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Abstract: Generative adversarial networks (GANs) have been recently applied to medical imaging
on different modalities (MRI, CT, X-ray, etc). However there are not many applications on ultrasound
modality as a data augmentation technique applied to downstream classification tasks. This study
aims to explore and evaluate the generation of synthetic ultrasound fetal brain images via GANs and
apply them to improve fetal brain ultrasound plane classification. State of the art GANs stylegan2-ada
were applied to fetal brain image generation and GAN-based data augmentation classifiers were
compared with baseline classifiers. Our experimental results show that using data generated by both
GANs and classical augmentation strategies allows for increasing the accuracy and area under the
curve score.

Keywords: generative adversarial networks; deep learning; ultrasound image classification

1. Introduction

Diagnostic ultrasound is an essential tool during pregnancy [1]. It is employed both
as a screening tool as well as to better assess high risk patients, both during early [2] or late
pregnancy [3]. Examples are the measurement of fetal biometries to monitor fetal growth
and weight [4], Doppler blood flow to study blood circulation [5] or nuchal translucency
measurement, which is the basis for the first trimester screening of fetal aneuploidies [6].

The acquisition of fetal and maternal ultrasound images is done following interna-
tional guidelines promoted by scientific committees [7]. These guidelines provide clear
protocols on which images need to be acquired depending on the trimester of pregnancy
and classification of the patient. This results in each ultrasound examination having a large
number of images (typically, more than 20). Three dimensional (3D) images and videos
can also be acquired to complete the clinical examination.

Then, as a first step in any protocol both in the clinical and research settings, the images
acquired during the examination have to be classified. Having a clinician or trained
technician manually select and classify the images is slow and prone to mistakes. Being
able to automatically classify the images acquired during an ultrasound examination can
prove very useful to increase cost-effectiveness and reduce human errors in the process [8].

Prior works addressing this problem have relied on gathering a large amount of
manually labeled data and then apply deep supervised learning methods [8–12]. General
fetal planes can be now reliably detected from the latest ultrasound machines [12] thanks
to these prior efforts and public data is now available [13].

However, classifying images with fetal anomalies or distinguishing between the
different axial brain planes (see Figure 1) where images are very similar to each other and
hard to classify even for domain experts, is still an unsolved problem. And for these cases,
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labeled data is not readily available to the majority of medical or research centers. One of
the possible solutions is to use generative models such as Generative adversarial networks
(GANs) [14] to generate artificial images that can then be used to augment the number of
examples available to train the classifiers.

In this study, our main objective is to assess if the latest state-of-the-art GANs can
help deep learning ultrasound classifiers. We focus on ultrasound fetal brain fine-grained
classification (distinguishing trans-thalamic from trans-ventricular axial plane images), see
Figure 1. This is a hard classification task and there is not a large number of images readily
available, making it ideally suited for the purpose of this study.

Figure 1. Fetal brain plane images used in this study [8].

The main contributions of this study are two:

1. Evaluate state-of-the-art GANs such as StyleGAN family of architectures [15,16] on
fetal ultrasound images. These models are capable of generating highly realistic high
resolution images of human faces and other objects, but as far as we know, this is the
first time StyleGAN2 networks are used as data augmentation method for ultrasound
image classification.

2. Evaluate if the artificial images generated by these models can benefit deep learning
supervised classifiers. We evaluated two scenarios (1) improving their accuracy
by augmenting total number of training images (augmentation experiments, see
Section 4.3.1) and (2) testing if similar accuracy can be achieved with fewer real
examples (replacement experiments, see Section 4.3.2).

2. Related Work

Generative adversarial networks [14] have obtained a lot of attention due to the realis-
tically looking artificial images they are capable of generating. First GAN model [14] was
formed by multilayer perceptrons, while the first deep convolutional GAN (DCGAN) [17]
instead exploited the successful application of convolutional neural networks to GANs.
Both GANs were defined under a unsupervised or unconditional framework, where image
generation is performed from random noise without additional information from classes
or any kind of conditional information.

In medical imaging, first DCGANs and variants were mainly applied to generate
realistically looking low resolution artificial images, with resolutions ranging from 16 × 16
to 64 × 64. Examples are the generation of 16 × 16 prostate lesions [18] or 56 × 56 lung
cancer nodules [19]. Later, GANs have been shown to be useful in many medical imaging
applications such as image reconstruction, segmentation, detection, classification, and cross-
modality synthesis to overcome issues related to scarcity and class imbalance [20].

Beyond 128 × 128 resolution, good quality artificial images are difficult to obtain with
classical DCGANs. Methods to progressively grow GANs [21] have been applied in [22]
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on 256 × 256 skin lesion images, or in [23] where 1280 × 1024 images of mammograms
where generated. Still, ref. [24] showed that when dealing with limited and high variance
data, DCGANs performance decreases notably from 64 × 64 to 128 × 128 up to 256 × 256
resolution images. Most works based on DCGANs and variants have been successfully
applied to low resolution images and have been shown less effective for medium/large
resolution. 128 × 128 resolution appears to be just in the limit of the capabilities of
current DCGANs.

When applying unconditional GANs to image classification tasks, the main idea is to
train two or more networks separately, one for each class. Then, once training is completed,
the generative part is used to generate random artificial images which are fed to the
classifier during training to augment available data for each class. One of the first successful
examples of this was [25] where they were able to increase sensitivity and specificity of
liver lesion classification from 78.6% and 88.4% with classical data augmentation (DA)
methods to 85.7% and 92.4% respectively with additional GANs generated images, on a
limited dataset of 64 × 64 computed tomography (CT) images.

In this study, we explore more advanced and recent architectures, such as the Style-
GAN family of architectures (StyleGAN [16] and StyleGAN2 [15]). These models have
been state-of-the-art in the last year with respect to high realistic and high resolution image
generation. However, applications of StyleGAN based models are scare in medical imaging,
mainly because this kind of architectures need tens of thousands of examples for training.
However, recently an in-built data augmentation mechanism to face data scarcity has been
proposed [26,27] which has shown good performance with one order of magnitude less
amount of data in FFHQ (human faces), AFHQ Dog (dog faces) and BreCaHAD (breast
cancer histopathological images [28]) among others.

To our knowledge, there is no previous work applying StyleGANs to ultrasound im-
ages. The only previous example we found in medical imaging was applied to whole-body
magnetic resonance imaging (wbMRI) image generation [29] in which DCGAN and Style-
GAN family of GANs architectures are compared and StyleGAN showed clear benefits.

3. Methods

Firstly, we outline how GANs were adapted to work with fetal brain ultrasound im-
ages. Then, we outline how deep learning classifiers were applied with/without artificially
generated images.

3.1. Stylegan2 Applied to Fetal Ultrasound Images

In this section we describe how we adapted Stylegan2 to fetal brain ultrasound
images. We describe the training configuration (Section 3.1.1), the evaluation metrics
used for network selection (Section 3.1.2) and the procedure for artificial image generation
(Section 3.1.3).

3.1.1. GANs Training

Since we are approaching this problem under an unconditional framework, two GANs
were trained, one for trans-thalamic (TTA) and another for trans-ventricular (TRV). Our
base architecture is based on Stylegan2-ada [27] where the parameter search space of the
network is very broad. Due to time and computing limitations, some parameters were fixed
following the author’s recommendations given the dataset size, while the more sensitive
were evaluated and set differently for TTA and TRV images. Please see Supplementary
Material for a more detailed description of all training parameters used.

3.1.2. GANs Evaluation

It has been proved that GANs are remarkably effective at generating both high-quality
and varied artificial images in a broad range of applications. However, GANs lack an
objective function, which difficults the comparison between different models. Several
quantitative measures have been proposed to evaluate GANs performance. The two more
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popular metrics for evaluating GANs are Fréchet inception distance (FID [30]) and Precision
and Recall (PR [31]).

Fréchet Inception Distance

FID is defined in Equation (1), as the Fréchet distance (also known as Wasserstein-2
distance) between two multidimensional Gaussian distributions, g = (µg, Σg) and r = (µr, Σr),
representing embedding feature spaces defined by a specific intermediate layer of a pre-
trained Inception network of generated and real images respectively.

FID(r, g) = ||µr − µg||22 + tr(Σr + Σg − 2(ΣrΣg)
1
2 ) (1)

where tr is the trace function of a matrix A

tr(A) =
n

∑
i=1

aii = a11 + a22 + · · ·+ ann

Precision and Recall

The main idea of PR metric is to form explicit non-parametric representations of real
and generated manifolds and estimate from them precision and recall. Similarly to FID,
real and generated images are embedded into a high-dimensional feature space using a
pre-trained classifier network (VGG16). Let φr and φg be real and generated feature vectors
respectively, and Φr and Φg the corresponding sets of feature vectors. Then for any φ and
any Φ a binary function is defined as in Equation (2).

f (φ, Φ) =

{
1, if ||φ− φ′||2 ≤ ||φ− NNk(φ

′, Φ)||2 for at least one φ′ ∈ Φ
0, otherwise

(2)

where NNk(φ
′, Φ) is the kth nearest feature vector of φ′ ∈ Φ.

This equation defines a way to decide whether a given image looks realistic or might
be produced by the generator with f (φ, Φr) and f (φ, Φg) respectively.

Finally, precision and recall are defined in Equations (3) and (4)

precision(Φr, Φg) =
1
|Φg| ∑

φg∈Φg

f (φg, Φr) (3)

recall(Φr, Φg) =
1
|Φr| ∑

φr∈Φr

f (φr, Φg) (4)

According to prior work, on small datasets, FID is reportedly not a good metric, while
precision and recall both have small bias and of the two precision performs better than
recall [27,31,32]. With this in mind, we used precision as the main metric for network
selection. Despite its shortcomings, we decided to report also FID in our experiments to
make easier the comparison with prior studies, which often report it.

3.1.3. Artificial Image Generation

An open problem in all generative models is the difficulty for the generator to learn
from low density areas that are poorly represented. In order to improve quality of samples,
a method call truncation trick [33] is widely used. The main idea consists in sampling from
a truncated distribution instead that from the original distribution (N (0, I) or U [−1, 1]
in most cases). Sampling from these truncated distributions will generate in most of the
models more realistic images, increasing precision at the price of less variety or recall.

This truncation procedure is controlled by a threshold ψ ∈ (−∞,+∞) and previous
works [15,16,27] have shown that values around ψ = 0.7 improve the quality of images.
As the threshold gets closer to 0 (ψ → 0), the generated images tend to be similar to the
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training average image. On the contrary, when ψ increases, generated images show higher
detail but also might present artifacts and seem unrealistic.

The selection of ψ value when generating images is an important parameter to evaluate
since it can provide very different results. We performed a grid search optimization on its
value to find its optimal value. In the stylegan architecture family, the truncation is done
over an intermediate latent space w ∈ W [27] coming from a mapping network consisting
of 8 fully connected layers, instead of traditional latent code y ∈ Z defined by the input
layer. Although in theory negative values of ψ are possible, we didn’t experiment in this
work with them, limiting the grid search only to positive values.

3.2. Classifiers

The main goal of this work is to study the feasibility of GANs to improve classification.
As baseline classifier, we used a Resnet [34] pre-trained on ImageNet dataset, slightly
modified by fastai library (see Supplememtary materials on the differences with original).
The classifier was trained with and without artificially generated images to compare its
results. In all experiments, classifiers were trained a maximum of 20 epochs with early
stopping on validation loss with patience set to 5 and batch size to 64. The network was
fine tuned the first epoch, by training only the head, while in the remaining epochs, all
the layers were unfrozen and trained. All hyper-parameters were set using default fastai
values with fine_tune method. Moreover, loss function and optimizer were set to default
values of create_lerner method. Finally, also default data augmentation was applied with
method aug_transforms with image resolution of 128 × 128. As we mention previously, all
these default values define good baselines.

All experiments were done in Google Colab with our own stylegan2-ada (https:
//github.com/albertoMontero/stylegan2-ada, accessed on 14 January 2021) fork with
modifications and custom training configurations.

4. Experiments

We first introduce the dataset used in all experiments (Section 4.1). Then, we show
GANs results (Section 4.2). Finally, we present and discuss classification results (Section 4.3).

4.1. Fetal Brain Ultrasound Images

For all experiments, we used the open-source dataset provided with paper [8] and
openly available from zenodo [13]. These images were collected by BCNatal, a center with
two sites (Hospital Clinic and Hospital Sant Joan de Deu, Barcelona, Spain), with large
maternal-fetal experienced practice. Images were acquired from a total of six different
US machines by several different operators with similar experience. The final dataset is
composed of 8747 images, 3436 for TRV and 5311 for TTA. Then, all images were cropped
by means of an automatic brain detector based on a convolutional neural network, trained
on thousands of fetal ultrasound brain images [35]. Figure 1 shows some image examples.

The dataset was partitioned using two different train-validation splits depending on
the experiment, always using patient ID to avoid overlapping patient samples, see Table 1.
In augmentation experiments, both for GANs and classifiers, 50% of the images were
used to train and the remaining 50% were left for validation. In replacement experiments,
in order to be fair, we avoided replacing real samples with artificial images generated using
those samples during GAN training, and therefore we used 50 + 25% for training and 25%
for validation, where half of the previous validation was added to a new training category
reserved for the Classifier’s training only.

https://github.com/albertoMontero/stylegan2-ada
https://github.com/albertoMontero/stylegan2-ada
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Table 1. Train/validation split with no overlapping patient samples used in augmentation and
replacement experiments.

Augmentation Experiments

Plane Train Validation Total

TRV 1656 1780 3436
TTA 2620 2691 5311
total 4276 4471 8747

Replacement Experiments

Plane
Train

Validation Total
GAN Classifier

TRV 1656 854 926 3436
TTA 2620 1368 1323 5311
total 4276 2222 2249 8747

4.2. GAN Training Results

With the configurations outlined in Section 3.1.1 we trained a TTA-GAN for about 45
h and a TRV-GAN for about 27 h in a single GPU. The result of both GANs is shown in
Table 2. The obtained values are comparable with numbers previously obtained in [27]
for BRECAHAD dataset ([28]) which consists of breast cancer histopathology images with
similar number of training images (1994, compared with 1656 for TRV and 2620 for TTA).
They obtained a FID value of 15.71 when training from scratch and 16.33 when using
transfer learning.

Table 2. Metrics: FID, precision and recall for TTA and TRV GANs.

Plane FID Precision Recall

TTA 13.08 0.6616 0.3336
TRV 17.4856 0.6609 0.2850

Figures 2 and 3 show 25 random artificial generated images for different values of
the truncation parameter ψ = 0.3, 0.5, 0.7, 1 for both TTA and TRV planes. While low
values of ψ generate images very similar between them due to lack of detail, higher
values seem to work well, generating realistically looking and varied artificial fetal brain
ultrasound images.
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(a) (b)

(c) (d)

Figure 2. Generation of Trans-thalamic images for some random seeds and different ψ. Same
25 seeds were applied to each grid giving the same 25 brain plane generation for three ψ values and
no truncation. (a) ψ = 0.3; (b) ψ = 0.5; (c) ψ = 0.7; (d) ψ = 1 (no truncation).

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. Generation of Trans-ventricular images for some random seeds and different ψ. Same
25 seeds were applied to each grid giving the same 25 brain plane generation for three ψ values and
no truncation. (a) ψ = 0.3; (b) ψ = 0.5; (c) ψ = 0.7; (d) ψ = 1 (no truncation).

4.3. Classification of Fetal Brain Ultrasound Images

As explained in Section 3.2, to form a strong classifier, we used a slightly altered ResNet
architecture and trained it using latest data augmentation techniques. We tested different
depths (Resnet-18 and Resnet-50) and image resolutions to find the best trade-off between
performance and training time. Table 3 shows the results. Due to computational resources
limitation, and since we aim to perform explorations over ψ truncation parameter with
different augmentation ratios and five runs, we decided to perform all experiments using
configuration ResNet18_128x128 which performs slightly worse than ResNet18_224x224,
but is 50% faster.

Table 3. Baseline comparison. 5 runs with Tesla T4 gpu and bs = 64.

Model Accuracy AUC F1-Score Sec/Epoch

ResNet18_128x128 0.799± 0.004 0.850± 0.003 0.785± 0.003 15
ResNet50_128x128 0.806± 0.005 0.854± 0.004 0.787± 0.010 26
ResNet18_224x224 0.805± 0.004 0.856± 0.001 0.789± 0.004 23
ResNet50_224x224 0.816± 0.004 0.865± 0.004 0.801± 0.002 66

Using ResNet18_128x128 as baseline, we tested if results could be improved through
the use of the GANs in two different scenarios: augmentation experiments (Section 4.3.1)
where the training examples are augmented with artificial images, and replacement experi-
ments (Section 4.3.2), where some real training samples are replaced by artificial ones.

4.3.1. Augmentation Experiments

The first experiment evaluates whether the performance of the classifier can be im-
proved by augmenting the training set with artificial images generated by the GANs. As we
mentioned in the previous section, the quality of images can be controlled by the truncation
parameter ψ. We performed several experiments for values ψ = 0.3, 0.5, 0.7, 1. We also
experimented with the ratio of artificial to real images used during training Ra =

#artificial
#real ,

where #real is the total number of real images and is constant. Figure 4 shows graphs for
all experiments.
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Figure 4. Accuracy (blue, with max and min) and AUC (green, with max and min) for experiments
with ψ = 0.3, ψ = 0.5, ψ = 0.7 and ψ = 1 (no truncation). Horizontal lines represent the baseline
accuracy and AUC (without GAN data augmentation).

Best results were reached with ψ = 1 and Ra = 6 with a maximum accuracy of 81.5%
(1.6% improvement over baseline), and a maximum AUC of 86.7% (1.7% improvement over
baseline). This shows that even when combined with strong data augmentation methods,
GAN-based augmentation can still improve performance. We observed this improvement
for all ψ values explored as long as Ra ≥ 2.

When comparing performance for different Ra values, performances are very similar
to each other. Best Ra values are Ra ≥ 6 and at Ra = 8 performance starts to decrease.
However, we noticed some differences with respect to parameter ψ. With ψ = 0.3, which
represents images with higher precision and lower recall, classifiers improve on baseline
accuracy and AUC even with low Ra values, while the rest need more samples to reach
similar results. This means that when adding few fakes (Ra ≤ 3) the quality (precision)
matters, but as we add more, variety (recall) seems to compensate quality. As far as overall
ψ values are concerned, differences found in terms of best performance were extremely
narrow, with fluctuations below 1% in terms of AUC.

To establish whether differences in performance between the best model and the
baseline are statistically significant, we performed a permutation test (100 repetitions using
stratified k-fold at various K = 2, 5, 10). In all cases, p-value for both ACC and AUC was
p < 0.01, indicating that the improvement is indeed statistically significant.

Please see Supplementary Material for Tables with full results of each one of these ex-
periments.

Comparison with Classic Data Augmentation

For completeness, we now compare performance of the best model (ψ = 1, Ra = 6)
against different baseline scenarios: no data augmentation, classical data augmentation
only and GAN-based data augmentation only. Table 4 shows the results. We observe
that GANs-based data augmentation on its own improves performance compared with
no data augmentation, but does not improve classical data augmentation. However,
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as previously reported in Figure 4, both techniques are complementary and combining
both does improve performance.

Table 4. Comparison of baseline classifier without and with different strategies of data augmentation
(classical and GAN-based using ψ = 1, Ra = 6, ResNet18_128x128, 5 runs).

Accuracy AUC F1-Score

no DA 0.739± 0.005 0.782± 0.005 0.720± 0.005
classic DA only (baseline) 0.799± 0.004 0.850± 0.003 0.785± 0.003

GAN-based DA only 0.765± 0.008 0.812± 0.006 0.746± 0.007
classic + GAN-based DA 0.815± 0.003 0.867± 0.003 0.800± 0.004

We believe that there are two main reasons why classical data augmentation on its
own outperformed GAN-based data augmentation:

1. The regular data augmentation used in our paper (aug_transforms, from fastai library
as mentioned in Section 3.2) is a very strong, state-of-the-art augmentation. It includes
many different transformations such as horizontal flips, rotations, brightness and
contrast transformations, etc. These transformations and the defaults set by fastai
have been found after many experiments and reach strong performance in most
scenarios.

2. While in the case of classical data augmentation, all training samples are real images,
in GAN-based augmentation many are fake. Generated samples by GANs differ in
quality, some being better than others. GANs metrics reported in this work (FID and
PR) don’t provide information on the quality of individual samples. A procedure for
filtering poor quality images might be worth exploring and potentially give better
performance and/or reduce the necessity for so large values of Ra.

4.3.2. Replacement Experiments

In replacement experiments, instead of augmenting the training set with fakes, we
directly replace real images by artificial ones. With this kind of experiment we aim to
answer a different question: can GANs help to reach similar performance using less real
training images?

Based on augmentation experiments results and given that performance obtained
are similar for all ψ values explored, we performed a single replacement experiment for
the best truncation value found (no truncation) and the same augmentation ratios as in
augmentation experiments. Figure 5 shows the results.

Results show that AUC obtained are similar to baseline for Ra = 5, Ra = 6, and Ra = 8
although accuracy is slightly lower. This means that similar performance is obtained when
replacing 2222 (854 + 1368) real images by 25,656 (9936 + 15,720), 29,932 (11,592+18,340)
and 34,208 (13,248 + 20,960) artificial images for Ra = 5, Ra = 6 and Ra = 8 respectively.

These 2222 images are all from different patients (not used during training). Taking
into account that there are in average 3.5 images per patient in the dataset, this means that
similar performance is achieved with 570 fewer patients. This, in turn, means that similar
results would have been achieved while avoiding 570 physical examinations and all the
acquisition, collection, selection and storage of the corresponding images by clinicians.
Thereby, this contribution would have saved considerable amounts time, resources and
money in the whole process. This is clearly a very strong point in favor of GAN-based
data augmentation.

Please see Supplementary Materials for Tables with full numerical results of this ex-
periment.
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Figure 5. Accuracy (blue, with max and min) and AUC (green, with max and min) for replacement
experiments for no truncation. Horizontal lines represent the baseline accuracy and AUC (without
GAN data augmentation).

5. Discussion

There is not much previous work related to GANs-based data augmentation for
classification tasks in real applications with which to compare our study. In [25] they
perform GANs-based synthetic computed tomography images for downstream liver lesion
classification task and they were able to increase sensitivity and specificity of liver lesion
classification from 78.6% and 88.4% with classical data augmentation methods to 85.7% and
92.4%. However, the dataset used was very limited, containing only 182 examples. Another
related work is [32] where they observed an increase in top-1 accuracy between 1% and 3%
for a very few classes using ImageNet dataset and BigGAN architecture. Finally, in [36] they
performed a comparison among several semi-supervised GAN-based data augmentation
methods, but did not observe any improvement over classical data augmentation.

As far as we know, this is the first work using state-of-the-art GANs [27], stylegan2-ada
architectures for classification tasks on ultrasound imaging. Experiments were performed
thoroughly, comparing the advantage of using GANs for classification starting from strong
baselines with and without latest classical data augmentation techniques. The results
provide insights about quality (precision) and variety (recall) trade-off when generating
GAN-based artificial images to improve classification, and show that GANs can be used
both to improve classification performance as to reach similar results with fewer real
images, translating into considerable savings in time, resources and money for the clinics.

We have to mention here some limitations about this work. First, agreement between
two human clinical experts when classifying TRV and TTA is 89.3% and 80% respectively [8],
meaning that reported performance is already almost on par with them which is perhaps
why only small improvements were observed. Secondly, the work was dedicated to binary
classification, and we did not explore other scenarios to check whether the results reported
in this study could be extended to multi-class. Finally, fetal brain ultrasound images were
pre-processed by means of a brain detector so that images were all centred. We didn’t
explored how well these architectures perform on raw ultrasound images.

6. Future Work

In this study we used about 4 K training images in a binary classification task. Since
in many scenarios it might not be possible to gather this amount of data, a future study
could research how well these generative models perform with even less data. It seems
sensible to think that these models might be helpful in medium-regime data scenarios,
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while presumably they will not be useful when very few examples are available (since
GANs will not be capable of generating good quality images) or when enough data is
available (since gains obtained by the application of GANs will be limited, given the good
performance of standard data augmentation techniques as observed in this study).

Another interesting future improvement direction could be to research some sort of
quality control over the images generated by the network. A more specific metric (perhaps
from a derivation of Equation (2)) could be used to automatically filter poor quality images
and increase overall performance.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.339
0/s21237975/s1, Section S1: ResNet18 Fastai Architecture, Section S2: GANs Training, Section S3:
Augmentation experiments, Section S4: Replacement Experiments, Figure S1: Comparison between
the original ResNet pyTorch implementation and the fastai Resnet architecture used in our study,
Table S1: GANs training configuration for Trans-thalamic (TTA) and Trans-ventricular (TRV) images.
mb: minibatch size. mbstd: minibatch standard deviation layer at the end of the discriminator. fmaps:
the ratio of feature maps used with respect high resolution settings. ema: the exponential moving
average of generator weights. map: the mapping network depth. aug:augmentation used TL: transfer
learning used, Table S2: Augmentation experiment for ψ = 0.3 (5 runs). In left column augmentation
ratios with respect training set size are shown. Baseline metrics in first row, Table S3: Augmentation
experiment for ψ = 0.5 (5 runs). In left column augmentation ratios with respect training set size
are shown. Baseline metrics in first row, Table S4: Augmentation experiment for ψ = 0.7 (5 runs). In
left column augmentation ratios with respect training set size are shown. Baseline metrics in first
row, Table S5: Augmentation experiment for no truncation (5 runs). In left column augmentation
ratios with respect training set size are shown. Baseline metrics in first row, Table S6: Replacement
experiment for no truncation (5 runs). In left column augmentation ratios with respect training set
size are shown. Baseline metrics in first row.
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