

Bachelor’s degree thesis

Bachelor's degree in Audiovisual Systems

Design of an interface of an automatic equalization system

REPORT

Student: Paula Andrea Chacón Cabrera

Bachelor’s degree supervisor: Néstor Berbel Artal

Call:Extraordinary April 2021

i

Bachelor’s degree:

Bachelor's degree in Audiovisual Systems

Student (Name and Surname):

Paula Chacón

Bachelor final degree statement:

Design of an interface of an automatic equalization system

Bachelor’s degree supervisor:

Néstor Berbel Artal

Call:

Extraordinary April 2021

iii

ACKNOWLEDGMENTS

First and foremost, I want to thank my research professor, he has been an excellent

guide during all this process. His patience has allowed me to learn as much as I could

and to bring this project to life.

And want to thank my parents and sister for being my motivation and biggest support.

v

ABSTRACT

The idea of this project is to create an interface for an automatic equalizer. But first, a

general idea of what an equalizer is.

The sole purpose of an equalizer is to bring the different frequencies there are on a range,

to the desired value. So, the process is done by sending pink noise to a microphone and

then seeing, depending on the place’s infrastructure, how the frequencies are affected.

An automatic equalizer uses filters to give more or take some dB’s, depending on the

desired spectrum.

This program already exists, but it is still missing the interface for the user to be able to

operate with it. So that is what this project is about, giving the user the easiest interface

to interact with to use the program most efficient way. Therefore, one of the main

objectives of this project is to simplify the graphic user interface as much as possible.

The execution of this project started with the configuration of a Raspberry Pi, which is

where the app is being implemented. The second thing that had to be done was the

coding of the app, it was done by using Python as the programming language and Tkinter

as the graphical library. The results were as desired, the app is very simple and easy to

interact with.

vii

RESUMEN

La idea principal de este proyecto es crear una interfaz para un ecualizador automático.

Pero primero, una idea generalizada de lo que un ecualizador es.

El objetivo de un ecualizador es llevar ciertas frecuencias a un rango deseado. Este

proceso se logra mediante la emisión de un ruido rosa, que dependiendo del lugar donde

haya sido reproducido, se verá afectado y así mismo los distintos rangos de frecuencia

que lo conforman. Entonces, el ecualizador se encargaría de hacer esta emisión y

captura, para luego modificar, de manera automática los valores iniciales a los deseados,

estos estarán determinados por uno de los filtros que conforman el ecualizador.

Este programa ya existe, fue creado en un proyecto previo a este, pero le falta la interfaz

para que pueda ser implementado por un usuario. Y de eso se trata este proyecto. El

objetivo es crear una aplicación sencilla y eficaz que permita la rápida interacción con el

usuario para poder hacer el proceso de ecualización más rápido.

El desarrollo de este proyecto empezó por la configuración de una Raspberry Pi, que es

donde se implementará la aplicación. Luego se siguió con la programación del código.

Este se programó en Python y con Tkinter como librería gráfica. Los resultados fueron

exitosos y la aplicación salió como se esperaba. Sencilla, minimalista y eficaz.

ix

CONTENTS

1. INTRODUCTION 1

2. HARDWARE 3

2.1. Start-Up of the Raspberry 3

2.1.1. OS installation. 4

2.1.2. SSH configuration 4

2.1.3. Raspberry’s IP 5

2.1.3.1. Define the static IP address of the Raspberry 5

2.1.3.2. Download PuTTY 6

2.1.3.3. Enable VNC Server at the command line 7

2.1.4. VNC Configuration 10

2.1.5. Fixed IP 12

3. SOFTWARE 17

3.1. Tkinter 18

3.1.1. OOP and EDP 18

3.1.2. Classes and Objects with Tkinter 18

3.1.2.1. Basics of Tkinter 18

3.1.2.2. Classes and Objects in Tkinter 20

3.1.2.3. Positioning of Widgets. 21

3.2. Code explanation 21

4. EXPERIMENTAL RESULTS 25

4.1. Screenshots of the Results 25

5. CONCLUSIONS 31

6. BIBLIOGRAPHY 33

xi

LIST OF FIGURES

FIGURE 1-1. SOFTWARE OF PROGRAMMING .. 2

FIGURE 2.1.1-1 RASPBERRY PI IMAGER ... 4

 FIGURE 2.1.3 – 1 RASPBERRY IP .. 5

FIGURE 2.1.3.2-1 PUTTY CONFIGURATION ... 6

FIGURE 2.1.3.3-1 RASPBERRY'S COMMAND PROMPT .. 7

FIGURE 2.1.3.3-2 RASPBERRY'S SOFTWARE CONFIGURATION ... 8

FIGURE 2.1.3.3-3 ENABLING VNC CONNECTION.. 9

FIGURE 2.1.3.3-4 VNC CONNECTION ENABLED ... 9

FIGURE 2.1.4-1 VNC LOGO .. 10

FIGURE 2.1.4-2 VNC INTERFACE .. 11

FIGURE 2.1.4-3 STARTING VNC CONNECTION ... 11

FIGURE 2.1.4-4 SUCCESSFUL VNC CONNECTION... 12

FIGURE 2.1.5-1 RIGHT CLICK WI-FI ICON .. 13

FIGURE 2.1.5-2 NEW IP ADDRESS INTRODUCED .. 13

FIGURE 2.1.5-3 REBOOT RASPBERRY .. 14

FIGURE 2.1.5-4 VNC CONNECTION WITH NEW IP .. 14

FIGURE 2.1.5-5 NEW IP ADDRESS CHECKED ... 15

FIGURE 3-1. TKINTER .. 17

FIGURE 3.1.2.1-1 BASIC EXAMPLE TKINTER .. 19

FIGURE 3.1.2.1-2 FRAGMENT OF CODE .. 20

FIGURE 3.1.2.2-2 BASIC EXAMPLE WEB PAGE ... 20

FIGURE 3.1.2.2-2 WEB EXAMPLE.. 21

FIGURE 3.2-1 CONCEPTUAL MAP .. 23

FIGURE 4.1-1. PAGE 1 – INIT PAGE .. 26

FIGURE 4.1-2. PAGE 2 - RECORDING PAGE ... 27

FIGURE 4.1-3. PAGE 3 - EQUALIZATION PAGE ... 28

FIGURE 4.1-4 PAGE 4 - CLOSING PAGE. ... 29

1. INTRODUCTION

1

1. INTRODUCTION

Although the program that does the automatic equalizations already exists, an interface

that allows a good experience between the software and the client is still needed. The

intention is for it to be simple and intuitive for the user. That is going to enable the process

to be much faster and more efficient, which is the goal of the equalizer and therefore it is

also a goal of the interface.

On a previous final degree project1, an automatic equalization system was designed and

implemented, employing a Teensy 3.6 microprocessor and a graphical interface. The

automatic equalization system receives the audio signal, it’s processed using an analog

preamplifier to adequate the signal levels and sampled at a sampling frequency higher

than 40 kHz. The system performed correctly but due to the lack of time, its interface was

not designed properly.

When working on a live show or in the acoustics of a place, trying to get them into a specific

range or dB value can be challenging and time-consuming, that is why one of the main

objectives of this project is to make the interaction between the user and the program as

simple and as fast as possible. As the saying goes, sometimes less is more.

The interface design is going to be implemented employing a Raspberry Pi 3B, and a

capacitive display of 7” is connected to the computer. Therefore, to design and implement

the final degree project, the Raspberry Pi must be initialized with its operating system,

connect to the internet, and finally, programme the interface.

1. INTRODUCTION

2

It will be necessary to have software that allows the remote connection of the raspberry

with a computer, in this case it is going to be “Visual Studio Code”2, and the language will

be Python

Figure 1-1. Software of programming

2. HARDWARE

3

2. HARDWARE

For the hardware there were three options, the first one was a computer, but because of

the pricing it was discarded and one of the objectives of this project is to make it low cost.

The second option was a microcontroller/microprocessor, but since the programming was

in C and in need of an assembly, more options had to be considered, and that led to the

C/Python language. In search of suitable pricing, the best option was a mini PC, in this

case, the Raspberry Pi.

The Raspberry Pi has many advantages, one of them being the low cost, it is

approximately 40 €, and has a large amount of processing power in a compacted board.

Since we are working with a tablet, it is also a perfect fit because it has many interfaces,

such as HDMI, USB, Ethernet, and of course, Wi-fi and BlueTooth. And the reason that

the chosen language was Python, is because for computer apps it’s the widely accepted

language.3

2.1. Start-Up of the Raspberry

To start the Raspberry, the OS was needed to be installed, then the wifi and Virtual

Network Connection (VNC) had to be configured.

2. HARDWARE

4

2.1.1. OS installation.

The Raspberry already has an OS, RaspBian OS4. It can be downloaded using the official

page or by using the Raspberry Pi Imager5 which downloads the OS and performs the

installation on the SD card. After the installation of the raspbian OS on the SD card, it can

be inserted on the Raspberry Pi.

Figure 2.1.1-1 Raspberry Pi Imager

2.1.2. SSH configuration

The SSH is the remote connection that works by terminal commands that will allow the

control of the Raspberrypi without it having a keyboard or even a screen.

To get the SSH running, a file must first be created in the boot partition.6 For the headless

setup of the Raspberry Pi, SSH can be enabled by placing a file named “ssh”, without any

extension, onto the boot partition of the SD card from another computer. When the Pi boots,

it looks for the file that has been created previously. If the file is found, SSH is enabled and

it is deleted. The content of the file does not matter; it could contain text or nothing at all.

2. HARDWARE

5

If you have loaded Raspberry Pi OS onto a blank SD card, you will have two partitions.

The first one, which is the smaller one, is the boot partition. The file should be placed into

the smaller partition.

2.1.3. Raspberry’s IP

To find the IP address of the Raspberrypi, an external software called “Advanced IP

Scanner”7 was used, it can scan a whole network or just a part of it. The implementation

is quite easy, once the software was installed all that had to be done was to let the app

explore to find all the devices working in the network.

 As it can be seen on the screen (Fig 2.1.3-1), the IP is 192.168.1.105

 Figure 2.1.3 – 1 Raspberry Ip

2.1.3.1. Define the static IP address of the Raspberry

Every time a connection with the Raspberry is needed, if the IP depends on the DHCP

(Dynamic Host Configuration Protocol), the IP Scanner has to be executed. To make that

2. HARDWARE

6

process faster in the next connections, the Raspberry's IP is going to be configured static

and the future connections can be done just by executing the VNC application and

introducing the fixed one.

2.1.3.2. Download PuTTY

To first interact with the Raspberry, remote access is needed and for that, the PuTTY app

is used.

The IP previously obtained by the “Advanced Ip Scanner” is used in the first window of the

PuTTY executable.(Fig 2.1.3.2-1)

Figure 2.1.3.2-1 PuTTY configuration

2. HARDWARE

7

2.1.3.3. Enable VNC Server at the command line

To work in the Raspberry from another device by remote control, VNC is used. It is a

graphical desktop sharing system that allows to remotely control the desktop interface of

the computer (running VCN Viewer). The Raspberry’s OS has VNC but needs to be

enabled. This can be done graphically or at the command line.

When connecting with PuTTY, it gives access to the Raspberry by the Command

Prompt(Fig 2.1.3.3-1), and there the sudo raspi-config command is run.

Figure 2.1.3.3-1 Raspberry's Command Prompt

2. HARDWARE

8

It will show the Software Configuration Tool (Fig 2.1.3.3-2), clicking on the Interface Option

and saying yes will allow the VCN to be enabled.

Figure 2.1.3.3-2 Raspberry's Software Configuration

2. HARDWARE

9

 Figure 2.1.3.3-3 Enabling VNC Connection

Figure 2.1.3.3-4 VNC Connection Enabled

2. HARDWARE

10

2.1.4. VNC Configuration

After the VCN connection has been enabled, the next step is to download the VNC Viewer

Figure 2.1.4-1 VNC Logo

Step two is to run the VCN Viewer application(Fig 2.1.4-2) and use the IP address that the

IP Scanner has previously given.

2. HARDWARE

11

Figure 2.1.4-2 VNC interface

The last step is to introduce the user (pi) and the password (raspberry) and it will connect

to the Raspberry’s interface, as can be seen in (Fig 2.1.4-4)

Figure 2.1.4-3 Starting VNC connection

2. HARDWARE

12

Figure 2.1.4-4 Successful VNC Connection

2.1.5. Fixed IP

Once access has been granted to the Raspberry, it can connect to the Wi-Fi in the area

and the static IP address can be established. This can be done in two ways, graphically

or in the command prompt. In this case, the graphical one was used. To do so, right-click

on the Wi-Fi Icon, various options will appear, and then click on the “Wireless & Wired

Network Settings” (Fig 2.1.5-1)

2. HARDWARE

13

Figure 2.1.5-1 Right Click Wi-Fi Icon

Since the connection is Wi-Fi, the Wlan0 needs to be configured. And all that needs to be

done is introduce the desired IP (Fig 2.1.5-2) that is inside the range of the network, apply

the changes and reboot the Raspberry.

Figure 2.1.5-2 New IP Address Introduced

2. HARDWARE

14

Reboot the Raspberry as sudo; sudo reboot. (Fig 2.1.5-3) It will disconnect, but just by

opening the VNC Viewer again and introducing the new IP, the connection will be

established once more.

Figure 2.1.5-3 Reboot Raspberry

The VCN connection is started all over again with the new Ip address (Fig 2.1.5-4). The

user and the password are the same.

 Figure 2.1.5-4 VNC connection with new IP

2. HARDWARE

15

After the connection is established, the Wlan0 direction is checked. (Fig 2.1.5-5)

Figure 2.1.5-5 New IP address Checked

2. HARDWARE

16

3. SOFTWARE

17

3. SOFTWARE

The software used to program the app was “Visual Studio Code”. As mentioned before,

the language used was Python and its de-facto GUI (Graphic User Interface) library,

Tkinter.8

Figure 3-1. Tkinter

3. SOFTWARE

18

3.1. Tkinter

The Tkinter package is the standard Python interface to the Tk GUI. Tkinter is implemented

as a Python interpreter9, wrapped around a complete Tcl language10.

3.1.1. OOP and EDP

As is well known,Object-Oriented Programming11 is based on the concept of objects that

contain data and code; data in attributes and properties, and code in methods, which are

equal as functions. Event-Driven Programming12 is determined by user actions, that are

considered the events. These actions can be a mouse click, keypresses, sensor outputs,

or message passing. In this project, the only event used was the mouse click for the

buttons, this was used so the interactions were quick and efficient.

3.1.2. Classes and Objects with Tkinter

Working with objects means working with classes. In this case, the principal Class is the

TkinterApp, this is where the dictionary of the different pages is declared. That class is the

one that allows the application to have “multiple windows” and depending on the buttons

clicked by the user, the page that is raised varies. Also, classes are a more organized way

to program and easier to understand when reading the code.

The widgets13 that the Tkinter library gives access to are various, the ones used in this

project were; Label, Button, and Frame. The implementation of each one is intuitive. The

frame contains a desired group of widgets, the label displays text and the button performs

an action, which is the one that makes the app EDP.

3.1.2.1. Basics of Tkinter

To give some background and minimal knowledge in Tkinter a basic example from a web

page14 (Fig 3.1.2.1-1) is going to be used as a reference. First of all, it is important to know

which version of Python is being used, the difference between these two is the way the

3. SOFTWARE

19

module is written. In version 2.x is from Tkinter import * and in version 3.x is from tkinter

import *. If not written correctly it will generate an error.

Figure 3.1.2.1-1 Basic Example Tkinter

The first thing to do is import the Tkinter package that will immediately create an empty

window. This window will not be shown until the main loop is called, window.mainloop().

This will tell Python to run the Tkinter event loop and will be listening for any event, such

as button clicks or keypresses.

This is the easiest way to create a window with Tkinter. And now is ready to be packed

with widgets, labels, and buttons.

In the case of the coding for this project(Fig 3.1.2.1-2) , since we are using classes and

not making individual windows, the way the initial window is created is by first passing it

as an argument in the main class, which means that the main class inherits the Tk() class,

and is initialized in the second init of the class, by writing tk.Tk.__init__(self). And how the

__init__ method defines a master, the self argument is indicating that the master is itself

the main class.

3. SOFTWARE

20

Figure 3.1.2.1-2 Fragment of Code

3.1.2.2. Classes and Objects in Tkinter

A better way to explain the class's definition and the use it is given in this project is by

presenting a simpler example, this is another basic example from a web page15 (Fig

3.1.2.2-2).

Figure 3.1.2.2-2 Basic Example Web Page

The first thing that is done, is writing the class. The name of the main class is MyFirstGUI.

The second line is initializing the class, as it can be shown in the image (Fig 3.1.2.2-2) the

method is receiving a parameter that is going to be the master. Then, there are some

3. SOFTWARE

21

widgets added; a label and two buttons. The label is simple, but it indicates that the master

of that label is the same one that passed as a parameter before and it means that the label

is going to be positioned in the master.

The buttons are the same, just different text. And in this case, the method used to add

them to the master is .pack().The result of that code is as follows:

Figure 3.1.2.2-2 Web Example

3.1.2.3. Positioning of Widgets.

Regarding the layout of the app, there are three ways that Tkinter allows the positioning

of widgets; .place(), .grid(), and pack(). The most common one is the grid, this is because

normally the apps perform in different devices, so their sizes will vary and the best way to

make sure the layout is the same proportion and position in every screen is by using the

grid method. But since this app is going to be implemented on a tablet and the screen size

is fixed, what worked best was the place method, just by playing with the numbers

everything got perfectly positioned.

3.2. Code explanation

As mentioned before, this code is based on OOP, so classes are the foundation of it. There

are two types of classes, the main one, and all the secondary ones. The main one can be

considered the back-end of the app. This class is where the “root” is created, the geometry

of the frame is fixed, and most importantly, where the dictionary of the multiple windows

of the applications is implemented.

The code (Annex A), as shown in the concept map (Fig 3.2-1), begins by running the first

class, which has all the initial information, this will create the window of 1024x600 size and

3. SOFTWARE

22

will load the StartPage, which is indicated in the self.show_frames(StartPage) function. On

that page a button is going to be placed at the center, if pressed it will lead to the second

Page, and there the recording and display of the sound will begin. On this page, the user

just has to press the finish button once they want to end it and continue. If they want to

start again all that needs to be done is press the “Back to Start Page” button. On the third

page, is where the Equalization is done, once again all the user has to do is wait until it is

finished. In case they want to record again the “Back to Start Page” button will be available.

If they finish all they have to do is press the “Finish” button and it will close the App.

The code (Annex A) is commented on, and the methods and classes are better explained

in it. The union that this project has with the other one it is not shown in this code, but the

equalization filter would have to be added on the third page

3. SOFTWARE

23

Figure 3.2-1 Conceptual Map

3. SOFTWARE

24

4. EXPERIMENTAL RESULTS

25

4. EXPERIMENTAL RESULTS

As planned, the App was successfully programmed, the result was as desired and allows

an intuitive and simple interaction with the client. The layout of the pages is minimalist,

there is not a necessity for more widgets, and the size of the labels is designed to make

the interaction fast and clear.

4.1. Screenshots of the Results

Some screenshots of the different pages are going to be added.

4. EXPERIMENTAL RESULTS

26

The first one (Fig. 4.1-1) is the Start Page, this is the first thing the code opens. It has the

button to start the recording.

Figure 4.1-1. Page 1 – Init page

4. EXPERIMENTAL RESULTS

27

The following image (Fig. 4.1-2) is the window that is shown after pressing the “Start

Recording” button. Here is where the recording and reproducing of the sound is done.

Figure 4.1-2. Page 2 - Recording Page

4. EXPERIMENTAL RESULTS

28

Once the user wants to finish the recording, the “Next” button on the “Recording Page”is

going to be pressed, and the window that is going to be shown is the one that does the

equalization.

Figure 4.1-3. Page 3 - Equalization Page

4. EXPERIMENTAL RESULTS

29

And finally, after pressing “Finish” on the preview page, the last page that will be shown

(Fig 4.1-4) is the one that allows the user to close the app.

Figure 4.1-4 Page 4 - Closing page.

4. EXPERIMENTAL RESULTS

30

5. CONCLUSIONS

31

5. CONCLUSIONS

The first step to take towards the initialization of this project was the configuration of the

Raspberry. Starting with the OP, then the SSH, the Wi-Fi, the IP, and finally the VNC

connection. These were done successfully and will allow the download of the final app.

The code was the second thing to work on, the implementation of Python, its Tkinter library,

and finding ways to implement different ideas so the code was simple and efficient. The

main objective of this project was to make it as simple as possible and the final app is very

straightforward and intuitive, so anyone can implement it when needed and hopefully, it

will make the equalization process easier.

Regarding the code, working with classes instead of just simple windows was a bit

complicated at the begging. The implementation of methods changed since the master

was itself. Some information that was key to comprehend, was the use of the parameters

that passed as inherited in the classes, the initialization of them, and the interaction with

the main class. In spite of the challenges, the outcome of these implementations has

permitted an organized and simple code. Now, if the code wants to be expanded, it can

be done with more efficiency.

Concerning the possible improvements, showing the user a graphic result of the capturing

and equalization of the sound can be considered, this way they have a better idea of what

is happening with the different frequencies.

The actual application doesn’t allow the user to choose the sound card. It would be

interesting to implement a dropdown menu to allow the user to choose the audio input and

5. CONCLUSIONS

32

the audio output. Also, an advanced configuration tab would be interesting to change the

latency, sampling frequency, and buffer size of the sound card.

6. BIBLIOGRAPHY

33

6. BIBLIOGRAPHY

1. Disseny d’un equalitzador de sistemes de PA (Public Adress) automàtic.

https://upcommons.upc.edu/handle/2117/129886.

2. Visual Studio Code - Code Editing. Redefined. https://code.visualstudio.com/.

3. 15 best programming languages for mobile app development 2021.

https://www.spinxdigital.com/blog/mobile-app-development-languages/.

4. Raspberry Pi OS – Raspberry Pi. https://www.raspberrypi.org/software/.

5. Raspberry Pi OS – Raspberry Pi. https://www.raspberrypi.org/software/.

6. Habilitar SSH en la Raspberry sin conectar el Monitor. uGeek Blog.

https://ugeek.github.io/blog/post/2019-10-31-habilitar-ssh-en-la-raspberry-sin-

conectar-el-monitor.html.

7. Advanced IP Scanner – Explorador de redes de descarga gratuita.

https://www.advanced-ip-scanner.com/es/.

8. tkinter — Python interface to Tcl/Tk — Python 3.9.2 documentation.

https://docs.python.org/3/library/tkinter.html.

9. Introduction to Tkinter - first steps with Tkinter library.

6. BIBLIOGRAPHY

34

https://zetcode.com/tkinter/introduction/.

10. Languages using Tk - TkDocs . https://tkdocs.com/resources/languages.html.

11. Object-oriented programming - Wikipedia. https://en.wikipedia.org/wiki/Object-

oriented_programming.

12. Event-driven programming - Wikipedia. https://en.wikipedia.org/wiki/Event-

driven_programming.

13. Python GUI Programming With Tkinter – Real Python.

https://realpython.com/python-gui-tkinter/.

14. Ejemplos de la GUI de Python (Tutorial de Tkinter) - Like Geeks.

https://likegeeks.com/es/ejemplos-de-la-gui-de-python/.

15. Introduction to GUI programming with tkinter — Object-Oriented Programming in

Python 1 documentation. https://python-

textbok.readthedocs.io/en/1.0/Introduction_to_GUI_Programming.html.

