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ABSTRACT

Context. In previous work, we showed how the planar and vertical eccentricities of disc stars, e and e′, could be used as indicators of
the stars’ kinematic populations. For a local stellar sample drawn from the Gaia DR2 catalogue, these populations were represented
geometrically in the eccentricity diagram, e′2 vs e2, approximately separated by straight lines.
Aims. In the current work, we propose a new relationship between the star’s perpendicular velocity and its vertical eccentricity,
allowing for a reevaluation of the critical vertical eccentricity and maximum height, zmax, specific to each population component.
Methods. We approximated the local potential function to be consistent with the actual shape of the curve that relates the maximum
vertical speed of a star and its maximum height. The curve corresponds to a non-linear restoring vertical force, where the stiffness
decreases with an increase in the maximum height. The constants involved in this fitting, together with the population velocity
dispersions, determine the specific region for each population in the eccentricity diagram.
Results. The new classification determines 88% of the sample is made up of thin disc stars and 9% of thick disc stars, whereby 3% of
the stars have been relabelled, by providing thinner thin and thick discs. Nested thin disc subsamples allow us to estimate Strömberg’s
asymmetric drift equation, leading to a heliocentric velocity of the circular orbit of Vc ≈ −12.9 km s−1, an absolute rotation velocity
of Θc ≈ 227 km s−1, and a rotation component of the Galactocentric velocity of the Sun at Θ⊙ ≈ 240 km s−1.
Conclusions. The thin disc stars of our local sample are characterised based on values 0 ≤ e ≤ 0.32, 0 ≤ e′ ≤ 0.09, and zmax = 0.7
kpc. Disc stars satisfy 0 ≤ e ≤ 0.44, 0 ≤ e′ ≤ 0.18, zmax = 1.5 kpc. The maximum vertical peculiar velocity for disc stars is found to
be w0 = 115 km s−1. The assumed potential provides a stellar density of the disc vanishing at z0 = 1.8 kpc. The approximate behaviour
in the local disc is that a small decrease in the stiffness is associated with a relative decrease in the limiting velocity, which produces
a thinner disc and a loss of stars in the local cylinder, both in a similar proportion to the limiting velocity.
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1. Introduction

The orbital planar eccentricity behaves as an excellent sampling
parameter that allows us to distinguish a number of small-scale
features of the velocity distribution in the Galactic disc (Cubarsi
2010). Other sampling parameters, such as the absolute value
of the heliocentric velocity, metallicity [Fe/H], or colour b − y,
produce kinematically biased samples and population estimates,
unless they are complemented with other sampling criteria. Tak-
ing it one step further, in a recent paper (Cubarsi et al. 2021,
hereafter Paper I) we analysed the local velocity distribution of
disc stars to classify the local stellar kinematic populations in
terms of the stars’ planar and vertical orbital eccentricities.

We consider a kinematic population to be a sufficiently large
number of stars described from a continuous velocity distri-
bution, whose macroscopic state is characterised in terms of
its mean values and covariances. We assume that the phase
space density function of each population is invariant under the
collisionless Boltzmann equation. Such a condition is satisfied
when each population is of a Schwarzschild type (e.g. Edding-
ton 1915; Oort 1928; Chandrasekhar 1942; Ogorodnikov 1965;

Lynden-Bell 1967), namely, a Gaussian distribution in the three-
dimensional velocity space.

The planar and vertical eccentricities proved to be key val-
ues in the process of disentangling the partial distributions. In
this way, we minimised the uncertainty generated in the regions
where the tails of the population distributions overlap. Firstly, we
applied a segregation algorithm to characterise the local stellar
populations in terms of their covariance matrix and population
fractions. Then, we classified the stars according to their most
likely kinematic population and we found that when plotting the
orbital planar eccentricity in terms of the vertical velocity, the
stellar populations remained well isolated.

According to the epicycle approximation for disc stars, the
planar and vertical orbital eccentricities provide information on
the integrals of motion of the star that each population velocity
distribution function depends upon. Therefore, the stellar popu-
lation a star belongs to can be determined from its orbital eccen-
tricities. Such a classification was established based on regions
delimited approximately by a straight line on a two-dimensional
graph we refer to as the eccentricity diagram. In one direc-
tion, the information on the two planar velocity components was
picked up by the planar eccentricity, e. In the other direction, the
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vertical eccentricity, e′, did the same with the vertical velocity
component. Even though in the Galactic plane (GP) the planar
eccentricity provides an accurate portrait of the planar velocity
distribution, upon moving away from the GP, the vertical epicy-
cle approximation is no longer valid and requires a better approx-
imation model, which was fitted by using a biquadratic equation
for the maximum velocity curve (MVC), namely, the one that
estimates the maximum height of a star in terms of its vertical
velocity in crossing the GP. In the current work, we want to jus-
tify and improve this approximation. We replace the approximate
formula by a more meaningful one, based on the potential func-
tion allowing a mixture of Schwarzschild distributions.

In Paper I, we used a sample composed of 74,339 stars
within a solar radius of 100 pc drawn from the second data re-
lease (Gaia DR2, Gaia Collaboration et al. 2018) of the Euro-
pean Space Agency’s Gaia mission (Gaia Collaboration et al.
2016). Although Gaia EDR3 (Gaia Collaboration et al. 2020)
had already been released, a detailed examination has shown
that if Gaia EDR3 had been used, the sample would have been
slightly smaller. As for five-parameter astrometry solution, in
Gaia EDR3, only the errors are different. By applying a quite
different approach, Gaia Collaboration et al. (2021) found 74281
stars within 100 pc from the Sun with radial velocities, a conclu-
sion that is rather similar to our own. It is for these reasons and
for the purpose of a comparison with our previous results that
here we use the same sample as in Paper I.

This paper is organised as follows. In Section 2 we describe
the family of potentials allowing a mixture of trivariate Gaus-
sian populations with independent mean motions. In Section 3,
we analyse the shape of the MVC for the local stellar sample
and determine the local constants, particularly the one account-
ing for the curvature of the MVC. In Section 4, we apply our
model to improve the estimation of the four regions describing
the disc stellar populations in the eccentricity diagram. Also, as
an application of the method, we evaluate the asymmetric drift
of several inner thin disc subsamples. In Section 5, we discuss
the results and interpret some specific properties of the MVC,
the potential, and the stellar density. Finally, we summarise the
results in Section 6.

2. Potential function

Many general features of the Galactic structure can be described
by associating a kinematic stellar population in statistical equi-
librium with a phase space density function of Schwarzschild
type. As remarked in Paper I, this type of simplified Galaxy
model, with a few population components, is useful for getting
the large-scale kinematical trends accounting for the basic sym-
metries of the stellar velocity distribution – or the main devia-
tions from them (Cubarsi 2014a,b) – such as whether there is
axial or point-axial symmetry and a symmetry plane, what is the
average differential motion between populations, the shape and
orientation of the respective velocity ellipsoids, etc. These fea-
tures are in a relation of mutual dependence with the potential
function of the dynamical model.

The Schwarzschild velocity distribution is a particular case
of ellipsoidal distribution that leads in a natural way to Stäckel
potentials and the quadratic third integral that goes along with
them (e.g. Gilmore et al. 1990). Potentials satisfying the Stäckel
conditions (Pars 1965; Makarov et al. 1967) provide an orthog-
onal coordinate system where the Hamilton-Jacobi equation is
completely separable (e.g., Goldstein 1980, p.453 and Appendix
D).

To allow the dynamic model a few more degrees of freedom,
Chandrasekhar (1942) assumed that the tensor of the velocity
covariances, the stellar density, and the potential could explicitly
depend on time through their parameters. A stationary dynam-
ical system requires an axisymmetric potential and restricts the
differential motion of the centroids to rotation alone; however, in
the Chandrasekhar model, differential radial and vertical mean
velocities are also possible, as well as vertex deviation and tilt of
the velocity ellipsoid. For an explicitly three-dimensional, time
dependent system, the solution involving Chandrasekhar equa-
tions provides separable potentials (Sala 1990). Depending on
some model parameters, the potential can be separable either in
spherical coordinates, prolate spheroidal coordinates, or cylin-
drical coordinates.

Nevertheless, a more realistic model is obtained by assuming
a superposition of such solutions (Cubarsi 1990). For a mixture
of populations sharing a common potential, only a few poten-
tials are admissible (Cubarsi 2014a,b). The more ’general solu-
tion’ for an axisymmetric potential can be written, in cylindrical
coordinates1, as

U = M (r2 + z2) +
1

k
U1

(

r2 + z2

k

)

+
U2

(

z2/r2
)

r2 + z2
, (1)

where k is a time-dependent positive function and M = − k̈
2k
+

k̇2

4k2 +
c
k2 , with c as the constant. The above potential, expressed in

spherical coordinates (R, θ, φ), R2 = r2 + z2, tan φ = z
r
, satisfies

the Stäckel condition of separability in spherical polar coordi-

nates, ∂2

∂R∂φ

(

R2U(R, φ)
)

= 0.

For steady-state stellar systems, without assuming the ellip-
soidal hypothesis, the potential allowing the alignment of the
second velocity moment tensor along an orthogonal coordinate
system takes a separable form (An & Evans 2016; Evans et al.
2016). These authors suggest that the actual case should be very
close to the spherical alignment, with a potential similar to that
of Eq. (1). Therefore, the solution involving the Chandrasekhar
equations for a mixture of ellipsoidal velocity distributions that
we use in the current approach provides a similar result, but also
for time-dependent systems.

Still, there is only one particular family of the potentials
given by Eq. (1) allowing for independent differential motion
in directions other than rotation. This appears to be the relevant
case for the radial direction. In Paper I, between the thin and
thick discs, we determined a small radial differential motion of
4-5 km s−1, and between the disc stars and the kinematical halo
of about 9 km s−1, which is in agreement with the values previ-
ously estimated by Girard et al. (2006) and Smith et al. (2009).
Such a family was referred to as a quasi-stationary potentials
(Cubarsi 2014a). We write it by separating the harmonic and the
non-harmonic parts as

U = M (r2 + z2) +U0(r, z); U0(r, z) =
F(s)

r2
, s =

z2

r2
. (2)

The factor M can be either a time-dependent function or, as in
our case where the potential is assumed to be stationary, a con-
stant; whereas F is an arbitrary function of its argument.

Therefore, we limit our study to the foregoing family of po-
tentials, which is the more general one and consistent with an
unconstrained mixture of Gaussian stellar populations, with the

1 We consider a Galactocentric cylindrical coordinate system (r, θ, z),
with θ positive in the direction of the Galactic rotation and z perpendic-
ular to the GP and positive towards the North Galactic Pole (NGP).
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purpose of fitting the MVC. For such a stationary potential, three
particular cases were already checked in Cubarsi et al. (2017) in
order to determine the three local kinematic constants, namely,
the planar and vertical epicycle frequencies κ, ν, and the angular
velocity Ωc of the circular velocity point C:

(a) The separable potential in cylindrical coordinates, with
F(s) = P ∈ R. This potential forces the epicycle frequencies to
satisfy κ = 2ν. The commonly accepted values are Ωc ≈ 27 km
s−1kpc−1, κ ≈ 37 km s−1kpc−1, and ν ≈ 70 km s−1kpc−1 (e.g.,
Binney & Tremaine 2008, Table 1.2). Therefore, this potential
must be rejected;

(b) Spherical potential, with F(s) = P (1 + s)−1, P ∈ R. This
potential forces the condition ν2 = Ω2

c , which is also unsatisfac-
tory;

(c) Potential allowing a deviation from spherical symmetry,
with F(s) = P (1 + Qs)−1; P,Q ∈ R. In this case, the three
local Galactic constants could be fitted from the three parameters
M, P,Q involved in the potential. However, this potential is still
not able to explain the relationship between the star’s vertical
velocity at the GP and the maximum height it can reach, zmax

(i.e. the MVC as obtained in Paper I).
Hence, we analyse the specific shape of the local MVC in

relation to the potential function. As a result, the critical vertical
eccentricities that discriminate between the different kinematic
populations in the eccentricity diagram, as well as some local
kinematic constants, are also reevaluated.

3. Vertical velocity and maximum height

It is widely known that the equation of motion of a star in the
vertical direction, with velocity Z = dz

dt
, satisfies

dZ

dt
= −∂U
∂z
=⇒ Z dZ = −∂U

∂z
dz.

These relationships provide the isolating integral of motion ac-
counting for the conservation of the energy in the vertical direc-
tion. For a fixed radius, r, by explicitly writing the dependence
on z alone, we have

∫ Z(zmax)

Z(0)

Z dZ = −
∫ zmax

0

∂U
∂z

dz

1

2
[Z(zmax)2 − Z(0)2] = U(0) −U(zmax).

By considering stars with stable or periodical vertical motion
about the GP, since they attain the maximum velocity Z(0) and
satisfy Z(zmax) = 0, we get the well-known relationship between
the maximum vertical velocity at the GP in terms of the maxi-
mum height,

Z(0)2 = 2 [U(zmax) −U(0)]. (3)

If the potential is harmonic in z, namely U(r, z) = 1
2
A(r) z2 +

B(r), by substitution in Eq. 3 we get Z(0)2 = A z2
max. This case

is equivalent to assuming the first-order epicycle approximation,
where the height of star referred to the GP is z = b sin(νt−q) and
its velocity, also referred to the GP (assuming the local centroid
at the GP), is Z = νb cos(νt − q). Thus, by writing the maximum
distance to the GP as zmax = b, we get

Z(0)2 = ν2z2
max, (4)

from this, we have A = ν2.

For our working sample, the MVC approximately replicates
the behaviour of Eq. 4, but only for low heights, and it devi-
ates for larger values. Figure 1 relates the vertical peculiar ve-
locity2 w = W − W0 at the GP with the estimated maximum
height (squared) for each star. In Paper I, we approximated this
behaviour through a biquadratic equation, namely,

z2
max = c1w2 + c2w4, w = W −W0. (5)
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Fig. 1. Maximum height zmax (kpc) in terms of the vertical heliocentric
velocity W (km s−1), with the biquadratic fit of Paper I (discontinuous
line). The distance to the local radius is indicated in the colours.

Similarly, in Fig. 2, the left panel shows two main features:
the first, close to the origin, indicates that the relationship is
nearly linear, but this trend is progressively lost. The other is
that this loss is accompanied with an increasing dispersion of
dots, which is greater for the stars that are more distant to the
solar position. The latter feature is much more noticeable if the
vertical eccentricity is used instead of the maximum height, as
displayed in the right panel of Fig. 2 (the vertical eccentricity
has been multiplied by r0 in order to compare with the graph
plotted in terms of zmax).

We must recall that zmax is not an observable, while the ver-
tical velocity is indeed such, with a relatively small error. The
values to compute the orbital eccentricities, namely, ra, rp (max-
imum and minimum orbital distances to the centre, i.e. the apo-
and pericentric distances), and zmax resulted from the numeri-
cal integration of each star orbit. In Paper I, we used the model
of the Milky Way proposed by Ninković (1992) and assuming
three contributors to the potential of the Milky Way: the bulge,
the disc, and the corona. The contributions to the Galactic po-
tential of the former two were described by the same formula
as that of Miyamoto & Nagai (1975), with the only difference
related to the values of the parameters. The parameters from
Gaia DR2 (five-parameter astrometry solution and radial veloc-
ity) were used as inputs for the model and the integration of the
Galactocentric orbits for each star was done for 10 Gyr by using
a fourth-order Runge-Kuta method.

Depending on the approximated model, in the integration
process, the stars whose values for ra or rp are more distant to
the solar radius, r0 may accumulate a larger error. On average, it

2 The velocities of the stellar sample are given in a heliocentric coordi-
nate system, with the radial heliocentric velocity component U positive
towards the GC, the heliocentric velocity component V positive in the
direction of the Galactic rotation, and the velocity component W per-
pendicular to the GP and positive towards the NGP. The velocity of the
local centroid, i.e., the mean motion of the local sample, is expressed as
(U0,V0,W0).
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generally occurs that the greater the distance between the mean

radius rm =
ra+rp

2
of the orbit and r0, the greater the error.

By assuming the model is enough accurate, if the vertical ve-
locity of a star is actually measured at the GP, we may determine
the maximum height with a relatively small error3. However, if
a star is not exactly at the GP, the vertical speed will be slightly
lower and the maximum height is underestimated. For this rea-
son, to determine the MVC, we should approximate the upper
envelope of the set of dots in Fig. 2.

On the other hand, by using the vertical eccentricities instead
of maximum height, we even get a better fit for the stars whose
mean orbital radius, rm, is closer to (or larger than) the solar po-
sition, r0. However, for stars with rm < r0, the dispersion is much
larger.
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Fig. 2. Squared vertical peculiar velocity (W −W0)2 (km2 s−2) at the GP
in terms of (left) the squared maximum height, z2

max (kpc2), and (right)
the squared vertical eccentricity, e′2, scaled by r0 (kpc2). The distance
to the local radius is indicated by colours.

Let us remember that under the epicycle approximation, the
orbit of a neighbouring star oscillates around the local circular
velocity point, C with radius rc ≈ r0. The following ratios:

e =
ra − rp

2 rc

, e′ =
zmax

rc

(6)

define the planar and vertical orbital eccentricities of the star,
respectively, which, in Paper I were used to associate the star
with one of the local kinematical stellar populations. Under this
approach, the value rc matches the value rm. Most stars of our
working sample satisfy rm ≈ r0, which is consistent with the
epicycle approximation. In such a case, the orbital eccentrici-
ties provide a homogeneous measure of the planar and vertical
orbital amplitudes, allowing us to determine the planar and ver-
tical epicycle frequencies. However, there are anomalous stars
in the sample whose orbits oscillate around a value of rm that is
significantly different from r0. For these stars, the local epicycle
approximation is not appropriate. Obviously, the deviation from
the epicycle model increases depending on whether the stars be-
long to the thin disc, the canonical thick disc, the metal-weak
thick disc, the metal-rich thick-disc stars, or the halo.

We discuss (at the end of Section 3.3) why in the planar di-
rections this fact is avoidable and why, in the vertical direction,
it becomes necessary to distinguish between the actual vertical
eccentricity zmax

rm
of such an anomalous star, which is referred to

a circular velocity point different from the local one and the ra-
tio zmax

r0
this star provides. Therefore, the stars with rm < r0 have

larger vertical eccentricities than the stars with the same zmax and

3 We refer to the discussion in Appendix C of Paper I on the causes of
such a dispersion and possible contributions to it.

a guiding circular orbit near r0. In other words, the former stars
have an overestimated vertical eccentricity compared to the latter
ones. On the contrary, the stars with rm > r0 have underestimated
vertical eccentricities, but these lower values correspond to the
domain closer to the origin, where the MVC is nearly linear and
the dispersion of dots is not noticeable. Therefore, when work-
ing from vertical eccentricities, we should also fit the upper-left
envelope of the set of dots in Fig. 2.

3.1. Interpretation of the maximum velocity curve

In order to be able to qualitatively interpret the MVC, we com-
pare the potential of the harmonic oscillator with that of the
Duffing oscillator (McLachlan 1950, p.24), φ(z) = 1

2
Az2 + 1

4
Bz4;

A > 0, B , 0. This simple model is an example of a non-linear

restoring force, z̈(t) = − f (z), f (z) =
dφ(z)

dz
, such as a (unit) mass-

spring system without damping, where the characteristic of the
spring is f (z) = Az + Bz3. Another case of a similar non-linear
restoring force is that of a mass at the centre of a taut, uniform
vertical wire.

If B > 0, we get a slight modification of the harmonic os-
cillator, where the effective length of the spring decreases with
increase in the amplitude of vibration. The stiffness is defined

to be the derivative of the restoring force, i.e., s(z) =
d f (z)

dz
=

d2φ(z)

dz2 = A + 3Bz2. Thus, the stiffness indicates whether the po-
tential function φ(z) is a convex or concave curve, so that the
stiffness increases (convex) or decreases (concave) with increase
in the displacement. In the current example, according as B > 0
or B < 0. For B > 0 all solutions are periodic around a single
equilibrium point, but for B < 0 there exist periodic solutions
around one equilibrium point only for z2 < − A

B
. The other two

fixed points are unstable.

For the Duffing oscillator, Eq. 3 becomes Z(0)2 = Az2
max +

2Bz4
max. Figure 3 (right) shows such a curve for values B > 0

(red) and B < 0 (blue) (within the range of the periodic solu-
tions), associated with the shape of the corresponding potential
(left).

Fig. 3. Duffing potentials (left) with B > 0 (red) and B < 0 (blue)
compared to the harmonic potential (grey). Maximum velocity curves
(right) associated with these potentials.

Since (according to Eq. 1) the curvature of Z(0)2 is similar to
that ofU(zmax), from Fig. 2 (left panel) we can interpret the local
neighbourhood by considering whether the stiffness decreases
with increase in the maximum height. In other words, a potential
provides decreasing stiffness if, for the same velocity Z(0), it is
possible to reach higher values of zmax than for the harmonic
potential.

Let us evaluate the potential function that is consistent with
the local MVC.
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3.2. Local constants

In order to determine a potential that allows us to fit the actual
velocity curve, we study a family of potentials related to Eq. 2,
which is more general than the cases previously analysed, where
F is a rational function consisting of the ratio of two homoge-
neous polynomials of degree 2,

F
(

z2

r2

)

=
a1r2 + a2z2

a3r2 + a4z2
. (7)

While the case (a) in Section 2 corresponds to a constant F, the
cases (b) and (c) are particular cases4 related to Eq. 7. There are
nine possible meaningful cases of Eq. 7, depending on whether
in the numerator and in the denominator only one or none of the
parameters are null. Indeed, there are not four free parameters in
Eq. 7, since at least one parameter in the numerator and one in
the denominator are not null, so that the ratio may be simplified.
Hence, there are at most three free parameters that remain, which
can be represented by the values F(0), F′(0), and F′′(0).

The three local Galactic constants at the circular velocity

point r = rc, z = 0, are related to the values ∂U
∂r

∣

∣

∣

(rc,0)
, ∂

2U
∂r2

∣

∣

∣

(rc,0)
,

and ∂
2U
∂z2

∣

∣

∣

(rc,0)
, which, in turn, depend on M, F(0) and F′(0). To

adjust the shape of the MVC, say its concavity, we also need to
control the parameter F′′(0).

We study the general case of Eq. 7, where a1, a2, a3, a4 are
non-null. To this purpose, we write Eq. 7 in a more simple form,
as follows:

F(s) = A +
Bs

1 +Cs
= A +

Bz2

r2 +Cz2
, (8)

so that

F(0) = A, F′(0) = B, F′′(0) = −2BC. (9)

In Appendix A, we can see how the constant M in Eq. 2 is
related to the planar epicycle frequency κ and the constant A in
Eq. 8 is related to the angular velocity Ωc through the ratio

γc =
2Ωc

κ
(10)

and both are involved in the planar motion of the stars. On the
other hand, in Appendix B we see how the constant B is related
to the vertical epicycle frequency ν, which is involved in the ver-
tical motion of the stars.

3.3. Planar motion

Under the epicycle approximation, a star orbit can be referred to
the circular motion point C as

U − Uc = κa cos(κt − p) ; V − Vc = −κγ−1
c a sin(κt − p), (11)

where a is the amplitude and p the phase. As a first approxima-
tion, we assume that Uc = U0 and Vc = V0, i.e., the circular
motion point coincides with the local centroid. For disc stellar
samples, this assumption is generally satisfied in the radial and
vertical directions. For the rotation component, a priori, it is sat-
isfied for low eccentricity stars, that is, for thin disc stars; oth-
erwise, the asymmetric drift ∆ = Vc − V0 should be considered

4 The case (b) corresponds to a1 , 0, a2 = 0, and a3 = a4 in Eq. 7,
and the case (c) to a1 , 0, a2 = 0, and a3 , a4, which is qualitatively
equivalent to the case a3 , 0, a4 = 0, and a1 , a2.

in order to get a more accurate model. Therefore, under the first-
order epicycle approach, the following should be satisfied:

(U − Uc)2 + γ2
c (V − Vc)2 = κ2a2. (12)

Clearly, since a = rc e, this equation can be expressed in terms
of the planar eccentricity, as in Paper I (Eq. 14). There, it was fit-
ted for several subsamples drawn from the current Gaia sample.
We obtained stable estimates by basically removing the counter-
orbiting stars of the halo. The average values for our working
sample are γ2

c ≈ 2, κ ≈ 37 km s−1kpc−1, Uc = U0 ≈ −10 km s−1,
and Vc = V0 ≈ −20 km s−1, all of them consistent with the values
that are usually assumed.

It is worth noticing that the planar fitting did not need the
correction for the asymmetric drift. The reason is as follows: The
above ellipses describe the motion of the stars referred to their
circular velocity point, which, as commented at the beginning of
Section 3, not always match the local one, rc. Nevertheless, the
local constants γc and κ should not differ very much from point to
point. The former depends onΩc, which, while it is not constant,
its variation is relatively small around the Sun , since it satisfies
∆Ωc

Ωc
≈ −∆rc

rc
. The latter does not depend on rc. Therefore, the

respective data, even for different circular velocity points, could
be gathered as a single fitting.

3.4. Vertical motion

By taking Eq. B.4into account , the MVC given by Eq. 3 can be
written, for r = rc, as

w2(zmax, rc) ≡ (W −Wc)2 =
κ2

4
z2

max +

(

ν2(rc) − κ
2

4

)

r2
c

z2
max

r2
c +Cz2

max

.

(13)

W note the local linear behaviour in the squared variables that
satisfies

(W −Wc)2

z2
max

→ ν2(rc) when zmax → 0.

Therefore, we want to determine the above function w2(zmax, rc)
at the local position rc = r0. Since the remaining values Wc ≈ −6
km s−1and ν ≈ 63 km s−1 kpc−1 of Paper I for the current sample
are still valid, it is sufficient to estimate the constant C.

Nevertheless, we must remark that a part of the stars in
the sample (ca. 25%) have a value for rm that is more than 1
kpc away from the local radius r0 – we assume that this value
matches the average radius of the sample, r0 ≈ 8.3 kpc, which is
similar to that of Reid et al. (2014). Thus, their orbit cannot be
strictly referred to the local circular velocity point. As already
explained, Eq. 13 should be adjusted only for the stars with rm

close to r0, namely, the green and orange dots in Fig. 1, but in
order to use all the available data, we fit the upper envelope of
the whole set of dots.

Instead of making an adhoc geometrical approximation, in
Appendix C we propose a more rigorous fitting method. As a
result, we get the (dimensionless) value C = 21 ± 1. We dis-
cuss some of the consequences this value has on the potential in
Appendix D.

4. Results

4.1. Eccentricity diagram

In the solar neighbourhood, according to Eq. 13 and by taking
rc = r0 and ν ≡ ν(r0), the vertical peculiar velocity of a star
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depends on its vertical eccentricity as

w2 = g(e′2) ≡ N e′2 + K Ce′4

1 +Ce′2
; N = ν2r2

0, K =
κ2r2

0

4
. (14)

By inverting the above equation, we may estimate the verti-
cal eccentricity of a disc star that has a vertical peculiar velocity
w at the GP, obtaining the following positive solution,

e′2 = g−1(w2) ≡ 2w2

√

(N −Cw2)2 + 4KCw2 + (N −Cw2)
. (15)

Hence, the least squares fitting of Eq. 5 must be replaced by the
estimation provided by Eq. 15, while including the fitting of the
upper envelope.

In Paper I, we found four regions of the eccentricity diagram,
e′2 versus e2, corresponding to subsequent nested populations
contained in the working sample. These populations were ob-
tained from stellar subsamples selected from specific sampling
parameters, as indicated in Table 1. In particular, the thin disc
was associated with region R2 (selected from |v| ≤ 230 km s−1)
and the whole disc with R4 (selected from |W | ≤ 130 km s−1, al-
though the subsample with |W | ≤ 170 km s−1provided a slightly
lower χ2 error). By using the current approach, the estimations
for the limiting eccentricities of the nearly triangular regions R1

to R4 can now be determined with greater accuracy, in particular
for the stars with velocity satisfying |v| > 50 km s−1.

We reevaluate these regions. Thus, Eq. 21 in Paper I should
be replaced by the following one5, in terms of Eq. 14,

e2

A0

+
1

NB0

g(e′2) ≤ 1. (17)

The above equation determines an area similar to a quarter el-
lipse as in Paper I (Eq. 23), which can be approximated by the
following one,

e2

A0

+
e′2

B2

≤ 1, (18)

where B2 replaces the value B1 of Paper I. The constant B2 is
evaluated as follows. In Eq. 17, for e = 0, the maximum vertical
eccentricity ζ satisfies g(ζ2) = NB0. Then, B2 = ζ

2. Thus, by
writing it explicitly, according to Eqs. 15 and 16,

B2 = g−1

(

Q
σ′

3
2σ′′

3
2

σ′′
3

2−σ′
3

2

)

. (19)

Therefore, the limiting (squared) vertical eccentricity B2 is deter-
mined from the velocity dispersions of every two adjacent popu-
lations, together with the constants K, N and C, where the latter
adjusts the curvature of the MVC estimated from the envelope
of the vertical speeds in crossing the GP.

Table 1 shows the values A0, B1 and B2. For the planar mo-
tion, the estimations A0 are the same as in Paper I. For the ver-
tical motion, the estimations B1 are those of Paper I and B2 are
the new ones, obtained from the potential model.

5 Let us recall that the values A0 and B0 are computed from the re-
spective velocity dispersions and population fractions of two adjacent
populations, as follows

A0 =
Q

κ2r2
0

σ′
1

2σ′′
1

2

σ′′
1

2 − σ′
1

2
, B0 =

Q

ν2r2
0

σ′
3

2σ′′
3

2

σ′′
3

2 − σ′
3

2
, (16)

where Q = 2 ln Σ
′′

Σ′ , Σ′ =
σ′

1
σ′

2
σ′

3

n′ and Σ′′ =
σ′′

1
σ′′

2
σ′′

3

n′′ .

According to the above equations, Fig. 4 compares the new
(blue) regions R2 and R4, corresponding to the borders of the
thin and thick discs, with the ones obtained in Paper I (green).
The continuous curves represent the corresponding model (ei-
ther the biquadratic fit of Paper I or the model from the local
potential), while the doted curves are the respective approxima-
tions from quarter ellipses. The small red doted curves feature
the first-order epicycle approach. The set of curves closer to the
centre determine the region R2, while the farthest determine the
region R4.

Fig. 4. Quarter ellipses (left) defining the regions R2 (closer to the ori-
gin) and R4 (farther from the origin), according to the biquadratic fit
(continuous green curves), potential model (continuous blue curves),
and epicycle approach (dotted red curves). The dotted green and blue
curves are the respective approximations from quarter ellipses. The
same regions in terms of the squared eccentricities are displayed on the
right.

The resulting eccentricity diagram for the current stellar
sample is shown in Fig. 5 for the triangular regions of Eq. 18.
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Fig. 5. Triangular regions according to Table 1, for the current potential
model (left) and for the biquadratic approximation (right). The comple-
mentary area is the halo (red).

When the stars are labelled according to the region their
eccentricities belong to, we obtain the diagram of Fig. 7 (left).
If the number of stars in a region Ri that do not belong to the re-
gions R j, for j < i, is denoted as Ni, and the corresponding popu-

lation component as Pi, we get, for the current potential model6,

N1=62338, N2=3150, N3=5899, N4=1043, N5=1909.
(83.9%) (4.2%) (7.9%) (1.4%) (2.6%)

We note that these fractions do not denote areas but number of
stars in the sample that fall in the corresponding region.

6 It can be compared to the results obtained in Paper I from the bi-
quadratic approximation,

N1=63219, N2=3162, N3=5484, N4=825, N5=1649.
(85.0%) (4.3%) (7.4%) (1.1%) (2.2%)
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Populations P1 (light green area) and P2 (dark green) are as-
sociated with the thin disc, although the second subcomponent is
mixed with some thick disc stars. The thick disc is composed of
the canonical subcomponent P3 (light blue) and the metal-weak
thick disc P4 (dark blue). The kinematical halo stars present in
the sample, P5, probably are a mixture of metal-rich thick-disc
stars and chemical halo stars (Di Matteo et al. 2019).

By comparing the actual stellar classification to that of Pa-
per I, we find that the thin disc has now 1.5% less stars (mainly
due to the major subpopulation P1), while the thick disc has in-
creased 10% relative to the same population in Paper I. This is
due to the smaller maximum height now associated with these
populations (Table 1), which is more noticeable in the larger pop-
ulation. Thus, the current approach provides a 10-15% thinner
disc.

The respective population mean velocities and velocity mo-
ments are listed in Table 2. The resulting velocity moments for
the thin disc are similar to those Paper I, with velocity disper-
sions (σ1, σ2, σ3) = (30.4, 19.7, 13.8) km s−1, while those of the
thick disk, (59, 35.7, 35.3) km s−1, are slightly lower than those
in Paper I, (60.9, 36.3, 36.6) km s−1, since stars previously as-
signed to the thin disc are now labelled as thick disc.

4.2. Asymmetric drift

As an application of the eccenticity diagram, here we analyse
deeper samples of the thin disc by selecting stars within concen-
tric ellipses, closer to the origin, corresponding to the thin disc,
namely, region R1. We test the disc components with regard to
the asymmetric drift. Let σ2 be the trace of the velocity disper-
sion tensor, namely, σ2 = σ2

1
+ σ2

2
+ σ2

3
≡ µ200 + µ020 + µ002.

Strömberg’s asymmetric drift equation (e.g., Binney & Tremaine
2008) predicts that the larger a stellar population’s velocity dis-
persion, the more slowly it rotates about the GC. There is a linear
relation between the peculiar rotation velocity, V0 , of a stellar
population and the total velocity dispersion given by σ2 and, in
particular, by µ200, except for very early-type stars (Dehnen &
Binney 1998). However, we find that the trend for the thin disc is
different than from the thick disc. To prove it, we take advantage
of the eccentricity diagram and form several nested subsamples
within the thin disc, according to the stars’ eccentricities. We
limit the maximum planar and vertical eccentricities following
Eq. 18, by taking as reference values those limiting the region
R1 of Table 1. Hence, we consider the subsamples that satisfy:

e2

A0

+
e′2

B2

≤ ρi ≡ 0.3
i
3 ; i = 0, . . . , 6. (20)

The value i = 0 corresponds to region R1, while higher values of
i correspond to smaller ellipses within R1. We also consider the
remaining disc samples of regions from R2 to R4. We find that
the samples for i = 0, 1, 2, 3, corresponding to limiting eccen-
tricities (emax, e

′
max) = (0.28, 0.079), (0.23, 0.065), (0.19, 0.053),

(0.15, 0.043) provide stable velocity moments; whereas for i =
4, 5, 6, corresponding to limiting eccentricities (emax, e

′
max) =

(0.13, 0.036), (0.10, 0.029), (0.08, 0.024) do not yield stable esti-
mates. Hence, the subsamples of the lowest eccentricities reflect
the kinematics of the local moving groups and star streams, as
explained in Cubarsi (2010), rather than being statistically rep-
resentative of the thin disc population. Therefore, we use the disc
subsamples listed in Table 3.

Figure 6 (top-left panel) shows such a trend for the thin disc
subsamples (black dots), as well as for the segregated popula-
tions P1 and P2 (green dots). The dots without colour, for the

samples containing thick disc stars, deviate from the regression
line. In terms of the heliocentric rotation velocity V0, the to-
tal dispersion σ2 (with slope −4105 ± 75 km s−1) and the mo-
ment µ200 (with slope −2621 ± 83 km s−1) allow us to esti-
mate the heliocentric velocity of the circular rotation point as
Vc = −12.81±0.06 km s−1and −12.99±0.09 km s−1, respectively.
For these subsamples, the following is approximately satisfied:
σ2/µ200 = 1.58 ± 0.02.

The value for Vc is totally consistent with that obtained from
the chemodynamical model by Schönrich et al. (2010) and dif-
fers from the one given by Golubov et al. (2013), derived from
subsamples obtained from the RAVE survey (Siebert et al. 2011;
Zwitter et al. 2008; Steinmetz et al. 2006). We note that our sub-
samples are representative of the thin disc kinematics, having
values for µ200 as low as 420 km2s−2, while the sample values
of Golubov et al. (2013) for this moment vary approximately
from 700 to 1500 km2s−2. This fact is indicative that such sam-
ples also contain either thick disc stars, metal-weak thick disc,
or metal-rich thick-disc stars.

When these stars are included in our fitting, the trend of
Strömberg’s law is slightly modified, as shown in Fig. 6 (left
lower panel, black line for the thick disc and red line for the
thin disc). By using σ2, the line that fits the thick disc popula-
tion (T = P3 + P4), the regions R3 and R4 (which contain thick
disc stars), and the whole thin disc (t = P1 + P2) intersects the
horizontal axis at −10.5 ± 0.1 km s−1. This value is maintained
(−10.4±0.1) if the halo population is included in the fitting (right
lower panel, black line).
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Fig. 6. Strömberg’s law and asymmetric drift equation adjusted for sev-
eral subsamples. Top: Strömberg’s law for thin disc subsamples (black
dots) accounting for the total velocity dispersion σ2 (km2s−2) and the
velocity moment µ200 (km2s−2) in terms of their heliocentric rotation
velocity V0 (km s−1). Fitting of Eq. 21 (right panel) for thin disc sub-
samples (red dots) using the optimal value of γc. Bottom: (left panel)
Strömberg’s law for the total thin disc (t, red line) and the thick disc (T ,
black line) subsamples; and (right panel ) for thin disc, thick disc, and
halo (H) components.

By assuming an average value Vc ≈ −12.9 km s−1we may
evaluate the drift ∆2 = Vc −V0 for each thin disc subsample. Un-
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der the first-order epicycle approximation, for low eccentricities,
the asymmetric drift is neglected and it is approximately satis-
fied µ200 = γ

2
c µ020. Under a more general model that does not

neglect the asymmetric drift, the following is fulfilled (Cubarsi
et al. 2017, Eq. 70):

µ200 + ∆
2
1

µ020 + ∆
2
2

= γ2
c , (21)

where the difference ∆1 = Uc − U0 can be considered null for
the thin disc subsamples, since the radial mean velocity is nearly
constant. Therefore, we may estimate the local value γ2

c provid-
ing the best approximation of Eq. 21. The value that fits the lo-
cal thin disc subsamples is γ2

c = 2.19 ± 0.03. The plot in the
top-right panel of Fig. 6 displays such a fit. This value is slightly
higher than the one derived in Paper I for all the working sam-
ple (γ2

c = 1.96), obtained by limiting the vertical velocity of the
stars as |W | ≤ 170 km s−1, although it is similar to that of the thin
disc sample, whose stars satisfied |W | ≤ 35 km s−1(γ2

c = 2.23).
Therefore, we get an approximate estimation of the asymmetric
drift for thin disc stars from the equation

∆2
2 =

1

γ2
c

(µ200 − γ2
cµ020), (22)

so that, if ∆2 → 0 then σ1/σ2 → γc ≈ 1.48 (although, for
samples containing thick disc stars, this ratio is closer to 1.4).

The absolute rotation velocity of the circular orbit can be
estimated from Eq. 10 as Θc =

1
2
γc κ r0 ≈ 227 km s−1, which

provides a rotation component of the Galactocentric velocity of
the Sun Θ⊙ = Θc − Vc ≈ 240 km s−1.

5. Discussion

In the left panel of Fig. 7, we show the eccentricity diagram for
the triangular regions obtained from the approximation given by
Eq. 18. We compare it to the right panel, where the eccentric-
ity diagram is depicted exactly, as obtained7 from Eq. 17. The
approximation from triangular regions is very exact for the thin
disc, which represents the great majority of the stars in the sam-
ple. In all the disc populations, the variation is of less than 0.5%.
Therefore, approximating by triangular regions is fully justified.
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Fig. 7. Triangular regions R1 to R4 for the actual eccentricities (as de-
picted in Fig. 5) obtained from Eq. 18 (left), and exact regions (right)
obtained from Eq. 17.

In order to check whether the current approach provides a
reliable method to isolate populations, we infer the planar and
vertical eccentricities of the stars in the sample from the stars’

7 In such a case we get the following fractions,
N1=62092, N2=3138, N3=5900, N4=1057, N5=2152.

(83.5%) (4.2%) (7.9%) (1.4%) (2.9%)

velocities, according to Eqs. 12 and 15. That is, we do not use
the actual eccentricities obtained by integration of the orbits, but
the ones estimated from our approach. In order to see how they
are reorganised, Fig. 8 depicts the eccentricity diagram for the
same stellar populations as the left panel of Fig. 7, but while
including the modified eccentricities. For the highest eccentric-
ities, the plot describes the small curvature predicted in Fig. 4,
which is similar to that of the right panel of Fig. 7. The diagram
shows that most of the populations are generally well isolated,
that is, without significant overlapping areas. However, there is
a small mixing at the borders between the regions, which cor-
responds to the tails of the respective velocity distributions, as
discussed in Paper I.
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Fig. 8. Regions R1 to R4 according to the eccentricities obtained from
Eqs. 12 and 15, in terms of the star’s velocities.

Once the stars in the sample have been assigned to one of
the populations components, we check which stars are better de-
scribed by the MVC. Figure 9 displays the vertical peculiar ve-
locity in terms of the maximum height and of the vertical eccen-
tricity. In both cases, the curve, which is the upper envelope of
the dots, fits the stars of populations P1 and P2 of the thin disc
well, and also provides an acceptable fit for the old thick disc
stars of population P3. For population P4, as the eccentricity in-
creases, the dots become more dispersed. Clearly, the model is
not valid for the halo stars. There are several reasons for this.
One is that for the halo, the epicycle approach is not valid. An-
other reason is that, by comparing Figs. 2 and 9, most of the
halo stars have the mean orbital radius farthest from the local
one, so that the eccentricities are not referred to the local circu-
lar velocity point. Also, according to Paper I, in the halo there
is a fraction of counter-rotating stars for which the planar fit-
ting was not valid. There is also a possible dispersion that can
be attributed to uncertainties in the computation of the orbital
parameters, along with other uncertainties and errors discussed
in Paper I. All these reasons do not invalidate the local approxi-
mation we make for the MVC, since the vertical velocity at the
GP should determine univocally the maximum height of the star
orbit. With the exception of the halo stars, the fit is more precise
in the plot in terms of the eccentricity (right panel) than in terms
of the maximum height (left panel).

The curvature of the MVC is regulated by the vertical epicy-
cle frequency at the origin, and by the constant C far from the
origin. The latter constant adjusts the stiffness in the vertical di-
rection of the oscillator associated with the potential. The shape
of the MVC is similar to that of Fig. 3 with B < 0, associated
with a decreasing stiffness.

Let us recall that the constants involved in the potential func-
tion, combined with the velocity dispersions of every two adja-
cent populations, determine the border between these popula-
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Fig. 9. Squared vertical peculiar velocity (W −W0)2 (km2 s−2) at the GP
in terms of (left) the squared maximum height z2

max (kpc2) and (right)
the squared vertical eccentricity e′2 scaled by r0 (kpc2), as well as the
MVC (discontinuous line) provided by the current model. The colours
indicate the population the stars belong to.

tions in the eccentricity diagram. In particular, in the following
subsections we analyse how, in the vertical direction, the maxi-
mum height and the maximum speed of disc stars depend on the
constant C. The approximation of the MVC based on the poten-
tial allows us to interpret qualitatively several aspects, such as
what behaviour of the MVC can be attributed to the disc or the
halo. A similar effect is observed with regard to the stellar den-
sity. On the contrary, the approach in Paper I, associated with an
arbitrary biquadratic function, was not liable to such speculation.

5.1. Disc and halo contributions

On the one hand, the constants M and A are linked to properties
of the planar motion, i.e., the planar epicycle frequency κ and the
local angular velocityΩc. On the other hand, the constants B and
C are related to properties the vertical motion, i.e., the vertical
epicycle frequency ν determining the tangent at the origin, and
the curvature of the MVC. We now write Eq. 13 as:

w2 = g(e′2) ≡ ν2r2
0

e′2

1 +Ce′2
+
κ2r2

0

4

Ce′4

1 +Ce′2
. (23)

By defining

g1(e′2) =
1

1 +Ce′2
; g2(e′2) =

Ce′2

1 +Ce′2

the preceding equation becomes

g(e′2) =

(

g1(e′2) ν2 + g2(e′2)
κ2

4

)

r2
0 e′2 ; g1(e′2) + g2(e′2) = 1.

(24)

Here, the factor within the parenthesis can be interpreted as a
weighted mean of the following limiting cases:

(1) Stars with low values of e′ (say disc stars). In particular, if

e′ → 0, then g1(e′2) → 1 and g2(e′2) → 0. Hence, the dominant
term in Eq. 24 is (blue-dashed line in Fig. 10) is

g1(e′2) ν2r2
0e′2 −→ ν2r2

0e′2

(2) There is a harmonic term of the potential, which, accord-
ing to Eq. A.2, is related to κ. It corresponds to an ellipsoid of
constant density. The corresponding term in Eq. 24 is relevant
for stars with higher values of e′ (say halo stars). If e′ → ∞,

then g1(e′2) → 0 and g2(e′2) → 1. In this case, the dominant
term is (red-dashed line in Fig. 10)

g2(e′2)
κ2r2

0
e′2

4
−→
κ2r2

0
e′2

4

Fig. 10. Contribution of the disc and halo components to the maximum
velocity curve, i.e. local vertical peculiar velocity w = W−W0 (squared,
km2 s−2) at the GP in terms of vertical eccentricity e′ (squared, dimen-
sionless). The continuous lines correspond to the whole curve (black),
the disc term (blue), and the halo term (red). The dashed blue and red
lines are the respective tangent (TD) and asymptote (TH), the dashed
grey line is their geometric mean, and the dashed green line marks the
bound for the vertical speed (squared) of disc stars.

The total trend of Eqs. 23 and 24 is shown in Fig. 10 by the
continuous black line, while the disc (first term of Eq. 23) is rep-
resented by the continuous blue line, and the halo (second term
of Eq. 23) by the continuous red line. The curve is modulated

by e′2 between both straight lines, one is the tangent for e′ → 0,
with slope ν2r2

0
(dashed blue line), and the other is the asymptote

for e′ → ∞ (actually, it is sufficient for e′ → 1), with slope
κ2r2

0

4
(dashed red line).

The term g1, associated with the disc, governs the curve for

e′ < C−
1
2 , namely, for z < z0 with

z0 =
r0√
C
. (25)

For the actual values, this means z0 ≈ 1.8 kpc. We should ex-
pect that the maximum heights zmax of the disc subpopulations
satisfy zmax < z0. Otherwise, for z > z0, the dominant term is g2,
associated with the halo.

If ν2 > κ2

4
, bearing in mind Eq. 13 and according to the as-

sumptions presented in Section 3.1, the stiffness decreases with
increase in the maximum height and vertical eccentricity. This is
the actual case. Otherwise, the stiffness would increase with in-
crease in the maximum height and vertical eccentricity. Since
a straight line means constant stiffness, the progressively de-
creasing stiffness only takes place in the range of low eccen-
tricities, namely, for the disc stars. Afterwards, as the vertical
eccentricity increases, the curve takes the asymptotic behaviour,
where the stiffness remains constant. This happens as the term

g1(e′2) ν2r2
0
e′2 gets closer to its saturation value (it suffices for

e′ → 1),

w2
0 =
ν2r2

0

C
, (26)

which is indicated by the dashed green line in Fig. 10, while the
term associated with the halo continues to rise. Therefore, such
a value can be interpreted as the upper limit for the maximum

Article number, page 9 of 17



A&A proofs: manuscript no. output

vertical velocity of the disc stars. In Appendix E, we describe
some properties of the slope of the curve in more detail.

According to our estimates, this provides a maximum ver-
tical peculiar velocity W − W0 = w0 ≈ 115 km s−1, which is
consistent with the value of the sampling parameter |W | = 130
km s−1(vertical heliocentric velocity) with which (in Paper I) it
was possible to establish the segregation between the disc (as
population 1) and the halo (as population 2). In such a case, for
greater values of the sampling parameter, the velocity moments
of the disc remained approximately constant (Paper I, Fig. 2).

In Fig. 11, the discontinuous grey line represents the term
corresponding to g1 in Eq. 24, which provides the saturation
value, the continuous black line represents the relationship be-
tween the maximum height provided by the potential model, and
the discontinuous red line corresponds to the biquadratic fit of
Paper I, given by Eq. 5.
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Fig. 11. Maximum height zmax (kpc) in terms of the vertical heliocentric
velocity W (km s−1) according to different approaches: continuous black
line for the model provided by the local potential, discontinuous red line
for the biquadratic fit of Paper I, and discontinuous grey line for the disc
component alone.

The condition g(e′20) = w2
0

is satisfied for e′0 ≈ 0.17 (e′20 ≈
0.03). This corresponds to a maximum height zmax ≈ 1.5 kpc of
the region of decreasing stiffness. From this value onward, the
curve becomes nearly a straight line. The value z0 is approxi-
mately the maximum height for the whole disc R4.

Therefore, the disc stars have a bound for their maximum
vertical speed w0 at the GP. For a given speed, they are able
to reach certain maximum height z0, which would not exist for
a potential harmonic in the variable z (i.e. C = 0). Neverthe-
less, the progressive weakening of the stiffness within the disc is
compensated by the halo, which produces a total curve also with
decreasing stiffness, but which is not as intense. Therefore, the
halo contributes to stabilise the stellar orbits. We consider how
the maximum height of the disc depends on C in more detail in
the following subsection.

5.2. Stellar density

We analyse how the constant C is related to the stellar density.
Poisson’s equation, ∆U(r, z) = 4πGρ(r, z), relates the potential
and the density at a point. The density for r = r0 in terms of z
is obtained in Appendix F, by substitution of the potential of Eq.
2 in Poisson’s equation. According to this simplified model, the
shape of ρ0(z) ≡ ρ(r0, z) is displayed, for positive values of z,
in Fig. 12 (blue line). It is also compared to other values for C,
to show how the local minimum depends on this parameter. The
local minimum with vanishing density determines the maximum
height z0 of the disc.

Fig. 12. Density ρ(r0, z) = ρ0(z) (×106 M⊙kpc−3) in terms of z (kpc) for
C = 21 (blue), compared to other values of C.

In Appendix F, the value of z0 is given by Eq. F.3, together
with two approximations. One of them, Eq. F.4, matches that of
Eq. 25, derived from the analysis of the MVC.

Fig. 13. Maximum height (left) z0 (kpc) in terms of C (blue curve) from
Eq. F.3, compared to the approximations from Eq. F.4 (green, similar
to Eq. 25) and Eq. F.5 (red). Maximum vertical peculiar velocity (right)
of disc stars w0 (km s−1) from Eq. 26. The dashed grey lines mark the
estimated values, z0 = 1.8 kpc and w0 = 115 km s−1, for C = 21.

Figure 13 displays (left panel) the value z0 in terms of C (blue
curve), as well as both approximations (dotted red and green
curves). Both approximations are valid within a wide interval
about the estimated value for C. Figure 13 also displays (right
panel) the maximum velocity w0 of disc stars provided by Eq.
26. The grey dashed lines mark the values for C = 21, namely,
z0 = 1.8 kpc and w0 = 115 km s−1.

Therefore, the constant C, which regulates how the stiffness
decreases with increase in the maximum height, also determines
the limiting disc values for z0 and w0. The greater the value of C,
the greater the descent of the stiffness and the lower the values
of z0 and w0.

With regard to the stellar density, Fig. 14 displays several
properties. We consider the number of disc stars within a column
or cylinder perpendicular to the GP, of unit area, for r = r0 and
z ∈ [−z0, z0], namely:

D0(z0) ≡
∫ z0

−z0

ρ0(ζ) dζ.

The left and central panels of Fig. 14 depict the above density
in terms of C and z0. For the maximum height z0, within the
range of values 1.5 < z0 < 2.8 (corresponding to the interval
9 < C < 30) this variation is nearly linear.

The right panel depicts the fraction of stars within the in-
terval [−z, z] ⊂ [−z0, z0], relative to the number of stars in the
interval [−z0, z0], that is, the ratio D0(z)/D0(z0). By comparing
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the value D0 for zmax = 1.5 kpc (which was the maximum height
estimated for the disc from the velocity analysis of our working
sample) with the value D0 for z0 = 1.8 kpc, we get a ratio 99.5%.
Therefore, both estimations of the maximum height of the disc
provide a similar number of stars in the local cylinder. Indeed,
according to this model, for C = 21, a fraction of 95% of the
disc stars are in the range of |z| ≤ 1.1, and 66% of the disc stars
are in the range of |z| ≤ 0.55, which is consistent with the current
sample. The ratio D0(z)/D0(z0) is nearly linear for |z| < 0.6 kpc.

Fig. 14. Function D0(z0) (×106 M⊙kpc−2) plotted in terms of C and
z0 (left and central panels). The dashed grey lines mark the estimated
values for C = 21 and z0 = 1.8 kpc. Fraction of stars with |z| ≤ z0

relative to the number of stars with |z| = z0 is given in the right panel.

We may also compare the above estimations to those ob-
tained for a value C = 15, which would produce a lower decrease
of the stiffness. Then, the maximum height would be z0 = 2.1
kpc and the limiting velocity w0 = 135 km s−1, while the lo-
cal density of the disc cylinder increases in about 15%. In such
a case, 95% of the disc stars satisfy |z| ≤ 1.3, and 66% have
|z| ≤ 0.65. Thus, as shown in to Fig. 15, a decrease of about 15%
in the limiting velocity w0 (similar for the value z0), would pro-
duce a quite similar decrease, of about 14%, in the density D0 of
the local cylinder. Then, the approximate local behaviour in the
disc can be described so that a greater decrease of the stiffness
in a certain ratio is associated with a decrease in the limiting
velocity that produces a thinner disc and a loss of stars of the
local cylinder, which become unbound in a similar proportion.
This loss is distributed among all values of z, as Fig. 12 suggest.
Therefore, the loss of stiffness within the disc can be interpreted
as whether there is not enough mass in the disc to keep the stars
bounded, although this effect is afterwards mitigated by the halo.

Fig. 15. Relative decrease of density in the local cylinder in the range
[−z, z] (kpc), when comparing a disc model with velocity limit w0 = 115
km s−1(z0 = 1.8 kpc) to another one with w0 = 135 km s−1(z0 = 2.1
kpc).

Let us point out that the requirements for our potential have
been, on the one hand, to allow for a finite mixture of indepen-
dent Schwarzschild velocity distributions and, on the other hand,
to be consistent with the kinematic statistics estimated from our
local sample. It is generally known that, according to an assumed

potential, Poisson’s equation allows us to estimate the mass den-
sity generating such a potential. However, such a stellar density
will not match the sum of the stellar densities of the n popula-
tions involved in the mixture model. If the i-th population has a
population fraction ni and a velocity distribution fi, its density

is evaluated as Ni =
∫

V
fi dV, so that the contribution of all the

populations to the total density is
∑

i niNi (each population has a
stellar density according to Cubarsi (2014a, Eq. 40). However, in
addition to the stars in the sample, there is an unknown amount
of stars and, in general, dark matter that has not been considered
– even though all of these factors contribute to the potential.

6. Conclusions

In Paper I, we proposed an approach to classify the local stel-
lar populations in terms of the stars’ planar and vertical orbital
eccentricities. Such a classification was characterised by a geo-
metrical interpretation associated with regions delimited approx-
imately by a straight line in the eccentricity diagram, namely, the
plot of the squared vertical eccentricity in terms of the squared
planar eccentricity.

According to Paper I, in the GP the planar eccentricities de-
scribed consistently the planar velocity distribution of the stars.
However, upon moving away from the GP, the vertical epicycle
approximation was no longer valid and required a better approx-
imation model. In this work, we improve such an approximation
by taking into account a plausible model for the local potential
function, making it possible to elicit several properties, such as
the maximum height of disc stars and their maximum speed in
crossing the GP.

We consider a kinematical stellar population as a sufficiently
large number of stars whose velocity distribution is trivariate
Gaussian, and we take the potential to be consistent with an un-
constrained mixture of populations (Cubarsi 2014a). Within this
family, potentials with spherical symmetry or separable in cylin-
drical coordinates are unable to fit the model. Therefore, we con-
sider a model that allows us to evaluate, in addition to other local
Galactic constants, the curvature of the MVC, associated with
a constant C, which determines the possible regions where the
non-harmonic part of the potential generates an attractive or a
repulsive force. Our fitting method yields the value C = 21 ± 1,
always generating an attractive force.

In the vertical direction, we have taken the Duffing oscillator
as a model of a non-linear restoring force. The shape of the MVC
is similar to the model of Fig. 3 with B < 0, associated with a
decreasing degree of stiffness. In the local neighbourhood, we
can interpret it so that the stiffness decreases with increase in
the maximum height. Hence, for the same vertical velocity, it is
possible to reach a higher maximum height than for the harmonic
potential.

In particular, the constant C determines the limiting maxi-
mum height, z0, and the maximum speed at the GP, w0, for the
disc. The greater the value of C, the greater the descent of the
stiffness, and the lower the values of z0 and w0. With regard to
the local stellar density, this is expected to produce a thinner disc
and a loss of disc stars of the local cylinder.

The improved model allows us to reevaluate the critical pla-
nar and vertical eccentricities in the eccentricity diagram in or-
der to discriminate between the different kinematic populations
contained in the current Gaia local sample. The thin disc is de-
scribed by the quarter ellipse satisfying

e2

1.00×10−1 +
e′2

7.78×10−3 ≤ 1,
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that is, for 0 ≤ e ≤ 0.32, 0 ≤ e′ ≤ 0.09, with a maximum
height zmax = 0.73 kpc. The whole disc is described by the region
satisfying

e2

1.91×10−1 +
e′2

3.30×10−2 ≤ 1,

that is, 0 ≤ e ≤ 0.44, 0 ≤ e′ ≤ 0.18, zmax = 1.50 kpc. We
confirm that the approximation of the eccentricity diagram from
triangular regions is very accurate and there is no need of using
the exact representation from Eq. 17.

Therefore, the vertical values obtained for the biquadratic ap-
proximation of Paper I were slightly overestimated. By compar-
ing the current stellar classification, we find that the thin disc
(88%) of our local sample now has 1.5% fewer stars, while the
thick disc (9%) has increased relatively in 10%. In total, a 3% of
stars were misclassified by the previous approach among popu-
lations P1 to P5. However, such a variation has a low impact on
the velocity moments, with velocity dispersions (σ1, σ2, σ3) ≈
(30, 20, 14) and (59, 36, 35) km s−1for the thin and thick discs,
respectively. Nevertheless, the current approach provides a 10-
15% thinner disc.

As an application of the eccenticity diagram, we analysed
several nested subsamples within the thin disc to estimate Ström-
berg’s asymmetric drift equation. The thin disc is well repre-
sented from samples with limiting eccentricities 0.15 ≤ emax ≤
0.32, 0.043 ≤ e′max ≤ 0.09 in the eccentricity diagram. Lower-
limiting eccentricities did not yield stable estimates, but rather
reflect the kinematics of the local moving groups and star
streams (Cubarsi 2010). The trend for the thin disc is different
from that by including thick disc stars. Within the thin disc, we
have estimated the heliocentric velocity of the circular rotation
point as Vc = −12.81 ± 0.06 km s−1, a value consistent with
that obtained by Schönrich et al. (2010). Consequently, the ab-
solute rotation velocity of the circular orbit has been evaluated
in Θc ≈ 227 km s−1, which provides a rotation component of the
Galactocentric velocity of the Sun Θ⊙ ≈ 240 km s−1.

In addition, we have provided an approximated formula, Eq.
21, to estimate the asymmetric drift ∆2 within the thin disc from
the velocity dispersions σ1 and σ2, according to the optimal
value for the constant γc = 1.48 ± 0.01. This value is slightly
higher than the one derived in Paper I for all the working sam-
ple (γc = 1.40), obtained by limiting the vertical heliocentric
velocity of the stars as |W | ≤ 170 km s−1, although it is similar
to that of the thin disc sample, whose stars satisfied |W | ≤ 35
km s−1(γc = 1.49). Thus, for the thin disc, we have, if ∆2 → 0,
then σ1/σ2 → γc ≈ 1.48.

The interpretation of the MVC leads to a maximum verti-
cal peculiar velocity for disc stars w0 = 115 km s−1, which
is consistent with the limiting sampling parameter |W | = 130
km s−1(vertical heliocentric velocity) used in Paper I to select a
disc subsample. On the other hand, the potential together with
the Poisson equation provide an upper bound z0 = 1.8 kpc for
the disc, which is consistent with the maximum height estimated
for the disc subpopulations of the working sample. Indeed, the a
fraction of 95% of disc stars should be in the range |z| ≤ 1.1 kpc,
and 66% in the range |z| ≤ 0.55 kpc.

At the moment, we have fulfilled the first purpose established
in Paper I, which was to justify and improve the approximation
of the MVC. In addition to maintaining the other purposes, we
think that it might be worth studying how the approach improves
by using a second order epicycle approximation, such as the one
proposed by Kalnajs (1979). Likewise, we propose to explore
other models for the integration of the stellar orbits. Similarly, to
compare the behaviour of the MVC associated with other poten-

tials, such as those listed in the galpy python package8, and study
their consequences, namely, the mutual dependence between the
maximum height of the disc, the vertical velocity limit, and the
local stellar density.
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Dehnen, W. & Binney, J. J. 1998, MNRAS, 298, 387
Di Matteo, P., Haywood, M., Lehnert, M. D., et al. 2019, A&A, 632, A4
Eddington, A. S. 1915, MNRAS, 76, 37
Evans, N. W., Sanders, J. L., Williams, A. A., et al. 2016, MNRAS, 456, 4506
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2020, arXiv e-prints,

arXiv:2012.01533
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2016, A&A, 595, A2
Gaia Collaboration, Smart, R. L., Sarro, L. M., et al. 2021, A&A (in press)
Gilmore, G., King, I. R., & van der Kruit, P. C. 1990, The Milky Way as a Galaxy,

Advanced course of the Swiss Society of Astronomy and Astrophysics (Uni-
versity Science Books)

Girard, T. M., Korchagin, V. I., Casetti-Dinescu, D. I., et al. 2006, AJ, 132, 1768
Goldstein, H. 1980, Classical Mechanics, Addison-Wesley series in physics

(Addison-Wesley Publishing Company)
Golubov, O., Just, A., Bienaymé, O., et al. 2013, A&A, 557, A92
Kalnajs, A. J. 1979, AJ, 84, 1697
Lynden-Bell, D. 1967, MNRAS, 136, 101
Makarov, A. A., Smorodinsky, J. A., Valiev, K., & Winternitz, P. 1967, Nuovo

Cimento A Serie, 52, 1061
McLachlan, N. 1950, Ordinary Non-linear Differential Equations in Engineering

and Physical Sciences (Clarendon Press)
Miyamoto, M. & Nagai, R. 1975, PASJ, 27, 533
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Region Sample A0 emax B1 e′max zmax B2 e′max zmax

R1 |v| ≤ 123 7.88 × 10−2 0.28 7.37 × 10−3 0.09 0.71 6.29 × 10−3 0.08 0.66

R2 |v| ≤ 230 1.00 × 10−1 0.32 9.33 × 10−3 0.10 0.80 7.78 × 10−3 0.09 0.73

R3 |v| ≤ 350 1.67 × 10−1 0.41 2.65 × 10−2 0.16 1.33 2.00 × 10−2 0.14 1.16

R4 |W | ≤ 170 1.91 × 10−1 0.44 4.40 × 10−2 0.21 1.74 3.30 × 10−2 0.18 1.50
Table 1. Parameters delimiting the triangular regions Ri according to the stars’ orbital parameters.

Pop. U0 V0 W0 µ200 µ020 µ002 µ110 µ101 µ011

P1 84% -9.24 -16.96 -6.94 819.88 352.29 168.29 88.70 6.17 2.38± 0.11 0.08 0.05 4.44 2.01 0.94 2.11 1.44 0.97

P2 4% -10.06 -26.44 -10.44 2990.98 1041.17 592.24 262.75 -26.98 -27.71± 0.97 0.57 0.43 45.53 19.49 8.91 25.00 18.14 11.87

t ∼ P1 + P2 88% -9.28 -17.42 -7.11 924.34 389.54 189.24 97.43 4.70 2.45± 0.12 0.08 0.05 5.09 2.22 1.05 2.37 1.62 1.08

P3 8% -12.33 -35.47 -11.72 3422.42 1239.89 1093.67 297.07 -29.57 12.45± 0.76 0.46 0.43 44.11 25.50 11.29 21.93 19.89 13.48

P4 1.5% -19.99 -50.65 -9.22 3752.02 1292.21 2088.72 152.17 17.32 73.79± 1.90 1.11 1.42 129.56 43.86 40.52 58.59 72.32 48.92

T ∼ P3 + P4 9.5% -13.48 -37.75 -11.35 3479.44 1277.17 1243.97 290.15 -24.97 16.82± 0.71 0.43 0.42 42.26 22.84 12.21 20.89 20.10 13.54

D ∼ P1 + P2 + P3 + P4 97.5% -9.68 -19.37 -7.51 1170.76 510.44 291.89 123.31 3.40 11.30± 0.13 0.08 0.06 6.74 3.54 1.87 3.10 2.43 1.62

H ∼ P5 2.5% -18.29 -96.64 -14.59 9200.65 5550.22 4041.99 -324.42 -212.13 -269.45± 2.20 1.71 1.46 367.09 454.90 125.87 274.15 150.49 161.99

Table 2. Mean velocities, central moments, and population fractions (relative to the whole sample) from the eccentricity diagram.

emax e′max U0 V0 W0 µ200 µ020 µ002 µ110 µ101 µ011

i = 3 0.15 0.043 -10.57 -15.01 -6.47 419.84 188.84 108.01 48.58 1.62 0.46
± 0.10 0.07 0.05 2.22 1.19 0.62 1.18 1.04 0.72

i = 2 0.19 0.053 -9.88 -15.78 -6.60 557.62 256.18 131.27 68.92 4.03 1.83
± 0.10 0.07 0.05 2.85 1.48 0.72 1.52 1.23 0.85

i = 1 0.23 0.065 -9.40 -16.63 -6.86 721.37 327.11 164.06 79.41 6.07 2.09
± 0.11 0.07 0.05 3.70 1.84 0.89 1.87 1.49 1.02

R1 0.28 0.079 -9.25 -17.52 -7.15 914.04 393.13 203.81 92.60 4.88 3.57
(i=0) ± 0.12 0.08 0.06 4.85 2.20 1.12 2.31 1.82 1.21

R2 0.32 0.09 -9.32 -18.09 -7.30 1039.84 436.52 223.82 108.21 2.35 6.42
± 0.12 0.08 0.06 5.73 2.51 1.23 2.64 2.03 1.33

R3 0.41 0.14 -9.70 -19.40 -7.53 1175.49 515.07 284.42 124.44 4.04 12.05
± 0.13 0.08 0.06 6.78 3.58 1.75 3.12 2.46 1.66

R4 0.44 0.18 -9.75 -19.71 -7.56 1201.66 532.54 307.53 127.42 2.62 14.06
± 0.13 0.09 0.06 7.00 3.72 2.02 3.24 2.64 1.79

Table 3. Mean velocities and central moments for nested disc subsamples according to Eq. 20. The first group only contains thin disc stars.
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Appendix A: Constants M and A

In Cubarsi et al. (2017, Eq. 24), the following operator L pro-
vides the planar epicycle frequency κ for a circular orbit with
radius r = rc at the GP,

κ2(rc) = Lr[ U ](rc, 0) ; Lr[ · ] =
(

∂2

∂r2
+

3

r

∂

∂r

)

[ · ]. (A.1)

For the potential in Eq. 2, we get

Lr[U ] = 8M +
1

r4

(

8sF′(s) + 4s2F′′(s)
)

,

which yields

Lr[U ](rc, 0) = 8M =⇒ κ2 = 8M > 0 (constant). (A.2)

Therefore, for the current family of potentials, only the harmonic
part determines the planar epicycle frequency, which does not
depend on the distance rc.

In addition, the angular velocity of the circular orbit satisfies

Ω2
c =

1
rc

∂U(r,0)

∂r

∣

∣

∣

rc
. Hence, by taking into account Eq. 9, we get

A = F(0) =
1

2

(

κ2

4
−Ω2

c

)

r4
c (A.3)

According to the local values, we get A < 0.

The ratio γc =
2Ωc

κ
informs about several local properties. For

example, it is possible to evaluate which is the predominant term
in the local potential U(rc, 0). By taking into account Eqs. 8,
A.2, and A.3, we may write the local potential at the GP around
rc as

U(r, 0) =
κ2

8
r2 +

1

2

(

κ2

4
−Ω2

c

)

r4
c

r2
.

Hence, by taking into account Eq. 10, we have

U(r, 0) =
κ2

8
r2 +

κ2

8
(1 − γ2

n)
r4

c

r2
. (A.4)

For γ2
c = 1 the local potential behaves as the harmonic potential,

while for γ2
c = 2 the second term of Eq. A.4 is negative and

compensates for the harmonic potential. In Paper I, we could see
that actual data provide a value of γ2

c that is close to 2. This has
implications for the angular velocity. Let us recall, as pointed out
in Paper I, that the angular velocity of the circular velocity point
satisfies

∂Ωc(r)

∂r

∣

∣

∣

∣

∣

rc

=
1 − γ2

c

γ2
c

2Ωc(rc)

rc

.

Hence, a value γ2
c = 1 implies an angular velocity that, locally,

is nearly constant, while a value γ2
c = 2 provides an angular

velocity satisfying ∂Ωc

∂r

∣

∣

∣

rc
= −Ωc

rc
, that is, Ωc ∝ 1

rc
.

Appendix B: Constant B

The vertical epicycle frequency at the local circular velocity
point, r = rc, is defined as

ν2(rc) =
∂2U
∂z2

∣

∣

∣

∣

∣

(rc,0)

. (B.1)

For the potential in Eq. 2, we get

∂2U
∂z2
= 2M +

1

r4

(

2F′(s) + 4sF′′(s)
)

, (B.2)

so that

ν2(rc) = 2M +
2F′(0)

r4
c

. (B.3)

For a non-harmonic potential, the vertical epicycle frequency de-
pends on rc. We may estimate the constant B in Eq. 8 from the
corresponding local values as

B = F′(0) =
1

2

(

ν2(rc) − κ
2

4

)

r4
c . (B.4)

According to the local values, we get B > 0.

Appendix C: Fitting method for the constant C

As justified previously, the upper envelope of the dots displayed
in Figure 2, matching the stars satisfying rm ≈ r0, corresponds
to the MVC. This curve must be calibrated locally, only for the
stars whose orbit is consistent with the epicycle approximation,
although the epicycle approximation in the vertical direction will
be afterwards improved and replaced by the model provided by
the potential.

To this end, we consider a series of subsamples of stars de-
pending on a positive value δ, having increasing planar ampli-
tude a ≤ δ around rc = r0, hence, by progressively increasing
the planar eccentricity. In every subsample, we include the stars
with a mean radius rm between rc − δ and rc + δ, with a maxi-
mum planar amplitude δ. This is justified from Fig. C.1, where,
for each star, the planar amplitude a is plotted in terms of the
mean orbital radius rm. We see that, for a fixed amplitude a, the
mean orbital radius satisfies rc − a ≤ rm ≤ rc + a, with rc = 8.3
kpc.

4 z { 10 12

Rm
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4
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z

|

{

a

Fig. C.1. Orbital planar amplitude a (kpc) in terms of the orbital mean
radius rm (kpc), whose average value is rc = 8.3 kpc.

In the interval [rc − δ, rc + δ], the constant 2B in Eq. 13 can
be estimated as

2B ≈
(

ν2(rc − δ) − κ
2

4

)

(rc − δ)4 ≈
(

ν2(rc + δ) − κ
2

4

)

(rc + δ)
4.

Therefore, we assume

2B =

(

ν2(ξ) − κ
2

4

)

(r2
c − δ2)2,

where ξ is an intermediate radius satisfying ν(ξ) ≥ ν(rc) and
ν(ξ)→ ν(rc) when δ→ 0.

A maximum amplitude δ around rc corresponds to a maxi-
mum planar eccentricity ε satisfying δ = rc ε. Thus,

2B =

(

ν2(rc) − κ
2

4

)

r4
c =

(

ν2(ξ) − κ
2

4

)

r4
c (1 − ε2)2. (C.1)
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We now define the following function, which is a slight mod-
ification of Eq. 13,

f (zmax, rm) =
κ2

4
z2

max +

(

ν2(r0) − κ
2

4

)

r2
0

z2
max

r2
m +Cz2

max

. (C.2)

Around the local circular velocity point, rc = r0, we consider
the value ν(ξ) as an average value, valid for all the stars in the
subsample, so that, according to Eq. C.1, the function f can also
be expressed as

fε(zmax, rm) =
κ2

4
z2

max +

(

ν2(ξ) − κ
2

4

)

r2
0 (1 − ε2)2 z2

max

r2
m +Cz2

max

.

(C.3)

Now, we analyse the change of slope, q = fε/z
2
max, by writing

the last term depending on the vertical eccentricity e′ = zmax

rm
, as

fε(zmax, rm) = z2
max













κ2

4
+

(

ν2(ξ) − κ
2

4

)

r2
0

r2
m

(1 − ε2)2 1

1 +Ce′2













.

For a small δ, since r0 − δ ≤ rm ≤ r0 + δ, in average, for the

subsample we may approximate
r2

0

r2
m
≈ 1. In this way, it is possi-

ble to justify that the slope q decreases with e′ for fixed ε, and,
similarly, the slope decreases with ε2 for fixed e′. Thus, for sub-
samples containing stars with increasing planar eccentricity we
will get curves that, in average, have lower slope.

Therefore, the function fε defined in Eq. C.3 is a decreasing
function of the non-negative value ε2, which satisfies:

f (zmax, rm) = fε(zmax, rm) ≤ lim
ε→0

fε(zmax, rm) = w2(zmax, r0).

(C.4)

Then, we may adjust the parameters of the MVC by deter-
mining the upper limit of the points plotted from the function f
(Fig. C.2, right) instead of by using the curve w2(zmax, rm) (Fig.
C.2, left).
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Fig. C.2. Squared maximum vertical peculiar velocity (W − W0)2

(km2 s−2) compared to those predicted by w2(zmax, rm) (left) and by
f (zmax, rm) (right). The colours indicate different planar eccentricities.

The fitting of this curve, by assuming r0 = 8.3, and using
the estimates from Paper I, ν(r0) = 63 km s−1kpc−1 and κ = 37
km s−1kpc−1, provides the value C = 21 ± 1, which is used to
plot the MVC in Fig. 9.

Appendix D: Local potential

With the local constants M, A, B, and C already evaluated, we
may estimate the local approximation of the potential given by

Eqs. 2 and 8. It is interesting to focus on the non-harmonic part
U0. The harmonic part produces a trivial attractive force for M >
0. For the actual constants, in particular C = 21, the level curves
for the total potential U and the term U0 are displayed in Fig.
D.1.

Fig. D.1. Level curves for the potential U(r, z), together with the con-
tributed termsU0 andUz, for the actual value C = 21.

There is a critical value for C that determines qualitatively
the shape of the potential. In the actual case A < 0 and B > 0. If
we define C0 = − B

A
, we may write Eq. 8 as

F(s) = A +
Bs

1 +Cs
= A

1 + (C −C0)s

1 +Cs
.

According to our working sample, the limiting value is C0 ≈ 11,
which is lower than the actual value for C.

Although it goes beyond the scope of this paper, it is easy
to see that the sign of the force in the radial direction associated
with U0 depends on the sign of C − C0. If C − C0 ≥ 0, as in
the actual case, being A < 0, this force is always attractive. On
the other hand, if C − C0 < 0, this force would have opposite
signs depending on the region of the Galaxy. To make a compar-
ison with Fig. D.1, we show in Fig. D.2 the contour plots for the
critical case and a case with C < C0.

Fig. D.2. Contour plots for the terms U0, Uz and the potential U for
the critical case C = 11 (top) compared to a case with C = 6 (bottom).

The case C = C0 is equivalent to F(s) = A
1+Cs

. This expres-
sion was studied in Cubarsi et al. (2017) and could not fit to the
actual MVC.

It is also illustrative to write the potential by separating the
spherical partUR, depending on R2 = r2 + z2, and the remaining
part Uz, which is proportional to z2. Then, we may write the

Article number, page 15 of 17



A&A proofs: manuscript no. output

potential asU = UR +Uz with

UR = M (r2 + z2) +
A

r2 + z2
, (D.1)

Uz =

(

A

r2 + z2
+

B

r2 +Cz2

)

z2

r2
. (D.2)

The level curves for Uz are also displayed in Fig. D.1. In
all the cases, far from the origin, the potential is approximately
spherical, due to the harmonic term. The non-harmonic termU0

is the one providing the general features ofU, specially close to
the origin. On the other hand, the contribution of the termUz is
regulated by the constant C.

Appendix E: Average slope

With regard to Fig. 10, we aim to prove that the intersection of

the curve w2 = g(e′2) and the horizontal line w2 = w2
0

determines

the straight line w2 = p0 e′2 passing through the origin, whose
slope is the geometrical mean (grey-dashed line in Fig. 10) of
the slopes of both limiting tangents, namely:

p0 =
νκ

2
r2

0.

Firstly, we explicitly write the abscissa of the intersection

g(e′20) = w2
0
. According to Eqs. 23 and 26, we have

1

C
ν2 = ν2

e′20

1 +Ce′2
0

+
κ2

4

Ce′40

1 +Ce′2
0

=⇒ e′20 =
2ν

Cκ
. (E.1)

Now we prove that the the straight line w2 = p0 e′2, at e′2 =
e′20 takes the value w2

0
. Thus, according to Eqs. 26 and E.1, we

have
νκ

2
r2

0

2ν

Cκ
=
ν2r2

0

C
= w2

0.

Therefore, in the range of 0 ≤ e′2 ≤ e′20, the disc and halo
coexist, although the former, with lower eccentricity stars, is ob-
viously prevailing. Within this range, in the angular region of

Fig. 10 where the slope p = w2/e′2 takes values ν2r2
0
≥ p ≥ p0,

the stiffness decreases as increasing the vertical eccentricity.

In the range of e′2 > e′20 (mostly corresponding to halo stars),

in the angular region where p = w2/e′2 takes values p0 > p ≥
κ2r2

0

4
, the stiffness remains nearly constant.
We calculate the slope of the velocity curve at the limiting

point e′20. The derivative of Eq. 23 is

g′(e′2) =
ν2r2

0

(1 +Ce′2)2
+
κ2r2

0

4

Ce′2(2 +Ce′2)

(1 +Ce′2)2
.

At e′2 = e′20, according to Eq. E.1, by simplifying, we get

g′(e′20) = κ2r2
0
(2 + κ

ν
)−1. For the actual estimates, in the range

0 ≤ e′2 ≤ e′20, g′(e′2) drops 86%, while in the range 0 ≤ e′2 ≤ 1,

g′(e′2) drops 90%. Then, it is justified to affirm that from e′20
onward the slope is nearly constant.

Appendix F: Local density

In cylindrical coordinates, by assuming axial symmetry, Pois-
son’s equation gives the expression

∆U ≡ ∂
2U
∂r2
+

1

r

∂U
∂r
+
∂2U
∂z2
= 4πGρ(r, z). (F.1)

The gravitational constant is G = 4.301× 10−6 km2s−2 kpc M−1
⊙ .

For the potential in Eq. 2, we calculate the following poten-

tial derivatives in terms of F(s), bearing in mind that s = z2

r2 :

∂U
∂r
= 2Mr − 1

r3

(

2F(s) + 2sF′(s)
)

,

∂2U
∂r2
= 6M +

1

r4

(

6F(s) + 14sF′(s) + 4s2F′′(s)
)

.

Thus, together with Eq. B.2, we can write Poisson’s equation as

∆U = 6M+
1

r4

(

4F(s) + 2(1 + 6s)F′(s) + 4(s + s2)F′′(s)
)

= 4πGρ

By applying a substitution for F(s), from Eq. 8, namely, F′(s) =
B

(1+Cs)2 and F′′(s) = − 2BC
(1+Cs)3 , in the foregoing expression, we get

∆U = 6M +
4A

r4
+

2B

r4

1 + (8 − 3C)s + 6Cs2 + 2C2s3

(1 +Cs)3
= 4πGρ.

(F.2)

If we plot the local density ρ0(z) ≡ ρ(r0, z) (Fig. F.1, left
panel), we observe that for C = 21 there is a local minimum of
ρ0(z), approximately with vanishing density, which would deter-
mine the maximum height z0 of the disc by producing a clear
separation of the disc and halo components. For higher values of
C, the density of this minimum would be negative (green dashed
line), which would make no sense. Instead, for lower values of
C, the disc and halo components would virtually overlap (green
dashed line), also by producing a relative minimum of density.

Fig. F.1. Density ρ(r0, z) = ρ0(z) (×106 M⊙kpc−3) in terms of z (kpc) for
C = 21 (blue), compared to other values of C (left). Minimum value for
C required to produce a non-negative density, in terms of κ (right).

We calculate the abscissa z0 of this minimum. The density
derivative is

∂ρ(r, z)

∂z
=

8GB z

r6

C(C − 2
3
)s − (C − 4

3
)

(1 +Cs)4
.

The local minimum for r = r0 must satisfy C(C− 2
3
)s− (C− 4

3
) =

0, from where, by assuming C > 4
3
, we have

z2
0

r2
0

=
C − 4

3

C(C − 2
3
)
. (F.3)

It is interesting to point out two approximations of the above
equation. Firstly, we consider a more coarse approximation. If
C >> 4

3
, we may consider C − 2

3
≈ C − 4

3
≈ C, which is within

the error range obtained for this constant. It yields
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z0 ≈
r0√
C
. (F.4)

Such an estimation matches the expression for z0 in Eq. 25, de-
rived from the analysis of the MVC.

Secondly, we consider a more accurate one. We may assume

C(C − 2
3
) ≈ C2 ≈ C2 − 4

3

2
. Then, s ≈ C− 4

3

C2− 4
3

2 =
1

C+ 4
3

. Therefore,

z0 ≈
r0

√

C + 4
3

. (F.5)

In Fig. 13 (left), we may observe that both are good approxima-
tions.

Now, we determine the minimum value of C that guarantees
a non-negative density from the equation ρ(r0, z0(C)) = 0. The
value of C is especially dependent on M, which is a function
of κ alone. Then, by assuming fixed values for ν and γc, such
a relationship implies that the minimum C and κ are mutually
dependent, as shown in Fig. 13 (right panel). The critical value
can be expressed analytically in terms of M, A, and B, by using
the approximation of Eq. F.4, as

C =
8B

B − 12M r4
0
− 8A

.

It so happens that the value C ≈ 21 we estimated is higher
than the minimum values derived for the thin and thick discs.
However, the value κ ≈ 41 km s−1kpc−1 obtained for the whole
working sample selected as |W | ≤ 170 km s−1in Paper I, is fully
consistent with such a critical value C ≈ 21. Therefore, in order
to estimate some properties of the local stellar density of the disc,
we adopt this approximated model, where the local minimum of
vanishing density takes place at the point z0. Even though such
a model implies that there is no overlapping between disc and
halo, which seems unrealistic, it is a simple way to obtain an
alternative measurement of the maximum height of the disc.
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