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GNN for Time-Sliced Quantum Circuit Partitioning

Abstract:

To scale into architectures that are big enough to achieve supremacy over classi-

cal computers, quantum computer designs will likely adopt a multi-core approach.

These processors will have high connectivity within clusters and higher latency com-

munications between cores. Previous work by Baker et al. developed a heuristic par-

titioning algorithm to schedule qubits into cores for quantum programs, for which a

static control flow is known beforehand. This heuristic algorithm aims to reduce the

number of inter-core movements, which are the main source of error and latency in

these architectures. In the present thesis, we develop a pipeline using a Graph Neural

Networks (GNN) to imitate this heuristic algorithm. We do so in hopes that GPU

or GNN-specific hardware acceleration provide better scalability and parallelization

in the near future, as quantum processors and algorithms move from hundreds to

thousands or even millions of qubits. This work also paves the way for future work

using GNN’s for optimization of quantum circuit partitioning.

1



Contents

List of Figures 4

List of Tables 6

1 Introduction 7

2 Background 11

2.1 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Quantum Programs and Interaction Graphs . . . . . . . . . . . . . . 14

2.3 Graph Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Lookahead Graphs and rOEE . . . . . . . . . . . . . . . . . . . . . . 17

3 Goals and Contribution 19

4 Methodology 21

4.1 Data and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 GNN Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Message Passing Neural Network . . . . . . . . . . . . . . . . 22

4.2.2 Maximum Likelihood and Assignment Problem . . . . . . . . 27

2



4.2.3 Valid partitions . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Results and Discussion 29

5.1 Random circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Real circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusions and Future Work 34

7 Bibliography 36

3



List of Figures

1.1 Adapted from [29] a) 2D diagram of a multi-core architecture. b)

Enumeration of the components. c) Circuit for quantum teleportation. 8

2.1 Adapted from [34]. An overview of GNN variants considering graph

type and scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Example of message passing information flow. . . . . . . . . . . . . . 13

2.3 Topology of the IBM Rochester Device. Links between nodes indicate

applying two-qubit gates to them is allowed. . . . . . . . . . . . . . . 15

2.4 Adapted from [6]. (Top) Graph diagram of a quantum program. (Bot-

tom) Total interaction graph and interaction graphs for each time slice

of the above circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 A diagram of Baker’s algorithm applied to a single time slice. . . . . . 18

4.1 Diagram of our proposed pipeline . . . . . . . . . . . . . . . . . . . . 23

4.2 Example of window approach (single hop). There are two types of

edges: interaction edges and temporal edges. . . . . . . . . . . . . . . 24

4.3 Different approaches to temporal connections. . . . . . . . . . . . . . 24

5.1 The non-local communication operations for the QFT circuits. . . . . 30

5.2 The non-local communication operations for the Grover Search Algo-

rithm circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4



5.3 rOEE iterations for the QFT circuits. . . . . . . . . . . . . . . . . . . 32

5.4 rOEE iterations for the Grover Search Algorithm circuits. . . . . . . . 32

5.5 rOEE computation time for QFT circuits. . . . . . . . . . . . . . . . 33

5.6 rOEE computation time for Grover Search Algorithm circuits. . . . . 33

5



List of Tables

4.1 Parameters for the final MPNN models. For the window approach we

use the center time scheme with a window width of 16. . . . . . . . . 27

5.1 Results for Lookahead and Window approaches. Non-local commu-

nication is shown for the pipeline using each GNN, the results for

Baker’s algorithm are in parenthesis. . . . . . . . . . . . . . . . . . . 29

6



Chapter 1

Introduction

By leveraging properties of quantum mechanics such as entanglement and superpo-

sition, quantum computers are aiming to run a broad set of algorithms exponentially

faster than classical computers, for problems that are currently intractable. Thus,

if successful, a quantum computer will revolutionize fields that require extremely

large amounts of computation: cryptography, optimization, simulation or artificial

intelligence to name a few.

We are currently immersed in the Noisy Intermediate-Scale Quantum (NISQ)

era [28]. At present, quantum computers have around 100 qubits (quantum analog

of classical bits) in the upper end and can only run small versions of certain quan-

tum algorithms, often not exceeding a few hundreds of quantum gates due to the

noisy nature of the qubits [4, 1]. This is not enough to bring about the end of RSA

encryption, which is one of the most prominent promises of quantum computing

[14]. Despite remarkable advances towards reducing it, quantum decoherence is still

the main hindrance of scaling quantum computers and algorithms to sizes that are

able to show the quantum supremacy that [27] speaks of. Decoherence is a term

that refers to the loss of quantum information due to unwanted interactions with

the environment. This is why quantum processors are isolated, kept at cryogenic

temperatures and controlled externally. Even with these preventive measures, cer-

tain errors scaling with the number of qubits or increased difficulty of integrating

required control circuits will limit the size a single-chip architecture can achieve to

a few thousands [25].
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Figure 1.1: Adapted from [29] a) 2D diagram of a multi-core architecture. b) Enu-
meration of the components. c) Circuit for quantum teleportation.

Due to these challenges, quantum hardware is expected to scale via increasing the

number of processors and not only the size of the processors, in a similar fashion to

how classical computers have scaled. These multi-core quantum processors, would

have high connectivity within each core and higher latency connections between

cores, see Figure 1.1. For a multi-core processor of C cores with N qubits per core

to retain the equivalent computational capability of a single processor of N × C

qubits, the cores need to be connected via quantum-coherent links. For example,

[24] proposes a way to connect ion traps (cores) via an optical switch, i.e. using

photon-mediated teleportation.

Operations between qubits located at different cores are more costly than local

operations, since the remote ones require multiple steps as shown in Figure 1.1. In

particular, transfer of the quantum state of a qubit could entail (i) the distribution

of entangled particles or pairs between transmitting and receiving cores, (ii) the

execution of multiple quantum gates between one qubit of the entangled pair and the

qubit to be transmitted, (iii) measurements of the entangled qubit at transmission,

(iv) classical transmission of the measurement outcomes from transmitter to receiver,

and (v) the application of single-qubit gates to the entangled bit at the receiving end.

As a result, in the near term, these non-local communication operations between

cores are expected have 5 to 100 times the latency of in-cluster communication [24].

Also, quantum teleportation has error rates 10 to 100 times larger than those of local

two-qubit gates [6]. Thus, mapping qubits to cores while minimizing the number

of non-local communication operations is key to a successful multi-core quantum
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processor. Quantum program schedules can be represented as time-sliced interaction

graphs where nodes represent qubits and each edge represents an interaction, i.e.

qubits that need to be in the same core. Therefore, the problem of mapping quantum

programs to a multi-core processor can be posed as a graph partitioning problem

with a goal of minimizing edge crossings between partitions and, hence, minimizing

movements between cores.

On the other hand, we have Graph Neural Networks (GNN). GNN’s are able to

operate on and learn from data that has graph structure. They have been gaining

popularity due to their successes in many applications that involve graphs, such as

molecular structure [15], social networks [33] or knowledge graphs [17] to name a

few. As such, they pose a promising candidate for the task of mapping qubits to a

multi-core processor.

In this work, we demonstrate the ability of GNN’s to reduce iterations of a recent

partitioning algorithm for time-sliced multi-core mapping [6]. The main contribu-

tion of this work is to serve as a stepping stone towards better optimization and

scalability of qubit mapping methods using GNN. In particular, we postulate that

as the number of qubits increases, the algorithm from [6] will not scale well due to

its irregular and search-driven iterative nature and its operation over a large but

probably very sparse qubit interaction graph. On the other hand, GNN acceleration

is being researched intensely [2, 12] and promises hefty speedups using both software

and hardware techniques, hence paving the way to more scalable qubit partitioning

schemes for large-scale quantum computers. In this direction, the contributions of

this thesis are:

• We implement a GNN that learns a baseline graph partitioning algorithm for

quantum multi-core architectures [6].

• We validate the approach using well established quantum programs as bench-

marks, obtaining solutions of similar optimality than the baseline.

• We evaluate the complexity of the algorithms and show the computational

speedup that using our pipeline entails for the baseline approach.

The rest of the thesis is organized as follows. In Chapter 2, we introduce the

basics of quantum circuits, GNN’s and graph partitioning. In Chapter 3, we state
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the goals we set out to accomplish with this work and outline our contributions. In

Chapter 4, we introduce the benchmarks we test on, the circuits we use to train our

model and present our proposed solution. In Chapter 5, we present our results and

provide a brief discussion. In Chapter 6, we conclude with some final remarks and

lines for future work.
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Chapter 2

Background

In this chapter, we provide background on the different fields that the present thesis

touches upon. In particular, Section 2.1 outlines the theory behind GNN’s and

their characteristics. Then, in Section 2.2, we describe how quantum programs are

expressed and the role of qubit movement in the execution of such programs. Then,

Section 2.3 mentions a few approaches of graph partitioning as a way to facilitate

the mapping of qubits in multi-core quantum architectures, to then describe the

solution from [6] used as baseline in this thesis in Section 2.4.

2.1 Graph Neural Networks

In this section, we provide a brief introduction of Graph Neural Networks (GNN)

adjusted to the one used in this thesis. For a more in depth description of GNN’s

refer to specialized texts, e.g. [18, 2].

Formally, a graph is a pair G = (V,E) where V is the set of vertices or nodes

and E is a set of pairs of nodes. Nodes represent objects and edges are relations

between them. Graphs can be directed or undirected, depending on whether the

relations represented by edges are unidirectional or bidirectional. One example of

the former might be the CORA dataset [31] where nodes represent published papers

and the edges represent the first node (paper) citing the second node (paper). An

example of the latter would be a social network, where nodes represent people and

edges represent the friendship relation.
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GNN is used to refer to a model that leverages neural networks to ingest data

with graph structure and make inferences. Traditional neural networks like Multi

Layer Perceptrons (MLP) or Convolutional Neural Networks (CNN) usually deal

with data in a real euclidean space Rn or isomorphic to one such space (images,

vectors, ...). Others are suited for temporal sequences of varying length such as

Recurrent Neural Networks (RNN). However, it is not obvious how to extend these

models to deal with graph data.

Some first attempts to deal with graph data were to extract features from the

graph live in a representation space that is of the type of traditional neural networks,

i.e. a fixed size real vector. This approach, however, does not explicitly make use

of the graph structure and may suffer from generalization issues. Indeed, graphs

that come the way of the model may have different number of nodes or node degree

distribution than those used to extract representations. Therefore, the features that

are extracted must be graph topology-invariant in order to fit in to the same size

feature vector, so the graph structure needs to be lost in the process.

To deal with these issues, GNN’s were born. GNN’s is a very active area of re-

search and thus, a rapidly evolving field. In [34], the authors survey the field, finding

applications in supervised, unsupervised and semi-supervised learning setting. They

also find a wide range of extensions to GNN’s from “traditional” deep learning, such

as attention, recurrent GNN, Graph autoencoders among others. GNN can be de-

signed to deal with many different types of graphs: multiplex graphs, hypergraphs,

dynamic graphs and more. See figure 2.1 for an overview of GNN’s by type and

scale.

In this work we will focus our attention to Message Passing Neural Networks [15]

(MPNN). See figure 2.2 for a diagram of information flow for these networks.

To achieve this information flow, a hidden state h0
v ∈ Rn is assigned to each

node. These states are initialized with node features. For example, in the case of

molecular data, these features can be physical properties of the atom.

Then we enter the message passing stage, which is repeated T times. For each

step t+1, each node u passes messages to its neighbors and each node v aggregates

its received messages into mt+1
v

12



Figure 2.1: Adapted from [34]. An overview of GNN variants considering graph type
and scale.

Figure 2.2: Adapted from [7] Example of message passing. Each row highlights the
information that diffuses through the graph starting from a particular node. Shaded
nodes indicate how far information from the original node has traveled; bolded
edges indicate edges through which that information can travel. This propagation
of information happens simultaneously for all nodes and edges.
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mt+1
v =

1

|Nv|
∑
u∈Nv

Mt(h
t
v,h

t
u, eu,v) (2.1)

where Nv is the set of neighbors and euv is a feature vector for the edge, for example

atomic distance for molecular data. M denotes a learnable differentiable function

that is referred to as message function. Each node uses this aggregated message to

update its state

ht+1
v = Ut(h

t
v,m

t+1
v ) (2.2)

where Ut is also a learnable differentiable function called update function.

After the T message passing steps, it is the turn of the readout phase. In this

phase we extract the inference target using the readout function, again learnable

and differentiable. Its form will change depending on the task at hand, sometimes

we might want a prediction per node, so it may take each final hidden state ht+1
v and

produce a prediction. We may also want to have a prediction for the whole graph,

in that case it will take all final hidden states as input.

As one can imagine from the above description, there is a fair amount of freedom

to design a MPNN. The above description is not even fixed. For example, one may

want to use 2-hop neighbors for eligible message senders to each node. In Section 4

we will introduce our own modification to deal with different types of edges.

2.2 Quantum Programs and Interaction Graphs

As mentioned in the introduction, qubits are the quantum analog to classical bits.

Thus, they constitute the basic unit of quantum information. Their state is described

by a superposition of the basis states |0⟩ and |1⟩. Therefore, their possible states live
in a continuous space, unlike classical bits, which live in a boolean space. To make

operations with qubits, one uses quantum gates, which are reversible operations

that may act on single qubits or may be used to interact pairs of qubits (two-qubit

gates). However, there is one irreversible operation, the measurement operation,

which collapses the state into either |0⟩ or |1⟩.

Each quantum processor is constructed with a certain topology that describes the

connectivity or one qubit to another, i.e. whether a two-qubit gate can be applied
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Figure 2.3: Topology of the IBM Rochester Device. Links between nodes indicate
applying two-qubit gates to them is allowed.

to a certain pair of qubits. See Figure 2.3 for an example topology.

Therefore, to interact qubits that are not neighbors in the topology, one has

to move them to suitable slots. These movements are also regarded as gates that

imply either swapping qubits, teleportation, physical movement, or using a resonant

cavity to transfer the quantum state from one and to another. As mentioned above,

qubits suffer from decoherence, so their expected lifetime before becoming unusable

is limited. Long range operations introduce significant latency so they need to be

used sparingly if possible. Two-qubit gates are expected, in the current generation

of quantum computers, to cause errors once in in every 100-1000 of them and long

range communication errors are 10-100 times more frequent.

The most common way of representing quantum programs is by using circuit

diagrams, hence quantum programs are also referred to as quantum circuits. These

circuit diagrams are similar to those used in classical computing. In these diagrams

programs are represented as a sequence of operations where each horizontal line

represents the temporal line of a qubit and vertical lines represent two qubit gates.

Parallelism is allowed in these circuits : non-dependent operations may be per-

formed at the same time. This parallelism is represented by placing operation at

the same horizontal coordinate. Each set of parallel operations is what is defined as

15



Figure 2.4: Adapted from [6]. (Top) Graph diagram of a quantum program. (Bot-
tom) Total interaction graph and interaction graphs for each time slice of the above
circuit.

a time slice of a quantum program. Time slices will depend not only on the specific

quantum program but also on the architecture of the processor. Each time slice may

be in turn be be summarized with an interaction graph, where nodes represent qubits

and edges are gates to be applied to the involved nodes (qubits). Another graph

of interest would be the total interaction graph, which is computed by summing all

interaction graphs for a program, assigning weight 1 to each edge. See Figure 2.4

for an example of a circuit diagram and interaction graphs.

We are interested in processors with modular architectures in this thesis, for

example [23], a trapped-ion based module blueprint. These computers have their

qubits grouped in cores (modules, clusters, processors) where there is high con-

nectivity between qubits in the same core and expensive, high latency non-local

communication between cores. Thus reducing these operations is highly beneficial

to avoid errors and allow for longer programs.

2.3 Graph Partitioning

For multi-core architectures, in each time slice, qubits will need to be assigned to

certain cores so that the required gates can be applied. This can be posed as a

problem of graph partitioning, where the objective is to minimize edges that go

from nodes in one partition to nodes in other partitions. In particular, modular

quantum computer architectures are fixed, i.e. a fixed number of partitions (cores)

16



with a fixed size for each partition.

This constraint discards the use of well known heuristic graph partitioning algo-

rithms such as [20] or [11] as they do not offer guarantees on the size of the partitions.

An alternative to this are constraint-based optimizers such as [10] which solves Sat-

isfiability Modulo Theories for optimal solutions and easily takes on the previous

constraint. The main limitation of this type is optimization is its poor scalability,

which saturates at about 40 qubits.

Another consideration to take into account is that non-local communication is

to be minimized due to its high latency. Thus, in each time slice, the interaction

must be satisfied with the minimum number of (partition) swaps from the previous

time slice.

2.4 Lookahead Graphs and rOEE

Baker et al. [6] propose the use of a lookahead graph at each time step t, which

assigns infinite value to interactions (edges) that must be satisfied for the present

slice. Then for each pair of qubits they add

wt (qi, qj) =
∑

t<m≤T

I (m, qi, qj) ·D(m− t) (2.3)

where T is the total number of slices, I is the indicator function for whether an

interaction exists in time slice m for qubits qi and qj and D is a monotonically

decreasing, non-negative function. This way, interactions that are closer in time are

weighted higher.

Then for each lookahead graph they apply the relaxed Overall Extreme Exchange

(rOEE). This is a modification of the standard Overall Extreme Exchange (OEE),

presented in [26]. OEE takes an initial partition and efficiently calculates a sequence

of swaps that improves the benefit, calculated from lookahead graphs. Their relaxed

version stops the swapping once the partition is “valid”, meaning all interactions in

the immediate time slice are able to be performed (each pair of qubits is in the same

partition). They find that this relaxed version is necessary because standard OEE

overcorrects and makes more movements than needed.
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Figure 2.5: A diagram of Baker’s algorithm applied to a single time slice.

With this method they aim to minimize the non-local communication. Which

is the number of operations needed to go from the assignment of one time slice to

the next. To calculate and optimize it, a second graph is created. This time, nodes

represent cores and the edges represent qubits that need to go from one core to

another. Then k-cycles are removed in increasing order of k. This because given a

cycle, we can optimize the number of swaps needed since for a k-cycle we need k−1

to make all required changes. Thus, if we denote ck the number of k-cycles removed

and r the number of remaining edges, the non-local communication is measured as

C = r +
∑
k=2

(k − 1) · ck (2.4)

The process is repeated for all time slices and summed to obtain the non-local

communication for that quantum program. This also provides a path to go from the

old assignment to the new one. See figure 2.5 for a diagram of Baker’s algorithm

applied to one time slice.
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Chapter 3

Goals and Contribution

The OEE has a computational complexity of O((kn)2 log(kn)) [26] where k is the

number of partitions and n is the number of nodes for each pass, this complexity

is the same for rOEE passes. However, the relaxed version will always make less

passes than the standard version.

On the other hand, GNN’s in their basic form [15] have a computational com-

plexity of O(n+m) where m is the number of edges. Note that m strictly less than

n2, and the sparser the graph, the lower the complexity1.

In addition, GNN’s are able to benefit from GPU’s which can further increase

their computation speed. There is also research into developing specific hardware to

accelerate GNN’s, for example [5, 2, 12].

The goals for GNN in the field of quantum are two fold. First, develop GNN’s

that are able to replicate traditional partitioning algorithms. Succesful GNN’s will

be able to scale better into the bigger quantum architectures needed for meaningful

computations that are currently intractable with classical computers.

The second goal, is to not only replicate traditional algorithms, but also improve

their results. To do so in a supervised manner, a tractable way of finding near-

optimal solutions would be needed, which as motivated in the previous chapter is

not a trivial task. However, future work may consider the use of graph reinforcement

1We do not make any claims on the dependence on k, while it would most likely imply a
sub-linear increase with n, it also requires training a new GNN.

19



learning. For example, [13] uses GNN’s for two-way graph partition problems.

For this thesis we set out to contribute to the first goal, leaving the second goal

for future work. We develop a GNN pipeline that is able to replicate the behavior

of Baker’s algorithm [6] for time-sliced quantum circuit partitioning. The pipeline

includes a way of enforcing partition size constraints and rolls back to the original

algorithms if it fails. We propose two different approaches that tackle this goal: one

well suited for Baker’s algorithm and another for more general use. Our GNN’s,

trained with randomly generated circuits are shown to generalize well to unseen real

circuits and reduce rOEE computations by 20 to 30%.
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Chapter 4

Methodology

We adopt the assumptions made in [6]. All-to-all inter-core connectivity is assumed,

meaning that all inter-core quantum state transfers take one hop each and hence are

equally expensive. We also adopt their architecture of 10 cores and 10 qubits per

core. However, our methods presented below can be adapted with ease to accom-

modate different assumptions.

In section 4.1 we introduce the data we will be using for training our model as

well as some real circuits that will be used to benchmark its performance on real

unseen data. Then in section 4.2 we introduce our proposed solution which includes

the specific GNN’s we used and post-processing steps: maximum likelihood and

rollback.

4.1 Data and Benchmarks

We decided to use randomly generated circuits to train our model. The reason is two-

fold: to train our model we need a sizable dataset of quantum programs and we want

to see how well our model generalizes to unseen circuits with structurally different

interaction graphs. Random circuits are analogous to synthetic traffic patterns.

They are used frequently in early quantum computing works as it allows to stress

the architectures in a controlled manner.

We generate 1000 random circuits like described in [30] with an average of 4000
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two-qubit gates. These are scheduled using an as late a possible (ALAP) scheduling

heuristic to obtain the sequence of interaction graphs. These come out with an

average of 300 time-slices each. Interaction graphs do not include single qubit gates

and empty time slices (or with only single qubit gates) are removed. Then, we apply

the algorithm of [6], for which we made an implementation in Python, to obtain

the target partitions for each qubit in each time slice. A standard 0.6, 0.2, 0.2

train/validation/test split of the dataset is adopted, where the train dataset is used

for training, the validation set is used to tune parameters and the test set is only

used for final testing.

Besides using the test set of random circuits as a benchmark, we are interested

in the generalization power to more structured circuits, like real algorithms. To rep-

resent this kind of algorithms we chose the Quantum Fourier Transform (QFT) and

Grover’s search algorithm as benchmarks [8, 16]. These circuits have a predefined

structure that depends only on the number of qubits, so we use these algorithms

for qubit counts ranging from 50 to 100. Note that architectures of 100 qubits are

able to handle programs with a lower quantity of qubits, the remaining qubits can

be used as ancilla or control qubits.

We use implementations of the mentioned circuits in OpenQL [21] and schedule

them using said platform for which an adaptation of our Python code to C++ for

Baker’s algorithm is underway.

4.2 GNN Pipeline

In this section, we present our proposed pipeline for the partitioning problem. First,

we make predictions using an MPNN. Then, we enforce problem constraints such as

the partition size constraint and the valid partition constraint, to be elaborated on

below. Figure 4.1 shows a diagram of our proposed pipeline.

4.2.1 Message Passing Neural Network

For our GNN, we will use an MPNN similar to the one proposed in [15] and the

following characteristics.
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Figure 4.1: Diagram of our proposed pipeline. Present and future information is
encoded to the edges either through lookaheads or using windows of interaction
graphs. Along with this, present partitions are encoded as node features of the
MPNN. The MPNN infers the probabilities of each node being in each partition for
the next slice. Then, we solve the assignment problem to maximize the likelihood.
If the partition is not valid we rollback to Baker.

Edge Features

For edge feature selection we tried two different approaches. The first one is using the

lookahead weights from [6] as the edge feature. We will call this approach Lookahead

approach.

The second approach is to use windows of slices of certain width with no edge

features, from the present slice to future slices. See Figure 4.2 for an example. This

approach will be named Window approach. There are two types of edges: interaction

edges and temporal edges. Interaction edges are self explanatory, they are the edges

from the interaction graphs. On the other hand, temporal edges require a more

detailed description.

Temporal edges are edges that connect nodes to themselves on a different time

slice. We tried different connection schemes, as shown in Figure 4.3:

• Single hop: Each node is connected to itself one time step into the future and

into the past.

• Cycle: Same as above, but the present node is connected to itself in the last

time step.

• Center: The present node is the hub that connects to all other time steps.

23



Figure 4.2: Example of window approach (single hop). There are two types of edges:
interaction edges and temporal edges.

Figure 4.3: Different approaches to temporal connections.
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Single hop is the most simple way of connecting a temporal sequence. However,

with the intuition to improve the flow of information, we experimented with the

cycle and center schemes.

We alternate interaction message passing and temporal message passing: mes-

sages are first sent through interaction edges. Then, after the node states are up-

dated, we repeat with the temporal edges. One can also consider to use a different

rate of updating each type of edge, e.g. message pass through interaction edges 3

times before doing so for temporal edges once.

Node Features

For the node feature we use the partition for the previous time slice, randomly

initialized if we are dealing with the first time slice. This information will be encoded

in to the node hidden state dimension by means of an embedding layer.

Other Hyperparameters

Some other hyperparameters to consider for this particular MPNN are:

• The number of message passing steps T .

• The aggregation function: fixed to a Gated Recurrent Unit (GRU) cell.

• The message function: fixed to an MLP, we can tune the number of layers,

dropout and hidden activations. The last layer’s width is fixed to the hidden

state dimension.

• The readout function: same tunable parameters as above. The last layer’s

width is fixed to the number of partitions with softmax activation.

• The loss function: fixed to cross entropy.

Development and training

To implement our MPNN, we used Python as general language and Tensorflow 2.6.0

[3] as deep learning framework. The machine used for training included two Nvidia
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GEFORCE GTX 1080 Ti GPU’s and an Intel(R) Xeon(R) CPU E5-1630 v3 @

3.70GHz CPU.

We performed hand-tuning of the results. This is because each instance of train-

ing would take around 12h-24h with our setup (depending on hyperparameters and

epochs) so performing grid search (or even reasonably wide random search) with

cross validation was unfeasible. Below we summarize some of our findings.

We start with some general findings:

• We used the Adam optimizer [22] with an exponential decay schedule. While

the benefits of using decay with Adam are inconclusive in general, we found

that for our case it would result in more stable training while allowing a bigger

initial learning rate.

• Dropout was not necessary and even hindered training. The model was barely

overfitting the data. Only on later stages of training (around epoch 50), would

the accuracy on the validation accuracy curve go below the training accuracy,

without decreasing.

• We found slight improvements in accuracy by using GELU [19] hidden activa-

tions instead of the RELU family.

• Sufficiently big MLP’s for the message and readout functions would not dif-

fer much in performance, so they were kept conservatively small to reduce

computation.

Below some considerations for the case of window input:

• Different message passing steps for interaction edges and temporal edges did

not make a noticeable difference in accuracy.

• When increasing the width of the window, the accuracy would improve, satu-

rating at around a width of 16. A further increase of the width would improve

accuracy only marginally, while requiring more resources.

• When using the single hop scheme, the number of message passing steps would

have to scale with the width of the window to achieve the improvements men-

tioned above. With the cycle scheme, it would need to scale at a lower rate.

With the center scheme, no increase was needed for the message passing steps.
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Table 4.1: Parameters for the final MPNN models. For the window approach we
use the center time scheme with a window width of 16.

Message passing steps 4
Message function hidden layers [64,64,64,64]
Readout function hidden layers [64,64,64,64]
Hidden layers activation function GELU
Loss Cross entropy
Node state dimension 128
Learning rate 0.0017
Decay steps 1000
Decay rate 0.99
Batch size 64
Epochs 100
Shuffle buffer 4096

We perform batch training by creating an adjacency matrix that contains all

adjacency matrices as a block in the diagonal and set the batch size to 64. We

trained our models for 100 epochs with local shuffling with a buffer of 4096, due

the the data set not fitting in memory. Table 4.1 summarizes our final training

parameters.

4.2.2 Maximum Likelihood and Assignment Problem

Taking the highest probability prediction of the MPNN for each node does not

guarantee that each partition has the designated number of assigned qubits. Thus,

we run a post-processing step to obtain partitions that comply with that constraint.

We can obtain the maximum likelihood partition that complies with the partition

size constraint by solving an assignment problem. The assignment problem is a well

known optimization problem that is defined by a cost matrix C. The cost matrix

summarizes the cost of assigning an element of a set of “workers” to an element of

a set of “jobs”. The task is then to find the assignment that minimizes its sum of

costs. In our case, our “workers” are the qubits qi and our “jobs” are the partitions,

min
p

∑
i

C(qi, p(qi)), (4.1)

where p is the partition function, that assigns qubits to their partitions.
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To obtain the final maximum likelihood partition that complies with the partition

size constraint, we proceed as follows:

1. We take the negative logarithm of the predictions for each node: since we are

modelling probabilities with our MPNN, the logarithm is needed to have a

linear cost function; we take the negative to pose it as a minimization problem

as follows:

max
p

∏
i

yi,p(i) = min
p

∑
i

− log(yi,p(i)). (4.2)

2. We repeat the negative log predictions for each partition as many times as

slots that partition has: we need a square matrix for the assignment problem,

i.e. as many slots as qubits. This is where the partition size constraint is

enforced.

3. We solve the assignment problem with the Jonker-Volgenant algorithm [9].

4.2.3 Valid partitions

We still have one constraint that is not guaranteed to be fulfilled. That is, that all

interactions for the present interaction graph must have its interaction qubits in the

same partition to be a valid partition. To deal with this constraint we decide to

rollback and use Baker’s algorithm for invalid predictions of the GNN pipeline.

Note that Baker’s algorithm actually does not guarantee valid partitions. How-

ever, due to certain properties of quantum programs, the output of rOEE is almost

always a valid partition. Quantum gates are mostly two-qubit gates, and when

higher n-qubit gates are present, they can be decomposed to two-qubit gates. Thus,

when the partition sizes are sufficiently large, the Baker’s algorithm guarantees valid

partitions.
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Chapter 5

Results and Discussion

In this chapter, we present the results of our GNN pipeline. First, some metrics for

the MPNNs will be shown for the random circuits. Then, we will show the results

for the non-local communication and computational aspects for the pipeline on real

circuits.

5.1 Random circuits

In Table 5.1 we find some metrics concerning the performance of the Lookahead and

Window approaches. It is important to mention that accuracy must only be viewed

as a proxy for performance, since the partition size constraint is not yet applied.

Table 5.1: Results for Lookahead and Window approaches. Non-local
communication is shown for the pipeline using each GNN, the results for Baker’s

algorithm are in parenthesis.

Training Validation Test

Lookahead

Accuracy 0.9274 0.9245 0.9249
Loss 0.2364 0.2481 0.2476
Valid partitions (%) 21.11 21.05 21.06
Non-local communication 2061 (2059) 2062 (2057) 2063 (2056)

Window

Accuracy 0.8140 0.8082 0.8087
Loss 0.6521 0.6712 0.6754
Valid partitions (%) 5.87 5.53 5.57
Non-local communication 2070 (2059) 2077 (2057) 2075 (2056)
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Figure 5.1: The non-local communication operations for the QFT circuits.

We observe that the Lookahead approach obtains better results than the Window

approach. This is to be expected, since we are trying to replicate an algorithm, it

makes sense that using the same information yields better results.

However, we see that the Window approach is also able to generate valid as-

signments, albeit in a lower percentage. We believe that further refinement of this

approach may lead to a model that is more general in the sense of being able to

not only imitate Baker’s algorithm and other algorithms that may be developed,

but also for optimization of the solution, say by using Reinforcement Learning for

example. All said, the Window approach is not up to par in performance in its

current state, so for the real circuits we only compare the Lookahead approach to

Baker’s algorithm.

5.2 Real circuits

As mentioned, QFT and Grover circuits have a predefined structure depending on

the number of qubits. The non-local communication of both circuits ranging from
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Figure 5.2: The non-local communication operations for the Grover Search Algo-
rithm circuits.

50 to 100 qubits is shown in Figures 5.1 and 5.2.

We obtain results on-par (slightly worse) with Baker’s algorithm for real unseen

quantum circuits. The GNN is only trained on random circuits of 100 qubits, so this

shows that the GNN is able to generalize well to unseen circuits with fundamentally

different structures. To confirm this statement we also need to look at figures 5.3

and 5.4 where we plot the number of iterations of rOEE needed for each circuit.

Note that the pipeline uses rOEE only if the predicted partiton is not valid. We see

a decrease ranging from 20 to 30%. The decrease in iterations shows that the GNN

is able to produce a portion of valid partitions for each circuit. As a side note, rOEE

usually only needs one pass to obtain a valid partition.

In Figures 5.5 and 5.6 we plot the computation time rOEE. We leave out the

computation time for the whole GNN pipeline because optimizing for speed was not

a priority in this work, so results are not indicative of the computation speedup of

GNN’s. As we can see, the amount of computation time that is reduced ranges from

10 to 20%.
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Figure 5.3: rOEE iterations for the QFT circuits.

Figure 5.4: rOEE iterations for the Grover Search Algorithm circuits.
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Figure 5.5: rOEE computation time for QFT circuits.

Figure 5.6: rOEE computation time for Grover Search Algorithm circuits.
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Chapter 6

Conclusions and Future Work

In this thesis, we propose a GNN pipeline to imitate Baker’s algorithm for time-

sliced quantum circuit partitioning. We show that our pipeline using lookahead is

able to replicate the algorithm and obtain valid qubit assignments in 20 to 30% of

the cases on unseen real circuits, while being trained only with randomly generated

circuits.

The results show the potential of GNN’s for this task, specially as an accelerator

for better scalability of quatum circuit partitioning. This is because GNN’s can

be optimized to run on GPU and only need to be trained once. We also show a

way to feed the interaction graphs to a GNN without aggregation with our Window

approach, while it yields worse results in the imitation task (as expected), it may

be used for future models that try to optimize instead of imitate.

Future work towards a better GNNmodel can be explored in many different direc-

tions. One such direction is to generate a richer training dataset that includes both

synthetically generated circuits as well as real circuits. Gathering such a dataset is

not a trivial task itself since many implementations are made in different frameworks

and quantum assembly languages are not standardized fully.

On the model side, improvements can be made by using more complex and/or

efficient GNN’s. For example, Graph Attention Layers [32] have found great success

in different tasks. In addition to this, more information about the circuits can be

incorporated into the inputs: gate information can be encoded into the interaction

edges and one qubit gates can be represented as self loops in the interaction graph.
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Another particularly interesting direction to explore is the use of Graph Rein-

forcement Learning. Using GNN’s in recent Deep Reinforcement Learning frame-

works is an approach that need not rely on solutions of other algorithms to find good

solutions. In addition, certain constraints can be modeled into the reward function,

for example the need for a valid partition can be enforced by only giving rewards if

the partition is valid.
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