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Abstract We use a new geometrical approach to the universality of Euler flows.
By proving flexibility results on embeddings for Reeb flows in contact topology, we
deduce some new universal properties for Euler flows. As a byproduct, we deduce
the Turing completeness of stationary Euler flows, answering an open question for
steady solutions. The results contained in this article are an announcement and short
version of [2], where the complete list of results and proofs can be found.
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1 Introduction

1.1 Hydrodynamics

The Euler equations model ideal fluids, and can be formulated on a Riemannian
manifold (M, g) as follows,

{
∂t u + ∇uu = − gradg p

divg u = 0
,

where p is the pressure function and u the velocity field. In the articles [9, 10] Tao
anticipated that Euler flows should be flexible enough to show any kind of dynamical
behavior. Instead of using an analytical approach we will use a geometrical one to
prove universality properties. In particular, in [10] the extendibility of flows to Euler
solutions is studied, and existence of Turing complete Euler flows is left open. Turing
completeness of Euler flows means that there is a solution to the Euler equations
associated to a general Riemannian manifold encoding a universal Turing machine.
We will address this question in the stationary case.

If we restrict ourselves to autonomous solutions to the Euler equations in odd
dimensional manifolds, a rich geometric and topological study has been developed
since the monograph [1]. Denoting α = ιug the dual form to the velocity field, the
stationary Euler equations can be written,

{
ιudα = −d B

dιuμ = 0,

where B = P + ιuα is the Bernoulli function and μ is the Riemannian volume
form. This formulation establishes a dichotomy. When the Bernoulli function is
non-constant (and for instance analytical or C2 and Morse-Bott) then by Arnold’s
structural theorem the flow lines have a very rigid structure and dynamics are similar
to those exhibited in integrable systems. However, when B is constant the dynam-
ics can be much more complicated. These solutions satisfy that the velocity field is
parallel to the vorticity field ω defined by the equation

ιωμ = (dα)n.

We call a vector field X a Beltrami field if it preserves μ and is everywhere parallel
to its vorticity field ω. We call it rotational if the function λ ∈ C∞(M) such that
ω = λX satisfies λ �= 0.
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1.2 Contact Geometry

At this point contact geometry appears as one of the interesting geometrical struc-
tures underlying the Euler equations. Let us recall some basic properties of contact
structures.

Definition 1 Let M2n+1 be an odd dimensional manifold equipped with a hyperplane
distribution ξ such that there is a 1-form α ∈ �1(M) with ker α = ξ and α ∧ (dα)n �=
0 everywhere. Then (M2n+1, ξ) is a (cooriented) contact manifold.

The contact structure ξ does not depend on the choice of the defining one form,
called the contact form. There is a unique vector field R for a given α defined by the
equations {

ιRα = 1

ιRdα = 0

called the Reeb vector field.
The relation of Reeb vector fields and the Euler equations is provided by the

following theorem by Etnyre and Ghrist [4].

Theorem 2 Any nonsingular rotational Beltrami field is a reparametrization of a
Reeb vector field defined by some contact form. Any reparametrization of a Reeb
vector field defined by a contact form is a nonsingular rotational Beltrami field for
some metric and volume form.

This theorem allows us to introduce the techniques used in contact geometry in
the study of some steady Euler flows, for instance the flexibility shown through the
h-principle techniques introduced by Gromov [5] (see [3] for a modern text and
extension of these results).

2 Reeb Embeddings

In order to find new universality properties for Euler flows, we adapt the questions of
Tao to this setting. We ask the following question: given an arbitrary non-vanishing
vector field X on a closed manifold N , can we “embed” it in a Reeb flow of a bigger
manifold for instance the standard contact sphere? More precisely, can we find a
contact form α with Reeb vector field R in a bigger closed manifold M such that it
has an invariant submanifold diffeomorphic to N with R|N = X?

As we will see in a moment, X needs to satisfy at least one extra condition. Let
us recall the following definition.

Definition 3 A vector field X in a manifold M is called geodesible if its orbits are
geodesics for some metric in M .
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We will assume from now on that X is geodesible of unit-length (i.e. it is of unit-
length for the metric making its orbits geodesics). It is well known following works
of Gluck [6] that an equivalent condition for X to be geodesible is that there exists
a one form β such that

ιXβ = 1, and ιX dβ = 0.

It becomes now clear that a Reeb vector field R is geodesible: the contact form α
satisfies the necessary conditions. Furthermore if W is an invariant submanifold of
R, then R is also geodesible in W since the restriction of the contact form to W
satisfies also Gluck’s conditions. This implies that vector fields that can potentially
be embedded as a Reeb field need to be geodesible. However, we prove that this is the
only condition: any geodesible vector field can be embedded as a Reeb vector field
of the same manifold: the standard contact sphere. This is contained in the following
theorem, which is a weaker version of the main Theorem 5 that will be discussed
below.

Theorem 4 ([2]) Let N be a closed manifold of dimension n and X a geodesible
flow on it, then there is an embedding of N in (S4n−1, ξstd) and a form β defining
ξstd such that the Reeb field R of β satisfies R|N = X.

The proof of this theorem is less technical than the main theorem, let us give a
sketch. The proofs with all the details can be found in [2].
Sketch of proof. We start with a geodesible vector field X on a closed manifold N .
This means that for some form α we have ιXα > 0 and ιX dα = 0. This implies
that X preserves η = ker α. In fact being geodesible is equivalent to saying that X
preserves a transversal hyperplane field.

(1) We begin constructing an open contact manifold M containing N with a sym-
plectic hyperplane distribution, that contains η when restricted to N . We con-
sider the vector bundle π : η∗ → N over N with the hyperplane distribution
η̃ = π∗(η ⊕ η∗), which is equipped with the canonical symplectic structure.

(2) We now obtain a contact structure that also contains η when restricted to N . To
do this we perturb the symplectic form in an appropriate way and work chart by
chart to find a contact structure ᾱ satisfying ker ᾱ|N ∩ T N = η

(3) We apply an h-principle result by Gromov on isocontact embeddings that tells
us that M embeds isocontactly in (S4n−1, ξstd). This means that there is an
embedding e : N ↪→ S4n−1 such that e∗ξstd = ker α̃. We have that our vector
field X in e(N ) preserves ξstd ∩ T N = η by construction. By a characterization
of Inaba [7], this condition is equivalent to the existence of a contact form defining
ξstd such that its Reeb vector field R satisfies R|N = X .

�
This theorem is merely geometrical and allows the realization of any geodesible

field on a manifold of dimension n as the Reeb vector field in the standard contact
sphere S4n−1. However, it is a particular instance of the following more general
theorem.
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Theorem 5 ([2]) Let e : (N , X) ↪→ (M, ξ′) be a smooth embedding of N into a
contact manifold (M, ξ′) where X is a geodesible vector field on N. Assume that
dim M ≥ 3n + 2. Then e is isotopic to a Reeb embedding ẽ, and ẽ can be taken
C0-close to e.

This result is stronger, and interesting from the contact topology perspective. It
relies on defining a formal counterpart of a Reeb embedding and proving that it
satisfies a certain h-principle. Then Theorem 5 follows from proving that smooth
embeddings in high enough codimension are formal Reeb embeddings satisfying the
h-principle. We will use this last Theorem to deduce the universality properties of
Euler flows, since the resulting dimension of the ambient manifold is smaller.

3 Applications

Realizing geodesible vector fields as Reeb vector will implies different universality
properties for Euler flows, and we state some of them here. Because of the corre-
spondence of Reeb vector fields and Beltrami fields, we know already that every
geodesible vector field can be embedded in a stationary solution to the Euler equa-
tions. The following corollaries are obtained by finding the appropriate geodesible
vector field and applying Theorem 5.

We define the suspension of a time-periodic vector field X (t) on a manifold
N (of dimension n) as the manifold N × S1 endowed with the vector field Y =
(X (p, θ), ∂θ). It is a geodesible field and hence

Corollary 6 ([2]) Let X (t) any periodic on time vector field on N. Then its suspen-
sion Y in N × S1 can be embedded as a Reeb flow on Sm with m the odd integer in
{3n + 5, 3n + 6}.

In particular this proves that any periodic in time vector field can be extended to
an Euler solution in the sense of [10].

In a similar way, given an orientation preserving diffeomorphism, one can consider
the manifold Ñ = N × [0, 1]/ ∼ identifying (x, 0) with (ϕ(x), 1). Consider the
horizontal flow on it

φt (θ, x) = (θ + t, x).

The vector field obtained by this flow is geodesible and has as return map the given
diffeomorphism.

Corollary 7 ([2]) Let ϕ : N → N be an orientation preserving diffeomorphism. It
can be realized as the return map on some cross section diffeomorphic to N in some
Reeb flow on Sm with m the odd integer in {3n + 5, 3n + 6}.

The Reeb flow can always be obtained on the standard contact sphere (S3n+5, ξstd)

or (S3n+6, ξstd) depending on the parity of n (since the dimension of the sphere needs
to be odd).
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As a byproduct, we obtain the existence of Turing complete Euler flows. This is
a consequence of the fact that there exists an orientation-preserving diffeomorphism
of T

4 encoding a universal Turing machine, see [8].

Corollary 8 ([2]) There are Reeb flows (and hence Euler flows) which are Turing
complete. Concretely, there is a Reeb flow on (S17, ξstd) encoding a universal Turing
machine.

In his papers, Tao speculates on using a Turing complete flow to construct a finite
time blow up solution to the Euler or Navier-Stokes equations. We do not know how
this solution evolves when taken as initial condition for the Navier-Stokes equation.
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