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Abstract: The human brain can be interpreted mathematically as a linear dynamical system that shifts
through various cognitive regions promoting more or less complicated behaviors. The dynamics of
brain neural network play a considerable role in cognitive function and therefore of interest in the
bid to understand the learning processes and the evolution of possible disorders. The mathematical
theory of systems and control makes available procedures, concepts, and criteria that can be applied
to ease the perception of the dynamic processes that administer the evolution of the brain with
learning and its control with treatment in case of disorder. In this work, a geometric study through
the conception of exact controllability is comprehended to detect the minimum set and the location
of the driving nodes of learning. We will describe the different roles of the nodes in the control of the
paths of brain networks and show the transition of some driving nodes and the preservation of the
rest in the course of learning in patients with some learning disability.

Keywords: neural network; controllability; exact controllability; eigenvalues; eigenvectors; linear
systems

1. Introduction

The brain structure is a complex recurrent neuronal network that can be easily de-
scribed by a graph (see Figure 1, where the nodes represent brain areas and the edges the
strength of connections between these areas that emerge when certain tasks are performed.

Figure 1. Recurrent Neuronal Network.

The locution neuronal network makes reference to a particular model for comprehend-
ing brain function, in which neurons are the basic computational units and computation is
interpreted in terms of network interactions.

It has been shown [1] that cognitive control and the ability to control brain dynamics
holds great suggestive of improvement of cognitive functions and reversing the possible
disorder in learning processes. The human brain seems to be able to travel between
diverse cognitive states. Its most imposing role is in connecting multiple sources of
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information in large-scale networks that are required to solve complex cognitive problems
and strengthen memory.

As Kriegeskorte asserts in [2], neuronal network models indicate a starting point of a
new period of computational neuroscience, in which participants bear a part in real-world
labours that require wide knowledge and elaborate calculations.

In the interest of controlling their functions, neural networks have been treated by
means of dynamic linear control systems. In this work, neural networks are treated as
multi-agent systems, that is, systems of linear dynamic systems related to each other
through a previously established topology.

Multi-agent systems are used in different areas of engineering, to solve synchroniza-
tion problems and address consensus problems of the systems (see for example, [3,4]). On
the other hand, it should be said that neural networks are also being studied as non-linear
dynamic systems (see, for example, [5]).

García-Planas in [6] showed that a noise-free multisystem of linear discrete-time and
time-invariant model

ẋ1(t) = A1x1(t) + B1u1(t)
...

ẋk(t) = Akxk(t) + Bkuk(t)

 (1)

where Ai ∈ Mn(R), Bi ∈ Mn×m(R), xi(t) ∈ Rn, ui(t) ∈ Rm, 1 ≤ i ≤ k could be employed
to describe the neuronal dynamics.

A block diagram is plotted in Figure 2.

Figure 2. Diagram of a multi-agent system.

Systems and control theory can help answer the question about the theoretical control
of the human brain. Some results on brain interfaces and neuromodulation suggest that
modifications in regional activity (measured by evoked potentials or other means) can
cause alterations in the dynamics of brain function [7].

Notwithstanding the complete comprehension of the relationship between mathemat-
ical control measures and the slight knowledge of cognitive control of neuroscience are
difficult to reach, small advances in the study can stimulate the study and action against
learning difficulties such as dyscalculia or other disturbances such as the phenomena of
forgetting [7]).

Structural controllability theory could be a good tool to control structured linear
systems, in this way Garcia-Planas in ([6], showed that structural controllability in a
mathematical instrument which could be inferred to multi-agent systems in which each of
the agents has a previously determined structure.
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2. Preliminaries

To study the control problems proposed, the complexity of the brain structure requires
that, the global model be divided into several local submodels, each one with its own
complex and interrelated network structure. In this way, it could be possible to structure
the brain as a neuronal multi-network with a common objective.

Let us consider a group of k agents as (1).
In our particular setup, the agents are communicating by the topology defined by the

graph G, with

(i) Set of Vertices: V = {1, . . . , k}
(ii) Set of Edges: E = {(i, j) | i, j ∈ V} ⊂ V ×V

Figure 3 shows the graph that defines the topology on the participating agents in
the system.

Figure 3. Multiagent graph.

It is well known that each graph has an associated matrix called Laplacian, this matrix
is defined as

L = (lij) =


|Ni| if i = j
−1 if j ∈ Ni
0 otherwise

Writing

X (t) =

x1(t)
...

xk(t)

, Ẋ (t) =

ẋ1(t)
...

ẋk(t)

, U (t) =

u1(t)
...

uk(t)

,

A =

A1
. . .

Ak

, B =

B1
. . .

Bk

,
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With these notations it is possible to describe the multisystem can be described as
a system:

Ẋ (t) = AX (t) + BU (t).

The description of the local interrelation between systems defined by the considered
topology is given by the control:

ui(t) = Fi ∑
j∈Ni

(xi(t)− xj(t)), 1 ≤ i ≤ k (2)

That in a matrix description is

FU (t) = F (L⊗ In)X (t)

where F =

F1
. . .

Fk

.

Then, the multisystem with interrelation control is described as:

Ẋ (t) = AX (t) + BFU (t) = (A+ BF (L⊗ In))X (t). (3)

3. Controllability and Exact Controllability

Controllability is one of the most important properties of dynamical systems, and that
is why a great portion of the literature refers to this concept ([6,8,9], among others).

First of all, and for a good understanding of the work, the notion of controllability for
linear dynamic systems in the form

ẋ(t) = Ax(t) + Bu(t) (4)

is remembered.

Definition 1 ([6]). The linear dynamical system (4) is called controllable if, for any t1 > 0,
x(0) ∈ Cn and w ∈ Cn, there exists a control input u(t) sufficiently smooth such that x(t1) = w.

The controllability character can be measured using the well-known Kalman’s rank
condition.

Proposition 1 ([9]). The dynamical system (4) is controllable if and only if:

rank
(

B AB . . . An−1B
)
= n (5)

or via the Hautus Test for controllability of linear time-invariant dynamical systems.

Proposition 2 ([8]). The dynamical system (4) is controllable if and only if:

rank
(

sI − A B
)
= n, ∀s ∈ C . (6)

We give evidence of the work, applying it to simple example of an undirected graph
represented in Figure 4.
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Figure 4. Example of a graph.

The system A

A =



0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0



B =



1 0 0
2 0 0
1 0 1
0 1 0
3 0 1
1 0 0


is controllable:

rank
(

B AB A2B A3B
)
= 6

See image Figure 5 for a better understanding in which the matrix B is represented by
the arrows that go from bi to the nodes.

Therefore, taking controls u1, u2, and u3, it is possible to reach a desired state from a
fixed initial state in a finite time.

For example, taking u1 = (0, 0, 0), u2 = (0,−1, 0) and (0, 0, 1), it is possible to reach
node 5 from node 6:

A3x6 + (A2B)u1 + ABu2 + Bu3 = x5.

It is a challenge to find out which B matrices are valid for the system to be controllable
and even more so if these matrices have the minimum number of inputs. Liu et al. [10]
suggest “the maximum coincidence algorithm” based on the network representation of the
matrix, to select the control nodes to ensure that systems are controllable; Yuan et al. in [11]
exhibit a general framework based on the maximum multiplicity theory to investigate
the exact controllability of multiplex interrelated networks, focusing the study on the
controllability amount defined by the minimum set of drivers that are needed to control
steering the whole system toward any desired state but the authors do not construct
the possible drivers. García-Planas in [12] builds the matrices (drivers) based on the
eigenvalues of the matrix A and of its geometric multiplicity.
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Figure 5. Example of a feedback graph.

Given a linear dynamical system such as (4) for plainness, from now on, we will write
the pair of matrices as (A, B). It is well known that there are many possible control matrices
B in the system that can assure the controllability condition, for it suffices to consider
invertible matrices B ∈ Gl(n;R).

The goal is to find the collection of all possible matrices B, having the minimum num-
ber of columns corresponding to the minimum number nD(A) of independent controllers
that are required to control the entirety network.

Controllability with a minimal number of inputs is known as exact controllability.

Definition 2 ([11]). Let A ∈ Mn(R) be a matrix. The exact controllability number nD(A) is the
minimum of the ranks of all possible matrices B making the system ẋ = Ax + Bu controllable.

nD(A) = min {rank B, ∀B ∈ Mn×i 1 ≤ i ≤ n (A, B) being controllable}.

For simplicity, we will write it as nD.
It is easy to prove that nD is invariant under similarity equivalence relation, that is to

say: for any invertible matrix S ∈ Gl(n;R we have nD(A) = nD(S−1 AS). Therefore, and if
necessary, we can consider A in a reduced form, for example in its Jordan canonical form.

Proposition 3 ([11]). Let µ(λi) = dim Ker (A− λi I) be the geometric multiplicity of the eigen-
value λi. Then,

nD = maxi {µ(λi)}

In [12], a manner to obtain a set of minimal number of controls is presented.
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4. Controllability of Multiagent Neural Networks

We are concerned about bringing the output of the system (1) to a reference value
and keeping it there; we can ensure that it is possible when the system is controllable.
Unquestionably, the system (1) is controllable if and only if each subsystem is controllable,
and, in this case, there is feedback in which we obtain the requested solution.

We can be interested with the control (2) and ask for the stability of the system (3).
If, having considered this control, the resulting system (3) has not the desired eigen-

values, we can try to consider different feedback Fi so that, with the new control (with
feedback = Ki),

ui(t) = Ki ∑
j∈Ni

(xi(t)− xj(t)), 1 ≤ i ≤ k (7)

the system has appointed eigenvalues to take a requested output of the system.
In some cases, this could be attentive in a solution such that

lim
t→∞
‖xi − xj‖ = 0, 1 ≤ i, j ≤ k,

namely, finding solutions for each subsystem, all reaching the same point.

Proposition 4. Considering the control ui(t) = Ki ∑j∈Ni
(xi(t)− xj(t)), 1 ≤ i ≤ k the closed-

loop system can be detailed as

Ẋ (t) = (A+ BK(L⊗ In))X (t).

where K is the diagonal matrix

K1
. . .

Kk

.

Computing the matrix A+ BK(L⊗ In), we obtain
A1 + l11B1K1 l12B1K1 . . . l1kB1K1

l21B2K2 A2 + l22B2K2 . . . l2kB2K2
...

...
. . .

...
lk1BkKk lk2BkKk . . . Ak + lkkBkKk


In this specific case, proposition 4 can be rewritten in the following manner (see [13]).

Proposition 5. Considering the control ui(t) = K ∑j∈Ni
(xi(t)− xj(t)), 1 ≤ i ≤ k the closed-

loop system for a multiagent with identical linear dynamical mode is detailed as

Ẋ = ((Ik ⊗ A) + (Ik ⊗ BK)(L⊗ In))X .

It is also interesting to study the case that we can consider external controls that allow
us to obtain the desired eigenvalues.

5. Selection of Control Nodes

It is of interest to recognize the minimum set of driver nodes needed to achieve full
control of networks having arbitrary structures and link-weight distributions.

In our particular setup, the objective is to find the collection of all possible matrices E,
having the minimum number of columns corresponding to the minimum number nD((A+
BK(L⊗ In))) of independent drivers that are necessary to control the whole network.

Given the protocol as (7) with K the feedback gain matrix, and defining
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Uext(t) =

u1
ext(t)

...
uk

ext(t)

, D =

D1
. . .

Dk


Proposition 6. With these notations the system can be described as

Ẋ (t) = (A+ BK(L⊗ In))X (t) +DUext(t). (8)

Considering the case where the dynamics depend only of the topology interrelating
the agents, the system can be described as

Ẋ (t) = (L⊗ In)X (t) +DUext(t)

and, if it is considered in such a way, that each agent just follows every one in front of it, on
a higher level. That is to say, the Laplacian has a triangular form.

Example 1. Consider the graph of Figure 6

Figure 6. Neural Network.

The Laplacian matrix is:

6 −1 −1 −1 −1 −1 −1
0 3 0 0 −1 −1 −1
0 0 3 0 −1 −1 −1
0 0 0 3 −1 −1 −1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −1
0 0 0 0 0 0 0


Then, in this case, if the agents have n variables, and following proposition 3, the minimum number
of controls to make the system controllable are 3n.

In the case where the nodes of graph are all in a different level and each agent follows
only the one on the following level or every one in front of it, on a higher level, (see Figure 7),
the minimum number of controls to make the system controllable are n in the first case and
3n in the second one.
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Figure 7. Neural Networks.

The Laplacian matrices in these cases are


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 0

, and


4 −1 −1 −1 −1
0 3 −1 −1 −1
0 0 2 −1 −1
0 0 0 1 −1
0 0 0 0 0

 respectively.

In a more general case we have:

Proposition 7. Let us consider a directed graph where the nodes are classified by levels and each
one follows only some nodes of a high level. Then, the minimum number of controls making the
system controllable is

nD(L⊗ In) = n · nD(L).

Proof. In this particular setup, the Laplacian matrix has a triangular form.

In the case, where the graph is undirected (see Figure 8), the Laplacian matrix is
symmetric, therefore it is diagonalizable. Therefore, let P ∈ Gl(n;C) be an invertible
matrix such that L = P−1DP, with D = diag (λ1, . . . , λk) a diagonal matrix.

Ẋ (t) = (L⊗ In)X (t) +DUext(t) =
(P−1DP⊗ In)X (t) +DUext(t) =
(P−1 ⊗ In)(D⊗ In)(P⊗ In)X (t) +DUext(t)

Ẏ(t) = (P⊗ In)X (t) = (D⊗ In)(P⊗ In)X (t) + (P⊗ In)DUext(t)
Ẏ(t) = (D⊗ In)Y(t) +D1Uext(t)

Figure 8. Undirected graph.
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Then, the eigenvalues, as well its geometrical multiplicity of

(L⊗ In)

are the same as the diagonal matrix
(D⊗ In)

Proposition 8.
nD(L⊗ In) = n · nD(D)

We want to emphasize that, although the minimum number of controls is uniquely
determined, the set of controls is not unique and each one of them can be chosen within a
subspace.

Now we present a set of a minimal number of controls for each of these cases.
In example 1, and for n = 1, a basis of eigenvectors is

u1 = (1, 0, 0, 0, 0, 0, 0)
u2 = (1, 2, 0, 0, 0, 0, 0)
u3 = (1, 0, 3, 0, 0, 0, 0)
u4 = (1, 0, 0, 3, 0, 0, 0)
u5 = (1, 1, 1, 1, 2, 0, 0)
u6 = (1, 1, 1, 1, 0, 2, 0)
u7 = (1, 1, 1, 1, 1, 1, 1)

To construct the matrix B, we consider the following vectors

u = u1 + u2 + u5 + u7
v = u3 + u6
w = u4

Then,

B =



4 2 1
4 1 0
2 4 0
2 1 3
3 0 0
1 2 0
1 0 0


and,

rank
(

B AB A2B A3B
)
= 7

Therefore, the system (A, B) is controllable
In this case, where each agent just follows every one in front of it, on a higher level,

and for k agents of dimension n, the matrix L⊗ In is a triangular block matrix whose blocks
on the diagonal are scalar matrices. Therefore, this matrix is diagonalizable.

The eigenvalues of the matrix L⊗ In are n copies of the eigenvalues of the matrix L.
Let λ1, . . . , λr be the eigenvalues of L⊗ In and n1, . . . , nr the respective multiplicities.

The greatest multiplicity of the eigenvalues corresponds to the level of nodes that contains
the greatest number of them.

Proposition 9. Let v11 , . . . , v1n1
, . . ., vr1 , . . . , vrnr a basis of eigenvectors corresponding to the

eigenvalues λ1, n1. . ., λr, . . ., λr, nr. . ., λr. Then the matrix B making (L⊗ In, B) controllable is the
matrix whose columns are:

α11v11 + α12v21 + . . . + α1rvr1 , α21v12 + α22v22 + . . . + α2rvr2 , . . ., α`1v1` + α`2v2` + . . . +
α`rvr` where ` = nD(L⊗ In). with αij 6= 0.

(If ni < ` then vi`+j = 0).
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Proof. The maximal minors of the controllability matrix are generalized Vandermonde
determinants.

The nodes of graph are all in a different level and each agent follows only the one on
the following level. Considering the example, the matrix L⊗ In for n = 3 is

1 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


The Jordan canonical form is a diagonal by blocks matrix all identical to the Jordan

reduction form of the matrix L: 
0 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1


and a corresponding basis change matrix can be

V = [v11, v12, v13, v14; v21, v22, v23, v24; v31, v32, v33, v34]

=



1 −1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 1 −1
1 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 −1
1 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 −1
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0


and the matrix B making the system (L⊗ In, B) controllable is

B = [v11 + v12 + v13 + v14; v21 + v22 + v23 + v24; v31 + v32 + v33 + v34]

6. Discussion

The word control implies action and reflects the human effort to intervene in the
environment that surrounds it to guarantee its survival and a permanent improvement in
the quality of life. Many of the control problems can be analyzed through a mathematical
model that describes the physical system under consideration through equations that show
the state of the system.

Being a central problem in many network systems, there are few studies to date
regarding how to explore this issue quantitatively, or how we can control a directed
network, which is the configuration that is usually found more frequently in real systems.
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The fundamental problem is the size. Liu et al. [10], have developed the tools to
undertake the study of controllability for arbitrary network sizes and topologies using the
controllability matrix considering a few driver nodes on the network.

In [7], Gu et al. define controllability (global, regional, average, modal, and boundary)
from different points of view to use on the neural systems which can be treated. In this
work, the authors suggest that the differences between the different points of view of
controllability can help to analyze different roles in the control of the dynamic trajectories
of the function of the brain network.

In this paper, we consider the brain network as a multisystem of linear discrete-time
and time-invariant mode that permits us to consider a larger number of nodes. In 2018,
Abiodun et al. [14], carried out a survey on the state of the art on the applications of
artificial neural networks.
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Notations
In this paper, we will use the following notations:

- R: Set of real numbers;
- Rn: n-dimensional vector space over the real numbers;
- Mn×m : (R): Set of matrices with n rows and m columns;
- Mn(R): the set square matrices of n-order;
- Gl(n;R); the set of n-square real matrices invertible;
- xi = (xi

1, . . . , xi
n) a vector state in Rn;

- ui = (ui
1, . . . , ui

m) and input vector in Rm;
- xi(t) a time variant state vector in Rn for each t;
- ẋi(t) the derivative of the time variant state vector;
- ui(t) a time variant input vector in Rm for each t.
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