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Abstract 28 

Prostate cancer is the second most occurring cancer in men worldwide. To better 29 

understand the mechanisms of tumorigenesis and possible treatment responses, we 30 

developed a mathematical model of prostate cancer which considers the major signalling 31 

pathways known to be deregulated. We personalised this Boolean model to molecular data 32 

to reflect the heterogeneity and specific response to perturbations of cancer patients. 488 33 

prostate samples were used to build patient-specific models and compared to available 34 

clinical data. Additionally, eight prostate cell-line-specific models were built to validate our 35 

approach with dose-response data of several drugs. The effects of single and combined 36 

drugs were tested in these models under different growth conditions. We identified 15 37 

actionable points of interventions in one cell-line-specific model whose inactivation hinders 38 

tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of 39 

those putative targets and found a dose-dependent effect on four of them, notably those 40 
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targeting HSP90 and PI3K. These results highlight the predictive power of our personalised 41 

Boolean models and illustrate how they can be used for precision oncology. 42 

Introduction 43 

Like most cancers, prostate cancer arises from mutations in single somatic cells that induce 44 

deregulations in processes such as proliferation, invasion of adjacent tissues and 45 

metastasis. Not all prostate patients respond to the treatments in the same way, depending 46 

on the stage and type of their tumour (Chen and Zhou, 2016) and differences in their genetic 47 

and epigenetic profiles (Toth et al., 2019; Yang et al., 2018). The high heterogeneity of these 48 

profiles can be explained by a large number of interacting proteins and the complex cross-49 

talks between the cell signalling pathways that can be altered in cancer cells. Because of 50 

this complexity, understanding the process of tumorigenesis and tumour growth would 51 

benefit from a systemic and dynamical description of the disease. At the molecular level, this 52 

can be tackled by a simplified mechanistic cell-wide model of protein interactions of the 53 

underlying pathways, dependent on external environmental signals.  54 

Although continuous mathematical modelling has been widely used to study cellular 55 

biochemistry dynamics (e.g., ordinary differential equations) (Goldbeter, 2002; Kholodenko 56 

et al., 1995; Le Novère, 2015; Sible and Tyson, 2007; Tyson et al., 2019), this formalism 57 

does not scale up well to large signalling networks, due to the difficulty of estimating kinetic 58 

parameter values (Babtie and Stumpf, 2017). In contrast, the logical (or logic) modelling 59 

formalism represents a simpler means of abstraction where the causal relationships between 60 

proteins (or genes) are encoded with logic statements, and dynamical behaviours are 61 

represented by transitions between discrete states of the system (Kauffman, 1969; Thomas, 62 

1973). In particular, Boolean models, the simplest implementation of logical models, 63 

describe each protein as a binary variable (ON/OFF). This framework is flexible, requires in 64 

principle no quantitative information, can be hence applied to large networks combining 65 

multiple pathways, and can also provide a qualitative understanding of molecular systems 66 

lacking detailed mechanistic information. 67 

In the last years, logical and, in particular, Boolean modelling has successfully been used to 68 

describe the dynamics of human cellular signal transduction and gene regulations (Calzone 69 

et al., 2010; Cho et al., 2016; Flobak et al., 2015; Grieco et al., 2013; Helikar et al., 2008; 70 

Traynard et al., 2016) and their deregulation in cancer (Fumiã and Martins, 2013; Hu et al., 71 

2015). Numerous applications of logical modelling have shown that this framework is able to 72 

delineate the main dynamical properties of complex biological regulatory networks (Abou-73 

Jaoudé et al., 2011; Faure et al., 2006). 74 

However, the Boolean approach is purely qualitative and does not consider the real time of 75 

cellular events (half time of proteins, triggering of apoptosis, etc.). To cope with this issue, 76 

we developed the MaBoSS software to compute continuous Markov Chain simulations on 77 

the model state transition graph (STG), in which a model state is defined as a vector of 78 

nodes that are either active or inactive. In practice, MaBoSS associates transition rates for 79 

activation and inhibition of each node of the network, enabling it to account for different time 80 

scales of the processes described by the model. Given some initial conditions, MaBoSS 81 

applies a Monte-Carlo kinetic algorithm (or Gillespie algorithm) to the STG to produce time 82 

trajectories (Stoll et al., 2017, 2012) such that time evolution of the model state probabilities 83 



can be estimated. Stochastic simulations can easily explore the model dynamics with 84 

different initial conditions by varying the probability of having a node active at the beginning 85 

of the simulations and by modifying the model such that it accounts for genetic and 86 

environmental perturbations (e.g., presence or absence of growth factors, or death 87 

receptors). For each case, the effect on the probabilities of selected read-outs can be 88 

measured (Cohen et al., 2015; Montagud et al., 2017). 89 

When summarising the biological knowledge into a network and translating it into logical 90 

terms, the obtained model is generic and cannot explain the differences and heterogeneity 91 

between patients’ responses to treatments. Models can be trained with dedicated 92 

perturbation experiments (Dorier et al., 2016; Saez-Rodriguez et al., 2009), but such data 93 

can only be obtained with non-standard procedures such as microfluidics from patients’ 94 

material (Eduati et al., 2020). To address this limitation, we developed a methodology to use 95 

different omics data that are more commonly available to personalise generic models to 96 

individual cancer patients or cell lines and verified that the obtained models correlated with 97 

clinical results such as patient survival information (Béal et al., 2019). In the present work, 98 

we apply this approach to prostate cancer to suggest targeted therapy to patients based on 99 

their omics profile (Figure 1). We first built 488 patient- and eight cell line-prostate-specific 100 

models using data from The Cancer Genome Atlas (TCGA) and the Genomics of Drug 101 

Sensitivity in Cancer (GDSC) projects, respectively. Simulating these models with the 102 

MaBoSS framework, we identified points of intervention that diminish the probability of 103 

reaching pro-tumorigenic phenotypes. Lastly, we developed a new methodology to simulate 104 

drug effects on these data-tailored Boolean models and present a list of viable drugs and 105 

regimes that could be used on these patient- and cell-line-specific models for optimal results. 106 

Experimental validations were performed on the LNCaP prostate cell line with two predicted 107 

targets, confirming the predictions of the model. 108 

Results 109 

Prostate Boolean model construction 110 

A network of signalling pathways and genes relevant for prostate cancer progression was 111 

assembled to recapitulate the potential deregulations that lead to high-grade tumours. 112 

Dynamical properties were added onto this network to perform simulations, uncover 113 

therapeutic targets and explore drug combinations. The model was built upon a generic 114 

cancer Boolean model by Fumiã and Martins (2013), which integrates major signalling 115 

pathways and their substantial cross-talks. The pathways include the regulation of cell death 116 

and proliferation in many tumours.  117 

This initial generic network was extended to include prostate-cancer-specific genes (e.g., 118 

SPOP, AR, etc.), pathways identified using ROMA (Martignetti et al., 2016), OmniPath (Türei 119 

et al., 2021) and up-to-date literature. ROMA is applied on omics data, either transcriptomics 120 

or proteomics. In each pathway, the genes that contribute the most to the overdispersion are 121 

selected. ROMA was applied to the TCGA transcriptomics data using gene sets from cancer 122 

pathway databases (Appendix 1, Section 1.1.3, Appendix figure 1). These results were used 123 

as guidelines to extend the network to fully cover the alterations found in prostate cancer 124 

patients. OmniPath was used to complete our network finding connections between the 125 



proteins of interest known to play a role in the prostate and the ones identified with ROMA, 126 

and the list of genes already present in the model (Appendix 1, Sections 1.1.3 and 1.1.4, 127 

Appendix figures 2 and 3). The final network includes pathways such as androgen receptor, 128 

MAPK, Wnt, NFkB, PI3K/AKT, MAPK, mTOR, SHH, the cell cycle, the epithelial-129 

mesenchymal transition (EMT), apoptosis and DNA damage pathways. 130 

This network was then converted into a Boolean model where all variables can take two 131 

values: 0 (inactivate or absent) or 1 (activate or present). Our model aims at predicting 132 

prostate phenotypic behaviours for healthy and cancer cells in different conditions. Nine 133 

inputs that represent some of these physiological conditions of interest were considered: 134 

Epithelial Growth Factor (EGF), Fibroblast Growth Factor (FGF), Transforming Growth 135 

Factor beta (TGFbeta), Nutrients, Hypoxia, Acidosis, Androgen, Tumour Necrosis Factor 136 

alpha (TNF alpha) and Carcinogen. These input nodes have no regulation. Their value is 137 

fixed according to the simulated experiment to represent the status of the 138 

microenvironmental characteristics (e.g., the presence or absence of growth factors, oxygen, 139 

etc.). A more complex multiscale approach would be required to consider the dynamical 140 

interaction with other cell types. 141 

We defined six variables as output nodes that allow the integration of multiple phenotypic 142 

signals and simplify the analysis of the model. Two of these phenotypes represent the 143 

possible growth status of the cell: Proliferation and Apoptosis. Apoptosis is activated by 144 

Caspase 8 or Caspase 9, while Proliferation is activated by cyclins D and B (read-outs of the 145 

G1 and M phases, respectively). The Proliferation output is described in published models 146 

as specific stationary protein activation patterns, namely the following sequence of activation 147 

of cyclins: Cyclin D, then Cyclin E, then Cyclin A, and finally Cyclin B (Traynard et al., 2016). 148 

Here, we considered a proper sequence when Cyclin D activates first, allowing the release 149 

of the transcriptional factor E2F1 from the inhibitory complex it was forming with RB 150 

(retinoblastoma protein), and then triggering a series of events leading to the activation of 151 

Cyclin B, responsible for the cell’s entry into mitosis (Appendix 1, Section 2.2, Appendix 152 

figure 5). We also define several phenotypic outputs that are readouts of cancer hallmarks: 153 

Invasion, Migration, (bone) Metastasis and DNA repair. The final model accounts for 133 154 

nodes and 449 edges (Figure 2, Supplementary File 1, and in GINsim format at the address: 155 

http://ginsim.org/model/signalling-prostate-cancer).  156 

  157 

http://ginsim.org/model/signalling-prostate-cancer


Prostate Boolean model simulation 158 

The model can be considered as a model of healthy prostate cells when no mutants (or 159 

fused genes) are present. We refer to this model as the wild type model. These healthy cells 160 

mostly exhibit quiescence (neither proliferation nor apoptosis) in the absence of any input 161 

(Figure 3A). When Nutrients and growth factors (EGF or FGF) are present, Proliferation is 162 

activated (Figure 3B). Androgen is necessary for AR activation and helps in the activation of 163 

Proliferation, even though it is not necessary when Nutrients or growth factors are present. 164 

Cell death factors (such as Caspase 8 or 9) trigger Apoptosis in the absence of SPOP, while 165 

Hypoxia and Carcinogen facilitate apoptosis but are not necessary if cell death factors are 166 

present (Figure 3C). 167 

In our model, the progression towards metastasis is described as a stepwise process. 168 

Invasion is first activated by known pro-invasive proteins: either β-catenin (Francis et al., 169 

2013) or a combination of CDH2 (De Wever et al., 2004), SMAD (Daroqui et al., 2012) or 170 

EZH2 (Ren et al., 2012). Migration is then activated by Invasion and EMT and with either 171 

AKT or AR (Castoria et al., 2011). Lastly, (bone) Metastasis is activated by Migration and 172 

one of three nodes: RUNX2 (Altieri et al., 2009), ERG (Adamo and Ladomery, 2016) or ERG 173 

fused with TMPRSS2 (St John et al., 2012), FLI1, ETV1 or ETV4 (The Cancer Genome 174 

Atlas Research Network, 2015). 175 

This prostate Boolean model was simulated stochastically using MaBoSS (Stoll et al., 2017, 176 

2012) and validated by recapitulating known phenotypes of prostate cells under 177 

physiological conditions (Figure 3 and Appendix 1, Sections 2.2 and 2.3, Appendix figures 5-178 

7). In particular, we tested that combinations of inputs lead to non-aberrant phenotypes such 179 

as growth factors leading to apoptosis in wild type conditions; we also verified that the cell 180 

cycle events occur in proper order: as CyclinD gets activated, RB1 is phosphorylated and 181 

turned OFF, allowing E2F1 to mediate the synthesis of CyclinB (see Supplementary File 2 182 

for the jupyter notebook and the simulation of diverse cellular conditions). 183 

Personalisation of the prostate Boolean model  184 

Personalised TCGA prostate cancer patient Boolean models 185 

We tailored the generic prostate Boolean model to a set of 488 TCGA prostate cancer 186 

patients (Appendix 1, Section 4, Appendix figure 9) using our personalisation method 187 

(PROFILE, (Béal et al., 2019)), constructing 488 individual Boolean models, one for each 188 

patient. Personalised models were built using three types of data: discrete data such as 189 

mutations and copy number alterations (CNA) and continuous data such as RNAseq data. 190 

For discrete data, the nodes corresponding to the mutations or the CNA were forced to 0 or 191 

1 according to the effect of alterations, based on a priori knowledge (i.e., if the mutation was 192 

reported to be activating or inhibiting the gene’s activity). For continuous data, the 193 

personalisation method modifies the value for the transition rates of model variables and 194 

their initial conditions to influence the probability of some transitions. This corresponds, in a 195 

biologically-meaningful way, to translating genetic mutations as lasting modifications making 196 

the gene independent of regulation, and to translating RNA expression levels as modulation 197 



of a signal but not changing the regulation rules (see Materials and Methods and in 198 

Appendix 1, Section 4.1, Appendix figure 10-14).  199 

We assess the general behaviour of the individual patient-specific models by comparing the 200 

model outputs (i.e., probabilities to reach certain phenotypes) with clinical data. Here, the 201 

clinical data consist of a Gleason grade score associated with each patient, which in turn 202 

corresponds to the gravity of the tumour based on its appearance and the stage of invasion 203 

(Chen and Zhou, 2016; Gleason, 1992, 1977). We gathered output probabilities for all 204 

patient-specific models and confronted them to their Gleason scores. The phenotype 205 

DNA_repair, which can be interpreted as a sensor of DNA damage and genome integrity 206 

which could lead to DNA repair, seems to separate low and high Gleason scores (Figure 4A 207 

and Appendix 1, Section 4.1, Appendix figures 15-18), confirming that DNA damage 208 

pathways are activated in patients (Marshall et al., 2019) but may not lead to the triggering of 209 

apoptosis in this model (Appendix 1, Section 4.1, Appendix figure 11). Also, the centroids of 210 

Gleason grades tend to move following Proliferation, Migration and Invasion variables. We 211 

then looked at the profiles of the phenotype scores across patients and their Gleason grade 212 

and found that the density of high Proliferation score (close to 1, Figure 4B) tends to 213 

increase as the Gleason score increases (from low to intermediate to high) and these 214 

distributions are significantly different (Kruskal-Wallis rank sum test, p-value=0.00207; 215 

Appendix 1, Section 4.1). The Apoptosis phenotype, however, does not have a clear trend 216 

across grades’ probabilities (Figure 4C), even though the distributions are significantly 217 

different (Kruskal-Wallis rank sum test, p-value=2.83E-6; Appendix 1, Section 4.1).  218 

Personalised drug predictions of TCGA Boolean models 219 

Using the 488 TCGA-patient-specific models, we looked in each patient for genes that, when 220 

inhibited, hamper Proliferation or promote Apoptosis in the model. We focused on these 221 

inhibitions as most drugs interfere with the protein activity related to these genes, even 222 

though our methodology allows us to study increased protein activity related to over-223 

expression of genes as well (Béal et al., 2019; Montagud et al., 2017). Interestingly, we 224 

found several genes that were found as suitable points of intervention in most of the patients 225 

(MYC_MAX complex and SPOP were identified in more than 80% of the cases) (Appendix 1, 226 

Section 4.2, Appendix figure 19 and 20), but others were specific to only some of the 227 

patients (MXI1 was identified in only 4 patients, 1% of the total, GLI in only 7% and WNT in 228 

8% of patients). All the TCGA-specific personalised models can be found in Supplementary 229 

File 3, and the TCGA mutants and their phenotype scores can be found in Supplementary 230 

File 4.  231 

Furthermore, we explored the possibility of finding combinations of treatments that could 232 

reduce the Proliferation phenotype or increase the Apoptosis one. To lower the 233 

computational power need, we narrowed down the list of potential candidates to a set of 234 

selected genes that are targets of already-developed drugs relevant in cancer progression 235 

(Table 1) and analysed the simulations of the models with all the single and combined 236 

perturbations.  237 

We used the models to grade the effect that the combined treatments have in each one of 238 

the 488 TCGA-patient-specific models’ phenotypes. This list of combinations of treatments 239 

can be used to compare the effects of drugs on each TCGA patient and allows us to propose 240 



some of them for individual patients and to suggest drugs suitable to groups of patients 241 

(Supplementary File 4). Indeed, the inactivation of some of the targeted genes had a greater 242 

effect in some patients than in others, suggesting the possibility for the design of 243 

personalised drug treatments. For instance, for the TCGA-EJ-5527 patient, the use of 244 

MYC_MAX complex inhibitor reduced Proliferation to 66%. For this patient, combining 245 

MYC_MAX with other inhibitors, such as AR or AKT, did not further reduce the Proliferation 246 

score (67% in these cases). Other patients have MYC_MAX as an interesting drug target, 247 

but the inhibition of this complex did not have such a dramatic effect on their Proliferation 248 

scores as in the case of TCGA-EJ-5527. Likewise, for the TCGA-H9-A6BX patient, the use 249 

of SPOP inhibitor increased Apoptosis by 87%, while the use of a combination of cFLAR and 250 

SPOP inhibitors further increased Apoptosis by 89%. For the rest of this section, we focus 251 

on the analysis of clinical groups rather than individuals.  252 

Studying the decrease of Proliferation, we found that AKT is the top hit in Gleason Grades 1, 253 

2, 3, and 4, seconded by EGFR and SPOP in Grade 1, by SPOP and PIP3 in Grade 2, by 254 

PIP3 and AR in Grade 3, and by CyclinD and MYC_MAX in Grade 4. MYC_MAX is the top 255 

hit in Grade 5, seconded by AR (Appendix 1, Section 4.2, Appendix figure 19). In regards to 256 

the increase of Apoptosis, SPOP is the top hit in all grades, seconded by SSH in Grades 1, 2 257 

and 3 and by AKT in Grade 4 (Appendix 1, Section 4.2, Appendix figure 20). It is interesting 258 

to note here that many of these genes are targeted by drugs (Table 1). Notably, AR is the 259 

target of the drug Enzalutamide, which is indicated for men with an advanced stage of the 260 

disease (Scott, 2018), or that MYC is the target of BET bromodomain inhibitors and are 261 

generally effective in castration-resistant prostate cancer cases (Coleman et al., 2019). 262 

The work on patient data provided some possible insights and suggested patient- and grade-263 

specific potential targets. To validate our approach experimentally, we personalised the 264 

prostate model to different prostate cell lines, where we performed drug assays to confirm 265 

the predictions of the model. 266 

Personalised drug predictions of LNCaP Boolean model 267 

We applied the methodology for personalisation of the prostate model to eight prostate cell 268 

lines available in GDSC (Iorio et al, 2016): 22RV1, BPH-1, DU-145, NCI-H660, PC-3, PWR-269 

1E and VCaP (results in Appendix File, Section 5 and are publicly available in 270 

Supplementary File 5). We decided to focus the validation on one cell line, LNCaP. 271 

LNCaP, first isolated from a human metastatic prostate adenocarcinoma found in a lymph 272 

node (Horoszewicz et al, 1983), is one of the most widely used cell lines for prostate cancer 273 

studies. Androgen-sensitive LNCaP cells are representative of patients sensitive to 274 

treatments as opposed to resistant cell lines such as DU-145. Additionally, LNCaP cells 275 

have been used to obtain numerous subsequent derivatives with different characteristics 276 

(Cunningham and You, 2015). 277 

The LNCaP personalisation was performed based on mutations as discrete data and RNA-278 

Seq as continuous data. The resulting LNCaP-specific Boolean model was then used to 279 

identify all possible combinations of mutations (interpreted as effects of therapies) and to 280 

study the synergy of these perturbations. For that purpose, we automatically performed 281 

single and double mutant analyses on the LNCaP-specific model (knock-out and 282 

overexpression) (Montagud et al., 2017) and focused on the model phenotype probabilities 283 



as read-outs of the simulations. The analysis of the complete set of simulations for the 284 

32258 mutants can be found in the Appendix 1, Section 6.1 and in Supplementary File 6, 285 

where the LNCaP-cell-line-specific mutants and their phenotype scores are reported for all 286 

mutants. Among all combinations, we identified the top 20 knock-out mutations that depleted 287 

Proliferation or increased Apoptosis the most. As some of them overlapped, we ended up 288 

with 29 nodes: AKT, AR, ATR, AXIN1, Bak, BIRC5, CDH2, cFLAR, CyclinB, CyclinD, E2F1, 289 

eEF2K, eEF2, eEF2K, EGFR, ERK, HSPs, MED12, mTORC1, mTORC2, MYC, MYC_MAX, 290 

PHDs, PI3K, PIP3, SPOP, TAK1, TWIST1, and VHL. We used the scores of these nodes to 291 

further trim down the list to have 10 final nodes (AKT, AR, cFLAR, EGFR, ERK, HSPs, 292 

MYC_MAX, SPOP and PI3K) and added 7 other nodes whose genes are considered 293 

relevant in cancer biology, such as AR_ERG fusion, Caspase8, HIF1, GLUT1, MEK1_2, 294 

p14ARF, ROS and TERT (Table 1). We did not consider the overexpression mutants as they 295 

have a very difficult translation to drug uses and clinical practices. 296 

To further analyse the mutant effects, we simulated the LNCaP model with increasing node 297 

inhibition values to mimic the effect of drugs’ dosages using a methodology we specifically 298 

developed for these purposes (PROFILE_v2 and available at 299 

https://github.com/ArnauMontagud/PROFILE_v2). Six simulations were done for each 300 

inhibited node, with 100% of node activity (no inhibition), 80%, 60%, 40%, 20% and 0% (full 301 

knock-out) (see Methods). A nutrient-rich media with EGF was used for these simulations, 302 

and we show results on three additional sets of initial conditions in the Appendix 1, Section 303 

6, Appendix figure 27: a nutrient-rich media with androgen, with androgen and EGF, and 304 

with none, that correspond to experimental conditions that are tested here. We applied this 305 

gradual inhibition, using increasing drugs’ concentrations, to a reduced list of drug-targeted 306 

genes relevant for cancer progression (Table 1). We confirmed that the inhibition of different 307 

nodes affected differently the probabilities of the outputs (Appendix 1, Section 7.3.1, 308 

Appendix figures 34 and 35). Notably, the Apoptosis score was slightly promoted when 309 

knocking out SPOP under all growth conditions (Appendix 1, Section 7.3.1, Appendix figure 310 

35). Likewise, Proliferation depletion was accomplished when HSPs or MYC_MAX were 311 

inhibited under all conditions and, less notably, when ERK, EGFR, SPOP or PI3K were 312 

inhibited (Appendix 1, Section 7.3.1, Appendix figure 35). 313 

Additionally, these gradual inhibition analyses can be combined to study the interaction of 314 

two simultaneously inhibiting nodes (Appendix 1, Section 7.3.2, Appendix figure 36 and 37). 315 

For instance, the combined gradual inhibition of ERK and MYC_MAX nodes affects the 316 

Proliferation score in a balanced manner (Figure 5A) even though MYC_MAX seems to 317 

affect this phenotype more, notably at low activity levels. By extracting subnetworks of 318 

interaction around ERK and MYC_MAX and comparing them, we found that the pathways 319 

they belong to have complementary downstream targets participating in cell proliferation 320 

through targets in MAPK and cell cycle pathways. This complementarity could explain the 321 

synergistic effects observed (Figure 5A and 5C). 322 

Lastly, drug synergies can be studied using Bliss Independence using the results from single 323 

and combined simulations with gradual inhibitions. This score compares the combined effect 324 

of two drugs with the effect of each one of them, with a synergy when the value of this score 325 

is lower than 1. We found that the combined inhibition of ERK and MYC_MAX nodes on the 326 

Proliferation score was synergistic (Figure 5C). Another synergistic pair is the combined 327 

gradual inhibition of HSPs and PI3K nodes that also affects the Proliferation score in a joint 328 

manner (Figure 5B), with some Bliss Independence synergy found (Figure 5D). A complete 329 
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study on the Bliss Independence synergy of all the drugs considered in the present work on 330 

Proliferation and Apoptosis phenotypes can be found in Appendix 1, Section 7.3.2, Appendix 331 

figures 38 and 39. 332 

Experimental validation of predicted targets 333 

Drugs associated with the proposed targets 334 

To identify drugs that could act as potential inhibitors of the genes identified with the Boolean 335 

model, we explored the drug-target associations in DrugBank (Wishart et al., 2018) and 336 

ChEMBL (Gaulton et al., 2017). We found drugs that targeted almost all genes 337 

corresponding to the nodes of interest in Table 1, except for cFLAR, p14ARF and SPOP. 338 

However, we could not identify experimental cases where drugs targeting both members of 339 

the proposed combinations were available (Appendix 1, Section 7.1 and in Supplementary 340 

File 6). One possible explanation is that the combinations predicted by the model suggest, in 341 

some cases, to overexpress the potential target and most of the drugs available act as 342 

inhibitors of their targets. 343 

Using the cell-line specific models, we tested if the LNCaP cell line was more sensitive than 344 

the rest of the prostate cell lines to the LNCaP-specific drugs identified in Table 1. We 345 

compared GDSC’s Z-score of these drugs in LNCaP with their Z-scores in all GDSC cell 346 

lines (Figure 6 and Appendix 1, Section 7.2, Appendix figure 33). We observed that LNCaP 347 

is more sensitive to drugs targeting AKT or TERT than the rest of the studied prostate cell 348 

lines. Furthermore, we saw that the drugs that targeted the genes included in the model 349 

allowed the identification of cell line specificities (Appendix 1, Section 7.1). For instance, 350 

target enrichment analysis showed that LNCaP cell lines are especially sensitive to drugs 351 

targeting PI3K/AKT/mTOR, hormone-related (AR targeting) and Chromatin (bromodomain 352 

inhibitors, regulating Myc) pathways (adjusted p-values from target enrichment: 0.001, 0.001 353 

and 0.032, respectively, Appendix 1, Section 7.1, Appendix table 2), which corresponds to 354 

the model predictions (Table 1). Also, the LNCaP cell line is more sensitive to drugs 355 

targeting model-identified nodes than to drugs targeting other proteins (Appendix 1, Section 356 

7.1, Appendix figure 32, Mann-Whitney p-value 0.00041), and this effect is specific for 357 

LNCaP cell line (Mann-Whitney p-values ranging from 0.0033 to 0.38 for other prostate 358 

cancer cell lines). 359 

Overall, the drugs proposed through this analysis suggest the possibility to repurpose drugs 360 

that are used in treating other forms of cancer for prostate cancer and open the avenue for 361 

further experimental validations based on these suggestions. 362 

Experimental validation of drugs in LNCaP  363 

To validate the model predictions of the candidate drugs, we selected four drugs that target 364 

HSPs and PI3K and tested them in LNCaP cell line experiments by using endpoint cell 365 

viability measurement assays and real-time cell survival assays using the xCELLigence 366 

system (see Methods). The drug selection was a compromise between the drugs identified 367 

by our analyses (Table 1) and their effect in diminishing LNCaP’s proliferation (see the 368 

previous section). In both assays, drugs that target HSP90AA1 and PI3K/AKT pathway 369 

genes retrieved from the model analyses were found to be effective against cell proliferation. 370 



The Hsp90 chaperone is expressed abundantly and plays a crucial role in the correct folding 371 

of a wide variety of proteins such as protein kinases and steroid hormone receptors (Schopf 372 

et al., 2017). Hsp90 can act as a protector of less stable proteins produced by DNA 373 

mutations in cancer cells (Barrott and Haystead, 2013; Hessenkemper and Baniahmad, 374 

2013). Currently, Hsp90 inhibitors are in clinical trials for multiple indications in cancer (Chen 375 

et al., 2019; Iwai et al., 2012; Le et al., 2017). The PI3K/AKT signalling pathway controls 376 

many different cellular processes such as cell growth, motility, proliferation, and apoptosis 377 

and is frequently altered in different cancer cells (Carceles-Cordon et al., 2020; Shorning et 378 

al., 2020). Many PI3K/AKT inhibitors are in different stages of clinical development, and 379 

some of them are approved for clinical use (Table 1). 380 

Notably, Hsp90 (NMS-E973,17-DMAG) and PI3K/AKT pathway (PI-103, Pictilisib) inhibitors 381 

showed a dose-dependent activity in the endpoint cell viability assay determined by the 382 

fluorescent resazurin after a 48-hour incubation (Figure 7). This dose-dependent activity is 383 

more notable in Hsp90 drugs (NMS-E973,17-DMAG) than in PI3K/AKT pathway (Pictilisib) 384 

ones and very modest for PI-103. 385 

We studied the real-time response of LNCaP cell viability upon drug addition and saw that 386 

the LNCaP cell line is sensitive to Hsp90 and PI3K/AKT pathway inhibitors (Figure 8 and 9, 387 

respectively). Both Hsp90 inhibitors tested, 17-DMAG and NMS-E973, reduced the cell 388 

viability 12 hours after drug supplementation (Figure 8A for 17-DMAG and Figure 8B for 389 

NMS-E973), with 17-DMAG having a stronger effect and in a more clear concentration-390 

dependent manner than NMS-E973 (Appendix 1, Section 8, Appendix figure 40, panels B-D 391 

for 17-DMAG and panels F-H for NMS-E973). 392 

Likewise, both PI3K/AKT pathway inhibitors tested, Pictilisib and PI-103, reduced the cell 393 

viability immediately after drug supplementation (Figure 9A for Pictilisib and Figure 9B for PI-394 

103), in a concentration-dependent manner (Appendix 1, Section 8, Appendix figure 41, 395 

panels B-D for Pictilisib and panels F-H for PI-103). In addition, Hsp90 inhibitors had a more 396 

prolonged effect on the cells’ proliferation than PI3K/AKT pathway inhibitors. 397 

Discussion 398 

Clinical assessment of cancers is moving towards more precise, personalised treatments, as 399 

the times of one-size-fits-all treatments are no longer appropriate, and patient-tailored 400 

models could boost the success rate of these treatments in clinical practice. In this study, we 401 

set out to develop a methodology to investigate drug treatments using personalised Boolean 402 

models. Our approach consists of building a model that represents the patient-specific 403 

disease status and retrieving a list of proposed interventions that affect this disease status, 404 

notably by reducing its pro-cancerous behaviours. In this work, we have showcased this 405 

methodology by applying it to TCGA prostate cancer patients and to GDSC prostate cancer 406 

cell lines, finding patient- and cell-line-specific targets and validating selected cell-line-407 

specific predicted targets (Figure 1). 408 

First, a prostate cancer Boolean model that encompasses relevant signalling pathways in 409 

cancer was constructed based on already published models, experimental data analyses 410 

and pathway databases (Figure 2). The influence network and the assignment of logical 411 

rules for each node of this network were obtained from known interactions described in the 412 



literature (Figure 3). This model describes the regulation of invasion, migration, cell cycle, 413 

apoptosis, androgen and growth factors signalling in prostate cancer (Appendix File, Section 414 

1). 415 

Second, from this generic Boolean model, we constructed personalised models using the 416 

different datasets, i.e. 488 patients from TCGA and eight cell lines from GDSC. We obtained 417 

Gleason-score-specific behaviours for TCGA’s patients when studying their Proliferation and 418 

Apoptosis scores, observing that high Proliferation scores are higher in high Gleason grades 419 

(Figure 4). Thus, the use of these personalised models can help rationalise the relationship 420 

of Gleason grading with some of these phenotypes.  421 

Likewise, GDSC data was used with the prostate model to obtain prostate-specific cell-line 422 

models (Figure 6). These models show differential behaviours, notably in terms of Invasion 423 

and Proliferation phenotypes (Appendix 1, Section 5, Appendix figure 21). One of these cell-424 

line-specific models, LNCaP, was chosen, and the effects of all its genetic perturbations 425 

were thoroughly studied. We studied 32258 mutants, including single and double mutants, 426 

knock-out and over-expressed, and their phenotypes (Appendix 1, Section 6.1, Appendix 427 

figures 28 and 29). 32 knock-out perturbations that depleted Proliferation and/or increased 428 

Apoptosis were identified, and 16 of them were selected for further analyses (Table 1). The 429 

LNCaP-specific model was simulated using different initial conditions that capture different 430 

growth media’s specificities, such as RPMI media with and without androgen or epidermal 431 

growth factor (Appendix 1, Section 6, Appendix figure 27). 432 

Third, these personalised models were used to simulate the inhibition of druggable genes 433 

and proteins, uncovering new treatment’s combination and their synergies. We developed a 434 

methodology to simulate drug inhibitions in Boolean models, termed PROFILE_v2, as an 435 

extension of previous works (Béal et al., 2019). The LNCaP-specific model was used to 436 

obtain simulations with nodes and pairs of nodes corresponding to the genes of interest 437 

inhibited with varying strengths. This study allowed us to compile a list of potential targets 438 

(Table 1) and to identify potential synergies among genes in the model (Figure 5). Some of 439 

the drugs that targeted these genes, such as AKT and TERT, were identified in GDSC as 440 

having more sensitivity in LNCaP than in the rest of the prostate cancer cell lines (Figure 6). 441 

In addition, drugs that targeted genes included in the model allowed the identification of cell 442 

line specificities (Appendix 1, Section 5). 443 

Fourth, we validated the effect of Hsp90 and PI3K/AKT pathway inhibitors on the LNCaP cell 444 

line experimentally, finding a concentration-dependent inhibition of the cell line viability as 445 

predicted, confirming the role of the drugs targeting these proteins in reducing LNCaP’s 446 

proliferation (Figure 7 and 8). Notably, these targets have been studied in other works on 447 

prostate cancer (Chen et al., 2019; Le et al., 2017). 448 

The study presented here enables the study of drug combinations and their synergies. One 449 

reason for searching for combinations of drugs is that these have been described for 450 

allowing the use of lower doses of each of the two drugs reducing their toxicity (Bayat 451 

Mokhtari et al., 2017), evading compensatory mechanisms and combating drug resistances 452 

(Al-Lazikani et al., 2012; Krzyszczyk et al., 2018).  453 

Even if this approach is attractive and promising, it has some limitations. The scope of 454 

present work is to test this methodology on a prostate model and infer patient-specific 455 



prostate cancer treatments. The method need to be adapted if it were to be expanded to 456 

study other cancers by using other models and target lists. The analyses performed with the 457 

mathematical model do not aim to predict drug dosages per se but to help in the 458 

identification of potential candidates. The patient-specific changes in Proliferation and 459 

Apoptosis scores upon mutation are maximal theoretical yields that are used to rank the 460 

different potential treatments and should not be used as a direct target for experimental 461 

results or clinical trials. Our methodology suggests treatments for individual patients, but the 462 

obtained results vary greatly from patient to patient, which is not an uncommon issue of 463 

personalised medicine (Ciccarese et al., 2017; Molinari et al., 2018). This variability is an 464 

economic challenge for labs and companies to pursue true patient-specific treatments and 465 

also poses challenges in clinical trial designs aimed at validating the model based on the 466 

selection of treatments (Cunanan et al., 2017). Nowadays, and because of these constraints, 467 

it might be more commercially interesting to target group-specific treatments, which can be 468 

more easily related to clinical stages of the disease. 469 

Mathematical modelling of patient profiles helps to classify them in groups with differential 470 

characteristics, providing, in essence, a grade-specific treatment. We, therefore, based our 471 

analysis on clinical grouping defined by the Gleason grades, but some works have 472 

emphasised the difficulty to properly assess them (Chen and Zhou, 2016) and, as a result, 473 

may not be the perfect predictor for the patient subgrouping in this analysis, even though it is 474 

the only available one for these datasets. The lack of subgrouping that stratifies patients 475 

adequately may undermine the analysis of our results and could explain the Proliferation and 476 

Apoptosis scores of high-grade and low-grade Gleason patients. 477 

Moreover, the behaviours observed in the simulations of the cell-lines-specific models do not 478 

always correspond to what is reported in the literature. The differences between simulation 479 

results and biological characteristics could be addressed in further studies by including other 480 

pathways, for example, better describing the DNA repair mechanisms, or by tailoring the 481 

model with different sets of data, as the data used to personalise these models do not allow 482 

for clustering these cell lines according to their different characteristics (Appendix 1, Section 483 

5, Appendix figure 24 and 25). In this sense, another limitation is that we use static data (or a 484 

snapshot of dynamic data) to build dynamic models and to study its stochastic results. Thus, 485 

these personalised models would likely improve their performance if they were fitted to 486 

dynamic data (Saez-Rodriguez and Blüthgen, 2020) or quantitative versions of the models 487 

were built, such as ODE-based, that may capture more fine differences among cell lines. As 488 

perspectives, we are working on integrating these models in multiscale models to study the 489 

effect of the tumour microenvironment (Ponce-de-Leon et al., 2021, 2022), on including 490 

information to simulate multiple reagents targeting a single node of the model, on scaling 491 

these multiscale models to exascale high-performance computing clusters (Montagud et al., 492 

2021; Saxena et al., 2021), and on streamlining these studies using workflows in computing 493 

clusters to fasten the processing of new, bigger cohorts, as in the PerMedCoE project 494 

(https://permedcoe.eu/).    495 

The present work contributes to efforts aimed at using modelling (Eduati et al., 2020; Rivas-496 

Barragan et al., 2020; Gómez Tejeda Zañudo et al., 2017) and other computational methods 497 

(Madani Tonekaboni et al., 2018; Menden et al., 2019) for the discovery of novel drug 498 

targets and combinatorial strategies. Our study expands the prostate drug catalogue and 499 

improves predictions of the impact of these in clinical strategies for prostate cancer by 500 

proposing and grading the effectiveness of a set of drugs that could be used off-label or 501 

https://permedcoe.eu/


repurposed. The insights gained from this study present the potential of using personalised 502 

models to obtain precise, personalised drug treatments for cancer patients.  503 



Materials and Methods 504 

Data acquisition 505 

Publicly available data of 489 human prostate cancer patients from TCGA described in 506 

(Hoadley et al., 2018) were used in the present work. We gathered mutations, CNA, RNA 507 

and clinical data from cBioPortal 508 

(https://www.cbioportal.org/study/summary?id=prad_tcga_pan_can_atlas_2018) for all of 509 

these samples resulting in 488 with complete omics datasets.  510 

Publicly available data of cell lines used in the present work were obtained from the 511 

Genomics of Drug Sensitivity in Cancer database (GDSC) (Iorio et al., 2016). Mutations, 512 

CNA and RNA data, as well as cell lines descriptors, were downloaded from 513 

(https://www.cancerrxgene.org/downloads). In this work, we have used 3- and 5-stage 514 

Gleason grades. Their correspondence is the following: GG Low is GG 1, GG Intermediate is 515 

GG 2 and 3, and GG High is GG 4 and 5. 516 

All these data were used to personalise Boolean models using our PROFILE method (Béal 517 

et al., 2019). 518 

Prior knowledge network construction  519 

Several sources were used in building this prostate Boolean model and, in particular, the 520 

model published by Fumiã and Martins (2013). This model includes several signalling 521 

pathways such as the ones involving receptor tyrosine kinase (RTKs), phosphatidylinositol 3-522 

kinase (PI3K)/AKT, WNT/b-Catenin, transforming growth factor-b (TGF-b)/Smads, cyclins, 523 

retinoblastoma protein (Rb), hypoxia-inducible transcription factor (HIF-1), p53 and ataxia-524 

telangiectasia mutated (ATM)/ataxia-telangiectasia and Rad3-related (ATR) protein kinases. 525 

The model includes these pathways as well as the substantial cross-talks among them. For 526 

a complete description of the process of construction, see Appendix 1, Section 1. 527 

The model also includes several pathways that have a relevant role in our datasets identified 528 

by ROMA (Martignetti et al., 2016), a software that uses the first principal component of a 529 

PCA analysis to summarise the coexpression of a group of genes in the gene set, identifying 530 

significantly overdispersed pathways with a relevant role in a given set of samples. This 531 

software was applied to the TCGA transcriptomics data using the gene sets described in the 532 

Atlas of Cancer Signaling Networks, ACSN (Kuperstein et al., 2015) (www.acsn.curie.fr) and 533 

in Hallmarks (Liberzon et al., 2015) (Appendix 1, Section 1.1.3, Appendix figure 1) and 534 

highlighted the signalling pathways that show high variance across all samples, suggesting 535 

candidate pathways and genes. Additionally, OmniPath (Türei et al., 2021) was used to 536 

extend the model and complete it, connecting the nodes from Fumiã and Martins and the 537 

ones from ROMA analysis. OmniPath is a comprehensive collection of literature-curated 538 

human signalling pathways, which includes several databases such as Signor (Perfetto et 539 

al., 2016) or Reactome (Fabregat et al., 2016) and that can be queried using pypath, a 540 

Python module for molecular networks and pathways analyses. 541 

https://www.cancerrxgene.org/downloads
https://www.cbioportal.org/study/summary?id=prad_tcga_pan_can_atlas_2018
http://www.acsn.curie.fr/


Fusion genes are frequently found in human prostate cancer and have been identified as a 542 

specific subtype marker (The Cancer Genome Atlas Research Network, 2015). The most 543 

frequent is TMPRSS2:ERG, as it involves the transcription factor ERG, which leads to cell-544 

cycle progression. ERG fuses with the AR-regulated TMPRSS2 gene promoter to form an 545 

oncogenic fusion gene that is especially common in hormone-refractory prostate cancer, 546 

conferring androgen responsiveness to ERG. A literature search reveals that ERG directly 547 

regulates EZH2, oncogene c-Myc and many other targets in prostate cancer (Kunderfranco 548 

et al., 2010).  549 

We modelled the gene fusion with activation of ERG by the decoupling of ERG in a special 550 

node AR_ERG that is only activated by the AR when the fused_event input node is active. In 551 

the healthy case, fused_event (that represents TMPRSS2:ERG fusion event) is fixed to 0 or 552 

inactive. The occurrence of the gene fusion is represented with the model perturbation 553 

where fused_event is fixed to 1. This AR_ERG node is further controlled by tumour 554 

suppressor NKX3-1 that accelerates DNA_repair response, and avoids the gene fusion 555 

TMPRSS2:ERG. Thus, loss of NKX3-1 favours recruitment to the ERG gene breakpoint of 556 

proteins that promote error-prone non-homologous end-joining (Bowen et al., 2015). 557 

The network was further documented using up-to-date literature and was constructed using 558 

GINsim (Chaouiya et al., 2012), which allowed us to study its stable states and network 559 

properties. 560 

Boolean model construction 561 

We converted the network to a Boolean model by defining a regulatory graph, where each 562 

node is associated with discrete levels of activity (0 or 1). Each edge represents a regulatory 563 

interaction between the source and target nodes and is labelled with a threshold and a sign 564 

(positive or negative). The model is completed by logical rules (or functions), which assign a 565 

target value to each node for each regulator level combination (Abou-Jaoudé et al., 2016; 566 

Chaouiya et al., 2012). The regulatory graph was constructed using GINsim software 567 

(Chaouiya et al., 2012) and then exported in a format readable by MaBoSS software (see 568 

below) in order to perform stochastic simulations on the Boolean model. 569 

The final model has a total of 133 nodes and 449 edges (Supplementary File 1) and includes 570 

pathways such as androgen receptor and growth factor signalling, several signalling 571 

pathways (Wnt, NFkB, PI3K/AKT, MAPK, mTOR, SHH), cell cycle, epithelial-mesenchymal 572 

transition (EMT), Apoptosis, DNA damage, etc. This model has 9 inputs (EGF, FGF, TGF 573 

beta, Nutrients, Hypoxia, Acidosis, Androgen, TNF alpha and Carcinogen presence) and 6 574 

outputs (Proliferation, Apoptosis, Invasion, Migration, (bone) Metastasis and DNA repair). 575 

Note that a node in the network can represent complexes or families of proteins (e.g., AMPK 576 

represents the genes PRKAA1, PRKAA2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, 577 

PRKAG3). The correspondence can be found in “Montagud2021_interactions_sources.xlsx” 578 

and “Montagud2021_nodes_in_pathways.xlsx” in Supplementary File 1. 579 

This model was deposited in the GINsim Database with identifier 252 580 

(http://ginsim.org/model/signalling-prostate-cancer) and in BioModels (Malik-Sheriff et al., 581 

2019) with identifier MODEL2106070001 582 

(https://www.ebi.ac.uk/biomodels/MODEL2106070001). Supplementary File 1 is provided as 583 

http://ginsim.org/model/signalling-prostate-cancer
https://www.ebi.ac.uk/biomodels/MODEL2106070001


a zipped folder with the model in several formats: MaBoSS, GINsim, SBML, as well as 584 

images of the networks and their annotations. An extensive description of the model 585 

construction can be found in the Appendix 1, Section 1. 586 

Stochastic Boolean model simulation 587 

MaBoSS (Stoll et al., 2017, 2012) is a C++ software for stochastically simulating 588 

continuous/discrete-time Markov processes defined on the state transition graph (STG) 589 

describing the dynamics of a Boolean model (for more details, see (Abou-Jaoudé et al., 590 

2016; Chaouiya et al., 2012)). MaBoSS associates transition rates to each node’s activation 591 

and inhibition, enabling it to account for different time scales of the processes described by 592 

the model. Probabilities to reach a phenotype (to have value ON) are thus computed by 593 

simulating random walks on the probabilistic STG. Since a state in the STG can combine the 594 

activation of several phenotypic variables, not all phenotype probabilities are mutually 595 

exclusive (like the ones in Appendix 1, Section 6.1, Appendix figure 28). Using MaBoSS, we 596 

can study an increase or decrease of a phenotype probability when the model variables are 597 

altered (nodes status, initial conditions and transition rates), which may correspond to the 598 

effect of particular genetic or environmental perturbation. In the present work, the outputs of 599 

MaBoSS focused on the readouts of the model, but this can be done for any node of a 600 

model. 601 

MaBoSS applies Monte-Carlo kinetic algorithm (i.e. Gillespie algorithm) to the STG to 602 

produce time trajectories (Stoll et al., 2017, 2012), so time evolution of probabilities are 603 

estimated once a set of initial conditions are defined and a maximum time is set to ensure 604 

that the simulations reach asymptotic solutions. Results are analysed in two ways: (1) the 605 

trajectories for particular model states (states of nodes) can be interpreted as the evolution 606 

of a cell population as a function of time, and (2) asymptotic solutions can be represented as 607 

pie charts to illustrate the proportions of cells in particular model states. Stochastic 608 

simulations with MaBoSS have already been successfully applied to study several Boolean 609 

models (Calzone et al., 2010; Cohen et al., 2015; Remy et al., 2015). A description of the 610 

methods we have used for the simulation of the model can be found in the Appendix 1, 611 

Section 2. 612 

Data tailoring the Boolean model 613 

Logical models were tailored to a dataset using PROFILE to obtain personalised models that 614 

capture the particularities of a set of patients (Béal et al., 2019) and cell lines (Béal et al., 615 

2021). Proteomics, transcriptomics, mutations and CNA data can be used to modify different 616 

variables of the MaBoSS framework, such as node activity status, transition rates and initial 617 

conditions. The resulting ensemble of models is a set of personalised variants of the original 618 

model that can show great phenotypic differences. Different recipes (use of a given data 619 

type to modify a given MaBoSS variable) can be tested to find the combination that better 620 

correlates to a given clinical or otherwise descriptive data.  621 

In the present case, TCGA-patient-specific models were built using mutations, CNA and/or 622 

RNA expression data. After studying the effect of these recipes in the clustering of patients 623 



according to their Gleason grouping (Appendix 1, Section 4.1, Appendix figure 10-14), we 624 

chose to use mutations and CNA as discrete data and RNA expression as continuous data. 625 

Likewise, we tried different personalisation recipes to personalise the GDSC prostate cell 626 

lines models, but as they had no associated clinical grouping features, we were left with the 627 

comparison of the different values for the model’s outputs among the recipes (Appendix 1, 628 

Section 5, Appendix figure 23). We used mutation data as discrete data and RNA expression 629 

as continuous data as it included the most quantity of data and reproduced the desired 630 

results (Appendix 1, Section 5, Appendix figure 23). We decided not to include CNA as 631 

discrete data as it forced LNCAP proliferation to be zero by forcing the E2F1 node to be 0 632 

and the SMAD node to be 1 throughout the simulation (for more details, refer to Appendix 1, 633 

Section 5). 634 

More on PROFILE’s methodology can be found in its own work (Béal et al., 2019) and at its 635 

dedicated GitHub repository: https://github.com/sysbio-curie/PROFILE. A description of the 636 

methods we have used for the personalisation of the models can be found in the Appendix 1, 637 

Section 3. The analysis of the TCGA personalisations and their patient-specific drug 638 

treatments can be found in Appendix 1, Section 4. The analysis of the prostate cell lines 639 

personalisations can be found in Appendix 1, Section 5, with a special focus on the LNCaP 640 

cell line model analysis in Section 6. 641 

High-throughput mutant analysis of Boolean models 642 

MaBoSS allows the study of knock-out or loss-of-function (node forced to 0) and gain-of-643 

function (node forced to 1) mutants as genetic perturbations and of initial conditions as 644 

environmental perturbations. Phenotypes’ stabilities against perturbations can be studied 645 

and allow to determine driver mutations that promote phenotypic transitions (Montagud et 646 

al., 2017). 647 

Genetic interactions were thoroughly studied using our pipeline of computational methods for 648 

Boolean modelling of biological networks (available at https://github.com/sysbio-649 

curie/Logical_modelling_pipeline). LNCaP-specific Boolean model was used to perform 650 

single and double knock-out (node forced to 0) and gain-of-function (node forced to 1) 651 

mutants for each one of the 133 nodes, resulting in a total of 32258 models. These were 652 

simulated under the same initial conditions, their phenotypic results were collected, and a 653 

PCA was applied on the wild-type-centred matrix (Appendix 1, Section 6.1, Appendix figure 654 

28 and 29). In addition, we found that the LNCaP model is very robust against perturbations 655 

of its logical rules by systematically changing an AND for an OR gate or vice versa in all of 656 

its logical rules (Appendix 1, Section 6.2, Appendix figure 30 and 31).  657 

The 488 TCGA-patient-specific models were studied in a similar way, but only perturbing 16 658 

nodes shortlisted for their therapeutic target potential (AKT, AR, Caspase8, cFLAR, EGFR, 659 

ERK, GLUT1, HIF-1, HSPs, MEK1_2, MYC_MAX, p14ARF, PI3K, ROS, SPOP and TERT). 660 

Then, the nodes that mostly contributed to a decrease of Proliferation (Appendix 1, Section 661 

4.2, Appendix figure 19) or an increase in Apoptosis (Appendix 1, Section 4.2, Appendix 662 

figure 20) were gathered from the 488 models perturbed. 663 

Additionally, the results of the LNCaP model’s double mutants were used to quantify the 664 

level of genetic interactions (epistasis or otherwise (Drees et al., 2005)) between two model 665 

https://github.com/sysbio-curie/Logical_modelling_pipeline
https://github.com/sysbio-curie/PROFILE
https://github.com/sysbio-curie/Logical_modelling_pipeline


genetic perturbations (resulting from either the gain-of-function mutation of a gene or from its 666 

knock-out or loss-of-function mutation) with respect to wild type phenotypes’ probabilities 667 

(Calzone et al., 2015). The method was applied to the LNCaP model studying Proliferation 668 

and Apoptosis scores (Appendix 1, Section 7.3.2, Appendix figure 34 and 35). 669 

This genetic interaction study uses the following equation for each gene pair, which is 670 

equation 2 in Calzone et al, (2015): 671 

 (1) 672 

Where  and  are phenotype  fitness values of single gene defects,  is the 673 

phenotype  fitness of the double mutant, and  is one of the four functions: 674 

 (additive) 675 

 (log) 676 

 (multiplicative) 677 

 (min) (2) 678 

To choose the best definition of , the Pearson correlation coefficient is computed 679 

between the fitness values observed in all double mutants and estimated by the null model 680 

(more information on (Drees et al., 2005)). Regarding  fitness value, to a given phenotype 681 

, <1 represents deleterious, >1 beneficial and ≈1 neutral mutation. 682 

Drug simulations in Boolean models 683 

Logical models can be used to simulate the effect of therapeutic interventions and predict 684 

the expected efficacy of candidate drugs on different genetic and environmental 685 

backgrounds by using our PROFILE_v2 methodology. MaBoSS can perform simulations 686 

changing the proportion of activated and inhibited status of a given node. This can be 687 

determined in the configuration file of each model (see, for instance, the “istate” section of 688 

the CFG files in the Supplementary File 1, 3 and 5). For instance, out of 5000 trajectories of 689 

the Gillespie algorithm, MaBoSS can simulate 70% of them with an activated AKT and 30% 690 

with an inhibited AKT node. The phenotypes’ probabilities for the 5000 trajectories are 691 

averaged, and these are considered to be representative of a model with a drug that inhibits 692 

30% of the activity of AKT. The same applies for a combined drug inhibition: a simulation of 693 

50% AKT activity and 50% PI3K will have 50% of them with an activated AKT and 50% with 694 

an activated PI3K. Combining them, this will lead to 25% of the trajectories with both AKT 695 

and PI3K active, 25% with both nodes inactive, 25% with AKT active and 25% with PI3K 696 

active. 697 

In the present work, the LNCaP model has been simulated with different levels of node 698 

activity, with 100% of node activity (no inhibition), 80%, 60%, 40%, 20% and 0% (proper 699 

knock-out), under four different initial conditions, a nutrient-rich media that simulates RPMI 700 

Gibco® media with DHT (androgen), with EGF, with both and with none. In terms of the 701 

model, the initial conditions are Nutrients is ON and Acidosis, Hypoxia, TGF beta, 702 



Carcinogen and TNF alpha are set to OFF. EGF and Androgen values vary upon 703 

simulations. We simulated the inhibition of 17 nodes of interest. These were the 16 nodes 704 

from Table 1 with the addition of the fused AR-ERG (Appendix 1, Section 7.3.1, Appendix 705 

figures 34 and 35) and their 136 pairwise combinations (Appendix 1, Section 7.3.2, Appendix 706 

figures 36 and 37). As we used 6 different levels of activity for each node, the resulting 707 

Appendix figures 36 and 37 comprise a total of 4998 simulations for each phenotype (136 x 708 

6 x 6 + 17 x 6). 709 

Drug synergies have been studied using Bliss Independence. The Combination Index was 710 

calculated with the following equation (Foucquier and Guedj, 2015): 711 

 (3) 712 

Where  and  is the efficiency of the single drug inhibitions and  is the inhibition 713 

resulting from the double drug simulations. A Combination Index (CI) below 1 represents 714 

synergy among drugs (Appendix 1, Section 7.3.2, Appendix figures 36 and 37). 715 

This methodology can be found in its own repository: 716 

https://github.com/ArnauMontagud/PROFILE_v2  717 

Identification of drugs associated with proposed targets 718 

To identify drugs that could act as potential inhibitors of the genes identified with our models 719 

(Table 1), we explored the drug-target associations in DrugBank (Wishart et al., 2018). For 720 

those genes with multiple drug-target links, only those drugs that are selective and known to 721 

have relevance in various forms of cancer are considered here.  722 

In addition to DrugBank searches, we also conducted exhaustive searches in ChEMBL 723 

(Gaulton et al., 2017) (http://doi.org/10.6019/CHEMBL.database.23) to suggest potential 724 

candidates for genes whose information is not well documented in Drug Bank. From the 725 

large number of bioactivities extracted from ChEMBL, we filtered human data and 726 

considered only those compounds whose bioactivities fall within a specific threshold 727 

(IC50/Kd/ Ki<100 nM). 728 

We performed a target set enrichment analysis using the fgsea method (Korotkevich et al., 729 

2016) from the piano R package (Väremo et al., 2013). We targeted pathway information 730 

from the GDSC1 and GDSC2 studies (Iorio et al., 2016) as target sets and performed the 731 

enrichment analysis on the normalised drug sensitivity profile of the LNCaP cell line. We 732 

normalised drug sensitivity across cell lines in the following way: cells were ranked from 733 

most sensitive to least sensitive (using ln(IC50) as drug sensitivity metrics), and the rank 734 

was divided by the number of cell lines tested with the given drug. Thus, the most sensitive 735 

cell line has 0, while the most resistant cell line has 1 normalised sensitivity. This rank-based 736 

metric made it possible to analyse all drug sensitivities for a given cell line without drug-737 

specific confounding factors, like mean IC50 of a given drug, etc. (Appendix 1, Section 7.1 738 

and 7.2). 739 

Cell culture method 740 

For the in vitro drug perturbation validations, we used the androgen-sensitive prostate 741 

adenocarcinoma cell line LNCaP purchased from American Type Culture Collection (ATCC, 742 

https://github.com/ArnauMontagud/PROFILE_v2
http://doi.org/10.6019/CHEMBL.database.23


Manassas, WV, USA). ATCC found no Mycoplasma contamination and the cell line was 743 

identified using STR profiling. Cells were maintained in RPMI-1640 culture media (Gibco, 744 

Thermo Fisher Scientific, Waltham, MA, USA) containing 4.5 g/L glucose, 10% foetal bovine 745 

serum (FBS, Gibco), 1X GlutaMAX (Gibco), 1% PenStrep antibiotics (Penicillin G sodium 746 

salt, and Streptomycin sulfate salt, Sigma-Aldrich, St. Louis, MI, USA). Cells were 747 

maintained in a humidified incubator at 37 °C with 5% CO2 (Sanyo, Osaka, Japan). 748 

Drugs used in the cell culture experiments 749 

We tested two drugs targeted at Hsp90 and two targeted at PI3K complex. 17-DMAG is an 750 

Hsp90 inhibitor with an IC50 of 62 nM in a cell-free assay (Pacey et al., 2011). NMS-E973 is 751 

an Hsp90 inhibitor with DC50 of <10 nM for Hsp90 binding (Fogliatto et al., 2013). Pictilisib is 752 

an inhibitor of PI3Kα/δ with IC50 of 3.3 nM in cell-free assays (Zhan et al., 2017). PI-103 is a 753 

multi-targeted PI3K inhibitor for p110α/β/δ/γ with IC50 of 2 to 3 nM in cell-free assays and 754 

less potent inhibitor to mTOR/DNA-PK with IC50 of 30 nM (Raynaud et al., 2009). All drugs 755 

were obtained from commercial vendors and added to the growth media to have 756 

concentrations of 2, 8, 32, 128 and 512 nM for NMS-E973 and 1, 5, 25, 125 and 625 nM for 757 

the rest of the drugs in the endpoint cell viability and of 3.3, 10, 30 uM for all the drugs in the 758 

RT-CES cytotoxicity assay. 759 

Endpoint cell viability measurements 760 

In vitro toxicity of the selected inhibitors was determined using the viability of LNCaP cells, 761 

determined by the fluorescent resazurin (Sigma-Aldrich, Germany) assay as described 762 

previously (Szebeni et al., 2017). Briefly, the LNCaP cells (10000) were seeded into 96-well 763 

plates (Corning Life Sciences, Tewksbury, MA, USA) in 100 μl RPMI media and incubated 764 

overnight. Test compounds were dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich, 765 

Germany), and cells were treated with an increasing concentration of test compounds: 2, 8, 766 

32, 128 and 512 nM for NMS-E973 and 1, 5, 25, 125 and 625 nM for the rest of the drugs. 767 

The highest applied DMSO content of the treated cells was 0.4%. Cell viability was 768 

determined after 48 hours of incubation. Resazurin reagent (Sigma–Aldrich, Budapest, 769 

Hungary) was added at a final concentration of 25 μg/mL. After 2 hours at 37°C 5%, CO2 770 

(Sanyo) fluorescence (530 nm excitation/580 nm emission) was recorded on a multimode 771 

microplate reader (Cytofluor4000, PerSeptive Biosystems, Framingham, MA, USA). Viability 772 

was calculated with relation to blank wells containing media without cells and to wells with 773 

untreated cells. Each treatment was repeated in 2 wells per plate during the experiments, 774 

except for the PI-103 treatment with 1 nM in which only one well was used. 775 

In these assays, a deviation of 10-15% for in vitro cellular assays is an acceptable variation 776 

as it is a fluorescent assay that detects the cellular metabolic activity of living cells. Thus, in 777 

our analyses, we consider changes above 1.00 to be the same value as the controls. 778 

Real-time cell electronic sensing (RT-CES) cytotoxicity assay 779 

A real-time cytotoxicity assay was performed as previously described (Ozsvári et al., 2010). 780 

Briefly, RT-CES 96-well E-plate (BioTech Hungary, Budapest, Hungary) was coated with 781 

gelatin solution (0.2% in PBS, phosphate buffer saline) for 20 min at 37 °C; then gelatin was 782 



washed twice with PBS solution. Growth media (50 μL) was then gently dispensed into each 783 

well of the 96-well E-plate for background readings by the RT-CES system prior to the 784 

addition of 50 μL of the cell suspension containing 2x104 LNCaP cells. Plates were kept at 785 

room temperature in a tissue culture hood for 30 min prior to insertion into the RT-CES 786 

device in the incubator to allow cells to settle. Cell growth was monitored overnight by 787 

measurements of electrical impedance every 15 min. The next day cells were co-treated with 788 

different drugs with concentrations of 3.3, 10 and 30 μM. Treated and control wells were 789 

dynamically monitored over 72 h by measurements of electrical impedance every 5 min. 790 

Each treatment was repeated in 2 wells per plate during the experiments, except for the 3.3 791 

μM ones in which only one well was used. Continuous recording of impedance in cells was 792 

used as a measurement of the cell growth rate and reflected by the Cell Index value (Solly et 793 

al., 2004).  794 

Note that around hour 15, our RT-CES reader had a technical problem caused by a short 795 

blackout in our laboratory and the reader detected a minor voltage fluctuation while the 796 

uninterruptible power supply (UPS) was switched on. This caused differences that are 797 

consistent across all samples and replicates: all wild type and drug reads decrease at that 798 

time point, except Pictilisib that slightly increases. For the sake of transparency and as the 799 

overall dynamic was not affected, we decided to not remove these readings.  800 
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Tables and their legends 1305 

Table 1: List of selected nodes, their corresponding genes and drugs that were included in 1306 

the drug analysis of the models tailored for TCGA patients and LNCaP cell line.  1307 

Node Gene 
Compound / 

Inhibitor name 
Clinical stage Source 

AKT 

AKT1, 

AKT2, 

AKT3 

PI-103 Preclinical Drug Bank 

Enzastaurin Phase 3 Drug Bank 

Archexin, Pictilisib Phase 2 Drug Bank 

AR AR 

Abiraterone,  

Enzalutamide, 

Formestane, 

Testosterone 

propionate 

Approved Drug Bank 

5alpha-androstan-

3beta-ol 
Preclinical Drug Bank 

Caspase8 CASP8 Bardoxolone Preclinical Drug Bank 

cFLAR CFLAR - - - 

EGFR EGFR 

Afatinib, 

Osimertinib, 

Neratinib, Erlotinib, 

Gefitinib 

 Approved Drug Bank 

Varlitinib Phase 3 Drug Bank 

Olmutinib, Pelitinib Phase 2 Drug Bank 

ERK MAPK1 

Isoprenaline Approved Drug Bank 

Perifosine Phase 3 Drug Bank 

Turpentine, 

SB220025, 

Olomoucine, 

 Preclinical  Drug Bank 



Phosphonothreoni

ne 

MAPK3, 

MAPK1 

Arsenic trioxide Approved Drug Bank 

Ulixertinib, 

Seliciclib 
Phase 2 Drug Bank 

Purvalanol Preclinical  Drug Bank 

MAPK3 

Sulindac, 

Cholecystokinin 
Approved Drug Bank 

5-iodotubercidin Preclinical  Drug Bank 

GLUT1 SLC2A1 Resveratrol  Phase 4  Drug Bank 

HIF-1 HIF1A CAY-10585 Preclinical Drug Bank 

HSPs 

HSP90AA1, 

HSP90AB1, 

HSP90B1, 

HSPA1A, 

HSPA1B, 

HSPB1 

Cladribine Approved Drug Bank 

17-DMAG Phase 2 Drug Bank 

NMS-E973 Preclinical Drug Bank 

MEK1_2 
MAP2K1, 

MAP2K2 

Trametinib, 

Selumetinib  
Approved Drug Bank 

Perifosine Phase 3 Drug Bank 

PD184352 (CI-

1040) 
Phase 2 Drug Bank 

MYC_MAX 

complex of 

MYC and 

MAX 

10058-F4 (for 

MAX) 
Preclinical Drug Bank 

p14ARF CDKN2A - - - 

PI3K 

PIK3CA, 

PIK3CB, 

PIK3CG, 

PIK3CD, 

PI-103 Preclinical Drug Bank 

Pictilisib Phase 2 Drug Bank 



PIK3R1, 

PIK3R2, 

PIK3R3, 

PIK3R4, 

PIK3R5, 

PIK3R6, 

PIK3C2A, 

PIK3C2B, 

PIK3C2G, 

PIK3C3 

ROS 

NOX1, 

NOX3, 

NOX4 

Fostamatinib Approved Drug Bank 

NOX2 

Dextromethorphan Approved Drug Bank 

Tetrahydroisoquino

lines 

(CHEMBL3733336

, 

CHEMBL3347550, 

CHEMBL3347551) 

Preclinical  ChEMBL 

SPOP SPOP  - - - 

TERT TERT 

Grn163l Phase 2 Drug Bank 

BIBR 1532 Preclinical ChEMBL 
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Figure titles and their legends: 1310 

Figure 1: Workflow to build patient-specific Boolean models and to uncover 1311 

personalised drug treatments from present work. We gathered data from Fumiã and 1312 

Martins (2013) Boolean model, Omnipath (Türei et al., 2021) and pathways identified with 1313 

ROMA (Martignetti et al., 2016) on the TCGA data to build a prostate-specific prior 1314 

knowledge network. This network was manually converted into a prostate Boolean model 1315 

that could be stochastically simulated using MaBoSS (Stoll et al., 2017) and tailored to 1316 

different TCGA and GDSC datasets using our PROFILE tool to have personalised Boolean 1317 

models. Then, we studied all the possible single and double mutants on these tailored 1318 

models using our logical pipeline of tools (Montagud et al., 2017). Using these personalised 1319 

models and our PROFILE_v2 tool presented in this work, we obtained tailored drug 1320 

simulations and drug treatments for 488 TCGA patients and eight prostate cell lines. Lastly, 1321 

we performed drug-dose experiments on a shortlist of candidate drugs that were particularly 1322 

interesting in the LNCaP prostate cell line. Created with BioRender.com. 1323 

Figure 2: Prostate Boolean model used in present work. Nodes (ellipses) represent 1324 

biological entities, and arcs are positive (green) or negative (red) influences of one entity on 1325 

another one. Orange rectangles correspond to inputs (from left to right: Epithelial Growth 1326 

Factor (EGF), Fibroblast Growth Factor (FGF), Transforming Growth Factor beta (TGFbeta), 1327 

Nutrients, Hypoxia, Acidosis, Androgen, fused_event, Tumour Necrosis Factor alpha 1328 

(TNFalpha), SPOP, Carcinogen) and dark blue rectangles to outputs that represent 1329 

biological phenotypes (from left to right: Proliferation, Migration, Invasion, Metastasis, 1330 

Apoptosis, DNA_repair), the read-outs of the model. This network is available to be 1331 

inspected as a Cytoscape file in the Supplementary File 1. 1332 

Figure 3: Prostate Boolean model MaBoSS simulations. (A) The model was simulated 1333 

with all initial inputs set to 0 and all other variables random. All phenotypes are 0 at the end 1334 

of the simulations, which should be understood as a quiescent state, where neither 1335 

proliferation nor apoptosis is active. (B) The model was simulated with growth factors (EGF 1336 

and FGF), Nutrients and Androgen ON. (C) The model was simulated with Carcinogen, 1337 

Androgen, TNFalpha, Acidosis, and Hypoxia ON.  1338 

Figure 4: Associations between simulations and Gleason grades (GG). A) Centroids of 1339 

the Principal Component Analysis of the samples according to their Gleason grades (GG). 1340 

The personalisation recipe used was mutations and copy number alterations (CNA) as 1341 

discrete data and RNAseq as continuous data. Density plots of Proliferation (B) and 1342 

Apoptosis (C) scores according to GG; each vignette corresponds to a specific sub-cohort 1343 

with a given GG. Kruskal-Wallis rank sum test across GG is significant for Proliferation (p-1344 

value=0.00207) and Apoptosis (p-value=2.83E-6). 1345 

Figure 5: Phenotype score variations and synergy upon combined ERK and 1346 

MYC_MAX (A and C) and HSPs and PI3K (B and D) inhibition under EGF growth 1347 

condition. Proliferation score variation (A) and Bliss Independence synergy score (C) with 1348 

increased node activation of nodes ERK and MYC_MAX. Proliferation score variation (B) 1349 

and Bliss Independence synergy score (D) with increased node activation of nodes HSPs 1350 

and PI3K. Bliss Independence synergy score < 1 is characteristic of drug synergy, grey 1351 

colour means one of the drugs is absent, and thus no synergy score is available. 1352 



Figure 6: Model-targeting drugs’ sensitivities across prostate cell lines. GDSC z-score 1353 

was obtained for all the drugs targeting genes included in the model for all the prostate cell 1354 

lines in GDSC. Negative values mean that the cell line is more sensitive to the drug. Drugs 1355 

included in Table 1 were highlighted. "Other targets" are drugs targeting model-related 1356 

genes that are not part of Table 1. 1357 

Figure 7: Cell viability assay determined by the fluorescent resazurin after a 48-hours 1358 

incubation showed a dose-dependent response to different inhibitors. A) Cell viability 1359 

assay of LNCaP cell line response to 17-DMAG HSP90 inhibitor. B) Cell viability assay of 1360 

LNCaP cell line response to PI-103 PI3K/AKT pathway inhibitor. C) Cell viability assay of 1361 

LNCaP cell line response to NMS-E973 HSP90 inhibitor. D) Cell viability assay of LNCaP 1362 

cell line response to Pictilisib PI3K/AKT pathway inhibitor. Concentrations of drugs were 1363 

selected to capture their drug-dose response curves. The concentrations for the NMS-E973 1364 

are different from the rest as this drug is more potent than the rest (see Material and 1365 

methods). 1366 

Figure 8: Hsp90 inhibitors resulted in dose-dependent changes in the LNCaP cell line 1367 

growth. A) Real-time cell electronic sensing (RT-CES) cytotoxicity assay of Hsp90 inhibitor, 1368 

17-DMAG, that uses the Cell Index as a measurement of the cell growth rate (see the 1369 

Material and Methods section). The yellow dotted line represents the 17-DMAG addition. B) 1370 

RT-CES cytotoxicity assay of Hsp90 inhibitor, NMS-E973. The yellow dotted line represents 1371 

the NMS-E973 addition. 1372 

Figure 9: PI3K/AKT pathway inhibition with different PI3K/AKT inhibitors shows the 1373 

dose-dependent response in LNCaP cell line growth. A) Real-time cell electronic sensing 1374 

(RT-CES) cytotoxicity assay of PI3K/AKT pathway inhibitor, PI-103, that uses the Cell Index 1375 

as a measurement of the cell growth rate (see the Material and Methods section). The yellow 1376 

dotted line represents the PI-103 addition. B) RT-CES cytotoxicity assay of PI3K/AKT 1377 

pathway inhibitor, Pictilisib. The yellow dotted line represents the Pictilisib addition. 1378 

Appendix, Supplementary Files, Source code and 1379 

Source data files 1380 

Appendix 1, a document with supplemental analyses, extended results and introduction to 1381 

the methodologies used in present work. 1382 

Supplementary File 1, a zipped folder with the generic prostate model in several formats: 1383 

MaBoSS, GINsim, SBML, as well as images of the networks and their annotations. 1384 

Supplementary File 2, a jupyter notebook to inspect Boolean models using MaBoSS. This 1385 

notebook can be used as source code with the model files from Supplementary File 1 to 1386 

generate Figure 3. 1387 

Supplementary File 3, a zipped folder with the TCGA-specific personalised models and their 1388 

Apoptosis and Proliferation phenotype scores. 1389 



Supplementary File 4, a TSV file with all the phenotype scores, including Apoptosis and 1390 

Proliferation, of the TCGA-patient-specific mutations. In the mutation list “_oe” stands for an 1391 

overexpressed gene and “_ko” for a knocked out gene. 1392 

Supplementary File 5, a zipped folder with the cell-lines-specific personalised models. 1393 

Supplementary File 6, a TSV file with all the phenotype scores, including Apoptosis and 1394 

Proliferation, of all 32258 LNCaP-cell-line-specific mutations and the wild type LNCaP 1395 

model. In the mutation list “_oe” stands for an overexpressed gene and “_ko” for a knocked 1396 

out gene. 1397 

Supplementary File 7, a spreadsheet with the Key Resources Table of this work. 1398 

Source code 1, file needed to obtain Figure 4. Processed datasets needed are Source data 1399 

1 and 2 and are located in the corresponding folder of the repository: 1400 

https://github.com/ArnauMontagud/PROFILE_v2/tree/main/Analysis%20of%20TCGA%20pat1401 

ients'%20simulations  1402 

Source code 2, file needed to perform the drug dosage experiments and obtain Figure 5 1403 

from the main text and Figures 27 and 34-39 from Appendix 1. Processed datasets needed 1404 

is Source data 3 and is located in the corresponding folder of the repository: 1405 

https://github.com/ArnauMontagud/PROFILE_v2/tree/main/Gradient%20inhibition%20of%201406 

nodes  1407 

Source code 3, file needed to obtain Figure 6. Processed datasets needed are Source data 1408 

4 and 5 and are located in the corresponding folder of the repository: 1409 

https://github.com/ArnauMontagud/PROFILE_v2/tree/main/Analysis%20of%20drug%20sens1410 

itivities%20across%20cell%20lines 1411 

Source code 4, file needed to obtain Figures 7, 8 and 9. Processed datasets needed are 1412 

Source data 6, 7 and 8 and are located in the corresponding folder of the repository: 1413 

https://github.com/ArnauMontagud/PROFILE_v2/tree/main/Analysis%20of%20experimental1414 

%20validation 1415 
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 1421 

Figure 1: Workflow to build patient-specific Boolean models and to uncover personalised drug 1422 

treatments from present work.  1423 
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Figure 2: Prostate Boolean model used in present work.  1425 
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Figure 3: Prostate Boolean model MaBoSS simulations.  1427 
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Figure 4: Associations between simulations and Gleason grades (GG).  1429 
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Figure 5: Phenotype score variations and synergy upon combined ERK and MYC_MAX (A and 1431 

C) and HSPs and PI3K (B and D) inhibition under EGF growth condition.  1432 



 1433 

Figure 6: Model-targeting drugs’ sensitivities across prostate cell lines. 1434 
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Figure 7: Cell viability assay determined by the fluorescent resazurin after a 48-hours 1436 

incubation showed a dose-dependent response to different inhibitors.  1437 



 1438 
Figure 8: Hsp90 inhibitors resulted in dose-dependent changes in the LNCaP cell line growth. 1439 



 1440 

Figure 9: PI3K/AKT pathway inhibition with different PI3K/AKT inhibitors shows the dose-1441 

dependent response in LNCaP cell line growth. 1442 
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