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Abstract

In recent years we have witnessed a major progress in the genomic field. Genomic 
sequencing and understanding is now easier than ever, and genomic research has be-
come useful for a very large span of applications, especially health related. But our 
genome is very complex, and it is still complicated to link the DNA code to observable 
traits, such as eye color or the presence of a disease. Genomic studies try to relate spe-
cific patterns or similarities in the DNA to those traits, but to be able to perform them 
a lot of genomic data is required to be collected and shared to researchers. Due to the 
singular properties of genomic data, and how sensitive and private it is to everyone, the 
process of sharing this information to legit researchers is a current security problem of 
our times, widely discussed by the experts in the last few years. 

The first purpose of this work is to perform a systematic review of the current literature 
of all those privacy measures for genomic data currently present. We aim to perform 
and develop an analysis of the current situation of the most present techniques nowa-
days. Reviewing the state of those techniques will help us to properly understand and 
categorize them, allowing us to propose a classification scheme to add to our contribu-
tion. This scheme, based on the performance of each of those techniques, is intended 
to be a long-term classification system.

The Beacon system, from the GA4GH (Global Alliance for Genomics and Health), is 
a remarkable technique among the reviewed. It acts as the interface the researchers 
use to access stored genomic data but, instead of handling the data in any way, it only 
answers queries from them. Researchers, with the use of queries, ask the Beacon if 
some particular mutation is found on a genomic dataset and, the Beacon, in respon-
se, will answer a “Yes” or a “No”. Avoiding the disclosure of the donor’s genomic data 
makes the Beacon a very extraordinary system to allow genomic studies and protect 
the data of our donors but it is not a perfect environment. As geneticists Shringarpu-
re and Bustamante demonstrated, attackers in possession of the genome of a victim 
could, through the use of queries, find out if the victim is present or not on the dataset. 



Apparently innocuous, this re-identification attack could lead attackers to infer some 
traits from the victim. Discovering the presence of an individual in a dataset of cancer 
study could mean this individual actually suffers from cancer, for example. And while 
a lot of different measures have been contemplated to make the Beacon a more secure 
environment, it is essential to ensure proper genomic research can still be performed. 

The second objective of this thesis is to develop a security improvement proposal for 
the Beacon system, ensuring it respects the required trade-off between privacy and 
utility. Our contribution aims to be a list of measures that can work conjunctly in order 
to improve the privacy of the genomic data of the donors, while still maintaining the 
utility for potential research.
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Chapter 1
Introduction

1.1 Background
1.1.1 Current State

Since the human genome was discovered the knowledge we have over it has never stopped 
growing. This is especially true within the last few years, when major advances have been 
made in practically all its regards, including reading, understanding or storage. Sequencing 
systems to read and print genome data are more and more cheaper every day, meaning the 
overall quantity of genomic data collected around the world has increased exponentially in 
recent times. 

Keeping up with this, and partially as a consequence, the knowledge in understanding 
genome’s implications have grown at par. There are now multiple traits, better known as 
phenotypes, that have been linked to certain sequences of the genome that might differ 
from the most common forms, which are usually known as mutations. When the chain 
of nucleotides that form our DNA, composed by a combination of Adenines, Citosines, 
Thymines and Guanines, has an uncommon variation of its parts, we call this particular 
section a mutation. When a deviation from the universal standard genetic code is fairly 
common, we call it a polymorphism. Both mutations and polymorphisms are, essentially, 
variations of the universally accepted most ordinary DNA sequencing. If genes are sections 
of our DNA, composed by the concatenation of the nucleotides, alleles are what the varia-
tions of those genes, produced by either mutations or polymorphisms, are called. Recently, 
more and more lines can be drawn between alleles and phenotypes, being a phenotype any 
possible trait, like the color of the eyes and hair, some temperament characteristic, or even 
being more prone to cancer development.

This potential inference of what clearly should be private and intimate information has rai-
sed obvious concerns about privacy. Even when being able to infer the color of someone’s 
eyes, by lecturing their genome, can appear to be harmless and safe, the disclosure of that 
genome can also reveal a person is more prone to be addicted to any kind of substance, 
which surely can lead to discrimination in a lot of different environments. In a similar 
thought process, if medical history is accepted as private information in order to avoid any
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type of discrimination, a genome that reveals being prone to develop brain tumors should 
also be treated in the same way, as it may not be factual medical history but potential one.

While giant steps have been made towards the understanding of the genome, it is more 
clear than ever that its total implications are yet so far to be completely unfolded. From 
health to investigation, the applications this knowledge has are being expanded more and 
more, and further researchment is still required now for both scientific knowledge and 
privacy consequences.
Typically, genomic researchment would be done by providing the genomic data of different 
people to the researchers which, if they would be studying a particular phenotype, they 
would know which of those genomes would expose the phenotypic trait. By a rigorous 
examination, they would ideally be able to tell if a specific mutation or allele is correlated 
to the evaluated phenotype. But genomic data of a person carries an immeasurable load of 
sensitive data that will probably be not related to the research. And even assuming strict 
professionality and only good intentions from the researchers, there is still the possibility 
the data can be accessed by another third person. An attacker could steal the data from a 
valid researcher, or even impersonate one and access the data directly. For this reason, even 
for trusting parties, it is advisable to restrict the level of genomic information shared to the 
least compromising possible.
But regarding the sensitive nature of the genome, it is hard to ensure no compromising data 
is being given. If we disclose too much information, privacy can be seriously affected to the 
owner of the genome, and if we restrict too much of the information shared, we might be 
truncating the researcher’s possibilities to make any advancements, which is the primary 
goal of genomic studies. A line must be drawn to ensure the most possible is done for the 
two sides, this sort of equilibrium is often referred as the trade-off between privacy and 
utility, and it means finding the correct balance between protecting too much or disclosing 
too much genomic information.

1.1.2 Genomic data

In order to correctly ensure a good trade-off between privacy and utility, first it is impor-
tant to understand the privacy dangers related to the genomic data. As Daniel Naro and 
Jaime Delgado explained in their thesis called Critical analysis and comparison of data 
protection techniques for genomics data sets [A], DNA data holds some very special fea-
tures that make them differ from regular sensitive data. In the thesis, the authors comment
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how the authors of  Confidentiality, privacy, and security of genetic and genomic test infor-
mation in electronic health records: points to consider [2] establish those special features as:

• Uniqueness: one of the most special features of DNA is how unique it is. There are cer-
tainly not two different individuals that share the genomic information. Blood relatives,
or even identical twins, will share a big part of the DNA but in any case two of them are
exactly the same. This holds the power to be able to always identify a person.

• Predictive Capability: some DNA variations have been proven to be linked with be-
ing more prone to having a certain disease. Typical studies will try to discover these
sequences, thanks to that, the risks of having a disease can be predicted long before it
shows any symptoms.

• Immutability: our DNA code is immutable over time, meaning it will never change
through our lives. The most immediate concern about this is that it would be irrespon-
sible to not consider it very sensitive data just because we do not know how to properly
read it yet. If an attacker were able to catch someone’s genome 10 years ago, he could
wait for another 10 years when there might be easier ways to read it, and the victim’s
genome would have remained equal for all of that time. This property of never losing
relevance over time is what makes it paramount to correctly ensure its privacy even
when a lot of the possible inferred conclusions are still unknown.

• Requirement of testing: genetic diseases, explain the authors, frequently need genetical
tests aside from the usual clinical tests.

• Historical misuse: with this the authors mean to maximize caution measures, as there
have already been examples in the past of people who tried to use DNA knowledge for
eugenics and discriminatory purposes.

• Impact on family: DNA variations are widely shared among blood relatives, which is
the reason for hereditary traits within a family, for example physical likelihoods. Using
those similarities, it is possible not only to assume two different individuals are relative
but even to be able to potentially infer some conditions of people through reading their
relative’s DNA.
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• Evolving perception: the authors consider that, as it has been during the recent years, it
is possible that the perception of DNA evolves during the following times, meaning, for
example, to reclassify some traits or diseases at discovering new DNA characteristics.

• Ubiquity: as our whole body is a result of our DNA, this is present in a lot of different
parts of us from where it can be extracted (as blood, hair or saliva).

1.1.3 Security in Genomics

For the reasons aforementioned, security in genomics has been a widely accepted is-
sue of fundamental importance to address. Many cryptographic systems have pro-
ven to be a consistent option to keep data secured, but genomics need to be able to 
perform some special actions. Besides regular communication, researchers will need 
to apply some operations into the data in order to find resemblances or discrepancies. 
With this in mind, different approaches have appeared offering very different solutions. 
Homomorphic Encryption, for example, is an encryption system that allows researchers 
to perform their operations into the encrypted data directly. Decrypting this data will pro-
duce the same exact result as if the operations were performed to clear data. Differential 
Privacy, another different technique, relies on the fact of adding a minimal noise in order to 
make genomes more indistinguishable and, thus, making it difficult to identify a particular 
genome’s owner.

Another system, which has the major weight on this thesis, is the Global Alliance for Ge-
nomics Health (GA4GH) Beacon System. This tool acts as a mediator between the resear-
chers and the proper data owners. The main difference with regular security systems is 
that Beacon never provides the researchers the actual genome of the participants, rather, 
they simply ask questions about the data they protect, which makes them able to perform 
their research. Not giving the actual data to anybody will surely ensure our genomic data 
will not end in malicious hands. In further chapters, at the Systematic Review, we also see 
other privacy breaches still exist. This technology is the one of our choice to develop, in 
the chapter 5 Security Improvement Proposal for the Beacon System, a proposal of privacy 
enhancement to the system.
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1.2 Further Background
The previous introduction, even brief, means to englobe all the genomic concepts needed 
to understand this thesis. This project is concerned about the security of genomics and is 
focused only on security matters. However, we include a selection of literature that serves 
as a more extensive lecture on the biology of the genomic, which we insist is not required 
to understand this thesis but could be used to expand the knowledge of the related terms.

• Security strategies in genomic files, Daniel Naro et al. (2020), from Universitat Politècni-
ca de Catalunya [3].

The first chapters of the Phd thesis from Daniel Naro includes a good base of concepts that 
dive deeper in what we have seen here, but are still practical for the security context. 

• The Sequence of the Human Genome, J. Craig Venter et al. (2001), from SCIENCE [4].
Done by a very large conjunction of authors, this work is focused in describing the parti-
cularities of sequencing the genome in order to retrieve it.

• Human Molecular Genetics, 4th Edition, Tom Strachan and Andrew Read (2011), from
NHBS [5].

A very extensive lecture about genomics by two authors who were recipients of the Euro-
pean Society of Human Genetics Education Award in 2007. It is aimed for any kind of stu-
dent of human genetics and contains a lot of genomic knowledge, far beyond the security 
aspect.

1.3 Objectives

As it has been explained, this is a relevant topic and current issue of our times. Hence, in 
order to try to contribute in some manner to the advancement of the field we set two diffe-
rent objectives for this thesis.
The proper treatment of genomic data security has today the importance it deserves and, 
in order to contribute to the field, our first objective is to perform an investigation of the 
state of the art. From this, we select a technology we think we can improve its security. This 
divides our work, therefore, into two objectives with a common purpose.
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1.3.1 Systematic Review and Classification Proposal of current pri-
vacy Genomic Techniques

The first of our objectives is to perform a Systematic Review of the literature of the current-
ly used techniques to achieve genomic privacy. Each section of this review is dedicated to 
a single privacy  technique exclusively, and includes a collection of selected works that help 
us to not only define the technique by itself but, in some of the cases (Beacon essentially), 
also provides a timeline of its evolution in recent years.

A successful Systematic Review is crucial to perform the second part of this objective, a 
Classification Proposal of the current privacy genomic techniques. Based on how those te-
chniques approach the privacy issue in the genomic field, this classification aims to illustra-
te all the possible paths that can be taken. Ideally, any future technique will be classifiable 
in some part of its structure (if it is not some sort of hybrid technique that would use two 
or more of the features used to classify).
The complexity of this part does not only rely on being able to accurately understand and 
define each of those techniques, but also being able to discern the similarities and dispari-
ties from one to each other.

If done correctly, this can become practical to help people understand what different types 
of techniques are used, which ones are the most relevant at this moment, how does current 
literature uses them, and how do they approach security. The final schema could also be 
used as a long-term classification system, where future techniques that are still unknown 
and were not considered could be added as a part of it.

The development of these objectives is in chapter 2 Systematic Review of the Literature of 
Current Genomic Privacy-preserving Techniques and chapter 3 Brief Classification of Pri-
vacy-preserving Techniques for Genomic Information.

1.3.2 GA4GH Beacon’s Improvement Proposal

The second objective is to develop an improvement proposal for one of the techniques that 
have been reviewed. We have chosen the Global Alliance 4 Genomic Health Beacon System 
to be this technique, as we see, through the Systematic Review, that it is a very recent stan-
dard that has had constant adjustments since then. We believe the Beacon System is one
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of the most promising solutions to genomic privacy, if not the most, and we try to make a 
thoughtful proposal with different measures that we think could lead to improved privacy. 
The ideal final form of this idea is not a conjunction of different suggestions that could 
only work separately but to use a combination of propositions that help each other, aiming 
for a shared purpose, discarding in the process any security measures that could not work 
conjunctively.
If the final proposal meets our expectations, it is safe to say it will be a significant contribu-
tion in the Beacon environment. Submitting a list of possible adjustments to improve the 
Beacon system will not only enrich the environment but prove that, even where it actually 
is a valid and viable option to secure genomic data, there is still room for improvement. In 
any case, finding possible solutions that improve security and accommodate a fair trade-off 
between privacy and utility at the same time has proven to be a challenging task to do.

The chapter 5 Security Improvement Proposal for the Beacon System develops our contri-
bution to this purpose.

1.4 Structure

This thesis presents a basic structure formed by the following sections:

1. Introduction: this precise introduction this section is a part of. It has the purpose to
provide basic background and explain the importance of our objectives.

2. Systematic Review of the Literature of Current Genomic Privacy-preserving Techni-
ques: the systematic review of the current literature, where the tools are analyzed by
using scientific papers.

3. Brief Classification of Privacy-preserving Techniques for Genomic Information: a pro-
posal of a scheme to classify all the reviewed measures by their security approaches.

4. Beacon Evolution: some background of Beacon’s history through its standardization
and evolution. This chapter does also contain the added features of the second version
of the Beacon, the Beacon v2.

5. Security Improvement Proposal for the Beacon System: a conjunction of different me-
asures we think have the power to improve security in the Beacon system that could
work as a united proposal, where none of them interfere with each other.

6. Conclusions: a dedicated chapter for the conclusions this thesis has led us to.
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7. Future Work: we hope to be able to provide some guidelines that will mark what we
think the nexts steps should be aimed at.

8. Glossary: with the idea of assisting the lecture of this thesis, a glossary defining its more
specific terms is attached.

9. References: all the references used in the production of this thesis are finally included
here.
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Chapter 2
Systematic review of the Literature 

of Cybersecurity in Genomics

In order to correctly analyze the state of cybersecurity in genomics, a correct classification 
of the techniques is mandatory. Before that, however, a previous evaluation of each of tho-
se techniques serves not only as a strong guideline for further chapters but also as reliable 
analysis on its own. The strategy of our choice, which we are going to use to pursue this 
purpose, is a systematic review. 

Systematic reviews are a schematic type of review that are generally based on study of 
the current literature, with the idea of answering a predefined question, either narrow or 
wide, with the intention of assessing and helping in an unbiased decision-making process.

To elaborate this systematic review, we will not use any established methodology. Rather, 
we will adapt the concept to perform an ad hoc review of the literature that fits our objecti-
ves. For this reason, short guidelines summarizing our methodology are included, helping 
to understand our approach.

2.1 Defining research question

Correctly specifying the research questions of a systematic review is a crucial step in de-
fining the objectives of the analysis. In our case, we do not assume any knowledge of the-
se techniques by the reader’s part and, as we practically have not talked about them yet, 
not only a small introduction precedes each of those techniques but also our first ques-
tion to answer is “How do the authors define this particular technique?”. Conjunctly, a 
second question is also done, this time focused on the contributions made by the parti-
cular study. This question can be written as “What does this study do in order to improve 
this technique?”, helping us to determine how that technique has been evolving for the 
last few years. While this second question is not exclusive to the Beacon part, its relevan-
cy is notoriously empowered for the studies related to the Beacon, as it serves as step-
ping stone for the future sections of this work dedicated to the Beacon system (chapter 4 
Beacon Evolution and chapter 5 Security Improvement Proposal for the Beacon System).
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2.2 Searching for relevant data sources

From the moment a research question is defined, our search strategy is to look for relevant 
papers on the topic of each technique, including also some other works dedicated to make 
some sort of classification of the techniques, which helps us to answer the first of the ques-
tions. This said relevancy is judged primarily upon two things, its publication site and its 
publication year. We prioritize, whenever it is possible, using studies from renowned and 
reliable institutions as well as trying to select the most recent papers possible. If a study 
feels with a small dedication on defining the technique, we follow their references to reach 
a root study that we feel correctly defines the technique.

The main reason we prioritize recent papers, aside from being more suitable for an up to 
date analysis, is that literature review of more antique documents has already been done. 
In [1], by Daniel Naro and Jaime Delgado, in 2016, the authors provided a similar re-
view of the literature for the current genomic privacy preserving techniques. It is also our 
goal to focus on the changes some of the reviewed techniques have been since the release 
date of the document, including some other techniques that were not originally present.

2.3 Extraction of relevant data

When the studies have been selected, the extraction of the data is done by rigorous exami-
nation of what contributions the studies make in answering each of the questions, especia-
lly the first one if it is the first study presented. For more particular cases as it is the Beacon 
part, we increase the focus on the reading into trying to answer the second of the ques-
tions, with the intention to correlate the evolution of the system from one study to another.

2.4 Literature Review

This section presents the information we consider relevant from the previously commen-
ted works. Technologies are reviewed one by one by selecting the information found on 
the different papers, where recent texts have been prioritized for a more accurate analysis 
of the state-of-the-art techniques. These documents often rely and point to older literature.
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2.4.1 Homomorphic Encryption (HE)

Homomorphic Encryption (HE) is an encryption scheme that has the advantage of allowing 
users to perform calculations on its encrypted state and, upon decrypting the result, the 
obtained would be equal as if the calculations were done to the initial unencrypted data.  
A fully homomorphic encryption system was first described back in 1978, but it was not 
after 30 years that Fully Homomorphic Encryption was proved to exist. While being an 
encryption technique on its own, completely unrelated to the medical world, HE has been 
frequently linked to health care research schemes due to its capacities. The next papers will 
talk about that, defining HE as a technique itself and describing its advantages and difficul-
ties in the genomic field. 

[6] Privacy-preserving techniques of genomic data—a survey, Md Momin Al Aziz et al.
(2019), published in Briefings in Bioinformatics.

This paper defines HE as a technique to allow one party to compute and perform predefi-
ned operations over encrypted data without the need to decrypt it. It classifies HE as Fully, 
Leveled and Somewhat HE depending mostly on compactness, correctness or the func-
tions they can compute, at the time of the article different successful approaches have been 
made to use this technology on the genomic field.

It also points to the fact that HE solutions are still in their first steps, and it has yet to be at 
the level of efficiency required for a realistic large-scale generic genomic data computation. 
«For example, a multiplication or bootstrapping operation takes some time making it un-
realistic to use on complex functions such as training machine learning» (Md Momin Al 
Aziz et al. 2019, p.891), they comment. The paper clearly states that real-world scenarios 
demand machine learning proof systems, which would require much faster HE schemes.

[7] Private genome analysis through homomorphic encryption, Miran Kim et al. (2015),
published in BMC Medical Informatics and Decision Making.

An early approach of this technology for genomic purposes, the authors showed that 
full-scale privacy-preserving GWAS is practical, as long as the statistics can be compu-
ted by low degree polynomials. Two different models were examined both theoretically 
and practically, concluding both as efficient approaches, highlighting the trade-off be-
tween security and performance, where empowering one side could hinder the other.
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This paper presents the computation of minor allele frequencies, and the χ2 statistic with 
the use of the homomorphic BGV and YASHE encryption schemes. They use a specific en-
coding technique to improve on the work of Kristin Lauter et al. at Progress in Cryptology, 
published in 2015 [8].

[9] Towards practical privacy-preserving genome-wide association study, Charlotte Bonte et
al. (2018), published in BMC Bioinformatics.

The authors define HE as «a set of cryptographic tools that allow certain computations to 
take place in the encrypted domain, while the resulting ciphertext, when decrypted, is the 
expected (correct) result of operations on the plaintext data» (Charlotte Bonte et al,. 2018, 
p. 3). This paper presents a new approach of HE. They claim that as the work on [7] and
[8] only compute the allele counts homomorphically, leaving the other operations to be
performed upon decrypted clear data, the solutions are not resistant to the Nils Homer et
al. [10] attack.

The χ2 computations will, according to the HE schemes, be performed on an encrypted sta-
te, but it is only revealed whether or not the χ2 is relevant for the case. This behaviour will 
invalidate the previously commented type of attacks and, therefore, the authors consider 
it as an improved version of already existing solutions. They conclude the work presenting 
their solution as efficient and reliable, even in large and down to grow groups, however, 
they find their HE solution outperformed by the MPC solution they are also proposing, 
which will be commented on in the MPC section of this Systematic Review.

[11] Privacy challenges and research opportunities for genomic data sharing, Bonomi L. et
al. (2020), published in Nature Genetics.

In posterior study about the challenges of sharing genomic information the authors dedica-
ted a part to a technique classification. There, they describe HE procedure as after the data 
has been encrypted into a ciphertext, some simple operations (such as addition or multipli-
cation) can be performed on it and produce the same results we would obtain by using the 
original unencrypted data. The study points at the fact as how this is a solution generally 
involved in systems where the data is shared in the cloud and in federated environments.
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[12] Ultra-Fast Homomorphic Encryption Models enable Secure Outsourcing of Genotype
Imputation, Miran Kim et al. (2021), published in Cell Systems.

Lastly, this recent paper presents the first fully secure genotype imputation by utilizing 
ultra-fast homomorphic encryption techniques which enables the evaluations of millions 
of imputations in a few seconds. Among the arguments they provide to support their im-
plementation they say highlight the HE characteristic feature of allowing the genotype data 
to be encrypted from end to end. That means the data is encrypted while in transit, at 
rest, and most importantly, in analysis. Compared to other current techniques, they argue 
«HE-based methods provide full genetic data security with comparable or slightly lower 
accuracy. In addition, HE-based methods have time and memory requirements that are 
comparable and even lower than the non-secure methods» (Miran Kim et al., 2021, p.1). 
Along the paper, they provide five different HE-based implementations, based on 
the schemes developed by the iDASH19 Genome Privacy Challenge contestants. 
Finally, they comment «our results provide strong evidence that HE-based methods can 
practically perform resource-intensive computations for high throughput genetic data 
analysis» (Miran Kim et al., 2020, p.1).

2.4.2 Multi-secure Party Computation (MPC)

Multi-secure Party Computation (MPC) is another type of encryption sche-
me which, in this case, is aimed to protect privacy among the participants. The re-
sult obtained would be a function computed by all of the inputs while keeping 
those inputs private. MPC is neither related to health care by itself but has fitting ad-
vantages for the genomic research situation, which will be discussed in the next papers.

[9] Towards practical privacy-preserving genome-wide association study, Charlotte Bonte et
al. (2018), published in BMC Bioinformatics.

This paper, which has been already commented on by its Homomorphic Encryption pro-
posal, presents also a Multi-secure Party Computation solution. In their words: «Secure 
multiparty computation aims at allowing a similar functionality, amongst several mutually 
distrusting parties, who wish to compute a function without revealing their private inputs» 
(Charlotte Bonte et al,. 2018, p.3). This approach necessarily means the communication 
between the computing parties.     
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The proposal the researchers do here is based on a previous setting done by Kamm et al. 
[13], both cases were based on large data collections from different genetic repositories. In 
this previous setting a lot of sensible information was required to be added to the database 
(i.e. all raw genotype, phenotype and clinical data). In [9], the authors say: «To the contrary, 
our setting assumes that only the aggregate values, necessary to identify the  significance of 
a gene-disease relationship (i.e., the contingency tables recording the counts of genotypes 
vs. phenotypes), are contributed by each biobank. This is a simpler, and more realistic se-
tting, which not only is likely to be implemented in the near future, but also alleviates the 
computational cost of the proposed solutions» (Charlotte Bonte et al,. 2018, p.4). 
In addition to this, unlike [13] and other previous alternatives, [9] solution achieves se-
curity with a dishonest majority, which means that the protocol tolerates some dishonest 
behaviour by the majority of the involved computing parties without losing any privacy 
or correctness. [13] and alternatives just assume the computing parties (i.e. the genetic 
repositories) can not be dishonest or corrupted in any way, which can be seen as a strong 
assumption.

[14] Recent Advances in Practical Secure Multi-Party Computation, Satsuya Ohata (2020),
published in IEICE TRANSACTIONS.

This more recent paper from October of 2020 tries to show and discuss the latest situation 
of this technique. Similarly described as our previous paper, here the authors define MPC 
as to «allows a set of parties to compute a function jointly while keeping their inputs priva-
te» (Satsuya Ohata, 2020, p.1134). The recent advances commented are the higher-level se-
cure protocols, the privacy-preserving data analysis and its low-cost implementation. They 
conclude the text talking about how the integration with other fields is progressing, how 
MPC is more needed of specific algorithms and how many organizations are doing efforts 
for improving the usability (e.g. MPC compilers). On a last note, the authors consider the 
performance of MPC will be improved by accelerating those aspects.

2.4.3 Differential Privacy (DP)

Differential Privacy (DP) is another cryptographic technique, in this case has the purpose to pro-
tect the privacy of all the participants of a dataset by, essentially, adding noise to the data. This 
noise would be, ideally, the minimum to ensure that no one can be identified through queries. 
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Different authors present DP as a valid option and, through our literature review, we will 
remain unbiased in either way. In further sections (specially on Beacon’s Proposal) we will 
express our concerns relating DP and genomic field. Those concerns are mostly based on 
the fact that while in theory it does achieve privacy enough to prevent Homer’s attack, 
it obviously affects the accuracy of the results, which some people have argued adding 
noise to the aggregation hinders too many potential results. We will later develop our opi-
nion regarding DP but, even when it looks impractical or counterproductive to the ge-
nomic field, it is an efficient working technique which has its flaws and its advantages, 
and we truly believe there are other fields in which DP can prove to be a viable option.

The next papers present DP solutions and talk about its situation in the genomic field.

[15] A community assessment of privacy preserving techniques for human genomes, Xiao-
qian Jiang et al. (2014), published in BMC medical informatics and decision making.

Aimed to answer the need for reliable protection on biomedical data, this paper discusses 
mainly what DP is and how we can perform it. They describe DP’s basic fundamentals as 
adding the noise required to the allele frequencies in order to transform our mixture, in a 
way an attacker will not be able to tell the presence or absence of an individual. To achieve 
this they show the Laplacian Mechanism [16] and the exponential mechanism presented 
by McSherry [17] which differ in the maths that lie behind.

While this is a work focused only on the technical aspects of privacy, it clearly states that 
some new privacy-preserving techniques need to be developed as DP data perturbation 
techniques have limitations in sharing large volumes of human genomic data.

[18] Privacy in the Genomic Era, Muhammad Naveed et al. (2015), published in ACM com-
puting surveys.

In this paper the authors explain DP as a «well-known technique for answering statistical 
queries in a privacy preserving manner (...). In simple words, if we compute a function on 
a database with and without a single individual and the answer in both cases is approxima-
tely the same, then we say that the function is differentially private» (Muhammad Naveed 
et al., et al., 2015, p.19). That means the answer does not change significantly if the genomic 
data of a particular donor is in the database or not, ensuring the privacy of this donor has 
not been compromised.
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But when simulating a choice procedure of a technology for a GWAS it warns DP is highly 
flawed in its basis, as it makes the data more noisy, therefore modified data. This addresses 
the trade-off between utility and privacy where it is important to say the paper considers 
using DP to be detrimental, because biomedical researchers often demand the most accu-
rate data possible.

[19] Protecting genomic data privacy with probabilistic modeling, Simmons S. et al. (2019),
published in Pacific Symposium on Biocomputing.

This more recent paper is not about using a DP solution but another one that does not 
share its flaws. It is the comparative they do against DP where they comment this tech-
nique as «by adding noise to a released statistics, one is able to achieve a level of plau-
sible deniability that a particular individual was in your dataset. This level of denia-
bility is measured by a privacy parameter. The larger the  parameter, the less plausible 
deniability is preserved» (Simmons et al., 2019, p.411). They express, however, the con-
cern of the price DP carries, which they see as an alteration of the most interesting data.
From this comparison they finally show how their model, based on Probabilistic Modeling, 
allows the disclosure of much more data, agreeing with the commonly extended opinion 
DP reduces too much the potential data sharing.

2.4.4 Anonymity (k-anonymity and pseudonymity)

Anonymizing the data, i.e., converting your data into another data where it is not possible 
to re-identify any of its integrants is a commonly used technique in this type of research 
but, as we have seen, it is important we keep the information in a way the studies don’t 
lose accuracy. Two proposed ways to perform this on genomic research are k-anonymity 
and pseudonymity. K-anonymity property is defined as where each participant cannot be 
distinguished from at least k - 1 with the others. Pseudonymity is a different approach in 
which the identifiable fields of every participant are replaced with other ones, which act 
as pseudonyms. The next papers cover recent proposals for the genomic privacy problem.

[11] Privacy challenges and research opportunities for genomic data sharing. Bonomi L. et al.
(2020), published in Nature Genetics.

One of the papers we used at the HE section does also define other techniques, as k-anony-
mity. Essentially identical to what we already commented, they say: «k-anonymity ensures 
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that, for each record, there are at least k-1 records with the same quasi-identifiers (e.g., 
Zipcode) and therefore any record is hidden in a group» (Bonomi L et al., 2020, p.7). This 
is accomplished by applying some transformations to the original data, which are based on 
the suppression and generalization of the identifiers, regardless of their type. An example 
of this could be to use the decade of birth instead of the year or, for commenting the one 
they use, a 3 digit representation of the Zipcode.

This method has not only been used with those quasi-identifiers values (that we can 
see on different works, as [20] and [21]) but also on a genomic level, performing 
this type of operations at the degree of the SNPs, as authors on [22] and [23] exposed.

[24] Revolutionizing Medical Data Sharing Using Advanced Privacy-Enhancing Technolo-
gies: Technical, Legal, and Ethical Synthesis, Scheibner J et al. (2021), published in Journal of
Medical Internet Research.

This recent paper, which has a more legal and ethical aspect compared to others, ex-
poses how a somewhat combination of HE and MSC, commonly referred as mul-
tiparty homomorphic encryption, fulfills legal requirements for medical data sha-
ring under the European Union’s GDPR (which is used as a benchmark for data 
protection). While this is a very fresh and new approach, it is still soon to ac-
cept it as a new stepstone rather than an interested party trying to sell an idea.
In any case, among the procedures described, some data anonymization is requi-
red, in which the paper comments typical researcher’s preferences in this regard 
with this words: «Researchers prefer to rely upon simple pseudonymization tech-
niques (such as replacing direct identifiers with pseudonymous codes) combined 
with legal measures defining each party’s responsibilities regarding data transfer, ac-
cess, and use» (Scheibner J et al., 2021, p.3). This combination of more traditional me-
thods of pseudonymization with governance strategies does meet the GDPR pseu-
donymization legal requirements, but it fails to meet its anonymization requirements.

Lastly, the authors comment that there are a lot of different techniques that allow pseudon-
ymization, for example, encrypting data with a secret key implies the data can be decryp-
ted for anyone possessing the key but not for any other party. For this key holder the data 
would be pseudonymised, but for any other party the data would be therefore anonymized. 
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The authors comment then how under the GDPR view, the separation between the pseu-
donymised data and the identifiers is analogous to the separation between the decryption 
keys and the encrypted data. And regarding pseudonymised data, any party that possesses 
a way to access the data (legally or not) will have access to personal data (which is the data 
that allows the identification of a person). In the same way, it is considered by the authors 
that any encrypted data is legally personal data for any party or entity with lawful ways to 
obtain the decryption keys (or lawfully in possession of them).

2.4.5 Hardware based techniques

Defined as Hardware based techniques, we reference the using of a secure hardware to 
perform secure computations. It is mainly represented by Intel Software Guard Extensions 
(SGX) and allows the definition of private regions memory of a device. This approach was 
also considered for the genomic system and the next papers talk about how this works and 
how the technique has evolved over the last few years.

[6] Privacy-preserving techniques of genomic data—a survey, Md Momin Al Aziz et al.
(2019), published in Briefings in Bioinformatics.

This paper, already commented on the HE section, talks about other cryptographic tech-
niques, being Hardware based techniques one of them. In their words, «using secure hard-
ware for a secure computation is considered a seminal contribution from Intel when they 
introduced SGX (...). It allows a user to separate their confidential data and code from the 
regular ones and allows him/her to do the secure computation in a secure enclave inside 
the processor» (Md Momin Al Aziz et al., 2019, p.891).

At the history line they draw for this technology it stands out as the first work using secure 
hardware on genomic data, by Canim et al. [24], where they leveraged a trusted hardware 
inside an untrusted cloud to ensure privacy back in 2012. This proposal relied on the use of 
symmetrical cryptography to achieve security on the count queries needed on the genomic 
data set.

A more recent attempt in 2016, from the work of Chen et al. [25], (and after the arrival of 
Intel SGX), introduced a new solution based on SGX named PREMIX, which guaranteed 
privacy preservation along with efficiency. 
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A different solution also reviewed by the authors is PRINCESS, which, in their words, 
«introduced an international collaboration framework (Federated) for privacy-preserving 
analysis of rare disease genetic data that is distributed around the world» (Md Momin Al 
Aziz et al., 2017, p.892). They evaluated this system in a study of the genetic architecture of 
the Kawasaki disease.

The document points out that hardware solutions such as Intel SGX, or AMD memory 
encryption were still unknown and could potentially solve a lot of problems genomic pri-
vacy has. On a final note, they comment that techniques such as SGX come with limited 
low-level memory attached only to the processor.

2.4.6 Beacon

A Beacon is a platform developed by the Global Alliance for the Genomics and Health 
(GA4GH) which serves as a repository for the genomic information in a way researchers 
can access its data by the use of questions such as “Is there at least one genome with a mu-
tation on this position?”, where the Beacon would simply answer “Yes” or “No”. The whole 
concept of the Beacon resides in avoiding sharing the genomic information directly to 
whoever is asking for them. Instead the answer to these questions, called queries, has to 
be enough for the researchers, therefore avoiding the privacy problem of owning someone 
else’s genome, discussed at the introduction.

We will see, however, that the biggest found vulnerability assumes the attackers already 
own the victim’s genome and, using Beacon’s datasets linked to disease, they could po-
tentially deduct if this victim suffers from this disease. The following papers address this 
problem and its potential solutions mainly.

The Beacon project is actually developing a second version of it which will be discussed later, 
this second version would allow a lot of more different possibilities for the researchers to ask 
for the information witholded but, in exchange, could present some other vulnerabilities too.

[26] Privacy Risks from Genomic Data-Sharing Beacons, Shringarpure, S. S., & Bustaman-
te, C. D. (2015), published in American Journal from Human Genetics.

This famous paper by Shringarpure and Bustamante exposed a vulnerability of Bea-
cons of that time, but before getting deeper on it, they described GA4GH Beacons as
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«web servers which can be asked allele-presence queries» (Shringarpure, S. S., & Busta-
mante, C. D., 2015, p. 637). Those queries can be very different from each other but share 
in common the fact that they return a simple answer that is not an actual genomic infor-
mation but a “Yes” or a “No”, which is done in order to avoid re-identification. But they 
pointed out that re-identification can still be done, even if all information the Beacon gives 
is the presence or absence of alleles. Through their document they presented a specific way 
to counter Beacons defenses by using just queries. A likelihood-ratio test was proposed to 
find out if a particular individual was or not in a certain genetic beacon. In a beacon with 
1000 individuals, they showed that re-identifications was factible by performing just 5000 
queries, identifying also relatives in the beacon. The final goal was to demonstrate how the 
basic scheme of a Beacon was not enough to protect privacy and phenotypic information. 

Among the approaches they give to improve the security of the Beacon against such types 
of attacks, they highlight the importance of the Beacon’s size, advising to set up a required 
minimum size. They also comment how dangerous it is to also publish metadata as, for ins-
tance, the ethnicity of the samples, which Beacons usually do, and limiting the number of 
queries per researcher (or even not allowing anonymous pings of genetic beacons). These 
topics will be further discussed later on in the Proposal Section of this work.

Finally, they comment that Breaking into Beacons data has a particular danger, Beacons are 
usually designed to share samples with a certain phenotype (a disease, for example), which 
also discloses phenotype information about the individual who is detected to be part of the 
beacon. Essentially, confirming the presence of an individual in a disease related Beacon, 
where we know there are donors who suffer the disease, makes it possible for the attackers 
to deduct if the re-identified person suffers the disease. Although knowing if a donor is a 
member of a certain Beacon or not does not compromise its security, the potential phe-
notype deductions that can be made are a severe privacy breach of sensitive information.

[27] Addressing Beacon re-identification attacks: quantification and mitigation of privacy
risks, Raisaro JL et al. (2017), published in Journal of the American Medical Informatics
Association.

In this paper, Raisaro et al. propose some measures to face the vulnerability Shringarpu-
re et al. exposed. This was addressed by proposing three different measures, two of them 
had the purpose to manipulate the beacon in some way by using different DP approaches 
in order to obscure the presence of rare alleles. While the third one is about not allowing
infinite accesses per user for each individual genome, the three ideas will be explained and
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developed at the Proposal section of this work, where we will try to qualify them as suitable 
or not for the genomic field.
A Beacon with data from the 1000 Genomes Project was used to run a successful test that 
showed those measures effectively reduce re-identification risk. A counterpart of those me-
asurements is that they potentially eliminate the possibility of querying for unique alleles 
highly likely to be most useful for the genomic researchers.

On a final note the study highlights the fact that all known attacks, as the one Shringarpure 
et al. demonstrated, fundamentally rely on the assumption that the attacker already has 
access to the genome of the victim, which is a very strong assumption.

[28] Controlling the signal: Practical privacy protection of genomic data sharing through
Beacon services, Zhiyu Wan et al. (2017), published in BMC Med Genomics.

Aimed also to patch the security hole Shringarpure and Bustamante detected, this study 
describes a  new computational method to enhance the balance between utility and privacy 
of the GA4GH’s Beacon system. As a proposal for the 2016 iDASH Challenge, the solution 
they present is a tailored version made with Shringarpure and Bustamante attack in mind. 
The scientific paper they wrote was a formalization of their solution after it won the iDASH 
Challenge, where they included their general design of security and an evaluation that de-
monstrated its capacities.

While the strategy submitted was complex and relied on different concepts to work co-
rrectly, the most important two factors are: first, the term they call “discriminative power”, 
which is a value they assign to each of the SNPs on the dataset and is related to how much 
information that can cause re-identification they are giving. The second, the measure 
applied when a certain threshold is surpassed to protect the information, which is flipping 
different query responses. This can be seen as a particular system of DP adapted to specifi-
cally counter Shringarpure and Bustamante attacks.

[29] Genome Reconstruction Attacks Against Genomic Data-Sharing Beacons, Kerem Ayoz
et al. (2020), published in Proceedings on Privacy Enhancing Technologies.

This more recent text about genomic Beacons is headed also to prevent the inference at-
tack Shringarpure and Bustamante discovered, but also unfolds a new type of vulnerabi-
lity, genome reconstruction. They showed «that it was possible to successfully reconstruct
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a substantial part of the genome of a victim when the attacker knows the victim has been 
added to the beacon in a recent update» (Kerem Ayoz et al., 2020, p.28). Specifically, they 
explain how attackers could use the genomic information and clustering techniques to suc-
cessfully obtain a reconstruction. Even when multiple donors are added at the same time, 
they explain, reconstruction is still feasible. Easily accessible phenotypic traits an attacker 
could know, as victim’s eye color or hair type, can be used to identify the victim among the 
donors added on the update.

This is especially dangerous as it could serve as a previous step into those attac-
ks that basically relied on knowing the victim’s genome. An attacker could, by using a 
not associated with a sensitive phenotype Beacon, reconstruct the genome of a vic-
tim and therefore obtaining it, and later perform an inference attack on an associa-
ted with a sensitive phenotype Beacon to identify and draw dangerous conclusions.
Author’s recommendations to avoid this new danger that are given to the Beacons systems 
is to always do big updates and add large numbers of new donor’s genomes rather than just 
a few of them each time (and never a single one).

And finally, after making a balance about the inference attack solutions proposed in pre-
vious works, some 3 new considerations are pointed to add protection in this regard. The 
first one would be updating the beacon content when m > 1 (being m the number of newly 
added donors); the second one would be to add or remove the genomic information of do-
nors after having measured how prone they are to reconstructions; and the third one would 
be to  regulate ethnic diversity of the beacon in order to have mixed datasets (as it was ob-
served that beacons with mixed ethnicity donors presented a harder challenge when cons-
tructing a correlation model, unless, obviously, ethnicities were disclosed as metadata).

[30] Federated discovery and sharing of genomic data using Beacons, Marc Fiume et al.
(2019), published in Nature Biotechnology.

In this moderately recent paper, the authors talk about the paper of the Beacon system 
on genomic security. Among the different sections they talk about, the concept of Beacon 
Network stands out as a clever system that acts as some sort of intermediary between the 
user accessing the beacon and the Beacon information. The advantage it offers to the user 
is that it queries across multiple Beacon instances at once, using various types of data such 
as VCF files or patient records. Then, an aggregated answer made by the Beacon Network 
will be handed to the user.
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This paper also praises the standardization of the Beacon system, «the first version of the 
Beacon Project has validated the feasibility of a globally federated system for genomic data 
sharing» (Marc Fiume et al., 2019, p.223). The simplicity of its basis, the question “Have 
you observed this allele?”, has played a crucial role on this, which has led the system to a 
fast widespread acceptance. «However, the narrow focus of the initial Beacon question 
limits its utility to support other closely related use cases, and successive iterations of the 
protocol are planned to enable coverage of these» (Marc Fiume et al., 2019, p.223) makes 
clear the authors were already waiting for different upgrades from the already announced 
version 2 (Beacon v2). Different characteristics were listed by Marc Fiume et al. as expected 
and desirable advances of the first version. Beacon v2 and its capabilities will be, however, 
commented at a further part of this work, at the Beacon’s Evolution section.

2.4.7 Encryption Solutions

This final section is for specific technologies that simply rely on plain encryption to protect 
data. These solutions are meant to be the safer options to store and check genomic informa-
tion but not for sharing purposes. These solutions are Crypt4GH, Cryfa and SECRAM, and 
the following papers explain their advantages and their actual place in the genomic field.

2.4.7.1 Crypt4GH

[31] Crypt4GH: a file format standard enabling native access to encrypted data, Senf A. et
al. (2021), published in Bioinformatics.

This paper published this year is dedicated to present the Crypt4GH solution. Here is des-
cribed the security problem of having a lot of different files that often need to be checked 
and analyzed. Decrypting those files into clear text is needed, but keeping the decrypted 
file compromises the information it contains. The main idea of Crypt4GHis to prevent 
this issue, ensuring a permanent encrypted state of the file. Senf A et al. described how 
Crypt4GH «allows for reading encrypted data from file or remote APIs and performing 
in-memory decryption of just the byte ranges needed» (Senf A. et al., 2021, p.1). Doing so 
reduces in great measure the possible attacks, mitigating the inherent risk related to the de-
cryption of the whole file and its storage. On a final note, they point to the fact that Crypt-
4GH is not intended to address all aspects of genomic data security as it would need more 
features (e.g. key management), and should form part of an overall data security strategy.
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2.4.7.2 Cryfa

[32] Cryfa a secure encryption tool for genomic data, Morteza Hosseini et al. (2019), publi-
shed in Bioinformatics.

In this paper, Cryfa is presented as the best alternative for securing genomic data, due to its 
fast speed and reliability. In their words «Cryfa is a fast secure encryption tool for genomic 
data, namely in Fasta, Fastq, VCF, SAM and BAM formats, which is also capable of reducing 
the storage size of Fasta and Fastq files» (Morteza Hosseini et al., 2019, p.146). It is based 
on AES encryption but, compared to a regular AES encryption, which is a general-purpose 
tool, Cryfa is an industry-oriented tool, while being not only more reliable but performing 
the encryption at 4 times more speed and, also, compressing the files to ⅓ of its previous 
size. In the results, the authors comment how a straightforward shuffling mechanism and 
not exploring the complexity of the files encrypted ensure the safety of the genomic data.

2.4.7.3 SECRAM

[33] A privacy-preserving solution for compressed storage and selective retrieval of genomic
data, Zhicong Huang et al. (2016), published in Genome Research.

This paper of 2016 presented SECRAM (Selective retrieval on Encrypted and Compressed 
Reference-oriented Alignment Map) addressing the problem of a reliable and secure stora-
ge for the genomic data in a compressed state. The authors compared SECRAM with BAM, 
which they refer to as the de facto standard for storage, and found that SECRAM used 18% 
less storage. Compared with CRAM, a format for compression that does not encrypt, «SE-
CRAM maintains efficient compression and downstream data processing, while allowing 
for unprecedented levels of security in genomic data storage» (Zhicong Huang et al., 2016, 
p.1687) they say.

The three steps of preparing a SECRAM file would involve transposition, compressions 
and encryption. The inverse procedure can always be done where, through decryption, 
decompression and inverse transposition, we would obtain the original file. Thanks to 
this propriety, any BAM file transposed to a SECRAM format can still be converted to 
the original BAM format (with no further data requirement aside SECRAM metadata), 
which makes it suitable for a standard option. In this regard, the authors wrote:
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 «If necessary, our format can be inversely transposed to BAM without losing information; 
this functionality makes our format compatible with several other applications designed 
for a read-based format» (Zhicong Huang et al., 2016, p.1693).

2.4.8 Data Use Ontology (DUO)

Data Use Ontology, often referred as DUO, is a language of tags that allows semantic labe-
lling to our datasets. While it would clearly not be suitable as a standalone privacy measure, 
it offers, through its tagging capabilities, not only to enhance the use we can make of our 
datasets but to improve our privacy options. The DUO system has to be seen as a restric-
tion method that will allow data proprietaries to set up their boundaries, granting or not 
the permissions of use of their data in a more malleable way.
In February of 2019, the GA4GH announced DUO as the genomic and health data sharing 
standard [34]. DUO’s properties were able to fit a previous necessity to allow better com-
munication between data holders and data researchers. Thanks to a consensus system of 
developing the terms, each term is part of a shared system of terms, allowing any restric-
tion to be understood by any researcher. Data queries will need to be accompanied with 
the DUO restrictions it comprehends, which the algorithm will match to the datasets that 
fit the query. DUO code is public and can be found at its online repository [35].

The following paper is not based on DUO but on Library Cards, which would be a proto-
type of some sort of identification that would include allowing policies. For this specific 
purpose, the DUO system would be used as a part of those Library Cards.

[36] Simplifying research access to genomics and health data with Library Cards, Moran N.
Cabili et al. (2018), from Scientific Data, Nature.

Alluding to the growth of genomic data volume, the authors point out the great pro-
blem of using fragmented datasets. This is a very inefficient and  tim e-consuming ste p 
for both the data proprietors, ensuring their boundaries are clear, and the researchers, 
ensuring they are permitted to use a specific d ataset ( for e ach one t hey i ntend to u se). 
For this and other purposes, more related to user’s authentication, Cabili et al. pro-
pose the use of Library Cards, as some identification system that, among the informa-
tion that would hold of any dataset, would also include the use policy. This use policy 
would be based on attributes, and those attributes would be translated into DUO tags.
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While it does not explain further how DUO works, a big part of this work is aimed to make 
clear that a standard system to set up permissions is highly needed. And DUO is, by what 
was its current trajectory, the most promising system to be developed as a standard. In the 
words the authors dedicate to DUO, they expose how close it is to be announced as a stan-
dard, explaining how it is not only a GA4GH’s work as it was already included in EGA’s new 
and old datasets. EGA, they finally say, was also part of DUO development.

2.4.9 GA4GH’s Passport

In a similar perspective, the GA4GH’s Passport is another tool that is used as a complemen-
tary help when ensuring genomic privacy. The GA4GH formally announced the Passports 
specification on the December of 2019 [37], along with the Authentication & Authoriza-
tion Infrastructure (AAI), as one complemented each other. 

Both GA4GH Passports and AAI have public repositories that can be accessed via web [38]
[39].

«GA4GH Passports and the Authorization and Authentication Infrastructure»1.

Where AAI is the layer on duty to authenticate users with the intention to grant or not ac-
cess to a particular dataset, user’s GA4GH Passports are what make this possible. Passports 
would not only carry the information about if a user should have or not access to a dataset 
but also if the user did accept the related terms of service. The access token AAI uses for 
authentication purposes is later used by the Passport to transport a researcher identity, and 
hence its permissions, to different environments.

Inside each Passport, a Passport Visa carries not only the identity of the holder but also one 
or more Passport Visa Objects. These objects will carry a lot of information, which includes 
the consents linked to the identity. The article also explains how the Visas can be used as 
an international visa, so a single visa can be used different times before it expires, granting 
different types of temporary access.

1 As far as we know there is no paper yet about the GA4GH Passports. In this case, the literature 
review is performed upon the presentation article of the Passport by the GA4GH [37]. 
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Finally, it is also stated that both GA4GH’s Passports and the AAI are a step towards auto-
mation. Different types of data owners will have different ways to check the Passports, but 
they should always be able to tell if consent is given to a particular Passport or not. When 
illustrating this, the article says «for example, a researcher can combine data between two 
or more datasets spanning multiple clouds, provided they have been authorized to access 
each» [37].

2.4.10 XACML

The last technology reviewed will be XACML, which stands for eXtensible Access Control 
Markup Language. It is an access control policy language based on attributes and a clear 
example of a security system not linked to genomics in particular. 

XACML is, like the last two previous technologies reviewed, another way to set up rules 
for access control. To accomplish this it relies on the Attribute Based Access Control sys-
tem for it (ABAC), which allows it to assign different attributes, either related to the user, 
environment or resources, granting or not permits depending on them. This is a complex 
but potentially very flexible way to condition permits to age of the user, time of the day or 
location of the file the user is trying to access, for example. In the next paper XACML’s role 
as a genomic privacy preserving tool will be analyzed.

[40] Protecting Privacy of Genomic Information, J. Delgado et al. (2017), published in Stu-
dies in Health Technology and Informatics.

In this paper, the authors proposed a privacy preserving scheme for genomic information 
to the MPEG Committee (Moving Picture Experts Group). On the proposal, XACML was 
the tool of choice to ensure proper access control. With the help of XACML expressions, 
the authors propose to limit the access control based on user’s roles, specific data files, day, 
purpose of the research or consent of the data provider. Those expressions, that would 
act as rules, would be stored directly into the genomic containing files (e.g. SAM or BAM 
formats). «The inclusion of the rules inside the genomic files allows us to extract them and
authorize access to the file according to the permissions defined in the rules» (J. Delgado et 
al., 2017, p.320), they explain.
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Under this premise, when a genomic repository receives some user request to access a 
genomic file, it will simply extract the rules on the file and read them. An Authorization 
point is then asked by the repository, which will respond if the access is granted or not 
depending on the rules. If the Authorization Point has permitted the access through its 
reply, the repository will then reach the user with the decrypted data that was requested.
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Chapter 3
Brief classification of privacy 

preserving techniques for 
genomic information

3.1 Documentation

The next step on the literature reviewing phase of this thesis consists in grouping all 
the privacy preserving techniques we have seen on different papers and trying to sche-
matize them into a comprehensible classification that could serve us on further steps. 
All articles of the actual bibliography have had something to do with these techniques but 
some were especially useful in this regard as they provided their own classification or list 
of techniques.

On Systematizing Genome Privacy Research: APrivacy-Enhancing Technologies Perspecti-
ve [41], by Mittos A et al., they did a comparison of the representative genomic privacy 
methodologies (Mittos A et al., 2019, p.95). It will be hard for us to benefit from the ac-
tual comparison as they compare a lot of different papers rather than the method itself, 
but this also has the advantage that it is a proven work method. The list is the following:

• SWHE:  Somewhat  Homomorphic  Encryption
• LHE:  Leveled  Homomorphic  Encryption
• Fuzzy:  Fuzzy  Encryption
• PSI-CA:  Private  SetIntersection Cardinality
• A-PSI: Authorized Private Set Intersection
• C-FE: Controlled Functional Encryption
• HoneyEncr: Honey Encryption
• OPE:Order-Preserving Encryption
• MPC: Secure Multiparty Computation
• PIR: Private Information Retrieval
• SGX: Software Guard Extensions
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The Privacy challenges and research opportunities for genomic data sharing [11], by 
Bonomi L et al., written in 2020, includes different explanations on how this sec-
tor works and finally adds an overview of the current known techniques. While not as 
extensive as the previous list, this one is classified, detailed, and more up to date. Sum-
marized, the original table differentiates two approaches (Bonomi L et al., 2020, p.20):

• Data Security, where you can find:
- Access Control
- Homomorphic Encryption
- Secure Multiparty Computation

• Data Anonymization
- k-anonymity
- Differential Privacy

On Privacy-preserving techniques of genomic data—a survey [6], by Md Momin Al Aziz 
et al., published in 2017, the evolution of the methodologies is studied and they draw a 
timeline of the evolution of genomic data studies and seminal development of different 
privacy-preserving techniques (Md Momin Al Aziz et al., 2019, p. 891). They will later talk 
mainly about Homomorphic Encryption, Garbled Circuits, Secure Hardware (with Sof-
tware Guard Extensions)  and Differential Privacy. 

Finally, Francesco Marino and Jean-Pierre Hubaux held this year a presentation, CWS 
APIs for supporting next generation secure workflows, Gap analysis [42]. This presenta-
tion revolved around a joint work done by James Scheibner et al., including Jean-Pierre 
Hubaux, called Revolutionizing Medical Data Sharing Using Advanced Privacy Enhan-
cing Technologies: Technical, Legal and Ethical Synthesis [24]. Among its slides, one is 
used to classify the techniques. While this has to be considered completely biased (their 
purpose is to present and promote their idea of Multi-party homomorphic encryp-
tion, which has been left apart in the Systematic Review as it is not a working method 
yet), it does provide a very simple branched tree of some of the current methodologies.
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3.2 Classification Proposition

Based mainly in the previous Systematic Review we have performed, we present at this 
chapter a Classification Proposition of the Technique, framing the methodologies with the 
actual technique when necessary. This will be helpful given the situation of security in the 
genomics field, as it is easy to understand Homomorphic Encryption as a technique wi-
thout providing any of its many examples of implementations but, conversely, it is hard to 
classify a very specific system like the Beacon without naming directly the GA4GH Beacon 
standard.

3.2.1 Level I. Based on Software and Based on Hardware

As we have seen the vast majority of the reviewed techniques are software-based, with the 
sole exception of the section of hardware-based. For this reason the first division among 
our techniques is in this regard, differentiating the ones based on software from the ones 
based on hardware. On the former, we will find further divisions and, essentially, the rest of 
the techniques, while on the latter we find it is a technique on its own, where Intel SGX or 
ARM TrustZone are probably the two most relevant representatives.

3.2.2 Level II. Based on Software: Data Security and Data Mani-
pulation

At the software-based techniques we face the next division, which is about how the data 
is treated. We propose to differentiate by Data Security and Data Manipulation. The idea 
of Data Security is to comprehend all those techniques whose data protection measures 
avoid any kind of data alteration. Data Manipulation includes those techniques that use the 
manipulation of the data to ensure privacy. The purpose of this division is no other than 
separate what can be seen as regular encryption from what is based on some type of data 
manipulation.
Data Security includes HE, MSC and all the other techniques that rely on Access Control, 
which divisions will be further discussed. Data Manipulation includes anonymity techni-
ques, such as k-anonymity or Pseudo Anonymity and the well-spread technique of Diffe-
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rential Privacy. Data Manipulation techniques are fundamentally based on the alteration 
the original data suffers, ensuring privacy at the cost of providing false information, as it is 
not possible to recover the original data.

Data Security measures are, instead, related to avoid any attacker to access or decrypt the 
data while maintaining its integrity. As we already know from the Systematic Review, some 
of the techniques we have classified as Data Security actually may involve some techniques 
that do not grant all the information to the users (e.g. Crypt4GH) or even use Data Ma-
nipulation techniques (i.e. some implementations of the Beacon that use DIfferential Pri-
vacy). The first case is actually a matter of Access Control and partial encryption but does 
not manipulate the data, while the second case is actually the conjunction of two separate 
techniques, as the Beacon system itself is just an interface users interact with in order to 
control the information that is given.

Homomorphic Encryption and Multi Secure Party Computation are, on their basis, diffe-
rent ways to deal with sharing encrypted data, thus fall in the scope of what we define as 
Data Security. Implementations of Homomorphic Encryption include Fully Homomor-
phic Encryption and Leveled Homomorphic Encryption in the same way Multi Secure 
Party Computation include Garbled Circuits and Point Set Interjections implementations.

3.2.3 Level III. Data Security: Access Control

The third Data Security implementation listed is Access Control which is the most diffe-
rentiated one. It still has the purpose to avoid undesired parties to get sensible information 
but, instead of using encryption techniques, this is achieved primarily by controlling who 
gets access to the data.
This idea is commonly found as, by performing this Access Control (i.e. a login), we 
know who we are handling the data to. On our scheme, this is represented as Ex-
ternal, as the data is actually sent over to external parties. Internally, we found fur-
ther divisions can be made, separating those that use Encryption techniques to dis-
cern if an access is trustworthy or not, and those that use more special rules. The 
former group we can find the simple idea of external repositories that require certain 
credentials to be accessed or Crypt4GH,which as we have seen credentials may un-
lock access to specific parts of a file (both are, then, differentiated as Total or Partial).
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The latter is a more complex group of specific technologies which work differently from 
each other but share this common factor that requires some conditions to meet. In one 
case, as DUO, by granting permissions to use some data, in other case, as Passport, by 
se-ttling up some specific authorizations linked to a user and, in other cases, as XACML, 
by using specific expressions that will allow us to grant or not the access depending on 
the role of the user, the date, or some characteristic of the data.

But, perhaps, the most unique implementation of an Access Control system is the one pre-
sented by the Beacon System. The Beacon System by itself does not control its access in any 
way, meaning everyone can access it, but it does perform a control over the data shared. 
Data is never directly shared as it was sent to the user, data is always stored in some dataset 
or repository from which the Beacon acts as a facade, an interface between the users and 
the data. Previously described in the Systematic Review, Beacon’s working mechanism is 
based on answering precise questions the researchers will ask it. By this peculiar but effec-
tive system, the GA4GH Beacon standard has been more and more accepted between the 
community but, as we reviewed its recent literature, we are aware it is not a perfect system. 

At least in some specific and unlikable situations it has been proved the Beacon is not 
flawless, but its procedures, and hence its results, can be yet improved. Further sections will 
describe Beacon processes and its capabilities with the purpose to define a solid proposal 
of measures to enhance Beacon’s actual security potential (chapter 4 Beacon Evolution and 
chapter 5 Security Improvement Proposal for the Beacon System respectively).
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Chapter 4
Beacon Evolution

We have until now presented the Beacon system as a way to ensure genomic privacy and 
classified it among the other techniques generally used for this same purpose. We have per-
formed a systematic review of the related literature and also described the Beacon Project 
as the GA4GH Standard.

4.1 Beacon Standardization process

Since its conception the Beacon project has evolved significatively. In 2015 the GA4GH 
answered Shringarpure and Bustamante’s work [26] with the common observation of how 
an attacker should previously own the genome of a specific person (or a very close relative 
one) in order to identify them among the Beacon database, potentially guessing pheno-
types of this person as a result [43]. Peter Goodhand, the executive director of the GA4GH, 
welcomed the vulnerability exposition as a security concern and Bustamante himself poin-
ted out how subtle were the problems they found on the Beacon project. It is indeed a very 
special scenario to try to hide things to an attacker that already knows someone’s genome 
but, if there is some room for irony, it is the existence of a phenotype associated Beacon that 
allows the attacker to perform Shringarpure and Bustamante’s deductions. The mitigation 
efforts announced were the aggregation of data among multiple Beacons to increase data-
base size and obscuring its origin, the creation of a budgeting system to control the rate the 
information is revealed to perform some actions if the threshold is exceeded, and making 
use of different tiers of secured access, where users should be authorised for data access and 
agree to not attempt some specific risky scenarios.

The collaboration between the GA4GH and ELIXIR, the European infrastructure for li-
fe-science data, is announced in 2017 with the objective to conjunctually make the Beacon 
project progress [44][45]. This partnership was built on an existing collaboration between 
the two organizations that already led to six ELIXIR Beacons in Sweden, Finland, France, 
Switzerland, Belgium and Barcelona, an additional one was launched later in the Nether-
lands.
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Serena Scollen, Co-Lead of the Beacon Project and Head of Human Genomics and Trans-
lational Data at ELIXIR, highlighted the importance of the partnership with the GA4GH 
in the matter of a correct alignment on the standard development. The establishing of a 
network of ELIXIR Beacons was therefore the first objective, and ensuring data generated 
in Europe could be used by researchers across the world is its ultimate purpose.

Later on the same year, the GA4GH announced some new strategies for securing Beacon 
datasets [46]. Those measures were based on the Raisaro et al. very recent work [27] as 
a response to the high number or cyber-attacks health data was receiving (in 2015 heal-
th data was the number one target for cyber-attackers) [47]. JP Hubaux commented that 
«each mitigation strategy tackles the problem from a different angle, and together they pro-
vide Beacon owners a collection of solutions to choose from when determining how best 
to secure their particular datasets» [46]. One of the measures, for instance, could be to only 
respond “yes” to a question about the presence of an allele in the Beacon only if the allele 
is present in at least two of the genomes the Beacon contains. Another strategy, aimed for 
Beacons with rare variants, might rely on the privacy budget strategy.

In 2018, the GA4GH announced a new security measure for data access termed “registered 
access” [48]. Based on the proposition of the paper Registered access: authorizing data access 
[49], done recently by GA4GH members, a new tier between open access and controlled 
access was introduced. If the previous state where data was whether in an open access tier 
(public for everyone) or in a controlled access tier (private for everyone except for some 
qualified researchers and only for a specific project that went through a review process), 
the new registered acces would allow users to access the data after verifying their identities 
and roles (e.g., researchers), obtaining in the process and attestation of their agreement to 
the standard responsibilities. In the words of Dixie Baker, co-chair of the GA4GH Data 
Security Work Stream and an author of the paper, at the GA4GH article, «this model su-
pports role-based access control, which is well established in other fields, including gover-
nment and industry and can be implemented using existing technology standards widely 
used around the globe» [48]. The approach was from the very beginning piloted within the 
ELIXIR Beacon network.

In late 2018 GA4GH and ELIXIR announced the release of Beacon API v1 (the version 1.0) 
with increased security measures[50][51]. This Beacon API extended the functionality by 
adding support for additional types of genomic variants and improved metadata support.
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Also, the ELIXIR Beacon reference implementation used the ELIXIR Authorization and 
Authentication Infrastructure (AAI). The implementation, primarily funded by ELIXIR 
but still an open access GA4GH standard, includes support for anyone wishing to light a 
Beacon around the globe, and uses the three different tiers that control access already com-
mented (open, registered and private).

Future extensions of the Beacon API are presented in a letter to the editor of Nature Bio-
technology published on 4 March 2019 by members of the GA4GH [52]. Through the 
announcement, the GA4GH makes public some interesting facts as there are how there 
were more than 200 datasets, which conjunctly contain the genomic data from more than 
100,000 individuals, as well as the fact that the Beacon Network [53], a distributed search 
engine across all the world’s public Beacons, was already queried 1.5 million times. Is in 
this time where the GA4GH announces its plan to expand further the Beacon project, in-
tending to add real-world clinical value beyond research. «Previous versions of the Beacon 
API only provided a yes or no answer to the question, ‘does this dataset contain X allele 
at Y genomic position?’», explains the article. «Today, that information can also be served 
alongside additional metadata, including allele frequencies, pathogenicity scores, and phe-
notypic information associated with the queried allele» [52].

4.2 Beacon v2

Beacon v2, the second version of the project, is the conclusion to the commented inten-
tions to improve the original Beacon. 

Michael Baudis et al. presented at the University of Zurich, in 2020, this Beacon v2 
through their exposition Beacon v2 - Towards flexible use and clinical applications for a 
reference genomic data sharing protocol [54]. The presentation pointed out the ELIXIR 
Beacon Project roadmap, clearly stating the improvements the Beacon v1.1 achie-
ved: more structural variations (as DUP or DEL) in addition to SNV, more structu-
ral queries (translocations/fusions), Beacon queries as entry for data handover (out-
side Beacon protocol), and the layered authenticated system the use of ELIXIR AAI 
provides. Leaving then the filters (both for phenotypic data and technical metada-
ta), and the extended quantitative responses the first version of the Beacon lacks.
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The improvements each version brings to the table are summarized into the Table. The first 
of them, in the second column and already implemented by Beacons, being the separate 
query types for different genomic variants allows users to correctly reference their queries 
as SNPs, structural variants, or by region, for example. And while access levels were alre-
ady described, filters allow researchers to precise their queries (e.g. by filtering by gender 
or age). 

CINECA, another third-party beacon implementation, explains more characteristics of the 
Beacon v2 [55] as allowing to reach further in the data access process (e.g. who to contact 
or what are the data use conditions), jumping to another system where the data could be 
accessed (e.g. if the Beacon is tied to a hospital, it could provide the ID of the Electronic 
Health Record of the patients with the searched mutation, while preserving confidentiality), 
or including annotations such as some conclusions about a mutation role on a phenotype.

The last of the characteristics listed belong to the version 2.n, which is nothing else than 
being a still in progress characteristics a new version of the Beacon will hold. There are the 
new types of queries (allowing querying by sample or patient, or even more complex que-
ries, and schema and service info, which would translate into negotiated queries based on 
individual Beacon capabilities.
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Beacon v1.1 Beacon v2.0 Beacon v2.n

Structural Variations
Separate query types for different 

genomic variants*
New type of queries**

Structural Queries Access Levels Schema versions & Service Info

Beacon queries as entry for data 
handover

Filters

Layered authentication by using 
ELIXIR AAI

SNPs, Structural Variants, Region, etc
** By sample or patient, for example. Also more complex queries.

Table 4.1: Introduced features of Beacon versions



Figure 4.1: Beacon v2 API. 
Beacon v2 is able to answer more complex queries, allowing researchers to specifically ask for certain re-
gions of the genomic code in a more flexible way, filtering by donors characteristics (such as their age) and 
ensuring, with the use of DUO, we have legit access to obtain information from a particular dataset. [54]

4.3 Beacon Network

As we briefly commented earlier the Beacon Network is a search engine that allows resear-
chers to query all world’s public beacons at once. This is a very useful advantage for obvious 
reasons such as having a huge amount of samples for the study or not having to search for 
a lot of different beacons and ask them separately. 

The Beacon Network was developed under the directions of ELIXIR Finland, and integra-
ted the authentication process from ELIXIR AAI. Michael Baudis comments the impor-
tance of the Beacon Network in his presentation of the Beacon v2 [54] and, although it is 
a characteristic, he defines in the Beacon v1.n roadmap it is considered not completed, 
eventually including “networking of v1.n Beacons with AAI integration as demonstrated 
by the ELIXIR Beacon Network’’ among the features and possibilities of the Beacon v1.n. 
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Through the presentation, Baudis states how the use of a Beacon API made possible the 
Beacon Network and how this improved the scope of the queries performed. Beacon v2 
API is even a further step in the same direction thanks to its simple but powerful “genomics 
API”, and what Baudis calls “Internet of Genomics”, which would be a common interface 
for a dynamic compendium of different genomic related data sources and services the GA-
4GH plans to launch [56].

When Shringarpure and Bustamante exposed Beacon’s vulnerabilities [26] they also made 
some notes on how to make the re-identification attacks harder for the attacker. As the suc-
cess rate of their attack was heavily based on the proportion of disease related genomic sam-
ples on a dataset compared to what we could call control samples, it is clear that increasing 
the number of those control samples hinders the attacker’s possibilities to reach a pheno-
typic conclusion. The Beacon Network could not only contribute to increasing the scope of 
the queries then but also in terms of security by adding a huge number of genomic samples 
from different datasets, which can act as supplementary control samples from one to ano-
ther. «By including non-case samples, these solutions reduce the phenotype information 
that can be obtained from a Beacon while keeping the reduction in the utility of the Beacon 
to a minimum» (Shringarpure, S. S., & Bustamante, C. D., 2015, p. 638), they commented.

But this only limits the conclusions an attacker would be able to draw about the pheno-
type of a victim, which is indeed very important, but does not address the problem from 
its root, as the re-identification risk still persists. Md Momin Al Aziz et al. commented on 
[57] that the attackers could just query different beacons thanks to the Beacon Network 
until finding the re-identification of some particular genome they were looking for. Even 
when Shringarpure and Bustamante found the Beacon Network useful to limit the impact 
upon a successful attack of re-identification, the attack per se is still feasible to perform.
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Chapter 5
Security Improvement Proposals 

for the Beacon System

Since vulnerabilities were discovered on the Beacon system, different proposals have been 
presented in order to ensure people’s genomic privacy. This following chapter contains a re-
view of some already known methods plus some other new proposals we think could lead 
to a safer Beacon environment. The final aim of this text is, therefore, to present a compen-
dium of different solutions that could work together towards this direction.

5.1 Noise-based solutions

A common solution widely spread among the existing proposals is to simply protect those 
genetic oddities that only happen once in our repository. In the scenario where a Beacon is 
asked about the presence of some particular SNP that is only found once in our repository, 
a Beacon that effectively uses the commented feature would answer “No” instead of “Yes”. 
This misinformation adds a huge layer of protection against re-identification attacks to the 
point that it is nearly impossible to successfully perform it anymore, but this is no other 
thing than adding noise for protection, which falls into the spectrum of differential privacy. 
The previous Systematic Review exposed how differential privacy was a studied method for 
some authors and, while safe enough, it pushed too much the trade-off between utility and 
security too much to the latter [15][18][19]. 

It is also our opinion that this imbalance should not be simply accepted in the medical field 
since some consequences it could carry could potentially be, literally, a matter of life or dea-
th. On top of this, there are two more relevant reasons against this noise adding practice. The 
first is that our genomes are huge extensions of base pairs and oddities occur approximately 
once for every 1000 nucleotides, meaning there are 4 to 5 million of SNPs in every person’s 
genetic code [58], because of that a lot of them are always unique. And the second reason is 
that those uncommon particularities are what the researchers are actually looking for, me-
aning not only we are hiding a huge amount of information but the most interesting one.
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For a numeric reference, we will use the first proposal of Raisaro’s et al. paper [27] we 
briefly reviewed at the Systematic Review. The authors used an experimental Beacon with 
1000 individuals and, at the moment to implement the mechanism that would answer 
“No” every time there was only a single individual with the queried characteristic, they 
found that roughly 40% of the alleles stored presented at least one unique trait. Beyond 
that, as we commented, those are potentially the most interesting ones for the researchers. 
The authors recognize the infeasibility of this proposal they call Beacon alteration and find 
a solution for it. They called their second proposal random flipping, and with it they will 
not hide the entirety of the alleles but a portion ε of them. Through testing, they discovered 
hiding 15% of the alleles (at their most unique part) hindered re-identification possibilities. 
Adding the noise now in a more accurate way than before, only a 15% part of the 40% of the 
alleles are obfuscated, which is 6% of the total information our repository contains. The tra-
de-off between utility and security is now more acceptable indeed, but in our opinion, the 
fact that this particular 6% is among the most interesting information for the researchers 
and that medical research should not accept any kind of misinformation still outweigh the 
advantages, which is enough to not propose this kind of solutions for the Beacon system. 
In the next Figure we can see the results of both of these proposals Raisaro et al. presented.

Figure 5.1: Comparison of Differential Privacy with the use of random flipping
Left. Beacon alteration, with k being the minimum number of times a genetic trait has to appear in order to 
not be obfuscated, k=1 does nothing and re-identification occurs with strong confidence before 103 queries. 
Right. At ε=0.001, only a 0.1% of a unique allele is hidden, and it takes around 104 queries to reach strong con-
fidence re-identification, at the red line. Yellow line is hiding 15% of a unique allele, and is enough to not allow 
strong level reidentification.

Source: [27]
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5.2 Increase Beacon’s datasets size

The problem of unique traits in the genomic code is a complicated one and, in order to par-
tially address it, we present the first of our proposals, which is to make our Beacons bigger. 
This is an easy in theory but hard in practice solution, something as simple as to make our 
repository bigger is, obviously, achieved by adding more genomic samples (more donors) 
to our system. This approach has been suggested by several researchers, and was even advi-
sed by Shringarpure and Bustamante at their vulnerability exposure [26]. In their scenario 
of a 1000 donors they could reach a re-identification within 5000 queries, and besides the 
obvious fact that the more genome samples we have, more difficult the re-identification 
will be, it is also worth pointing out that the number queries will grow not proportiona-
lly but exponentially, as we are less and less sure about the identity of the information we 
can get. In their words «Increasing beacon size can make detection harder, but protection 
against genome-wide re-identification attacks will require tens of thousands of individuals»  
(Shringarpure, S. S., & Bustamante, C. D., 2015, p. 637), they clearly state the number to 
ensure security would be immense, which invalidates this solution as a unique solution.

5.3 Use of control samples
However, increasing the size does not only address the re-identification problem but also 
the phenotypic linkage possibility. We can do this by adding samples not related to a disea-
se a repository is linked to, samples we can refer to as control samples. Upon the re-identifi-
cation of those control samples an attacker will not be able to tell for sure if that donor does 
suffer the repository-related illness or not. This is commented on in the previous section 
of this work dedicated to the Beacon Network, at the chapter 4 Beacon Evolution. There, 
this platform is proposed as a tool to easily achieve this control sample strategy, effectively 
obstructing the attacker’s power to make phenotypic assumptions of the re-identified do-
nors. The downside this carries is that researchers will need to perform a bigger number 
of queries to extract the information they need, but instead of relying on delivering false 
information (as Differential Privacy did), this always discloses good and reliable data. For 
this reason, a part of our proposal is to always increase the size of our datasets, both with 
disease related donors (if possible) and control samples, in which case the Beacon Network 
can be used.
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5.4 Protecting most vulnerable genomes by not 
sharing their data

Ideally, through the process of making our Beacon’s repository bigger we have increased 
the number of times a particular SNP appears, therefore protecting those that were pre-
viously present in a single donor and now are, at least, also in some other donor. If every 
single mutation now has multiple appearances we are severely limiting the re-identifica-
tion potential of the attackers, but this ideal outcome would be an extremely unrealistic 
assumption. As commented earlier we humans carry so many unique particularities from 
one to another so there is indeed the possibility of actually adding more people with some 
SNP we only had once on our repository. In regular circumstances this could only happen 
for the more common mutations (some SNPs for example), but it is extremely unlikely we 
can find it in more complex polymorphisms or actual mutations (which differences will be 
addressed later). We can safely admit then that while some mutations will be more present, 
new unique ones will appear. 

Increasing the size of our datasets is still one of the most obvious and easy options to make 
our Beacon more secure, and beyond the difficulty of performing it, it has no drawbacks, 
but to ensure the security of our donors we think this measure is not enough. Differential 
Privacy, we just said, comes at the cost of misinformation, because we are effectively lying 
about the presence of some alleles, which in a greater or lesser measure, will impact the me-
dical conclusions. This happened by answering “No” instead of a “Yes” when asked about 
the most vulnerable (and unique!) parts of a genome. Instead, we propose answering “You 
have no permissions to see this information” to protect those alleles, which added to some 
other measures we are about to explain (basically not protecting every single unique varia-
tion and a very strong system of permissions) we expect to improve the overall security of 
our donors. 

Although answering “You have no permissions to see this information” when the re-
searcher actually has permission is also lying, this lie has no repercussions on the data 
integrity, and no false genetic information will be given to the researchers. The ba-
sic purpose of this lie lies in the fact that it does not influence the medical conclusions 
the researchers will extract. The problem we face, if we just do this expression repla-
cing, is a new one, answering “No” using Differential Privacy to protect mutations 
only worked because it was indistiguishable from a genuine “No” the Beacon would 
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answer if a specific mutation would have not been present. We now have a new expression 
which, if we do not find a solid purpose for, it will be detrimental to our objective.  

Let us use an example to illustrate this issue: if we simply say “This information cannot be 
disclosed as it could lead to re-identification” everytime we have only one donor with the 
queried genetic particularity, we are actually not only confirming the presence of the allele 
in our dataset, but also letting an attacker know we only have one donor with it (or, at least, 
that we consider it vulnerable enough to be protected, so it is relevant). To prevent anyone 
from being able to make these deductions, we propose the aforementioned expression, 
“You have no permission to see this information”, in conjunction with a very strong system 
of permissions, which is then not only a reliable feature on its own but also a strong support 
for our new proposed expression. If it is possible they actually lack some permissions, at-
tackers will not be able to tell if this expression is telling the truth or not, even if they know 
the existence of this security mechanism.

5.5 DUO based strong system of permissions

Permissions are then a vital part of our proposal, which are made possible thanks to the use 
of DUO tags [35]. With them, permission can be set by the donors in very specific ways, as 
only allowing, for example, the use of their genomes for public research (by author), or for 
cancer oriented research (by purpose), and not just granting or denying the information by 
default. Encouraging the use of the DUO system is primordial, as by its flexible way to set 
up boundaries, data owners are capable of defining under what means they are comfortable 
with sharing genomic information.
The use of these DUO permission tags at querying is already part of Beacon v2 [54], at 
which point we would want to add two extra features. The first of them will be allowing 
the donors to set the permissions of their genomes by parts, in other words, not gran-
ting access to the whole totality of their genome but using part of it instead. This was 
another of the measures advised by Shringarpure and Bustamante on [26] and la-
ter, in 2018, proposed and tested by Demmler et al. at [59]. Specific Beacons that 
only hold and share small genomic regions are a possible outcome of this, and tho-
se are, by default, a lot more secure than the ones that share full genome information.

For the subdivision of the genomes, which we consider escapes the scope of this project, 
a system similar to Daniel Naro’s proposal at [1] can be used in order to make differences 
among the parts of a genome. 
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He presented three different possible subdivisions, the first one based on a fixed length 
to separate blocks from one to another. The second one would separate the blocks by 
using genomic information, as per known genes or until STOP codons are found 
(which are known to end the protein constructions). Finally, the third one would be 
based on the pre-vious option, but also limiting the size of each block with a fixed 
length when there is no knowledge of a gene in the zone.

More complex subdivisions can be made if we instead use the randomly distributed 
mar-kers related to the genome mapping. Following the explanations of Tom 
Stratchan and Andrew Read found at [5], we learn how during the genome process, 
identical DNA se-quences coming from a single individual are then only cut in a fraction 
of the possibilities where this could happen. This leads to different cuts or sections whose 
joint is how a geno-me is expressed, and as those cuts are randomly performed several 
times against the same DNA, those cuts do not start when the previous one ends nor do 
they stop where the next one starts. Instead, they partially overlap one to another; a 
visual example of this is repre-sented in the Figure. Using these random subdivisions 
(specially in conjunction) could lead to a complex way to adapt the partial encryption we 
are talking about, but this is only to demonstrate that complex subdivisions can be made 
in a very easy way, as they are already done when mapping occurs. However, this 
genomic subdivision example has not to be considered a strong proposal on the same 
level as our other security related ideas that we are expressing. Ultimately, we leave this 
decision to the judgment of genomic researchers.

Figure 5.2: Subdivisions of a chromosome
The particular section of a chromosome, in this case from point A to point B, is expressed as the complete 
series of the subdivisions, in this case from 1 to 21. As those subdivisions have been done randomly against the 
same DNA, separations will hardly meet, and some overlap will take place from to the adjacent ones. Those 
separations are unique in each mapping process.
Source: [5]
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With the particular setup of allowing our donors to set the grade of privacy they want, we 
think we are making possible a better environment for both our researchers and our donors 
involved in our Beacon. Ideally, donors could express their consent whenever they want 
using some sort of dedicated application but typically this is done when donors are actua-
lly giving their data. There, they should be able to give or not give their consent, or even 
apply some conditions, as the ones we previously mentioned like depending on the author 
or the purpose of the investigation. The granularity of this process has yet to be discussed 
and while we do not address this problem in this work we assume a somewhat wide span 
of possibilities is offered to the donor, which is what will offer the most security. It is pos-
sible they use this feature to make their data almost (or completely) unaccessible, but we 
think it will lean towards the opposite pole. If a patient suffers from a strange disease that 
causes severe health conditions, or even death, as for example a cancer would do, it is easily 
understandable the patient will accept the risks of being re-identified in order to help any 
possible favorable investigation (specially considering how some strong assumptions need 
to be made, as the attacker being in possession of the victim’s genome from the beginning). 

As security designers, we should not disclose information about a donor if we think it can 
lead to a re-identification, but if the donor himself has expressed his desire to share this 
information, regardless of the consequences, we reach a point that is beneficial for both the 
scientist and the patient. This also contributes to our previous measure of answering “You 
have no permission to see this information” because we are now not answering this even 
when we have just a single donor matching the query, eliminating now the assumptions an 
attacker could make (now even when a response is made, it does not mean that is present 
in more than one donors). Following this idea we have what we differentiate as the second 
permission related measure, which is to create what we call “trusted environments”.

5.6 Concept of “Trusted environments”

“Trusted environments” are like safe zones where the genome information may be disclo-
sed without any security measures or needing any extra permission. These zones do not 
make any effort to try to avoid re-identification and by definition will only be available 
to the most trusted parties. The evident danger they carry is high, but do not forget so-
mething similar to these “trusted environments” already exists, as the owner of a certain 
Beacon, the holder of the repository, has inherently total access to it. What we propose is 
to carefully extend this ideal environment to the most trusted parties under some specific 
circumstances, e.g. to prevent some strong disease in which time could be fundamental.
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5.7 Avoiding sensible metadata disclosure

If until now measures were focused on how the information should be given, the next mea-
sures, although related, are more focused into distinguishing which information should be 
given and which one should not. And if we are talking about data disclosure, we need first 
to draw a line between the two types of data we have, metadata and actual genomic data.

The metadata of a Beacon’s repository is the information related to that repository. How 
many donors are in a dataset, their gender, age, nationality or residence would all be meta-
data. With the use of filters in the Beacon v2 queries, some metadata is particularly dange-
rous to share. Specific knowledge of someone known in real life could be used to re-iden-
tify a patient and, if a Beacon allows us to filter by street of residence, or the facility where 
the patient has been hospitalized, re-identification could become easier to perform. Shrin-
garpure and Bustamante already commented on [26] how harmful publishing metadata 
can be: «Publishing metadata—such as the ethnicity of samples, beacon size, or the names 
of datasets included—reduces beacon security» (Shringarpure, S. S., & Bustamante, C. D., 
2015, p. 637). 
However, the biggest concern publishing metadata brings to the table is far more threat-
ful, with enough knowledge about someone’s life, and if the Beacon allows us to filter by 
this knowledge, an attacker could re-identify someone without being in possession of the 
victim’s genome. This would allow this attacker to retrieve the genomic information of the 
victim, which would permit this attacker to perform later a regular re-identification attack 
of this precise victim upon other datasets, even if they were not publishing any metadata at 
all. This is called a genome reconstruction attack which Kerem Ayoz et al. recently proved 
its feasibility in [29]. In their work, they used the metadata published to successfully iden-
tify someone without having his genome, therefore acquiring his genomical information in 
the process. Their system was mainly based on knowing the size of the Beacon, especially 
before and after any update where some genomes were added or removed. In essence, if 
some attacker has the certain knowledge that an individual has been added (or removed) 
to a dataset, even if multiple individuals are added at the same time, they can easily infer 
which of the genomes pertains to the victim by using some basic medatadata knowledge 
(as they comment: eye color or hair type). 

While forbidding any type of metadata disclosure can be tempting, we understand some of 
them are heavily linked to disease presence. We think that those traits that can seem disease
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unrelated, such as street of residence, should never be shared, while also trying to avoid sha-
ring those that feel less relevant (as eye color could be). More relevant traits should only be 
disclosed when some important part of the repository does exhibit them or, ideally, the whole 
dataset does. As we feel some metadata such as the age of the patients are indeed important, 
we should ensure nobody is the only person in the dataset with a specific age or, even better, 
concentrate people from 50 to 60 years in a single dataset. In other words, if a Beacon repo-
sitory contains only people from Barcelona, for example, it is safe to share this information. 

This should be the way to proceed if something that appears to be disease unrelated is ac-
tually the object of study. Street of residence, to keep our previous example, should only 
be disclosed if the purpose of the study is to determine if a disease is more present in that 
street, for example, and always if a considerable part of the dataset is conformed by donors 
with that particularity. It is highly unlikely the patient’s street of residence has anything 
to do with cancer but researchers could want to know if some particular street, due being 
in a zone with special medioambiental characteristics, could be related to the appearan-
ce of respiratory issues. Those security measures will minimize the deduction an attacker 
could draw. Our proposal in this regard can be summarized as to avoid sharing metadata 
if possible but, if not, ensure a minimum part of the dataset shares the same metadata 
value. Additionally, under any circumstance an update should ever publish the number 
of donors that are being added or removed, and always doing so when a significant num-
ber of them will be added or removed will disable genome reconstruction shown at [29].

5.8 Identification of most vulnerable donors with 
the “Risk value” concept

Then we have the genomic data the Beacon protocol is designed to share, which is sha-
red as answers to the received queries, in regular conditions, as “Yes” or a “No”. This is 
a measure applied to avoid providing the sensible genomic information of an individual 
to anybody which, as commented, is a potential threat to our privacy. In general condi-
tions owning someone else’s genome does tell a very little information of that individual 
and, in a quite ironic way, attackers can use Beacons to help them reach phenotypic as-
sumptions through re-identification attacks (Shringarpure and Bustamante [26]). Rea-
ding the genomic data is also still a very hard task but, as we said in the introduction, the 
real consequences cannot be predicted yet. Your genetic information will remain exactly 
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the same for your whole life, meaning its validity will not be reduced over time, as a regular 
message would have (a message you sent 30 years ago, for example, has more debatable 
validity now), and maybe in the future extracting conclusions about your genome becomes 
really easy. 

This said, while Beacons can be used for someone to deduct something about your genome, 
a few things have to be noted. First of all, it does not provide directly your genome, which 
as we said can be the biggest threat to our privacy that can be done, second, an attacker has 
to be in previous possession of your genome in order to perform re-identification, which is 
a very strong assumption, and third, it has to be seen as price in the trade-off between uti-
lity and privacy. What this does mean is that security mechanisms have to be implemented 
in order to make this re-identification as difficult as possible.

Part of our proposal involves a new term, “Risk value”, which gives numeric references for 
when is necessary to answer “You have no permission to see this information” instead of 
a “Yes” (or a “No”, if seen under the premise of differential privacy). As we have seen in 
[27], unique genomic particularities represent not only a very important part of a dataset, 
but also the most relevant one. In our opinion, hiding all those particularities hinders too 
much the conclusions a scientific research party can extract, which is the main objective of 
this protocol. We propose the use of a certain value, called “Risk value”, to help us ponder 
how vulnerable a donor is to a re-identification in a single Beacon dataset. A donor with a 
bigger assigned “Risk value” compared to another donor, is more susceptible to be re-iden-
tified than the second. Upon a certain threshold, this susceptibility would reach a security 
concern and, when a particular mutation of the genome is queried, and is only present in a 
single donor with a high “Risk value”, the Beacon will answer “You have no permission to see 
this information”, effectively protecting the identity of the donor without either providing 
false information nor letting anyone know if the answer is true or not (because some other 
parts will deny permission per se, as commented earlier. The proper assignment of “Risk 
values” is fundamental and should be based on the number of uniqueness a donor has. If 
compared to the other donors on the set a single individual has 20% of unique alleles, his 
“Risk value” will be far greater than another donor which happens to only have 5% of uni-
que alleles. This basic idea should be the fundamental basis when assigning these values. 
In our opinion, protecting only the most vulnerable fraction of the donors, ideally a very 
small part, is actually enough, as not only re-identification attacks rely on strong previous 
assumptions but we also believe the united use of all the other measures proposed here are 
enough to ensure safety without withdrawing most of its utility.
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5.9 Mutation and polymorphism distinction 

We also encourage to not only validate the oddities of a donor’s genome by comparing them 
to the rest of the dataset but comparing them worldwide too. While mutations and polymor-
phisms are generally treated as equal in cybersecurity works, they are separate things from 
the perspective of biology. Essentially, both of them are DNA variations, but they differ in 
how common they are compared to the rest of the population. The widely accepted thres-
hold for these variations to be one thing or the other is 1%. A DNA variation is considered 
a polymorphism of an allele if it has been detected in more than 1% of the population, con-
versely, it is considered a mutation if it is below this number [60] [61]. We consider, then, 
that if we have two different DNA variations each one only found once in our dataset, and 
we know one corresponds to a mutation and the other one to a polymorphism, the donor 
that has the mutation should have a greater “Risk value”. This is because he can appear to be 
equally identifiable in our particular dataset than the second donor, but this is not the case 
because an attacker who has knowledge of this fact would understand this is more revealing 
than the other case. Also, we should not forget our donors are probably present in more Bea-
con datasets than ours, and being especially unique among the entire population will make 
a donor more identifiable using other Beacon systems than if it is just unique in our dataset. 

This proposal can be summarized as trying to distinguish between mutations and poly-
morphisms, providing extra protection for the former cases (in our case through an in-
creased “Risk value”). The mechanism to make this differentiation possible falls be-
yond the scope of this project but could be based in some available genetic database.

The next two proposals are partially related to themes just commented, as we will 
try to reduce the possibilities a genetic particularity is unique in our dataset which 
will be a strong security feature by itself and will give us the opportunity to redu-
ce its “Risk value”, therefore having more chances to be able to share this information.

5.10 Adding donor’s relatives to the dataset

One of them is based on the fact that DNA is heavily similar among our relatives, spe-
cially with first level order relatives, parents, children and siblings, being everyo-
ne way more alike with their respective relatives than with unrelated people [62] [63]. 
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This is fulfilled with sufficient certainty to allow the search of missing persons or criminals 
by using their relatives’ DNA [64] [65]. Based on this principle Miray Aysen et al. proposed 
at [66] to benefit from this by adding donor’s relatives as new donors in the same dataset. 
In their work, they demonstrated this by experimenting with the inclusion of one or more 
relatives from different levels of order to the dataset, demonstrating its effectiveness. When 
the relatives are introduced into the dataset, all the particularities they are highly likely to 
share (SNPs or mutations) are garbled into the mixture of genomic information, making 
every related one less unique. In their words: «We show that having at least one of the 
parents of a victim in the beacon causes a significant decrease in the power of attacks and 
a substantial increase in the number of queries needed to confirm an individual’s beacon 
membership» (Miray Aysen et al, 2020, p.1). 

Lastly, they comment on how this effect is weakened when more distant relatives are used 
instead of closer ones, like using the victim’s grandparents instead of the victim’s parents. The 
authors compare this measure as adding control samples, which we already commented on, 
and point out how this would have less impact on its utility. In any case, control samples do 
not lose their purpose, as their advantage is that they do not share the phenotypic trait (e.g. a 
disease), which for some heritable traits the victim’s relatives will probably do. In the special 
cases where relatives who exhibit the phenotypic trait the Beacon is linked to are added, we 
are improving both the utility and security of our system. The most inmediat drawback is 
that this is highly dependant on those relatives allowing and delivering their genomic data.

5.11 Ensure a minimal ratio for every continental 
region present

Highly related with this last one proposal, we would like to introduce the new one which 
aims to perform a similar effect using geographic groups. Based on the likelihood ra-
tio typically found among geographic groups [67], the main idea will be to ensure a 
minimum ratio of every present  geographic zone in our database. Basically, if we only 
have people from Europe on a Beacon, adding a single donor from Asia will make him 
so much more vulnerable than the others. Our proposal is to ensure a minimum ratio 
from Asia now that we have a donor from there. For this purpose, control samples or 
samples from the victim’s relatives would also bring their own advantages. The Figu-
re illustrates the portion of genomic information that people from each region have in 
common with their continents or populations. As it can be seen, the information shared 
through a continent but not with other continents is still significant in most of the cases.
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From this, we conclude that if a reasonable ratio of presence is ensured, we can simpli-
fy the divisions at a continent level, as in most of the cases the information private to 
population represents a very narrow part, plus ensuring a presence ratio of every po-
pulation present would highly increase the difficulty of the measure. Thus, the pro-
posal could be summarized as, when having at least a single individual from a specific 
continent, a minimum presence of that continent in the dataset should be ensured whi-
le also increasing their “Risk values” as necessary. If possible, ethnicity of the samples 
should be considered sensible metadata, which means its disclosure should be avoided.

Figure 5.3: Genomic similarities by ethnicty
Here we can see, as pie charts, how much genomic information is shared among geographic distributions. Each 
of the four pieces every chart is made of represents the following: 1. private to population (darker colour), 2. 
private to continent (lighter colour), 3. shared across continental areas (lighter grey), and 4. shared across all 
continents (darker grey). A discontinuous line indicates the samples proceed from outside of the ancestral 
continental zone.
Source: [67]

5.12 Access Control and Query Budget
Finally, our last proposal is to follow the third measure Raisaro et al. explained at [27], which is 
to implement a query budget for the researchers. Of course, this would also bring to the table 
implementing a control access system, in which we also agree it would be a good improvement. 
Nowadays, the Beacon Network permits anonymous queries to be processed, which clearly 
is how any attacker would act. Adding a control access system, attackers should first bypass 
this measure or, if they for any case have credentials, expose their identity in the process. 
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The authors linked this measure to their other two proposals, which were based on di-
fferential privacy, in which case it would indirectly cause noise too. The authors used an 
algorithm to calculate the weight of a query and its cost, which is based on the frequency of 
the allele, if the researcher has not enough budget the query will not be answered and this 
particular donor’s genome will be removed from the dataset for the future questions of this 
researcher (but not from the repository).

For our proposal, we will use the concept of “Risk value” to ponder this cost, making the 
budget decrease in a higher rate when donors with a high “Risk value” are queried and, 
when budget is not enough to make a query, the system would simply letting the user 
know he has run out of budget and no more queries can be asked. To be consistent with 
the general aim of our proposals of trying to preserve all the utility that is possible, we 
recommend avoiding a very strict policy with the queries, permitting always more than 
what researchers supposedly need. Re-identification attacks usually need a high number 
of queries and we estimate that, with the help of the other measures aforementioned, their 
success rate would be severely limited, meaning even a bigger number of queries is needed, 
which we expect surpasses easily what a normal legit research would need. Ultimately, we 
feel control access will discourage most of the possible attacks normally performed from 
anonymous access. As commented by Raisaro et al., this measure obviously carries the im-
plementation of a complicated accounting scheme.

The initial proposal (5.1) in which we do not agree is listed here in the Table along with 
the proposals we found suitable for being a Beacon security improvement, which from 
(5.2) to (5.12) conjuntly form what it is our proposal. For every entry, its security ad-
vantage and utility drawback are commented on, as well as its method to achieve it. The 
source column indicates where this particular idea has been proposed for the first time.
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Proposal Source Method Security 
Advantage

Utility 
Impact

Obstacle to 
Performance

5.1 Avoid 
Noise-based 
Solutions

Analyzed pro-
posal is from 
[27]

Differential 
Privacy, occults 
less common 
mutations.

Re-identifica-
tion is harder.

Utility is greatly 
reduced. Most 
relevant infor-
mation is now 
hidden and false 
information is 
disclosed.

Negligible.

5.2 Increase 
Beacon’s size From [X] Adding more 

samples.
Re-identifica-
tion is harder.

Utility is slightly 
reduced.
No information 
is hidden.

The inherent 
difficulty of fin-
ding donors.

5.3 Adding con-
trol samples From [X] 

Adding more 
samples not 
related to the 
Beacon’s linked 
disease, Beacon 
Network can be 
used.

Phenotypic 
assumptions are 
harder.

Utility is slightly 
reduced. 
No information 
is hidden.

The inherent 
difficulty of fin-
ding donors, in 
this case can be 
avoided by the 
use of the Bea-
con Network.

5.4 Answer “You 
have no permis-
sion to see this 
information” to 
protect rarest 
genomes

Original idea Simply replacing 
some answers.

Protects most 
rare genomics 
data without 
giving false 
information.

Utility is slightly 
reduced. A very 
small part of the 
information is 
hidden but  no 
false informa-
tion is disclosed.

Negligible.

5.5 Strong Per-
mission System 
(DUO)

Beacon v2
Using the DUO 
System, already 
in use.

Partially visi-
ble genomes 
are harder to 
re-identify.

Utility is slightly 
reduced. If a 
researcher does 
not have enough 
permissions, 
the information 
will be hidden, 
but no false 
information is 
disclosed.

It needs a 
working com-
plex permission 
system, which 
already exists.

5.6 Use of 
“Trusted Envi-
ronments”

Original idea Providing total 
access.

No security 
advantage is 
involved, which 
is the reason this 
can only be offe-
red to the most 
secure parties.

Maximum utili-
ty is ensured.

The cautious se-
lection of a safe 
environment.
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Proposal Source Method Security 
Advantage

Utility 
Impact

Obstacle to 
Performance

5.7 Avoiding 
Metadata Dis-
closure

From [26]
Not revealing 
sensible meta-
data.

Avoids using 
real-world 
knowledge 
about the vic-
tim.

Utility could be 
reduced. No ge-
nomic informa-
tion is hidden.

The judgment 
of metadata’s re-
levancy, mostly 
negligible.

5.8 “Risk Value” 
to ponderate ge-
nome’s potential 
vulnerability

Adapted from 
Differential Pri-
vacy Solutions

Computing a 
numeric value 
by comparing 
samples to each 
other.

Finds the most 
vulnerable data 
to protect it.

Utility is not 
directly affected 
by this, but by 
the protection 
measure that 
uses this value, 
(5.5) in our case.

Setting up a 
complex and ba-
lanced system.

5.9 Distinguish 
mutations from 
polymorphisms

Original idea

Comparing 
DNA variations 
to an universal 
database.

Helps to ponde-
rate worldwide 
vulnerability.

Utility is slightly 
reduced for the 
cases this means 
a high “Risk 
Value”.

Needs a power-
ful tool or geno-
mic database to 
work.

5.10 Adding 
Relatives From [66]

Adding the 
closest possible 
donor’s relatives.

Re-identifica-
tion is harder.

Relatives can be 
relevant or not 
to the research 
and, if they are 
not, utility is 
slightly reduced. 

Consent of the 
donor’s relatives 
is required.

5.11 Ensure a 
minimum of 
continental re-
gion presence

Original idea

Controlling a 
ratio of each 
present ethnic 
group.

Re-identifica-
tion is harder.

Utility is slightly 
reduced.

The inherent 
difficulty of 
finding donors. 
If control sam-
ples are accep-
ted (5.3), the 
Beacon Network 
can be used.

5.12 Access 
Control & Bud-
get Query

From [27]

Compulsory 
identification 
and setting a 
maximum thres-
hold for queries.

Disable infinite 
anonymous que-
ries.

Budget Query 
can reduce utili-
ty if researchers 
perform a very 
high number of 
queries.

A complex 
access control 
system needs to 
be implemented.

Table 5.1: Proposals for Beacon privacy improvement (continuation)
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Chapter 6
Conclusions

Along this thesis we have developed two related but distinct objectives. Each one of the ob-
jectives have had different development of the ideas and has led us to different conclusions.

6.1 Systematic Review of the literature and 
Classification of current techniques

For this topic, we showed how critical the proper management of privacy and security is 
in genomic data. However, the importance of this data does not only apply in security, ge-
nomic data is greatly requested by researchers (and every day in bigger terms) for a lot of 
different purposes, especially health related. For this reason a secure way to share genomic 
information, allowing researchers to do their labor while ensuring the privacy of the do-
nors, has become a crucial necessity of the field.

We have also shown, through a selection of studies for the Systematic Review, that it is a 
very present concern, widely discussed by a great number of authors. And that is also a 
subject with a lot of different approaches which are still progressing. By how recent were 
the papers or how a clear evolution could be seen from one to another, it is clear the topic is 
not only recent but alive, which explains the growth some of the techniques have perceived.

The purpose of our Systematic Review of defining and categorizing the techniques, 
alongside of stating an evolution over time is fulfilled, which serves as a key step on 
the posterior classification. Briefly, we introduce a scheme system for all the techni-
ques aforementioned in the Systematic Review, and state clear differentiations between 
the most relevant divisions. The divisions include three different levels, being the Le-
vel I discerning techniques based on software from those based on hardware. Hard-
ware techniques are shown to have a rather small representation which, yet not ob-
solete, lacks the evolution other software based techniques are receiving. Level II 
divides software based techniques in either Data Manipulation or Data Security. 
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Techniques classified as Data Manipulation, like Anonymity or Differential Privacy, will 
alter the data in order to ensure privacy. Data Security, otherwise, consists of those techni-
ques meant to share sensitive data that do not modify it, keeping its integrity. Data Secu-
rity techniques include Homomorphic Encryption, Multi-secure Party Computation and 
Access Control approaches. Access Control applications are divided as the Level III, which 
explains the differences among them. Some implementations will solely rely on its encryp-
tion, and some others in very different systems of rules, needing some requirements or 
conditions to be fulfilled before decrypting the data. Lastly, we mark how a very particular 
system falls in the scope of Access Control but with enough differences to need a private 
branch of the scheme. The GA4GH Beacon system stands out from other techniques by 
protecting the data by not directly sharing it, and only answering questions about the data.

Backed by the systematic review conclusions, our classification has provided consistent 
and clear divisions based on the behaviour of the techniques. We expect the proposed sche-
me to be capable of including any technique or implementation the future can uncover, 
and if some new characteristics appear, we are sure new branches could be drawn without 
altering the basic structure.

6.2 Improvement Proposals for the Beacon System

The second objective imposed was to create a conjunction of propositions that could im-
prove Beacon’s security and privacy. Those ideas should not only be able to complement 
each other but also allow a fair trade-off between privacy and utility, meaning the poten-
tial results a researcher could extract from the data should not be ripped off. United in a 
single proposal list, we have presented twelve different suggestions in chapter 5 Security 
Improvement Proposal for the Beacon System, one to avoid (5.1), and eleven to implement 
(5.2-5.12).

We realized, while performing the Beacon’s review of the literature, that it is among the 
most discussed solutions in the community. Posterior analysis during the chapter 4 Beacon 
Evolution also reasserted its currentness, being a highly debated topic among researchers. 
By observing its evolution, standardization and upgrading process, alongside the particu-
larity of the Beacon system operation, we decided to study and develop a proposal list of 
enhancement ideas to contribute to this particular technology.
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We have argued that data manipulation (and by extension, Differential Privacy) should 
not be acceptable in health related data analysis. We think we should avoid medical false 
diagnosis at any cost and, as demonstrated in (5.1), it is not only a matter of ethics but a ma-
tter of utility, where the information most unique and relevant is the one most likely to be 
hidden, seriously hindering potential conclusions of a research. Instead of a lie that might 
lead to incorrect conclusions we proposed a new expression, “You have no permission to see 
this information”, in (5.4), and shown how, in conjunction with a strong and granular per-
missions system (5.5), this cannot lead to false data disclosure. The use of this expression, 
assuming an attacker does not know if it is true, will avoid untruthful results that could 
appear using Differential Privacy. Separately, we think a flexible use of permissions gives 
donors a fair control over their data.

Ideally, this expression should only be used in the cases it is true the researcher lac-
ks permits to access the data, or in the cases it is estimated it would give too much in-
formation about an individual and thus allowing a re-identification. To ponder if it is 
necessary or not, we propose the use of a “Risk value” (5.8), which would only protect 
the most sensible genomes. Instead of a regular computation of uniqueness of a certain 
mutation in the dataset (as Differential Privacy cases), this value could compute how 
compromised is a particular donor by assigning a numeric value, based on the num-
ber of uniquenesses a donor would have. Some uniquenesses of a donor can be shared 
if the donor has no other major identifying traits, meaning more data would be shared.

In order to assist an efficient computation of a “Risk value”, we also proposed to distinguish 
mutations from polymorphisms (5.9), which differ in how common a genetic pattern alte-
ration can be found in a human’s genome.

In order to make it harder for a possible re-identification an attacker could per-
form (and therefore reducing its vulnerability and its “Risk value”, which allows us 
to securely share more information), we have shown different propositions. Increa-
sing Beacon’s dataset size (5.2), by including more samples, is an efficient method 
to accomplish it. With a bigger dataset, attackers will need even larger sets of ques-
tions to ensure a re-identification, if still possible. We have also shown that, as our ge-
netic code is greatly related to ethnicity, any donor of different ethnicity from the ma-
jority is more likely to stand out, making it more vulnerable to re-identification attacks.
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We have shown how continental traits in the genome are different enough from other con-
tinents to make them more unique, and similar enough inside the continent to propose the 
reasonable task of ensuring a minimum representation of continental donors per dataset 
(5.9). This would only apply for the ethnicities already present in a dataset. Finally, we have 
shown that adding the data of the relatives of already existing donors (5.10), as a more 
precise version of the last proposition, will furtherly hinder re-identification possibilities. 
However, this needs careful treatment, as it could lead to the re-identification of the family.

We have also shown how adding control samples (5.3), i.e. samples that do not present the 
phenotype a certain dataset is linked to, we make harder a phenotype inference. In a situa-
tion where an attacker has performed a successful re-identification, we can severely limit 
the conclusions he could draw if he is not sure if the victim does indeed present the pheno-
type or not. A disadvantageous outcome of this measure is that researchers will therefore 
need a greater amount of questions to reach correct conclusions. Avoiding metadata dis-
closure (5.7) of our dataset when possible, as stated in the report, will avoid using real-life 
knowledge of a victim to help a re-identification attack. If not relevant for the researchers, 
data such as the zipcode of donors should remain hidden and inaccessible. We have also 
shown how this, with a careful use of additions and deletions of donor’s data (never in 
small amounts), also helps us prevent reconstruction attacks, where an attacker that knows 
that someone is going to be added to a dataset can not only re-identificate victims but re-
trieve their genome in the process (a very dangerous possibility that could enable posterior 
attacks).

Implementing some sort of access control and budget query (5.7) is another part of our 
proposal. Even setting a generous limit of questions per user, as we do not want to poten-
tially interfere with the research of legit users, attackers will find a harder time when acces-
sing the system, as their attempts of re-identification will be logged and no more infinite 
questions are able to be made anonymously.

Finally, another significant conclusion of our thesis is that major efforts need to be made in 
order to make the genomic data of our donors less vulnerable, as a lot of our proposals do. 
But not only for security reasons but also to allow us to safely share the information with 
authorized users. The purpose of genomic research is often related to health conditions, 
which could lead to premature diagnosis of some diseases, even when no symptoms are yet 
present. In any case it is acceptable to lose sight of the real purpose of privacy preserving
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genomic techniques, which is not to safely store genomic data but to safely share it, allowing 
future discoveries and conclusions. If leaning too much, in the trade-off between privacy 
and utility, towards utility is dangerous for the privacy of our donors, leaning too much 
towards privacy can potentially disable proper research, making all the process comple-
tely useless. For this reason, we also propose to create, only for the most reliable parties, 
the “Trusted Environments” (5.6), a safe space where no privacy is ensured and the whole 
information is disclosed. The purpose, as we have shown, is to ensure that, on some level, 
there is a very trusted party that could always be sure the best decision is made regarding 
both privacy and utility. This would only be made under the most faithful environment, 
and would not represent a common case but a very exceptional minority.

Lastly, as a final note, the re-identification attack concept as we know it was firstly introdu-
ced by Shringarpure and Bustamante in [26], and required the attacker to be in presence of 
the genome of the victim. For this reason is a very expanded opinion that is a very unlikely 
situation, and is for that reason we think it is reasonable to try to share the most information 
possible. Even in this case, however, the attack should never be considered impossible or 
unfeasible, and protection measures should always come as a part of sharing genomic data. 
As a last proposal, if not a thought, as the standardization of the Beacon system goes further 
and further, the less actual genomic data will be shared outside of the answers of questions, 
and more and more difficult will be for attackers to be in possession of a victim’s genome.
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Chapter 7
Future Work

After reviewing our efforts and results, we would like to set up what we think could be the 
next steps of this thesis. As we understand our project, we expect it to be able to serve as 
a stepping stone for different possible studies. We have separated these as ideas in the fo-
llowing list:

• A very useful study could be to deepen and expand the Beacon system security, ideally 
not only for improving genomic data treatment but also in order to adapt the 
system, making it viable to protect other types of data in addition to genomic data. 
Future im-plementations of the Beacon could be used to protect all kinds of sensitive 
data, even beyond the health field.

• Another possibility would be to choose another of the reviewed techniques in the sec-
tion 2 Systematic Review. A similar analysis and improvement proposal could also be 
written, using our literature review to move forward into another direction. Almost 
every technique is still discussed nowadays and could benefit from a security enhance-
ment.

• Lastly, probably the most practical possibility, and the one we would like to pursue, is to 
test the aforementioned propositions in the section 5 Beacon Proposal. A practical test 
would recognize them as helpful beyond theoretical concept, and it could also reveal 
which of them would have contributed the most. With this information, we could know 
in what aspects our efforts might be more constructive. An ideal part of this solution 
would also incorporate accurate and precise numbers into our proposals, e.g. as how 
big the size of a dataset should be in order to ensure a significant improvement 
(proposition 5.2), or developing an exact procedure to correctly compute the “Risk 
value” of our genomic data (proposition 5.8).
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Finally, we would like to express, as part of the future work, what our next immediate 
steps will be. As a subsequent part of this thesis, we plan to release two articles from the 
sections 2 Systematic Review of the Literature, and 5 Beacon’s Improvement Proposal. 
For the former, we hope our contributions can aid future efforts as a guidance in 
understanding, identifying and classifying privacy preserving genomic techniques. For 
the latter, we expect it to contribute to the privacy measures of the Beacon system, 
hoping some of our ideas to be implemented at some point. For this reason, besides the 
article that is still in process, we will present our proposal to the team at GA4GH 
dealing with the specification of the Beacon standard, which may lead to future 
improvements.
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Glossary

Allele: an allele is each version of a gene. We inherit two alleles per gene, one from each of 
our parents, meaning we can have up to two different alleles per gene. As genes are formed 
by DNA code the difference between alleles is produced by the presence of mutations or 
polymorphisms.

Chromosome: the structures formed by the DNA code are called chromosomes. We hu-
mans carry 23 pairs of chromosomes, one from each parent.

DNA (desoxyribonucleic acid): DNA code is our unique chain of nucleotides that identify 
us, encoding all our biological processes that occur in our bodies. DNA is inherited from 
our parents and perpetuated in our descendants.

Gene: a gene is a section of the DNA code that encodes instructions for making a specific 
molecule, often a protein. Humans have between 20.000 and 25.000 genes, which widely 
vary in size, from a few hundreds nucleotides to more than a million.

Genome: the genome is the complete set of genetic instructions of an organism. The human 
genome is the complete DNA code of a person.

Mutation: mutations are DNA deviations away from the standard genome. Each mutation 
implies the existence of a different and rare allele that is less common than the standard 
and most common one.

Nucleotide: nucleotides are the basic code of the DNA. DNA has four different types of 
bases of nucleotides, guanine, adenine, cytosine and thymine.
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Phenotype: the observable traits of an organism. Facial features, behaviour or a 
presentation of a disease in a certain individual are all phenotypes. 

Polymorphism: polymorphisms are DNA variations that are commonly present in the 
po-pulation. Polymorphisms differ from mutations in the sense that they do appear 
frequently, when a variation is found in more than the 1% of the population it is called 
a polymor-phism.

SNP (Single Nucleotide Polymorphism): the most common type of genetic variation, 
SNPs are polymorphisms that apply only to a single nucleotide.

65



Bibliography

Naro, D., Delgado, J. Security strategies in genomic files. (2020). UPC, Departament d’Ar-
quitectura de Computadors. Master Thesis. http://hdl.handle.net/2117/105973

McGuire, A., Fisher, R., Cusenza, P. et al. (2008). Confidentiality, privacy, and security of 
genetic and genomic test information in electronic health records: points to consider. Gene-
tics in Medicine 10, 495–499  https://doi.org/10.1097/GIM.0b013e31817a8aaa

Naro, D. Security strategies in genomic files. (2020). UPC, Departament d’Arquitectura de 
Computadors. Doctoral Thesis. http://hdl.handle.net/2117/190249. 

Venter, J.C., et al. (2001). The sequence of the human genome. Science 291(5507), 1304–
1351. https://doi.org/10.1126/science.1058040

Strachan, T., Read, A. P., & Strachan, T. (2011). Human molecular genetics. New York: Gar-
land Science.

Aziz, M., Sadat, M. N., Alhadidi, D., Wang, S., Jiang, X., Brown, C. L., & Mohammed, N. 
(2019). Privacy-preserving techniques of genomic data-a survey. Briefings in bioinforma-
tics, 20(3), 887–895. https://doi.org/10.1093/bib/bbx139

Kim, M., & Lauter, K. (2015). Private genome analysis through homomorphic encryption. 
BMC medical informatics and decision making. https://doi.org/10.1186/1472-6947-15-S5-S3

Lauter, Kristin & Rodríguez-Henríquez, Francisco. (2015). Progress in Cryptology -- LA-
TINCRYPT 2015: 4th International Conference on Cryptology and Information Security in 
Latin America, Guadalajara, Mexico. Springer.

Bonte, C., Makri, E., Ardeshirdavani, A. et al. (2018). Towards practical privacy-preserving 
genome-wide association study. BMC Bioinformatics. https://doi.org/10.1186/s12859-018-
2541-3

Homer N, Szelinger S, Redman M, Duggan D, Tembe W, Muehling J, et al. (2008) Resol-
ving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures Using 
High-Density SNP Genotyping Microarrays. PLoS Genet, Volume 4, Issue 8. https://doi.
org/10.1371/journal.pgen.1000167

Bonomi, L., Huang, Y. & Ohno-Machado, L. (2020) Privacy challenges and research oppor-
tunities for genomic data sharing. Nat Genet 52, 646–654. https://doi.org/10.1038/s41588-
020-0651-0

66

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]



67

Miran K., Arif H., et al. (2021). Ultra-Fast Homomorphic Encryption Models enable Secu-
re Outsourcing of Genotype Imputation. Cell Systems12, 1–13. https://doi.org/10.1016/j.
cels.2021.07.010

Kamm, L., Bogdanov, D., et al. (2013). A new way to protect privacy in large-scale geno-
me-wide association studies, Bioinformatics, Volume 29, Issue 7, pages 886–893, https://
doi.org/10.1093/bioinformatics/btt066

Ohata, S. (2020). Recent Advances in Practical Secure Multi-Party Computation. IEICE 
TRANSACTIONS on Fundamentals of Electronics, Communications and Computer 
Sciences. Vol.E103-A No.10 pp.1134-1141. https://search.ieice.org/bin/summary.php?i-
d=e103-a_10_1134

J  iang, X., Zhao, Y., Wang, X., Malin, B., Wang, S., Ohno-Machado, L., & Tang, H. (2014). A 
community assessment of privacy preserving techniques for human genomes. BMC medi-
cal informatics and decision making, 14 Suppl 1(Suppl 1), S1. https://doi.org/10.1186/1472-
6947-14-S1-S1

Dwork, C., McSherry, F., Nissim, K., Smith, A. (2006) Calibrating Noise to Sensitivity in 
Private Data Analysis. In: Halevi S., Rabin T. (eds) Theory of Cryptography. TCC 2006. 
Lecture Notes in Computer Science, vol 3876. Springer, Berlin, Heidelberg. https://doi.
org/10.1007/11681878_14

McSherry, F. et al. (2007). Mechanism Design via Differential Privacy. 48th Annual IEEE 
Symposium on Foundations of Computer Science (FOCS’07), pages 94-103. https://ieeex-
plore.ieee.org/abstract/document/4389483

Naveed, M., Ayday, E., Clayton, E. W., Fellay, J., Gunter, C. A., Hubaux, J. P., Malin, B. A., & 
Wang, X. (2015). Privacy in the Genomic Era. ACM computing surveys, 48(1), 6. https://
doi.org/10.1145/2767007

Simmons, S., Berger, B., & Sahinalp, S.C. (2019). Protecting Genomic Data Privacy with 
Probabilistic Modeling. Pacific Symposium on Biocomputing. Pacific Symposium on Bio-
computing, 24, 403-414. https://doi.org/10.1142/9789813279827_0037

Malin, B., & Sweeney, L. (2000). Determining the identifiability of DNA database entries. 
Proceedings. AMIA Symposium, 537–541.

Malin B. A. (2005). An evaluation of the current state of genomic data privacy protection 
technology and a roadmap for the future. Journal of the American Medical Informatics 
Association : JAMIA, 12(1), 28–34. https://doi.org/10.1197/jamia.M1603

Li, N., Qardaji, W., Su, D. (2012). On sampling, anonymization, and differential pri-
vacy or, k-anonymization meets differential privacy. Proceedings of the 7th ACM 
Symposium on Information, Computer and Communications Security. https://doi.
org/10.1145/2414456.2414474

Malin B. A. (2005). Protecting genomic sequence anonymity with generalization lattices. 
Methods of information in medicine, 44(5), 687–692.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]



68

Scheibner, J., Raisaro, J. L., Troncoso-Pastoriza, J. R., Ienca, M., Fellay, J., Vayena, E., & 
Hubaux, J. P. (2021). Revolutionizing Medical Data Sharing Using Advanced Privacy-En-
hancing Technologies: Technical, Legal, and Ethical Synthesis. Journal of medical Internet 
research, 23(2). https://doi.org/10.2196/25120

Chen, F., Dow, M., Ding, S., Lu, Y., Jiang, X., Tang, H., & Wang, S. (2017). PREMIX: PRiva-
cy-preserving EstiMation of Individual admiXture. AMIA ... Annual Symposium procee-
dings. AMIA Symposium, pages1747–1755.

Shringarpure, S. S., & Bustamante, C. D. (2015). Privacy Risks from Genomic Data-Sharing 
Beacons. American journal of human genetics, 97(5), 631–646. https://doi.org/10.1016/j. 
ajhg.2015.09.010

Raisaro, JL., Tramèr, F., Ji, Z., et al. Addressing Beacon re-identification attacks: quantifica-
tion and mitigation of privacy risks, Journal of the American Medical Informatics Associa-
tion, Volume 24, Issue 4, July 2017, Pages 799–805, https://doi.org/10.1093/jamia/ocw167

Wan, Z., Vorobeychik, Y., Kantarcioglu, M. et al. (2017) Controlling the signal: Practical 
privacy protection of genomic data sharing through Beacon services. BMC Med Genomics 
10, 39. https://doi.org/10.1186/s12920-017-0282-1

Ayoz, K., Ayday, E., Cicek, A.(2021).Genome Reconstruction Attacks Against Genomic Da-
ta-Sharing Beacons. Proceedings on Privacy Enhancing Technologies, volume 202, issue 3, p. 
28-48. https://doi.org/10.2478/popets-2021-0036

Fiume, M., Cupak, M., Keenan, S. et al. (2019). Federated discovery and sharing of geno-
mic data using Beacons. Nat Biotechnol 37, 220–224. https://doi.org/10.1038/s41587-019-
0046-x

Senf, A., Davies R.,  Haziza, F., et al.(2021). Crypt4GH: a file format standard enabling nati-
ve access to encrypted data, Bioinformatics, Volume 37, Issue 17, p. 2753–2754, https://doi. 
org/10.1093/bioinformatics/btab087

Morteza, H., Pratas, D., et al. (2019) Cryfa: a secure encryption tool for genomic data, Bioin-
formatics, Volume 35, Issue 1, p.146–148, https://doi.org/10.1093/bioinformatics/bty645

Huang, Z., Ayday, E., Lin, H., Aiyar, R. S., Molyneaux, A., Xu, Z., Fellay, J., Steinmetz, L. M., 
& Hubaux, J. P. (2016). A privacy-preserving solution for compressed storage and selective 
retrieval of genomic data. Genome research, 26(12), 1687–1696. https://doi.org/10.1101/
gr.206870.116

Global Alliance for Genomics and Health. (2019). Data Use Ontology approved as a 
GA4GH technical standard. Ga4gh.org. https://www.ga4gh.org/news/data-use-ontolo-
gy-approved-as-a-ga4gh-technical-standard/

EBISPOT/DUO. GitHub.   https://github.com/EBISPOT/DUO#what-is-duo

Cabili, M., Carey, K., Dyke, S. et al. (2018). Simplifying research access to genomics and 
health data. Scientific Data. https://doi.org/10.1038/sdata.2018.39

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]



69

Global Alliance for Genomics and Health. (2019). GA4GH Passports and the Authorization 
and Authentication Infrastructure.Ga4gh.org.https://www.ga4gh.org/news/ga4gh-pass-
ports-and-the-authorization-and-authentication-infrastructure/

GitHub. ga4gh-duri/ga4gh-duri.github.io. https://github.com/ga4gh-duri/ga4gh-duri.gi-
thub.io/blob/master/researcher_ids/ga4gh_passport_v1.md#passport

GitHub. ga4gh/data-security. https://github.com/ga4gh/data-security/blob/master/AAI/
AAIConnectProfile.md

Delgado, J., Llorente, S., Naro, D. (2017) Protecting privacy of genomic information. 
“Studies in health technology and informatics”, vol. 235, p. 318-322. http://hdl.handle.
net/2117/106545

Mittos, Alexandros & Malin, Bradley & De Cristofaro, Emiliano. (2019). Systematizing Ge-
nome Privacy Research: A Privacy-Enhancing Technologies Perspective. Proceedings on 
Privacy Enhancing Technologies. https://doi.org/10.2478/popets-2019-0006

Marino F. and Hubaux JP. (February 19, 2021). CWS APIs for supporting next generation 
secure workflows [Slide 11].

Global Alliance for Genomics and Health. (2015). Beacon project mitigates privacy ris-
ks while maximizing value of responsible data sharing.Ga4gh.org.https://www.ga4gh.org/
news/beacon-project-mitigates-privacy-risks-while-maximizing-value-of-responsible-da-
ta-sharing/

Global Alliance for Genomics and Health. (2017). ELIXIR and GA4GH beacon team up to 
advance genomic data sharing.Ga4gh.org. https://www.ga4gh.org/news/elixir-and-ga4gh-
beacon-team-up-to-advance-genomic-data-sharing/

The ELIXIR Beacon-2017.(2017). Elixir-europe.org https://elixir-europe.org/about-us/
commissioned-services/beacons

Global Alliance for Genomics and Health. (2017). New strategies for securing Beacon da-
tasets.Ga4gh.org. https://www.ga4gh.org/news/new-strategies-for-securing-beacon-data-
sets/

Morgan, S. (2021). Top 5 Industries At Risk Of Cyber-Attacks. Forbes. https://www.for-
bes.com/sites/stevemorgan/2016/05/13/list-of-the-5-most-cyber-attacked-industries/?s-
h=21c627f1715e

Global Alliance for Genomics and Health. (2017). A new access tier for genomic and heal-
th-related data. Ga4gh.org. https://www.ga4gh.org/news/a-new-access-tier-for-genomic-
and-health-related-data/

Dyke, S.O.M., Linden, M., Lappalainen, I. et al. (2018). Registered access: authorizing 
data access. European Journal of Human Genetics 26, 1721–1731. https://doi.org/10.1038/
s41431-018-0219-y

Global Alliance for Genomics and Health. (2018). GA4GH and ELIXIR Release Beacon 
API v1 with increased security measures. Ga4gh.org. https://www.ga4gh.org/news/ga-
4gh-and-elixir-release-beacon-api-v1-with-increased-security-measures/

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]



70

Elixir. (2018). GA4GH and ELIXIR Release V1.0.0 of Beacon API with increased security 
measures. Elixir-europe.org. https://elixir-europe.org/news/beacon-API-release

Global Alliance for Genomics and Health. (2019). Extensions to the GA4GH Beacon API 
will enable a more powerful community resource. Ga4gh.org. https://www.ga4gh.org/news/
extensions-to-the-ga4gh-beacon-api-will-enable-a-more-powerful-community-resource/

Beacon Network. https://beacon-network.org

Baudis, M. Beacon v2 - Towards flexible use and clinical applications for a reference ge-
nomic data sharing protocol [PDF Presentation]. Department of Molecular Life Sciences, 
University of Zurich. https://info.baudisgroup.org/pdf/2020-06-30___Michael-Baudis__
Beacon-evolution__NEXUS-PHRT2020-slides.pdf

Laurent, F. (2021). Beacon cohorts: A model for cohort discovery in CINECA and beyond. 
CINECA. https://www.cineca-project.eu/blog-all/beacon-cohorts-a-model-for-cohort-
discovery-in-cineca-and-beyond

Global Alliance for Genomics and Health. (2018). GA4GH Connect: A 5-Year Strategic 
Plan. Ga4gh.org. https://www.ga4gh.org/wp-content/uploads/GA4GH-Connect-A-5-
year-Strategic-Plan.pdf

Aziz, M., Ghasemi, R., Waliullah, M. et al. (2017). Aftermath of bustamante attack on ge-
nomic beacon service. BMC Med Genomics. https://doi.org/10.1186/s12920-017-0278-x

Medline Plus. (2020). What are single nucleotide polymorphisms (SNPs)?. https://medline-
plus.gov/genetics/understanding/genomicresearch/snp/

Demmler, D., Hamacher, K., Schneider, T., & Stammler, S. (2017). Privacy-Preserving 
Whole-Genome Variant Queries. CANS. pp 71-92. https://doi.org/10.1007/978-3-030-
02641-7_4

Karki, R., Pandya, D., Elston, R. C., & Ferlini, C. (2015). Defining “mutation” and “poly-
morphism” in the era of personal genomics. BMC medical genomics, 8, 37. https://doi.
org/10.1186/s12920-015-0115-z

Twyman, R. (2003). Mutation or polymorphism?. Western Washington University, Biology 
Department. https://fire.biol.wwu.edu//trent/trent/polymorphism.pdf

C C Li et al. (1993). A: Similarity of DNA Fingerprints Due to Chance and Relatedness. 
Human Heredity. https://doi.org/10.1159/000154113

Chakraborty, R., & Jin, L. (1993). Determination of Relatedness between Individuals 
Using DNA Fingerprinting. Human Biology, 65(6), 875–895. http://www.jstor.org/sta-
ble/41464929  

 Ge, J., Budowle, B. and Chakraborty, R. (2011), Choosing Relatives for DNA Identifica-
tion of Missing Persons. Journal of Forensic Sciences, 56: S23-S28. https://doi.org/10.1111/
j.1556-4029.2010.01631.x

Bieber F. R. et al. (2006). Finding Criminals Through DNA of Their Relatives. SCIENCE, 
Vol 312, Issue 5778, pp.1315-1316. http://dx.doi.org/10.1126/science.1122655

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]



71

Huang, Z., Ayday, E., Lin, H., Aiyar, R. S., Molyneaux, A., Xu, Z., Fellay, J., Steinmetz, L. M., 
& Hubaux, J. P. (2016). A privacy-preserving solution for compressed storage and selective 
retrieval of genomic data. Genome research, 26(12), 1687–1696. https://doi.org/10.1101/
gr.206870.116

Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., Korbel, J. O., Mar-
chini, J. L., McCarthy, S., McVean, G. A., & Abecasis, G. R. (2015). A global reference for 
human genetic variation. Nature, 526(7571), 68–74. https://doi.org/10.1038/nature15393

[66]

[67]




	Página en blanco



