backend 17

5.1. Introduction 17

5.2. Database 17

5.2.1 Design 17

5.2.2 Management 18

5.3. REST API 19

5.4. Architecture 20

5.5. Authentication 21

5.6. Uploading files 22

6. Frontend 23

6.1. Introduction 23

6.2. Functionalities 24

6.3. Architecture 25

5

6.4. Design 27

6.4.1 Views 27

6.4.2 Navigation 27

6.4.3 Structure 28

6.4.4 API connection 29

6.4.5 Keeping state 29

7. Results 30
8. Budget 37
9. Conclusions and future development: 38

References 39

Appendices 40

A.1. Work Packages 40

A.2. Database collection schemas 41

6

List of Figures

Figure 1: Work packages division 11

Figure 2: Project Structure 12

Figure 3: TypeScript superset 14

Figure 4: Backend components 17

Figure 5: Database conceptual map 19

Figures 6, 7: RESTful API tree folder architecture and details 20

Figure 8: Bcrypt Output Format example 21

Figure 9: JWT example 22

Figure 10: Loading data comparison 23

Figure 11: Deleting a recipe 24

Figure 12: Angular architecture 25

Figure 13: Data binding syntax 26

Figure 14: template - component data binding 26

Figure 15: parent - child component data binding 26

Figure 16: SPA tree folder architecture 28

Figure 17: Home screen 30

Figure 18: Log in screen 30

Figure 19: First registering form 31

Figure 20: Planner screen 31

Figure 21: Groceries screen 32

Figure 22: Expenses tracker screen 32

Figure 23: MongoDB collections 33

Figure 24: Page Speed Insight 35

7

List of Tables

Table 1: Time plan diagram 11
Table 2: MongoDB and Firebase comparison 16

Table 3: JWT decode example 22

Table 4: Recipes’ endpoints 33

Table 5: Authentication endpoints 33

Table 6: Users’ endpoints 34

Table 7: Ingredients’ endpoints 34

Table 8: Menus’ endpoints 34

Table 9: Days’ endpoints 35

Table 10: Recipes’ endpoints 35

Table 11: Cost of the project 36

8

Glossary

REST REpresentational State Transfer

API Application Program Interface

SPA Single Page Application

CRUD Create Read Update Delete

MEAN MongoDB Express Angular NodeJS

CLI Command-line interface

HTML HyperText Markup Language

CSS Cascading Style Sheet

JSON JavaScript Object Notation

JWT JSON Web Token

NPM Node Package Manager

IDE Integrated Development Environment

VSC Visual Studio Code

HTTP Hypertext Transfer Protocol

URL/URI Uniform Resource Locator / Uniform Resource Identifier

SQL Structured Query Language

MVC Model View Controller

KDF Key Derivation Function

DOM Document Object Model

9

1. Introduction and Statement of purpose

Nowadays, people are not conscious of their eating habits. They regularly skip meals
and fall for delivery or fast-food services. Eating is a survival habit because any living
being necessitates food intake to stay alive. Most importantly, we are what we consume.
The purpose of the thesis is to conjoin all the work related to cooking.

A website has been developed to help people organize their weekly menus. The
website presents a unified workspace food environment, where recipes are shared
automatically. Hence, the website is creating an inspiring space for each user. Those
recipes can be saved individually in the users’ recipes book.

Once those recipes are stored or inscribed, it facilitates the user to determine the
several meals of the week. There is an area to plan various weekly menus identifying the
recipes and the food intake. Moreover, the user can integrate batch cooking. He or she
can reserve time to prepare multiple meals for the whole week. Thus, saving time, energy
and money.

Additionally, it is plausible to automatically create a grocery list with ingredients
selected from the recipe’s ingredients, editable on demand. Finally, there is an economic
imprint for the user to control the food expenses if wished.

Hence, the application creates a little community of people sharing recipes, allowing
others to discover new ideas or even new flavors. Additionally, it helps organize and save
time while cooking and grocery shopping, which also saves money.

The full-stack project requires to fulfil the services introduced:

● To have a RESTful API with a scalable database and a highly responsive
interface. The application web speed must be less or equal to five seconds
because increasing that time loses the user’s attention.

● The website must be organized, easy to use and understandable. It must have a
clean and user-friendly interface.

● At least the CRUD (Create Read Update and Delete) operations must be
contained in the different data models.

● Lastly, understand and master the technologies used in the project.

The implementation to achieve the requirements presented is shortly described. The
database models that will be detailed in section 5 have been designed, taking into
account the project scalability. The user can add, delete and edit recipes, a planner, a
groceries list and the expenses tracker. A clean interface with persistent icon design and
a light color theme is proposed. Finally, to secure the user’s data, the password has been
hashed before saving it in the database.

10

2. Time plan

This section has two different parts. Firstly, section 2.1. divides the project
development tasks by their content. It regroups the assignments into significant
packages. In section 2.2. there are the milestones and the time plan combined to present
the project's development. They present a deliverable guide with start and end dates.

2.1. Work Packages

The work packages are a description of the different parts of the project
development. In this project’s case, three work packages can be distinguished. The first
one is choosing and learning the different technologies, the second one englobes the
front-end, and the third is the application’s back-end. The complete version can be found
in the appendix A.1. of this project.

Figure 1: Work packages division, source: own compilation

2.2. Time plan and milestones

The time plan is represented in a table since the project’s development is individual
and linear. The milestones are different targets to keep track of the project’s progress.
The following table combines both of them to analyze the project’s development.

Task Start Date End Date

Learning technologies: 22/02/2021 29/03/2021

Typescript

Agular

NodeJS and MongoDB

Design and requirements 29/03/2021 19/04/2021

Frontend 19/04/2021 14/06/2021

Backend 10/05/2021 07/06/2021

Documentation 19/03/2021 21/06/2021

Table 1: Time plan diagram, source: own compilation

11

3. Overview

The completion of the project is entirely done from scratch with no prior knowledge of
the technologies used.

This thesis consists of a MEAN stack project. It stands for MongoDB database,
Express a server-side framework, Angular a client-side framework and NodeJS a
JavaScript runtime. Thus the technology used is TypeScript, a superset of JavaScript. A
Single Page Application is developed with Angular, which petitions to MongoDB through a
RESTful API built with Express framework on a NodeJS environment. The reason for
choosing those technologies is detailed in section 4.2.

Figure 2: Project Structure, source: own compilation

For programming the SPA, Angular has a command-line interface tool used to
initialize, develop, serve and build the application, Angular CLI. It is beneficial while
scripting. The ng serve command generates a development server. It automatically
rebuilds the application and reloads the page when a change is made in any source files,
preventing wasting time while compiling. Subsequently, the display and the styling is
mainly defined with HTML and CSS. Some libraries such as Bootstrap and Angular
Material are also used.

Moreover, the backend of the application compounds the database and the RESTful
API. The database stores the resources in different collections with documents in JSON,
which relies on key-value pairs. JSON format provides fast access to data, and it eases
its readability. Then the API, the Application Programming Interface, creates the
connection between the SPA and the database. The API governs the endpoints, the web
address that gives the client access to the different resources.

Tokens are introduced to preserve the user session. More precisely, JWT is kept on
the client-side and sent to the server through the header’s request, allowing
authentication. Finally, the package manager used is NPM, the one for NodeJS, and the
IDE where the project has been created in Visual Studio Code.

12

4. State of the art

This part is divided into two subsections. First, the description of different existing
solutions to the problem presented. A contrast is made between the multiple solutions
and the thesis proposal. Second, a report of the technologies used in the project and the
reasons for the decisions presented.

4.1. Related commercial works

There are different solutions in the market. Nevertheless, they either resolve time
planning, help to keep a list of the groceries or offer meal plans. Sometimes those meal
plans come with delivery services. Shortly an exhibition of those solutions is going to be
made relating them to the project scope.

To begin with, the most prominent platforms for time planning are Google Calendar
[24] and Notion [25]. As its name stands out, the first one is a calendar. The user can
arrange his or her meal plans and add a task description. The recipes for such meal can
be detailed and even scribbled. However, this can be a tedious task. No suggestions are
made, and the information is not classified.

Another solution is Notion, an all-in workspace organizer. The user has to design
every feature to implement something similar to the product presented. They are
consuming much valuable time building a space to achieve the same features as this
thesis provides. Furthermore, the free version only allows sharing data with five other
guests, while the website presented leads to create a community where everybody has
access to the recipes.

Other applications that help keep track of a grocery list or write down a recipe are the
Notes application of a phone device or Google Keep [23]. These applications allow
scribbling fast an ingredient or a recipe, but none of them presents a space to plan the
meals or share those recipes. Contrary to the project, the scope has a fast access
notepad, not creating an environment to plan the cooking-related errands.

Next, there are web pages like ‘Directo al Paladar’ [27] or ‘Recetas Gratis’ [28] where
a user can find an extensive range of recipes and, in the first one, even menus. Both of
them can be very helpful. However, unfortunately, there are no characteristics to write
down the users’ recipes. Neither to keep track of the ingredients and the expenses.
Unlike the application presented. Another similar service is HelloFresh [26], a company
that presents defined meals. It has a delivery service that supplies the ingredients
required to cook the recipe. The same vacancy for holding the users’ recipes or expenses
is present.

Finally, the Realfooding application [29] presents a free version with similar features.
The user has access to its recipes or other users’ ones. In order to plan ahead of the
meals or have a groceries list, there is a premium plan. Depending on the subscription
selected, they have three different fees: a month, six months or a year. The subscription
includes a weekly meal plan personalized depending on the user’s goals where no
ultra-processed food is taken into account. Although our system does not have this
already planned weekly meals functionality, presenting a restriction on the users’ food
intake is not our product’s approach.

13

4.2. Technologies applied

4.2.1. TypeScript

The project is built entirely in TypeScript [2], besides the web display written in HTML
[7] and the styles defined in CSS [8]. This language is an open-source superset of
JavaScript [3]. It purports that all the features of the given language are included in the
superset and have been expanded.

Figure 3: TypeScript superset, source: own compilation

For instance, it implements static type definitions, classes and interfaces, which
brings more robust software. It provides a way to define the shape of an object and
provides better documentation. Static typing is optional since TypeScript implements
inheritance, detecting data types, giving the same strength without writing additional
code.

On the contrary to JavaScript, TypeScript is a compiled language allowing
compile-time error controls. It makes debugging more straightforward and therefore
enhances code handling. It endorses creating more extensive and complex projects,
which is the case. Additionally, it saves valuable time to developers.

However, the browsers can not run TypeScript since, as mentioned, it has to be
compiled. So once the code is written, it compiles to JavaScript files directly run on the
browser. For all those reasons, the project is programmed in Typescript.

4.2.2. Angular

Angular, or Angular 2 [4], is a complete development platform and Google’s
framework for building scalable SPAs. It implements an extensive collection of
well-integrated libraries that include a wide range of features such as client-server
communication, forms management, routing, data injection and more. Diversely, there is
ReactJS [5], also known as React, a JavaScript open-source library for building user
interfaces. Both are component-based.

Even though React dominates the market due to its maturity and long-time presence,
the project is implemented in Angular. The reasons are presented shortly. Angular, as
mentioned, is a complete Framework with the firm structure presented later on in the
document. It makes learning and coding in Angular more complex, but it makes it more
robust since coding structures are more defined, permitting faster and easier scalability.

14

Furthermore, it follows a template approach for HTML instead of having JS scripts,
which can be confusing. The code is shorter and more readable. With injectors, data is
passed through parent and child components bidirectionally. Finally, Angular CLI includes
built-in tools to compile, serve, generate and test the application.

4.2.3. HTML and CSS

As mentioned above, Angular structures the Web page with HTML, HyperText
Markup Language. It consists of a series of elements and attributes that state how the
browser displays the content. Those elements are defined with tags, a starting and
ending point. The content is placed in between those tags.

Moreover, CSS, Cascading Style Sheet, describes how the HTML elements are
displayed on the screen. It defines the layout, font size, and font color compressing a web
page's formatting in a single file. Those files can be used by multiple pages
simultaneously.

For styling, the SPA uses other libraries such as Bootstrap and Angular Material have
been implemented. They increase the speed of front-end development and endure a
responsive page.

4.2.4. NodeJS and Express

NodeJS [9] is an asynchronous event-driven runtime for building scalable network
applications. Many connections can be handled concurrently. No threads are employed,
and since there are no locks, the process can not be dead-locking. If no service is
required, the system is in an idle state.

This runtime presents an event loop hidden from the user, which does not need a
start event. After executing the input script, it enters the loop, and when there are no
more callbacks to perform, the loop is exited.

The Express framework [10] is implemented to provide a foundation for NodeJS. It is
a minimal and flexible framework and provides a robust set of features for the web
application. It defines a routing table used to perform the actions based on HTTP
methods and URLs. Further, to install and publish the packages, npm [11] is used, the
package manager of NodeJS.

4.2.5. MongoDB

There are two main types of databases, relational and non-relational databases. Also
known as SQL databases, where SQL stands for Structured Query Language. And
NoSQL, which means not only SQL. The principal distinction between the two is the
structure.

The first one stores data in columns, rows and tables. Each column accommodates a
data point, a category, and the row represents the value for that category. Then the table
stores data only for one object. The relationship between tables and fields is called
schema and must be clearly defined. Therefore, this kind of database emphasizes the
structure.

The second one is document-oriented. It can store information under different
categories, which all depend on different commands. In this scenario, the database uses
columns and rows to enter data types and values and identify the object with keys. A

15

specific table is not required for a particular object. The database will automatically
structure the information based on the key of the object.

The advantages of using a non-relational database over a relational database are the
agility of updating the documents and its readability. For example, opening an individual
document instead of having to shift between multiple tables eases the lecture. Further, it
is simpler to handle them since fewer dependencies provide scalability and flexibility. In
addition, those databases can store any data in enormous amounts with little structure,
even unstructured data.

For those reasons, the project includes a non-relational database. There are four
types of non-relational databases. We are just going to focus on document-based
databases. A comparison between Mongo Database [12] and Firebase [30], two
JSON-like document data models, is presented in the following paragraphs. Both
databases are built to mitigate application development.

First, MongoDB is a high-performance document-based database, whereas Firebase
is ideal for storing and synchronizing data in real-time. MongoDB offers scalability and
flexibility with the querying and indexing of the developer needs. The prime importance of
this database is on the data storage factor. It lacks a complete ecosystem. On the other
hand, Firebase mentioned above has a complete ecosystem for generating mobile and
web applications. It is a real-time engine with background connectivity. It has many more
services, like hosting, storage, cloud function, and machine learning, compared to
MongoDB.

The comparison between the two databases is presented below.

Comparison MongoDB Firebase

Performance High performance with a high traffic
application

Does not support high
performance

Supported Languages Python, Java, JavaScript PHP, NodeJS,
C, C# ...

Java, PHP, NodeJS, JavaScript,
Objective-C, Swift, C++ ...

Application Best suitable for large-scale applications Best suitable for small-scale
applications

Scalability Powerful sharding and scaling
capabilities

Instant data updates without
refreshing

Pricing Free version when you configure
on-premise, with paid version the
developer gets a serverless set up

Pay-as-you-go plan model with
flexible rates

Management Has confusing ‘middleman’ hosting
arrangements, complex queries are
complicated to work with

Dealing with relations and data
migration is quite complicated

Security Considered highly secured because no
SQL injection can be made

Allows straightforward hosting in
Google’s Cloud Platform

Table 2: MongoDB and Firebase comparison, source: own compilation

After presenting both databases, we can say that both are great for application
development, but for a complete backend as a service, MongoDB is better due to its
performance. For that reason, and since it is a more flexible technology, it is used in this
project.

16

5. Backend

5.1. Introduction

The project’s back-end is composed of a Mongo database and a RESTful API [14],
and web services.

Figure 4: Backend components, source: own compilation

As presented previously in the technologies section, this project has a non-relational
database. It allows modelling the collection with schemas, which are, in this case,
typescript files.

The RESTful API is the endpoint’s set. The addresses where requests are sent from
the client allow retrieving resources from the database.

5.2. Database

5.2.1. Design

The database has been designed to fulfil the needs of the application. For that
reason, it contains six collections, User, Recipe, Ingredient, Expense, Menu and Day.
Based on the functionalities presented previously in the document, the designed
attributes of the collections are presented in the appendices A.2.

All the schemas are defined with a timestamp. It automatically adds a createdAt and
updatedAt field when a document is created. The unique Id of a document is also
generated when saving the document.

The design of the schemas has been defined following MongoDB best practices. On
the one hand, it favored embedding documents, considering that a document size limit is
16MB. For this reason, all the meals that compound a day are in the same document.

On the other hand, it is using references to avoid duplication of data and have
smaller documents. It allows better scalability and is the reason for having a separate
collection for expenses, menus and days. If less than 20% of the document is not used, it
is considered useless.

Next, storing references. When there are Many to Many relations, the data should be
stored in both documents. The data can be reached from any of them, so it has to be
accessible. Nevertheless, the decision not to save the references in the ingredients
documents for user or recipe and ingredient relation has been made. Knowing for
example, how many users need to buy an ingredient is irrelevant to the application. For
that reason and to preserve space, those fields are omitted on the ingredient side.

Moreover, in the one to many relations, the id or field of one endpoint is stored in the
documents of the many endpoints. It allows filtering all the documents with the id
specified. For example, a user can have many menus. Therefore, the user's email is
saved in the menu document to get all the menus that contain the email address required.

17

Hence, the relation between the collections is the following ones.

User schema:

The recipes attribute an array of recipes ObjectId, allowing the relationship between
the user and the recipes. Those are the recipes that either has been created by the user
or have been saved.

The groceries attribute is an array of ingredient names that allows making the relation
between the user and the ingredients. Those are the ingredients missing in the user's
kitchen and need to be bought for future meals.

Recipe schema:

The ingredients attribute is an array of ingredients that allow making the relation
between the recipe and the ingredients. Those are the ingredients required in order to
follow the recipe.

The creator attribute is the email of the user, which allows making the relation
between the recipe and the user. It is the person that has added the recipe.

The saved attribute is an array of users emails which allows making the relation
between the recipes and the users. Those are the users that have saved the recipe.

Menu schema:

The _user attribute is the email of the user, which allows making the relation between
the menu and the user. Those are the menus owned by a user.

Day schema:

The _menu attribute is the id of the menu, which allows making the relation between
the menu and the day. Those are the days that form the menu.

Expenses schema:

The _user attribute is the email of the user, which allows making the relation between
the expense and the user. Those are the expenses done by a user.

5.2.2. Management

In order to manage the database, the library used in the project is mongoose [18].
This library implements the queries to manage the database, such as saving, searching,
updating or deleting data.

18

Figure 5: Database conceptual map, source: Dataedo Entity Relationship Diagram

Legend:

5.3. REST API

REST is an acronym for Representational State Transfer, an architectural style for an
application program interface (API). It allows communication between the user and the
database. The separation of the user interface involvements and the data storage charge
improve the portability of the interface across multiple platforms and the scalability of the
server by simplifying its components.

The REST API is stateless. It means that all the information required to understand a
request is on the client-side. Therefore the session state is kept by the client.
Furthermore, it uses HTTP requests to access and use data. The transferred data is in
JSON format in the body of the request. A token is given within the header detailed in the
authentication section to maintain the state.

19

In this project, the primary operations implemented are CRUD [15], Create, Read,
Update and Delete. Those are accessed with the respective POST, GET, PUT and
DELETE requests. The first one adds or retrieves data given some information. The
second one retrieves information from the database, the third one updates the data, and
the delete request removes the specified data.

The REST technology has been chosen since it uses less bandwidth, enduring
efficient internet usage.

5.4. Architecture

The server has an MVC architecture [13], which stands for Model, View, Controller.
The goal of this organizing method is that each section of the code has a specific
purpose.

First, we have the Model, which holds the raw data. It is the schema modelling of
each collection of the database. It allows defining the components of the application. It
englobes the data-related logic for the user to interact.

Next, the View permits the interaction between the backend and the frontend, which
in other words is the UI logic (User Interaction). It is the definition of all the routes that
enable making requests from the client to the server.

Then, the Controller, which acts as an interface between the Model and the View.
Given the information, the Controller states the data usage or how to process it to pass it
to the View, rendering the final output.

Figures 6, 7: RESTful API tree folder architecture and details, source: own compilation

20

5.5. Authentication

Users have to log in to access most of the application's features. They first have to
sign up and set the user's email and password to accomplish it. In addition, security is
introduced on the server-side. Passwords are hashed before introducing them in the
database, preventing possible attacks.

This encryption is done with BCrypt [11] [17], a library to hash passwords. When a
user signs up, the system checks if any user in the database has the same email. Then if
it does not exist, a salt is generated to hash the password obtained from the client-side,
and then all the user's data and the hashed password is saved in a new document.

BCryptis a Key Derivation Function (KDF) whose purpose is to slowly convert input
data to a fixed-size, deterministic and unpredictable output. It means that, indifferently,
the input size of the output is always the same. Being deterministic implies that a hash is
unique for every data input. When a user logs in, the BCrypt compare function hashes the
input data and compares it with the hash saved in the database. If it matches, the
password is correctly introduced by the user. The output is unpredictable since KDF has
additional properties to a hash function. Those are key stretching, whitening, separation
and strengthening. It is based on the Blowfish block cypher cryptomatcd algorithm. An
algorithm that allows adaptive hash function means that the cost of hashing can be
adjusted.

The output format is the following one.

$[algorithm]$[cost]$[salt][hash]

Where two chars hash algorithm identifier prefix. "$2a$" or "$2b$" indicates BCrypt.
Cost-factor (n) represents the exponent used to determine how many iterations 2^n,
16-byte (128-bit) salt, base64 encoded to 22 characters and 24-byte (192-bit) hash
base64 encoded to 31 characters.

Figure 8: Bcrypt Output Format example, source: https://www.npmjs.com/package/bcrypt

The salt, random data used as additional input is generated by the genSalt() function.
The argument passed to is the cost of the hashing, which in the application case is ten
hashes/second.

Since RESTful API is stateless and some API endpoints need authentication, a
token is required. Whether the user signs up for the first time or he or she is logging in, a
JWT, a JSON web token is generated with the jsonwebtoken library and saved on the
client-side. How it is stored is explained in the following section. JWT [16] is an open
standard that defines a compact and self-contained way for securely transmitting data. It
is digitally signed with the HS256 algorithm.

21

Furthermore, the library allows the token’s verification ensuring that the user has the
authorization to access routes. The validity of the token is set to 1h. Afterwards, the token
is no longer valid. The structure is header, payload and signature separated by dots. An
example is provided in the following figures.

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VySWQiOiI2MGE1MzhhNGVmZGNiOD
QxMDRiZDE5YmIiLCJyb2xlIjoiYWRtaW4iLCJpYXQiOjE2MjM3Nzc4NTMsImV4cCI6MTY
yMzc4NTA1M30.0C_eiljfcCNxqZvP0UMK6_eQMAP6lBt4yAbI-KTkNWE

Figure 9: JWT example, source: own compilation

HEADER:

{
"alg": "HS256",
"typ": "JWT"

}

PAYLOAD:

{
"userId": "60a538a4efdcb84104bd19bb",
"role": "admin",
"iat": 1623777853,
"exp": 1623785053

}

VERIFY SIGNATURE:

HMACSHA256(
base64UrlEncode(header) + "." +
base64UrlEncode(payload),
0C_eiljfcCNxqZvP0UMK6_eQMAP6lBt4yAbI-KTkNWE

)

Table 3: JWT decode example, source: https://jwt.io/

5.6. Uploading files

The recipe has an image field. Thus images files can be uploaded to the website.
The multer library [11] is used to manage files. Given a form data, it allows storing them in
the server. A variable is defined to configure the name and the destination of the files
uploaded. Its size is limited to 25MB.

The files are stored in the public server’s folder, meanwhile the path is stored in the
database. In a future version, those files will be in a separate database of just images.

22

6. Frontend

6.1. Introduction

As introduced earlier, the frontend is the user interface. In this project, a single page
application built on Angular. It is a website that interacts with the webserver without
reloading a page, working within the browser. Therefore if it is correctly configured, the
user experience improves compared to a multi-page application. Such an application
loads a new page every time a link is clicked because transitions are dynamic.

From a corporate perspective, increasing speed is a significant advantage. Several
studies state that one second of additional delay in a page load costs 1% of sales [22],
which could represent millions of dollars in the case of vast enterprises. For those
reasons, a SPA loads many resources when the application is launched, such as HTML,
CSS or Scripts files, making the application highly responsive. Overall there is a lower
impact on the server since only the changing data is demanded.

Figure 10: Loading data comparison, source: own compilation

Subsequent, from a developer perspective, the making of the application is
streamlined and optimized. As revealed earlier, Angular has an entire environment that
mimics a server and reloads the SPA each time a source file changes. It allows
visualizing faster the development while building the application. Meanwhile, the browser
monitors the network operations, thus, facilitating the debugging.

23

6.2. Functionalities

This thesis purpose is to unify the cooking-related duties. Therefore, the features
presented before are implemented with the subsequent composition. First, a home page
is required, where all the recipes are shared for any user. Then, different filters can be
applied, such as writing the recipe's name, defining the meal, the diet or looking by the
ingredients that constitute such a recipe to narrow down various recipes.

Once logged in, a user can save any recipe to his or her personal recipe's book or
add a new one. The creator of a recipe can additionally edit it. Another showcase is
removing a recipe. A user can permanently remove a recipe from his or her recipes book.
There are two plausible cases, people having the recipe preserved or being the only
person to own the recipe. In the first case, either the user is removed from the saved
attribute of the recipe, or randomly a user in that array is chosen as creator, gaining
editing permissions. Otherwise, the recipe is removed from the database, as explained in
figure 11. Additionally, filtering through recipes is also available in that view.

Figure 11: Deleting a recipe, source: own compilation

The first time the user accesses its planner, it is empty. When creating a menu, he or
she can specify which meals usually eat, allowing having different menus with different
meals, which can also be deleted. A title is required, and a description can be added.
Then the menu is generated automatically. Each slot represents a meal of a weekday
where recipes can be added or deleted. The user can navigate to the description of any
recipe present in the menu.

The user keeps track of the ingredients missing in the fridge for preparing the
different meals of the week in a groceries list. Any element can be added or deleted. Also,
ingredients can be added from the recipes' ingredients list to simplify matters and benefit
the user. If the ingredient is already on the list, a message will warn the user. Next, the
ingredients can be checked while buying, and once the shopping is over, there is a
checkout button, which removes the bought ingredients and adds the record as a new
purchase in the expense tracker with the actual date.

24

As mentioned, to help users keep track of their expenses, every time they go to the
supermarket following the steps mentioned above, it automatically makes a log of the
ingredients bought. It can be edited to add the expense for such a purchase. This way,
the user knows when was the last time he or she went to the grocery store, what he or
she bought, and how much he or she spent.

Finally, any user can check their data and edit the profile.

6.3. Architecture

The client side has Angular’s architecture [4], which is represented in the next
diagram. There are eight main building blocks: Components, Data binding, Dependency
injections, Directives, Metadata, Modules, Services and Templates.

Figure 12: Angular architecture, source: own compilation

Beforehand, an Angular application is modular, based on its modularity system called
NgModules. At least, an angular application has one module, the root module, named
AppModule. As an application grows in complexity, different feature modules are added.
A decorator, @NgModule, attaches the metadata that defines the declarations, imports,
exports, and providers' properties to know if a class is a module. More details will be
added in the next section.

Succeeding, there are components, which control a patch of the screen, a view. They
are classes that support the application logic, for example acquiring data from service
through the API to bind it on the user interface. Another role is binding user events with a
click on a button.

Each component has a template, an HTML file that defines how to render the view. It
can also have a CSS file that states the style of the view. The display is not just plain
HTML. Angular allows having custom elements, child components that have their
template. Furthermore, there is a template syntax that increases the functionalities of the
HTML file.

25

Metadata attach data to a component through the @Component decorator, for
example, the selector, which presents the tab of such element in HTML. It allows Angular
to insert an instance of a component in any view throughout the template definition.

Another block is directives, which a decorator also defines. According to those
instructions, when the directives are rendered, it transforms the DOM, the document
object model. For example, the component decorator is a directive decorator extended
with template-oriented features, implying how the view is rendered. Other directives are
the structural ones. They present conditional operations, *ngFor and *ngIf, in the template
file. *ngFor loops through an array defined in the component and the *ngIf, the element is
present in the view when the condition is valid. There are a few more, the attribute
directives, others that modify the layout structure or the aspects of the DOM.

This framework also supports data binding, which avoids developers being responsible
for pushing data into the HTML or retrieving user actions. There are four systems of data
binding syntax.

Figure 13: Data binding syntax, source: own compilation

The first one, interpolation, displays a component’s property value within an HTML
element. Next, property binding, which passes a property value from a parent component
to a child component. Consecutively, the event binding is either a user event or passing a
child component property value to a parent component. Last, the two-way data binding,
where the property value flows to the input box from the component as property binding,
allows users to reset the value to the latest value. Therefore, it is essential in the template
with component communications and parent and child components communications.

Figure 14: template - component data binding Figure 15: parent - child component data binding

Lastly, we are going to present the services block. It is a class with a well-defined
purpose, there is no base class for such a block, but it is an essential part of the
architecture. The services manage the connection with the backend API, defining the
requests. A service can be anything from a tax calculator to a logging service.

26

6.4. Design

After introducing how Angular is structured and how the SPA interface is built, the
different elements will be presented in more depth, explaining how the application works,
with actual examples.

6.4.1. Views

As presented, Angular views are composed of three files, a typescript file where the
component is defined, an HTML file which is the display template, and lastly, a CSS file
that englobes the view's style.

The components are reusable. Some of them are shared through all the screens of
the web page and in the navigation bar. Others have a specified purpose, meaning that
components can be either nested or combined, giving complete flexibility to developers. It
is a tremendous advantage since, due to data binding, data transmission between
components is faster than reloading the page and sending a request to the API.

This flexibility also generates a highly responsive environment. Views adapt
themselves to a phone, tablet or computer screen, making the website multiplatform. In
addition, the CSS stylesheet and flexbox display allow stating how items render on the
view.

6.4.2. Navigation

Although it may seem ironic, a SPA requires navigation. Therefore, routes are defined to
navigate through the screens, the different components.

In pursuance of changing the views, sidebar navigation has been implemented.
Depending on the screen’s width, the sidebar is static or dynamic, meaning that it is
permanently present on the left side of the screen or hidden until the user pushes the
menu button.

Angular’s navigation also permits redirecting a user to a specific page. In this project
case, if a user is not logged in, every page except for the home page redirects him or her
to the login screen. The redirection is also introduced when a form is submitted or when
accessing the description of a recipe.

Angular has an @angular/router library to implement navigation in an application, where
the Routes, Router and RouterModule classes are found. The first class is used to define
the routes array, specifying the path and the component to be displayed for each one of
them. The order in which the routes are defined is important because the Router uses the
first-match strategy when suiting routes. Therefore more specific routes are placed above
the less specific ones. Further, the wildcard route comes last, which is the not found route
since it matches every URL. Thus, the Router selects it when no other route is matched.

The routes are defined in a routing module, which is a module that imports Routes and
RouterModule. Hence, the module’s properties have to export the RouterModule and
import the RouterModule, calling either the forRoot() or forChild() method. In both cases,
the argument passed is the routes’ variables. The first case is present in the
app.routing.ts file, the root routing module implementing the Router service, and the
second is present in all the other components routing modules, not including the Router
service. Consequently, the routing module has to be in the imports property of the
component module or the app module to use the routes.

27

Lastly, the routes have to be included in the application. They can be added in the
component template with the routerLink attribute where the path is defined. The tab
<router-outlet> needs to be present in the template, too, so Angular is informed and can
update the view with the selected route. It is also possible to indicate navigation actions
within the components. For example, importing the Router class in the component, the
method navigateTo(), given a route as an argument, switches the view.

6.4.3. Structure

Modules are required to organize related things collectively. Every module is a class
with an @NgModule decorator, which attaches metadata. It describes how to compile the
component, its directives, pipes, and extend its capabilities through external libraries.

The four main properties attached are imports, exports, declarations and providers.
Imports include other modules in the current one, with the components and directives
within those modules. It is possible if the elements are public, meaning that they are
present in the exports attribute. The declarations state which components, directives, and
pipes belong to the module. Lastly, it provides services that other components can use in
the application.

Figure 16: SPA tree folder architecture, source: own compilation

28

6.4.4. API connection

A service is required to establish the connection between the application and the API.
More precisely, a service with an HTTP client since the requests are done through HTTP
protocol.

The service is a single class with the four operations possible and an errorHandler to
regroup all the possible requests. There are particular methods for the get, post, put and
delete requests. All of them have as first argument the string representing the endpoint of
the API. Next, this string is concatenated with the URI base, the IP direction that allows
locating the server on the Internet, obtaining the full URI to make the request.

The second argument of the get and delete method is the httpOptions, which is also
the third argument of the post and put requests. This argument has the headers of the
petition. Some requests require authentication, as explained before, is fulfilled with a
token. This token is passed from the user to the API through the request headers, so the
backend middleware can get the information and do the procedures to identify the user.

For the post and the put methods, the second argument is the body. It enables
passing the data from the user to the backend in JSON format in the project’s case.

Afterwards, the HTTPClient method is called, and the different arguments mentioned
are passed. Finally, it returns an observable, which is then handled in the component,
except if an error raises.

Angular has a class to handle errors, the HttpErrorResponse. It detects whether the
error is raised on the client or the server side. It allows the developer to define what
happens in each case. If the HTTP error response is an error event, the error is passed to
the component as an observable too, with the error message, to detect what happened.
Otherwise, it is a server error. The error state gives the error definition and the error
message defined in the backend to describe the errors.

Further, either the API returns data or an error, the component needs to be aware.
For that reason, in both cases, an observable is returned when a component calls one of
the service methods. The observable delivers the values that are consumed further by the
component with the subscribe function. This function defines how to obtain the data, what
to do with it, and the messages to be published. The developer adapts it for the different
cases.

6.4.5. Keeping state

In the last section, notice that the connection between the frontend and the backend
is stateless, meaning that the server does not keep information from the client. For this
reason, when authentication is required, a JWT token is passed through the request
header. This token is kept on the client-side until the user decides to log out.

It is accomplished with another service, the local storage service. First, the
application ensures that local storage is available on the client window. If it supported
three methods, manage the data, a get, set and remove method.

The data is saved as a key-value pair. When a user logs in, the token retrieved from
the server and the email are stored with the set method. Hence, it makes them available
in the application while the session is kept alive, with the get method. Finally, when the
user logs out, or the session is expired, both elements are deleted from the storage with
the remove method.

29

7. Results

This section is divided into four parts: the front-end results, the database results, the
server results, and a global perspective.

The different functionalities presented during the document have been accomplished.
The website presents a homepage where all the recipes are presented in a card format.
The card contains the diet, the meals, the name and the picture of the recipe. Then from
the recipe's name, the description is deployed. Four tabs are present to filter the recipes
by name, diet, meals or ingredients contained. A visualization of this description can be
found in figure 17.

Figure 17: Home screen, source: own compilation

Figure 18: Log in screen, source: own compilation

In order to log in, the user email and password is required. If the user has not signed
up, three different forms are sequentially shown to set all its data. First, the email is
checked since it must be unique. Next, the password must be at least eight characters

30

long with mayors, minus and special characters, and numbers. The second form asks for
user data, and the third one his or her eating habits.

Figure 19: First registering form, source: own compilation

Once registered, the user can save from the homepage to the user’s recipes book.
The recipes book has similar features to the homepage, but a recipe can be removed
instead of saved. New recipes can be added from this screen, and if the user is the
creator, also edit them. Filtering and searching through the recipes as mentioned is also
available.

The planner feature at first is empty with a button to add menus and a message.
When a menu is added, a form to set a title or a description unfolds. Hence, an empty
menu is present on the screen with the different days of the week. Then the meals are
either selected from the form or defined in the database by the user profile. Each meal is
presented in a card which can be edited by adding or deleting recipes. The recipe is also
accessible from the name of the recipe. Once on the recipe, the ingredients can be added
to the groceries list, or if attached, the video recipe is also available.

Figure 20: Planner screen, source: own compilation

31

Additionally, the groceries list presents two cards, the ingredients missing and the
ingredients bought. There is a check or a cross button, if required, to pass data from one
to the other. There is also a cross button in the missing ingredients to remove the
ingredient from the grocery list. Lastly, the search bar informs if the ingredient is already
on the list to add it or not.

Figure 32: Groceries screen, source: own compilation

Another feature mentioned is the expenses imprint. Once the ingredients are bought,
there is a button to check out the purchase. A modal enables the user to have a second
thought. Once checked, an expense is automatically generated with the actual date and
the ingredients. It can be modified to either state the expense or change any ingredient.
Expenses can be added or deleted at any time. Lastly, the user can visualize and edit its
profile anytime.

Figure 33: Expenses tracker screen, source: own compilation

Moreover, the following section presents the database results. It consists of a
MongoDB Atlas database in an AWS cloud environment. The database has a persistent
connection with the web service allowing constant requests of resources. This database
has six different collections, as we can visualize in the subsequent figure. The collections
will grow as users saves their menus or recipes.

32

Figure 23: MongoDB collections, source: own compilation

The last and maybe most important part of the project is the RESTful API. It gives
cohesion to the website, bringing together the client-side and the data. As presented
through the document, the different endpoints of the API allow retrieving resources from
the database. Those endpoints are presented in the following tables. Three different
permissions are defined to protect the data, either public, private or administrator. Being a
public endpoint means that anybody can access that data. The private case is for
registered users. Lastly, administrator permission is for managing endpoints. Then, the
controller files handle the petitions to the database. They are triggered when either a
post, get, put or delete HTTP request is sent to the API.

Methods URLs Actions Access

GET /api/ retrieve all Recipes public

GET /api/recipe/:rid retrieve a Recipe by :rid public

GET /api/recipe/book/:uid retrieve all user’s Recipes private

POST /api/filter retrieve Recipes with filters public

POST /api/recipe create new Recipe private

PUT /api/recipe/:rid update a Recipe by :rid private

PUT /api/recipe/save/:rid&:uid save a Recipe by :rid by :uid private

DELETE /api/recipe/:rid&:uid delete a Recipe by :rid private

Table 4: Recipes’ endpoints, source: own compilation

Methods URLs Actions Access

GET /api/auth retrieve all Expenses admin

POST /api/auth retrieve all user’s Expenses by :uid private

Table 5: Authentication endpoints, source: own compilation

33

Methods URLs Actions Access

GET /api/user retrieve all Users admin

GET /api/user/:uid retrieve a User by :uid private

GET /api/user/exists/:uid check if User already exists by :uid public

POST /api/user create new User public

PUT /api/user/:uid update a User by :uid private

PUT /api/user/ingredient/:uid&:iid save an Ingredient by :iid by :uid private

DELETE /api/user/:uid delete a User by :uid private

Table 6: Users’ endpoints, source: own compilation

Methods URLs Actions Access

GET /api/ingredients retrieve all Ingredients admin

GET /api/ingredient/:iid retrieve an Ingredient by :iid public

POST /api/ingredient/filter retrieve Ingredients filtered by name private

POST /api/ingredient create new Ingredient admin

PUT /api/ingredient/:iid update an Ingredient by :iid admin

DELETE /api/ingredient/:iid delete an Ingredient by :iid admin

Table 7: Ingredients’ endpoints, source: own compilation

Methods URLs Actions Access

GET /api/menu retrieve all Menus admin

GET /api/menu/user/:uid retrieve a user’s Menu by :uid private

GET /api/menu/:mid retrieve a Menu by :mid private

POST /api/menu create new Menu private

PUT /api/menu/:mid update a Menu by :mid private

DELETE /api/menu/:mid delete a Menu by :mid private

Table 8: Menus’ endpoints, source: own compilation

Methods URLs Actions Access

GET /api/day retrieve all Days admin

GET /api/day/menu/:mid retrieve all menu’s Days by :mid private

GET /api/day/:did retrieve a Day by :did private

34

POST /api/day create new Day private

PUT /api/ingredient/:did update a Day by :did private

PUT /api/meal/:mealid update a day’s meal by :mealid private

DELETE /api/day/:did delete a Day by :did private

Table 9: Days’ endpoints, source: own compilation

Methods URLs Actions Access

GET /api/expense retrieve all Expenses admin

GET /api/expense/user/:uid retrieve all user’s Expenses by :uid private

GET /api/expense/:eid retrieve an Expense by :eid private

POST /api/expense create new Expense private

PUT /api/expense/:eid update an Expense by :eid private

DELETE /api/expense/:eid delete an Expense by :eid private

Table 10: Expenses’ endpoints, source: own compilation

The server has been deployed in an Azure Cloud system. This environment displays
the website on the Internet. As mentioned earlier it is important the load page speed.
PageSpeed Insight has been used to analyze the performance of the website. The results
are the following ones.

Figure 24: Page Speed Insight, source:
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Ffoodie.onthewifi.com%3A50

00%2F&tab=desktop

35

https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Ffoodie.onthewifi.com%3A5000%2F&tab=desktop
https://developers.google.com/speed/pagespeed/insights/?url=http%3A%2F%2Ffoodie.onthewifi.com%3A5000%2F&tab=desktop

The most important data to analyze is the Time to Interactive parameter, it represents
how long the user has to wait for the website to be fully functional. As mentioned before
this timing had to be less than 5 seconds, and it has been achieved.

Overall, the project fulfils its purpose, to create a unified environment for
cooking-related tasks. It has a user-friendly interface, highly responsive. The website
adapts itself to any device screen. It is a multiplatform application

36

8. Budget

In this section, the budget is calculated. The analysis of the project's cost is for four
months. Firstly, the working hours have been defined and then the material and services
costs.

In table X, the total human cost for the project realisation is present. The annual
salary assumed for a full-time junior engineer is 26000€. Therefore, a four-month,
25h/week salary adds up to approximately 5400€. The amount is calculated assuming
twelve paychecks.

26000 €/𝑦𝑒𝑎𝑟 * 25ℎ * 4 𝑤𝑒𝑒𝑘𝑠 * 4 𝑚𝑜𝑛𝑡ℎ𝑠
 40ℎ * 4 𝑤𝑒𝑒𝑘𝑠 *12 𝑚𝑜𝑛𝑡ℎ𝑠 ≃ 5400€/𝑦𝑒𝑎𝑟

In addition, social welfare has to be considered. It is a tax with a value of 33% of an
employee salary that a company has to pay. It covers any medical injury that either
occurs during working hours or on the journey to the workplace. The total amount is then
7182€.

Following, since the employee is working remotely, no furniture has to be taken into
account. Nevertheless, a computer, a second screen, mouse and keyboard has been
provided. The total cost of such devices is 1455€, which has a cost of 121,25€/month.

The development of the project first was on-premise. Therefore, both the database
and the server were run locally, having no expense. Then to give access to the
application, a cloud deployment is done.

The database is in a cloud cluster. This service consists of a MongoDB Atlas General
M20 of AWS, Amazon Web Service. It has a storage of 20GB, with 4GB of RAM and a
2vCPU. The cost is 0,17€/h, assuming the cluster deployment is just a month, the total
cost is 122,4€.

The server for the last month has been deployed in an Azure Cloud environment.
The service is a basic dedicated environment, with 10GB of disk space, 1,75GB of RAM
and one nucleus with a custom domain and hybrid connectivity. The pricing is 0,064€/h.

Concept Time Price Amount

Salary 4 months 13,50€/h 7182,00€

Devices 4 months 121,25€/month 485,00€

Cloud database 1 month 0,17€/h 122,40€

Cloud server 1 month 0,064€/h 46,17€

Total 7835,57€

Table 11: Cost of the project, source: own compilation

37

9. Conclusions and future development:

People eat at least twice a day. Everybody needs to make time to cook. Abusing
delivery or fast-food services is not a healthy attitude. Hence, the project presents a
platform to help people organize their weekly meals and be conscious of their eating
habits. A change in the alimentation can initiate significant transformations in peoples
lives. For instance, sleep better, be more focused, boost the metabolism and many more.

Therefore, the web application permits creative people to share delicious recipes with
those who desperately need inspiration. Planning weekly menus is not an easy task, but
the website can streamline the process once a small community is created.

Moreover, grocery shopping without having a precise idea can be a tedious
assignment. It leads people to repetitive patterns and eating daily alike. Instead, the user
with a prepared menu can build a habit of purchasing the ingredients once a week. This
habit prevents food waste, thus saving time and money.

The system performance is variable since it can be adapted to the server load. Azure
enables server scalability, upgrading the characteristics of the cloud environment if
required. The database can also increase its resources if more space is needed. Those
changes depend on the system usage.

The SPA has a clean and straightforward interface to ease navigation and its
interaction. In order to improve the user experience, reviews will be added to retrieve their
opinion. Thus, the feedback enriches the service with perhaps additional features if
demanded.

Consequently, the project's main contribution is a platform to have under control the
food expense, the ingredients yearning in the fridge or the storage and most importantly,
the food intake. Hence, helping people to have a more healthy and conscious life.

As future works present a system that extracts data from the user practice. The idea
is to record user habits to include weekly menus, unusual recipes or even unknown
ingredients based on the data extracted. This feature permits an analysis of the user's
eating habits, enabling an improvement in his or her diet if desired. Eventually, having
pre-design menus saves time. The nutritional value will be added to the ingredients, thus
to the recipes. Therefore, the user can be more conscious of his or her food intake.

38

References

[1] G. Lim. Beginning Angular 2 with Typescript, 1st ed. CreateSpace Independent Publishing Platform,
2017.

[2] Microsoft. Typescript. [Online] Available: https://www.typescriptlang.org/. [Accessed: 14 June 2021].
[3] Mozilla and individual contributors. JavaScript [Online]

https://developer.mozilla.org/en-US/docs/Web/JavaScript. [Accessed: 24 March 2021].

[4] Google. Angular. [Online] Available: https://angular.io/. [Accessed: 20 June 2021].
[5] Facebook Inc. React. [Online] Available: https://reactjs.org/. [Accessed: 30 March 2021].
[6] MIT, Bootstrap. [Online] Available: https://getbootstrap.com/. [Accessed: 25 May 2021].
[7] Refsnes Data, HTML [Online] Available: https://www.w3schools.com/html/html_intro.asp. [Accessed:

8 June 2021].
[8] Refsnes Data, CSS [Online] Available: https://www.w3schools.com/css/default.asp. [Accessed: 20

June 2021].

[9] OpenJS Foundation. NodeJS. [Online] Available: https://nodejs.org/en/https://nodejs.org/en/about/.
[Accessed: 24 May 2021].

[10] StrongLoop, IBM. Express. [Online] Available: https://expressjs.com/. [Accessed: 17 May 2021]
[11] npm Community. npm. [Online] Available: https://www.npmjs.com/about. [Accessed: 10 June 2021]
[12] MongoDB Inc. MongoDB. [Online] Available: https://mongodb.com. [Accessed: 25 May 2021]
[13] Codecademy. MVC: Model View, Controller. [Online] Available:

https://www.codecademy.com/articles/mvc. [Accessed: 2 May 2021]
[14] restfulapi. What is REST? [Online] Available: https://restfulapi.net/. [Accessed: 10 May 2021]
[15] Stackify. What are CRUD Operations: How CRUD Operations Work, Examples, Tutorials & More.

[Online] Available: https://stackify.com/what-are-crud-operations/. [Accessed: 10 May 2021]
[16] Auth0. JWT. [Online] Available https://jwt.io/. [Accessed: 30 May 2021]
[17] Qvault, Lane Wagner. Bcrypt Step by Step. [Online] Available

https://qvault.io/cryptography/bcrypt-step-by-step/. [Accessed: 14 May 2021]
[18] MIT. Mongoose. [Online] Available: https://mongoosejs.com/. [Accessed: 12 June 2021]
[19] Guru99. Typescript vs JavaScript: What's the Difference?. [Online] Available:

https://www.guru99.com/typescript-vs-javascript.html. [Accessed: 28 February 2021]
[20] Educba, Priya Pedamkar. ReactJS vs Angular2. [Online] Available:

https://www.educba.com/reactjs-vs-angular2/. [Accesses: 2 March 2021]
[21] Bloomreach Inc. What Is a Single Page Application and Why Do People Like Them so Much?.

[Online] Available:
https://www.bloomreach.com/en/blog/2018/07/what-is-a-single-page-application.html. [Accessed: 25
May 2021]

[22] Yoav Einav, Amazon Found Every 100ms of Latency Cost them 1% in Sales. [Online] Available:
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/.
[Accessed: 25 May 2021]

[23] Google. Google Keep. [Online] Available: https://keep.google.com/. [Accessed: 26 June 2021]
[24] Google. Google Calendar. [Online] Available: https://calendar.google.com/. [Accessed: 26 June

2021]
[25] Notion Labs, Inc. Notion. [Online] Available: https://www.notion.so/. [Accessed: 26 June 2021]
[26] Hello Fresh SE. Hello Fresh. [Online] Available: https://www.hellofresh.com/. [Accessed: 28 March

2021]
[27] webedia. Directo al Paladar. [Oline] Available: https://www.directoalpaladar.com/. [Accessed: 29

March 2021]
[28] Red Link To Media, S.L.. Recetas Gratis. [Online] Available: https://www.recetasgratis.net/.

[Accessed: 29 March 2021]
[29] Realfooding. Realfooding. [Online] Available: https://realfooding.com/. [Accessed: 30 March 2021]
[30] Google. Firebase. [Online] Available: https://firebase.google.com/. [Accessed: 15 March 2021]
[31] Jelvix,Vitaliy Ilyukha. Differences Between Relational and Non-Relational Database. [Online]

Available: https://jelvix.com/blog/relational-vs-non-relational-database. [Accesses: 14 March 2021]

39

Appendices

A.1. Work Packages

Project: WEB development WP ref: 1
Major constituent: Learning technologies Sheet 1 of 1
Short description: Analyze and learn the different technologies that will
be used to develop the WEB application. And structure the project.

Planned start date:19/02/2021
Planned end date:19/04/2021
Start event:19/02/2021
End event:19/04/2021

Internal task T1: Learn Typescript and program the first scripts to fully understand the technology. This will
be done following a tutorial.

Internal task T2: Learn Angular 2 with a book to understand the framework in which the web application is
going to be developed.

Internal task T3: Learn NodeJS and MongoDatabase to implement the back end of the web application.

Internal task T4: Define the web design, requirements and specifications

Project: WEB development WP ref: 2
Major constituent: Frontend development Sheet 1 of 1
Short description: Design and implement the front end of the web
application.

Planned start date:19/04/2021
Planned end date:14/06/2021
Start event:19/04/2021
End event:14/06/2021

Internal task T1: skeleton of the web. Implement the basic structure of the web application. Which means
having a server, connected to a database, and a home page.

Internal task T2: Program the different views of the SPA (Single Page Application).

Internal task T3: Create a navbar to navigate through the views, and program the Angular routing.

Internal task T4: Log in, Sign in and authentication programming.

Internal task T5: Program the style of the application.

Project: WEB development WP ref: 3
Major constituent: Backend development Sheet 1 of 1
Short description: Program a web server and create and design the
database.

Planned start date:10/05/2021
Planned end date:07/06/2021
Start event:10/05/2021
End event:07/06/2021

Internal task T1: Design the Mongo models required.

Internal task T2: Program the request to the database.

Internal task T3: Program the connections to the database.

40

A.2. Database collection schemas

User schema:

Name DataType Description Relation

_id Id Key

email String Email (unique)

password String Encrypted password

firstname String Name

lastname String Last name

birthyear Number Birth year

role String Role (‘admin’,’user’)

meals String[] Meals (‘Breakfast’, ‘Snack’, ‘Lunch’,
‘Dinner’)

diet String Diet (‘Omnivorous’, ‘Vegetarian’, ‘Vegan’)

recipes Id[] Saved or owned recipes Id Many to many

groceries String[] Missing ingredients name’s Many to many

Table 12: user , source: own compilation

Recipe schema:

Name DataType Description Relation

_id Id Key

name String Name

timing Number Duration of recipe cooking

guest Number Number of portions

meal String[] Kind of meal (‘Breakfast’, ‘Snack’,
‘Lunch’, ‘Dinner’)

diet String Diet (‘Omnivorous’, ‘Vegetarian’, ‘Vegan’)

ingredients RecipeIngredient[] Name of the ingredients required Many to many

image String Image of the recipe

videoRecipe String Link to videoRecipe

creator String Email of the user that has written the
recipe

One to many

saved String[] Email of the users that have saved the
recipe

Many to many

Table 13: recipe, source: own compilation

41

Ingredient Schema:

Name DataType Description Relation

_id Id Key

name String Name

diet String Diet (‘Omnivorous’, ‘Vegetarian’, ‘Vegan’)

Table 14: recipe, source: own compilation

Menu schema:

Name DataType Description Relation

_id Id Key

_user String Email of the owner One to many

title String Title

description String Explanation

Table 15: menu, source: own compilation

Day schema:

Name DataType Description Relation

_id Id Key

_menu Id Email of the owner One to many

day String Title

meals Document[] Explanation

meals._id Id Key of embedded document

meals.meal String Meal of the day

meals.recipes Id[] Recipes of the meal Many to many

Table 16: menu, source: own compilation

Expenses schema:

Name DataType Description Relation

_id Id Key

_user Id Email of the owner One to many

ingredients String[] Ingredients name’s bought

date DateTime Date of purchase

expense Id Amount of the purchase

Table 17: menu, source: own compilation

42

