Design and implementation of an intelligent and
adaptive mechanical mattress

Gonzalo Solera Pardo

Thesis director: Conrado Martinez

June 2021

Abstract

In this thesis, we present and implement a radical new concept of
mattress, which is both intelligent and capable of mechanically adjust
itself to comfortably accommodate any body shape and posture. It does
so by controlling many linear actuators and by reading many pressure
sensors to obtain updated information of the user’s weight distribution
and posture. The surface of the mattress is formed by the top side of
many linear actuators placed vertically in a grid.

The project can be divided in 4 big components: mechanical, elec-
tronic, algorithmic and AI. These parts interact between them to obtain
the desired result, but the specific implementation of them is fairly in-
dependent while maintaining a compatible interface. We give an explicit
implementation of these components and show them in a working proto-
type.

In the presented implementation, many new and original ideas are
introduced to obtain a scalable design that deals with trade-offs regarding
cost, complexity, accuracy and agility, among others.



1 Introduction

1.1 Motivation

During the past 10 years, I have suffered a lot of back pain and discomfort while
sleeping. Besides discussing these physical problems with doctors and special-
ists, I have tried many different mattresses with the hope of finding one that
allowed me to sleep well and feel well rested in the morning.

I have not yet been able to completely fix this issue, although I have dis-
covered that a good mattress choice was key in order to minimize my pain and
discomfort. A good mattress adapts to the body shape and posture by provid-
ing a surface that keeps all the body parts in a healthy position. In particular,
the backbone needs to be in a natural position, avoiding twists and unnatural
curvatures, and the neck also needs to be parallel and aligned to the rest of the
backbone, as shown in Figure 1:

pors e
o s e

—

Figure 1: Appropriate back and neck posture while sleeping

However, the few mattresses that initially seemed to work properly for me
rapidly stopped working and visible deformations appeared in their surface. My
guess is that my weight (95 kg) and my unusual height (195 cm) play a big part
in this problem. These deformations accentuated my pain issues and my dis-
comfort. Also, even when there is no deformation present yet, I could not find



a mattress that properly adapts to an arbitrary “basic posture”. That is, a
mattress that properly adapts to my back when facing upward, does not adapt
to my body profile when lying sideways, and vice versa. In my case, I change a
lot of posture during the night, so I need a mattress that adapts well to these
different postures. Furthermore, I obviously need a big pillow when sleeping
sideways but it becomes harmful when sleeping upward, and since I am not ac-
tively adding and removing the pillow during the night, there are some postures
that hurt my body.

Furthermore, my partner Pilar Soriano also suffers from similar back pain
problems and discomfort while sleeping, greatly influenced by my weight and
the lack of independent support of the mattresses. She is a graduated industrial
design engineer with wide knowledge and experience in the field of additive
manufacturing and 3D design. Together, we devised and designed the idea that
is presented in this thesis, that mainly tries to address the following issues from
previous mattresses that we owned:

e Lack of adaptation to an arbitrary body shape and posture
e Performance degradation over time

e Lack of independent support (weight of a user disturbs another)

1.2 The idea

The design that we present is based in the following hypothesis: A person lying
on top of of a “bed” of sand (at the beach) that perfectly mimics his body shape
is very comfortable, since he can maintain his natural body posture and aligned
backbone while distributing his weight in an uniform manner. i.e., close points
sustain a similar pressure, and no small cluster of points sustain a specially large
nor small pressure, compared to their neighbours.

The main idea of our design is to take this “continuous” sand surface and
to “discretize” it by projecting it into a grid, as shown in Figure 2. Then, by
actively controlling each one of these discretized parts we can approximate the
“ideal” surface of any arbitrary shape/posture. Having control of each of these
discretized parts is equivalent to being able to independently move them verti-
cally to arbitrary positions, and that is the main property of our design.



Figure 2: Example of a discretized surface

Any “regular” mattress also tries to follow the same approach of approxi-
mating the analogous bed of sand, that is, to accommodate to the user’s shape
and weight distribution, but they do not have an active control of their surface.
Instead, they aim to passively approximate the “ideal” surface configuration
using their materials properties (foam, latex, springs, etc), but as I already
mentioned, I think they consistently fail to do so for some basic postures, at
least for people with marginal physical properties like me (weight and height).

To summarize, our design mainly consists in providing a discretized surface
that can be modified to approximate any arbitrary “ideal” surface. We call each
discretized part a “lift”, and we call their specific placement on their respective
z-axis a “configuration”, which tries to approximate some continuous surface.
Since the discretization is obtained by projecting the surface into a grid, the lifts
are arranged in a grid represented by a n X m matrix. We named our prototype
Mattrexx for this reason.

As a side note, our design would remove the need of a pillow: The mattress
would change its discretized surface to “create” a pillow by moving up the lifts
below the head, until the neck is aligned to the rest of the body, as indicated in
Figure 1.

It is left to specify:

e What is this configurable discretized surface physically made of?
Mechanical component in section 2

e How is it controlled/modified to reach any arbitrary configuration?
Algorithmic component in section 3

e How to obtain real-time information about the user’s body shape and
posture?
Electronic component in section 4

e How to determine what is the most approximate configuration respect to
the also unknown “ideal surface”?
Artificial Intelligence component in section 5



1.3 State of the art

There already exist mattresses that actively change their shape. They are called
alternating air pressure mattresses and are used in hospitals to help patients that
can not move or that are confined to the bed for more than 15 hours per day.
Their main goal is to prevent the generation of pressure ulcers, and advanced
ones also can help the patient to change his posture.

As their name indicates, they work by inflating and deflating a mattress that
consists in some air cylinders placed parallel to each other, as shown in Figure
3. They do not have individual control of each of these cylinders. Instead, they
can only control the pressure (inflate/deflate) of all the cylinders at odd (or
even) positions. Also, their surface discretization is different to ours, since there
is only one cylinder per row (only one column). In conclusion, they offer a much
more limited ability to adapt to arbitrary surfaces than our target design.

OONOAANANNANANAAAAAAAAA

*\»"\/\f\/\

&M

Figure 3: Alternating Air Pressure Mattress

1.4 Scope

Most of our efforts and ideas of this thesis revolve around the scalability of the
design respect to the size of the mattress and the number of lifts, that is, the
granularity of the discretization. Although this will be discussed deeply in the
following sections, it is easy to see that our approach requires a large number of
lifts that directly multiplies many variable costs (material, building time, etc).
Hence, it is very important to find clever designs that minimize these variable
costs. This means that the entire design phase has been focused in fixing scal-
ability issues regarding cost, weight and manufacturing, and we had to ignore
other secondary aspects like the noise that the mechanical component generates,
at least in this first iteration of the design.

Furthermore, due to the size and complexity of the project, and due to our
inexperience in the mechanical engineering field, many design choices were taken



by intuitive reasoning rather than a rigorous theoretical analysis. That means
that we do not provide a formal justification of why we chose some gear to
have 12 teeth instead of 14. Instead, we made those decisions by intuitive and
experimental procedures, since there already were many variables to consider
and in this first iteration of the design we focused on more general and rele-
vant variables. This implies that there is still much room for improvement, and
that our design implementation is just a first approximation of an “optimal” one.

Finally, we want to mention that the initial goal of the project was to phys-
ically build a complete mattress following our design. Due to time constraints
we have not been able to reach that milestone, although we have built a smaller
prototype to demonstrate all the design ideas that we introduce. And although
we have not built the entire mattress, all the design process was done consid-
ering a full-size mattress. This means that the raw materials and components
used to build the small prototype would be the same as to the ones used for the
full-size mattress. It would have been much easier to design or to directly buy
existing pieces/components for the small prototype without taking into account
the huge cost that they would take for a full-size version, that is, ignoring the
scalability of the design. Instead, we spent a lot of time and effort thinking
of scalable designs and searching for providers that allow the manufacture of a
full-size mattress without incurring in costs of tens of thousands of euros. This
is explained with more detail in the mechanical and electronic sections.



2 Mechanical component

Depending on the size of the mattress and the granularity of the discretization,
the number of lifts will be larger or smaller. A finer discretization will provide
a better ability to approximate arbitrary surfaces but at the expense of having
a larger number of lifts. They result in more pieces which implies a higher cost,
complexity, weight, manufacture time, etc... However, a smaller number of lifts
will not approximate arbitrary surfaces properly, although the mattress will be
cheaper, simpler and lighter.

The first step is, considering the previous trade-offs, to choose the size s
(width and length) of the squared surface that each lift will hold. This deter-
mines the density of lifts, or equivalently, the granularity of the discretization.
Then, the length of the mattress will be given by n - s and the height by m - s
for some arbitrary naturals n and m. We have decided to use s = 5cm, since we
believe that this size offers a good trade-off of the qualities mentioned above.
This means that for a one-person mattress of 200cm length and 70cm width, the
total number of lifts would be 560, arranged in a 40 x 14 grid, each one of them
covering a square of 5cm x 5cm. Furthermore, the vertical travel-length of these
lifts needs to be fixed, and we have decided it to be 10cm, which we believe is
enough to adapt to the surface of a person in common postures. These are the
magnitudes of reference in our design.

2.1 Lift design

So far, we have not defined how exactly these lifts are, but we specified their
mission, which is to move a squared surface up and down, while holding a po-
tentially large weight.

A linear actuator is a mechanical device that transforms rotatory movement
into linear movement. The most common and basic form of linear actuator, as
shown in Figure 4, consists in a leadscrew (threaded rod) that rotates on its
own axis and a nut whose rotation is fixed. This forces the nut to move along
the leadscrew’s axis of rotation, and its direction depends on the direction of
such rotation.



Motor Gearpox
Telescopic tube ¥

Housing \  Leadscrew

Blocking system ey

Figure 4: Main components of a linear actuator

A linear actuator can act as a lift, and this is what we use in our design.
However, commercially available linear actuators are too expensive for us to use
in our design, since we need n - m many. For example, a cheap linear actuator
that would work for our use case costs around 25€. That would imply spending
560 - 25 = 140004, just on linear actuators.

The main causes of that prohibitively cost are two:

e Many components are replicated for each lift, with no room of sharing
resources and thus minimizing the number of components and price.

e Linear actuators are very precise (with precision varying with quality and
price), and are able to move the nut sub-millimetric amounts. For our use
case, such precision is not really needed since a person won’t notice that
some lift is off from its target position by 1 millimeter.

There is also another problem with using commercial linear actuators, which
is related to how to control them. A commercial linear actuator usually has its
own motor with two wires (positive and negative polarities), and one can con-
trol it by supplying a voltage to them. However, this would imply a direct
connection from some microcontroller to every lift. Having O(nm) wires con-
necting lifts seemed infeasible for us, both for a prototype and for a real product.

Our idea to solve these previous problems is borrowed from computer engi-
neering, and that is multiplexing.

More specifically, the idea consists in having a single, big and powerful mo-
tor shared by all the lifts, and whose traction is transferred to all the lifts by
mechanically multiplexing it. A deeper explanation is given in the following
subsection, but in relation to the design of the lifts, this means that we don’t
need 560 motors and 560 gearboxes and thus the price is potentially decreased
a lot.

We still have to provide a specific design of the rest of the linear actuator
used as a lift. The distinct components that constitute the linear actuators are:



o A leadscrew.

e A nut.

A system to block the rotation of the nut while allowing it to move freely
along the leadscrew’s axis.

e The housing of the linear actuator.

The telescopic structure (tube) that retracts/extends when the linear ac-
tuator works, which is moved by the nut.

Our first approach consisted in using a housing and a telescopic tube with
a non-circular profile, as for example a squared/rectangular profile, as shown
in Figure 5. This way, the housing would not only keep the telescopic tube
straight fighting lateral forces (as any housing does), but it would also serve as
a blocking mechanism for the nut, since the telescopic tube to which the nut is
attached could not rotate inside the also squared housing.

Figure 5: Telescopic squared tube

In our design process we constantly faced a day-to-day reality of an industrial
engineer: We can not simply design an arbitrary 3D piece if there is no practical
way of manufacture it or build it with commercially available components. Also,
the cost of the design will depend greatly in both the manufacturing process
and the materials/components used. In this case, we would want the external
tube (housing) to be exactly 5cm per external side, while the internal tube’s
external side to be almost the internal side of the external tube, such that it
is well-aligned and also offers freedom of vertical movement. Furthermore, we
need these tubes to be made of a light, rigid and cheap material, such as plastic.
Unfortunately, we could not find any provider that offered two squared tele-
scopic tubes of such “compatible” dimensions and materials.

However, there are many commercially available circular PVC tubes used
mostly for water delivery systems that have “compatible” diameters. That is,
we can use two tubes of distinct diameters such that one can be inserted into



the other in a telescopic manner. And that is what we have used to build our
lifts, as shown in Figure 6.

Figure 6: Lift

The only problem is that the nut’s rotation is now not blocked by the hous-
ing. The solution that we applied consists in using a rail that is fixed across the
housing to which the nut is also attached, allowing its free vertical movement
but blocking its rotation, as shown in Figure 7:

Telescopic
tube
| Leadscrew
Housing Nut
Blocking
system
(a) Blueprint | (b) Lift inner parts

Figure 7: Lift design

The use of a rail is a common way of fixing the rotation of the nut, but in
our case we use three. They are also used to conduct electricity for the weight

10



sensors, and that will be covered in depth in section 4.

In conclusion, we have used very simple and cheap materials to design the
linear actuators, shown in Figure 8. These materials are:

e PVC tube of ¥32mm and 28.5¢m length and PVC tube of @¥26mm and
9cm length as external housing.

e PVC tube of @20mm and 25cm length as telescopic tube.

e Metric steel threaded rod of @6mm and 25cm length.

e Metric nut of @6mm.

e 3 aluminum rods of rectangular profile of 5mm x 2mm and 20cm length.

e Other parts relevant to the weight sensor.

—

Figure 8: Lift parts

With this design, including the weight sensor, each lift costs less than 1.6€,
instead of the 25€ of a commercial linear actuator. In a production environ-
ment, where the lifts are produced at a large-scale, the cost would be much
smaller.

11



Regarding the weight that each lift needs to hold, we used 100kg as a refer-
ence of the worst case (when a person is only held by a single lift), and around
2kg on average when the person is lying down. In general, depending on the
leadscrew and the nut properties, the load that makes the linear actuator to
backdrive will vary. When a linear actuator backdrives, the nut is moved be-
cause of the load, instead of because of the traction of the gear as it is supposed
to. This can be very harmful, both to the rest of gears and to the functionality
of the design. The properties of our leadscrew and nut guarantees that it can
hold much more than 100kg without backdriving.

However, the load of the lift is transmitted from the telescopic tube to the
nut, and from the nut to the leadscrew. This is why we have added a very cheap
thrust bearing below each leadscrew, as shown in Figure 9.

(a) Lift’s gear and thrust bearing (b) Thrust bearing

Figure 9: Leadscrew’s thrust bearing

Note that the housing and other elements do not experience this vertical load.
However, they might experience a small lateral loads, which are dissipated using
a foam layer between the lifts.

2.2 Multiplexed drivetrain

As already mentioned, the solution regarding the scalability of the design con-
sists in multiplexing the traction to the lifts since there are too many of them

12



(O(nm) in general or 560 for our target mattress size). Recall that the jus-
tification of the multiplexation is the ability to share a single powerful motor
and gearbox among all the lifts, instead of having 560 motors and gearboxes
which increases a lot the price and weight. Also, it is infeasible to have a direct
connection to that many linear actuators, since there would need to be many
wires, motor drivers, microcontrollers, etc.

Hence, we had to design from scratch a system to multiplex the traction to
the lifts, in such a way that to move an arbitrary lift of the grid up or down, we
have to “activate” its row and its column. In our final design, shown in Figure
10, we have a single big and powerful motor that moves a sequence of large
gears, one for each row. Then, for each row there is a small linear actuator built
with a servo motor that can engage or disengage its row shaft. This row shaft,
when engaged to the drivetrain, starts to rotate clockwise or counterclockwise
depending on how the engagement is, since there are two bevel gears on a row
that can engage to the drivetrain and each one of them will make the shaft rotate
to one or the other direction. Then, a row that is engaged to the drivetrain will
make its shaft to rotate. This alone does not move any lift, since a column
still needs to also be engaged for that to happen. Another linear actuator can
engage a column to the drivetrain, and in all the intersections of the column
with an engaged row, the traction will be transferred to the appropriate lifts.
It is difficult to describe our design, but the reader can see the Figure 11 to
understand how it works:

13



Lift input
gear

ultiplexed

‘3""“ @‘ HIF l-ﬁ l-iF I ﬁ} =1
; &“ﬁ isislsis)

"3"" tnhfl'ﬁ':ﬁ}ﬁ}ﬁ)

Figure 10: Mechanically multiplexed traction system

14



Figure 11: Path of the traction from the motor to a lift

In conclusion, a lift that is placed in the i*" row and j* column will move
if and only if the row i and column j are both engaged. The direction of the
movement (up or down) will depend on the row i. This way, we only need
a single powerful motor and O(n 4+ m) commercial linear actuators instead of
O(nm) commercial and expensive linear actuators. In our case of n = 40 and
m = 14, we only need 64 commercial linear actuators that also do not need to
be powerful, so they can be very cheap as well. We built them with cheap SG90
servos that cost less than 2€ each.

However, one of the problems that multiplexing has is the inability of con-

trolling any arbitrary set of lifts at the same time to arbitrary directions. i.e.,
when moving two lifts from different rows and columns (4, j and #', j'), then two

15



other lifts will inevitably be moved as well (¢,j’ and i’,j). This issue is dealt
algorithmically in section 3.

2.3 Fabrication

Besides the already mentioned components used to build the lifts, we also needed
many other parts to build the prototype. Specially, we needed to physically have,
in great quantities, the pieces that Pilar Soriano implemented in SolidWorks.
We were able to iterate and to validate the design by 3D printing the pieces and
seeing how they worked together, thanks to a FDM 3D printer that we own.
However, this method does not scale for building a large prototype, since FDM
printers take a lot of time to print. Also, the printed pieces have many irregu-
larities due to the nature of FDM printers, and that affected the performance
of the gears. This is why, for the final prototype, we purchased a service from a
company to print our pieces using a SLS 3D printer, which uses a laser to print
and is much more precise. The downside is that this is very expensive, and
you pay for the volume that the 3D pieces occupy. On the other hand, you are
responsible of placing them in a way such that the total volume is minimized,
and we also spent some time using a placement algorithm to place the pieces in
the allowed space while satisfying some other fabrication constraints, as shown
in Figure 12:

| Mutisecton | sies

.
| ! ®

3

ki

Processed parts 325 of 365

Nesting optimization Nesting Height: 179.999 mm Nesting Density: 15.89%
Last change: 000044 Last change: 00:05:03

0:00:00 0:02:00 0:04:00
Time

Save 25 PNG [ Export to CSV

Interlocking test 0%

Total time clapsec 3 minutes, 3 seconds

) T % R 7 ]
10 v ® [} shell 6 of asse

‘z DN ET ARG

} Annotation Pages

Tet | Drawing  Aftachments  Textures

Figure 12: Placement of 3D pieces to print with SLS

The cost of 3D printing all the pieces needed for the 5 x 5 prototype was
450€. This is a lot, considering that a full-scale mattress of 560 lifts has around
20 times more pieces. This fabrication technique is specially useful for fast-
prototyping, since it offers a lot of flexibility to experiment without having
to pay much greater fixed-costs for other fabrication techniques that are also

16



slower. In a large-scale production environment, these same pieces would be
fabricated with injection techniques, which would decrease the variable-costs a
lot. However, the fixed-costs (related to creating the injection molds) are too
large to build the prototype with them.

The described design also takes into account the building process, since there
are 560 lifts and thus, many components to build. That means that we have
discarded many other alternative designs in order to ease the building process
of the prototype.

We have built the prototype in a local and collaborative studio named
“MadeBCN” that had many tools available for its members, such as laser cut-
ting machines, saws, etc. We had to spend several hours working and learning
how to use the machinery to build the prototype. We also had to spend a lot
of time designing things to facilitate the fabrication. For example, we built the
simple system shown in Figure 13 that allowed us to cut the PVC tubes of the
lifts very fast, since for a 40 x 14 mattress, there would be 1700 cuts and the
precision of them is important as well.

Figure 13: System to cut tubes fast

Another tool that was fundamental for the prototype construction was the
laser cutting machine, since that allowed us to obtain a platform with holes to
which screw the 3D printer parts, obtaining a correct and precise alignment for
the shafts of the prototype. It is very important for the shafts and axles to be
perfectly aligned so the friction forces are minimized.

17



2.4 Final prototype

In Figure 14 we show a picture of the final prototype, and in Figure 15 we show
the lifts at their origin and at a some target lift configuration.

Figure 14: Final prototype

18



Figure 15: Two distinct lift configurations

19



3 Algorithmic component

As already mentioned, this section algorithmically deals with the inherent prob-
lem of mechanically multiplexing the movement of the lifts: Not any arbitrary
set of lifts can be moved exclusively and concurrently.

3.1 Problem formulation

Let I; ; denote the lift in the i*" row and ;" column. Its position C; ; is denoted
by the current configuration n x m matrix C.

The aforementioned mechanical multiplexing allows us to determine which
lifts to move by deciding which rows and columns to engage to the drivetrain.
We encode the engagement of the rows and columns as follows:

e For any row 4, the variable r; € {—1,0,1} determines whether the row
should be disengaged (r; = 0), engaged with clockwise rotation (r; = 1)
or engaged with counter-clockwise rotation (r; = —1).

e For any column j, the variable ¢; € {0, 1} determines whether the column
should be disengaged (c¢; = 0) or engaged (¢; = 1).

For ease of notation, we will also refer to the vectors r € {—1,0,1}" and ¢ €
{0,1}™ defined as:

1
T2
r = . Cc = [Cl Coy ... Cm]

T'n

Then, following our multiplexation of the lift movements, the lift I; ; will be
moved if and only if r; # 0 and ¢; # 0 (i.e., when r;c; # 0). The direction of
the movement will be encoded in the variable r;. More generally, the movement
of all the lifts are described by the n x m matrix A defined as:

A=rc

As already indicated, with this multiplexed setup we are not able to inde-
pendently and concurrently modify the position of the lifts. i.e., We can move
any lift /; ; by engaging its row and column, but we can not move ; ; and Iy j
where i # ' and j # j' without inevitably be moving l; j and ;s ; as well.
We want to obtain an algorithm that takes into account these dependencies
in order to find a sequence of row and column engagements/disengagements
((rt,ch), ..., (rT,cT)) such that the lifts reach the position described by a tar-
get configuration C*, starting from an initial configuration C', while minimizing
the time T' (denoted as T™).

20



Such a sequence of lift movements (A!, A% ... AT) assumes that each A’
is applied during a fixed time interval, equal to the time that it takes to rotate
10 times a lift’s leadscrew. This is a first step to simplify the problem, which
consists in discretizing the vertical movement of the lifts: A lift moves vertically
1mm per revolution (which is determined by the lead of the leadscrew), and we
decided to fix 1cm as the discrete unit that a lift should move. Hence, each time
a lift moves one unit up or down, we will rotate its leadscrew 10 times. Since
the total travel distance is already fixed as 10cm (by the mechanic components),
the z-position of a lift after moving it will be a natural number between Ocm
and 10cm respect to its origin. In other words, C; ; € {0,1,... Z}, where Z = 10.

We define the (sub)configuration C* as the lift positions after applying
Al ... At to C. More formally:

t
Ct=C+ ZN' =Ct 4 A
t'=1

Since by definition:
T
Cr=C"=C+) A
t=1

We obtain that: .
Y Al=cr-C
t=1

This means that we can ignore the particular initial positions of the lifts C
and target positions C* and just focus on decomposing the matrix A* = C* —C
by a sum of a deltas (A,..., AT), where each A’ is obtained by some r* and c!.

We will restrict ourselves with A-sequences such that:
Aj ;€ {0,sign(A]))}

That is, we force that the distance between the position of any lift respect to the
target configuration decreases monotonically. More formally: |ClT i C’f;1| >
|CZ i ny ;|- This restriction might increase the optimal time 7™, but is justified

by two main reasons:
e The problem is further simplified.

e For a user lying on the mattress, it might be uncomfortable to have a lift
moving up when it should be moving down, potentially increasing a lot
the pressure of that lift (momentarily).

Without this last constraint, our problem could also be nicely described as
to find an n X k matrix A and an k X m matrix B of minimal k£ such that
A* = A- B and where A; ; € {—1,0,1} and where B; ; € {0,1}.

21



3.2 Naive algorithms

Note that by only engaging a single row and a single column at any given time
(an thus only moving one lift at a time), we would remove the undesired in-
terferences with other lifts. However, this limits our ability to reach a desired
configuration of positions fast, since we could not parallelize lift movements.
Another trivial approach that is incrementally better consists in modifying the
position of the lifts row by row, or column by column. This approach is valid
since modifying only lifts of the same row (or column) will never involuntarily
move lifts that should not move.

However, these simple strategies might be far away from an optimal one. In
the next subsection we review related problems to asses the hardness of finding
a A-sequence of optimal length 7.

3.3 Related problems

There are some related problems covered by the existing literature. None of
them is exactly the problem that we are tackling here, but they are similar and
we are going to use them to asses the complexity of it and to borrow some
definitions from them:

e A rectangle R of an n x m matrix M is the set R =1 x J C [1,n] x [1,m].
e A l-rectangle of M is a rectangle R of M such that V(i,5) € R, M;; # 0.

Note that the each A? is very similar to a l-rectangle. More precisely, At
can be covered by the single 1-rectangle R* = {i | r} # 0} x {j | ¢} = 1}, and
that R’ is also a l-rectangle of C* — C and specially, of C* — C*~1.

3.3.1 Maximum Edge Biclique Problem

Consider an n x m matrix M. We can interpret M as the adjacency matrix
of some bipartite graph G = ((A, B), E), where each row i corresponds to the
vertex ¢ € A and each column j corresponds to the vertex j € B, and where
M; ; # 0 if and only if (i,5) € E.

A biclique of a bipartite graph G is a complete bipartite subgraph of G.
i.e., A biclique is represented by a 2-tuple consisting in the subsets I C A and
J C B, such that I x J C E.

Note that there exists a direct bijection between 1-rectangles of M and bi-
cliques of G: Consider the 1-rectangle R = (I, J) of M. Since R is a 1-rectangle,
then M;; # 0 (for i € I and j € J), which implies that the edge (i,5) € E.
Hence, by definition (I, J) is a biclique. The inverse is also trivial.

The Maximum Edge Biclique Problem [5] consists in finding a biclique of G
with maximum number of edges. That is, to find a biclique (I, J) where |I]-|J|

22



is maximized. This problem (the decisional version) is NP-complete (in contrast
to the Maximum Vertex Biclique that maximises |I|+|.J|, which is in P). Hence,
finding a largest 1-rectangle of a binary matrix is NP-hard.

This problem is related to ours, since a natural greedy algorithm would
consist in selecting the largest A! of C* — C*~!. However, such task is NP-hard
since the problem of finding the largest 1-rectangle can be reduced into it. This
algorithm will be discussed in subsection 3.4.1.

3.3.2 Rectangle Partitioning Number

The Rectangle Covering Number [6] (RCN) of an n x m binary matrix M is the
smallest number of 1-rectangles that are needed to cover all the non-zero cells
of M, and it is denoted as RCN(M). It is equivalent to the Boolean Rank [9],
which is also equivalent to many other problems such as Biclique Edge Covering
of bipartite graphs [2, 3]. These problems are NP-hard [7], and they are related
to our problem at hand since they ultimately consist in decomposing a binary
matrix over boolean algebra [3]. In our case, A* is an integer matrix and we
use elementary algebra and further constraints.

There exists a more restricted version of the RCN problem namely Rect-
angle Partitioning Number (RPN), that as its name suggests, only considers
1-rectangle covers of M without overlaps. This problem is more commonly
known as the Binary Rank Over Elementary Algebra, which is also equivalent
to the Biclique Edge Partition problem of bipartite graphs [4].

Note that clearly RCN(A*) < T* and RCN(A*) < RPN(A*), where we
might interpret A* as a binary matrix depending on whether a cell is zero or
non-zero. A good example that compares these problems is as follows:

1 10
A*=1(1 1 1
0 1 1

RCN(A*) = 2 but RPN(A*) = T* = 3. i.e., We can trivially cover A* by two
1-rectangles, but they overlap and such A-sequence would not correctly decom-
pose A*. Note that if in this example A]; were 2, then T™ would become 2
because the 1-rectangles could overlap once in A7 ;. However, RPN(A*) would
remain being 3.

In general, the RPN problem is not the same as ours unless A* is binary.
Hence, we can directly reduce the RPN problem into ours by setting A* = M
and returning 7*. RPN is also NP-hard [4], and since RPN can be reduced to
our problem, ours must be NP-hard too.

23



3.4 Algorithms

By the previous subsection we know that our problem, which can be summa-
rized as to decompose the matrix A* = C* — C' into a A-sequence, is NP-hard.

We deal with this by providing 5 algorithms with different trade-offs and
strategies. The first 4, which are greedy algorithms, try to iterativelly find
a large A’, measured by the number of lifts that it moves: [{l; ;|A}; # 0}/
This is an heuristic with which we hope to obtain short A-sequence, but as
we will show, this strategy does not necessarily yield the optimum 7. Other
less-straightforward heuristics have been tried too but they are not included in
this thesis. These greedy algorithms differ between them in how to find such
At since to find the largest one is NP-hard. Our fifth algorithm consists in a
reduction into SAT that is able to obtain the optimal 7.

Note that we can arbitrarily permute any A-sequence without violating any
restriction nor changing its length 7. Knowing this, we always sort the found
A-sequence in decreasing order of sizes of the A!. The motivation behind is
that although the total time to reach the desired configuration does not change,
we would like to make as many lift movements as soon as possible, so the user
can start being comfortably in his new posture sooner.

Since the greedy algorithms find a At independently of the past and future
A" we will use A* to refer to sign(C* — C*~1) when describing the algorithms
to ease the notation. That is, the greedy algorithms only focus in finding a large
At to decompose sign(C* — C*~1), and they do not care about the remaining
lift movements (C* — C*~1), ;.

3.4.1 GreedylLargestRectangle or GLR

As mentioned before, a natural approach to tackle this problem would be to
iteratively and greedily find the largest set of the remaining lifts to move that
can be moved together. As previously shown, to find such largest Al is itself
NP-hard. Hence, this greedy algorithm would have exponential running time in
the worst case. However, for the mattress dimensions that we deal with (40 x 14
for the full mattress and 5 x 5 for our prototype), it is possible that a good im-
plementation that prunes the exploration soon might give good practical results
in acceptable time.

More in detail, our implementation considers every possible subset of rows
I C{1,...,n}and direction d; € {—1,1} for each i € I. For each of such subset,

24



it finds the largest subset of columns J such that:

. {@,Hie]

T, = .
0, otherwise

t{L ifjeJ

J 0, otherwise
is a valid A? for A* (= sign(C* — C")).

To find such largest subset of columns is trivially done in O(nm) time, since
it consists in the columns {j € {1,...,m} | Vie;r A}; = d;}. This step can be
implemented in O(m) by reusing computations and we refer the reader to our
code to view the details.

The exploration consists in a tree that starts with I = {i} for each i and
considers adding a new row ¢’ > i with some direction d;s at each level of the
tree. It prunes a branch when |J| = 0 or when (|I|+ (n —4' +1)) - |J]| is less or
equal than the largest A? found so far.

This algorithm, although has a running time of O(2"m?), does not neces-
sarily reach an optimum A-sequence of length 7%, as shown by the following
counter-example that compares the A-sequence obtained by our GLR, algorithm
respect to an optimal A-sequence:

s ArE i
R N N SR EY
R RN N AR
An optimal A-sequence would instead be:
s3] aofiing
R N I

3.4.2 GreedySweepingSubset or GSS

The goal of this algorithm is to be very fast instead of priorizing finding large At
(unlike GLR that finds the largest possible). In fact, this algorithm basically is
the naive algorithm briefly mentioned above that moves rows/columns indepen-
dently one at a time. However this algorithm tries to find other “compatible”
rows/columns that can also be moved without modifying the movements of the

25



initial row/column.

More formally, for each non-empty row ¢ and direction d; € {—1, 1}, it finds
all the other rows ¢’ such that v{jIA;"j:di} A;f‘,,j = d; for some d;. In other
words, it assumes that all the lifts from row ¢ and direction d; are going to be
moved, that is, all the lifts from row ¢ and columns J = {j [ A} ; = d;}. Then
it tries to see if there are other rows whose column set J’ is a superset of J.
These other rows can be engaged at the same time without affecting the already
chosen lifts from row ¢ and without moving any undesired lift.

This “row-wise” procedure is repeated for every initial row ¢ and direction
d;. Then, a similar “column-wise” procedure is applied too. A? is chosen to be
the largest one found.

Note that if the column set J of row ¢ and direction d; and the column set J’
of row i and direction d; satisfy J O J', then the considered A! when starting
with ' would engage rows 4 and ¢’ with columns J N .J'.

However, if J 2 J' and J € J', then no considered A* would engage both
rows 4 and ', and this is the price that we pay with this fast algorithm, since we
might miss a large A! that engages these two rows and some subset of columns
from J N J'.

This is why this algorithm takes its name, because we only consider adding
rows whose column set is a superset of the initial one and because we only try
to grow the candidate A! by adding rows or columns in a sweeping fashion
(row-wise or column-wise).

This algorithm is carefully implemented using vectorized functions from the
numpy package and it is very fast. Its time complexity is O(nm) for each t.

3.4.3 GreedySweepingintersection or GSI

This algorithm is similar to GSS, but it does consider adding rows 4 and ¢’ when
J 2 J and J € J' by selecting the columns from the intersection J N J’, and
this is why this algorithm takes its name.

More formally, it also considers potential A! by starting from some initial
row ¢ and direction d;. However, it will add other rows 4’ iterativelly by selecting
the one whose column set J' maximizes |JNJ'|, where J is the currently selected
column set (J starts being the column set of the initial row ¢ and direction d;).
This process stops when there are no more rows to add or when adding a row
would decrease the size of the candidate A?, that is, when |I| - |J| decreases
when adding any other row.

26



As in the GSS algorithm, a similar procedure is also applied “column-wise”
and the largest A? found is selected.

This algorithm can not be implemented in a vectorized fashion and it is
noticeably slower than GSS. Its time complexity is O(n?m + m?n) for each t.

3.4.4 GreedyCellExpander or GCE

This algorithm does not try to grow a A! exclusively row-wise or column-wise
as the previous GSS and GSI algorithms do. Instead, for each lift I;; that
has to move, it starts by only considering engaging rows ¢ and j. Then, it
iterativelly chooses another row i’ or column j' to engage as well. They need
to be legal and we need to make sure that no lift that should not move is moved.

The selection of row i’ or column 5’ is done taking into account the new size
of the new candidate A and the number of rows and columns that can still be
added in the next iteration.

‘We maintain the information of which rows and columns can be legally added
in the next iteration to improve its performance. However, this algorithm is
considerably slower than GSS and GSI. Its time complexity is O(n?m?).

3.4.5 SATReduction or SAT

This algorithm simply reduces the problem into SAT by encoding the question
“does some A-sequence of length T exist for this A*?” into a CNF boolean for-
mula. The idea is to exploit the performance of greatly optimized SAT solvers
hoping that most of our problem instances can be solved fast by them, and that
exponential time instances are not very common.

Note that the encoding needs some fixed T, and the common approach
consists in guessing different values until finding one 7T such that the encoded
formula is satisfiable for T" but it is not for T'— 1. A logic strategy would consist
in starting with 7" = 1 and exponentially increase it if the encoded formula is
unsatisfiable until it becomes satisfiable, lastly proceeding into a binary search
between the last unsatisfiable call and the first satisfiable one, finding the opti-
mal T with just O(log(7T*)) calls to SAT.

The problem with the previous strategy is that (usually) it is hard to de-
termine that an unsatisfiable formula is unsatisfiable, while it (usually) is much
faster to find a satisfiable assignment of a satisfiable formula. Hence, the process
that we follow is to find an initial T > T™ using some of the greedy algorithms
introduced before, and then iterativelly call the SAT solver by encoding the
problem using T := T — 1 until the formula becomes unsatisfiable. This way,
there might be many more calls to SAT but all of them except one will be of a

27



satisfiable formula, answering them much faster in practice.

Note that to determine whether the encoded formula is satisfiable or not can
take exponential time in the worst case. We limit each SAT solver call with a
timeout of 2 seconds, and if it has not finished in that time, we stop and return
the previous found solution. The reasoning is that each Al is applied during 2
seconds, and it is only worth to find a A-sequence of length 7" — 1 if it takes
less than 2 seconds to do so. Otherwise, we would obtain a shorter A-sequence
that will require 2 less seconds to be applied but at the price of spending more
than 2 seconds in computing it.

Our proposed encoding tries to minimize the number of clauses and literals.
It uses boolean variables to represent the engagement of each row ¢ and column j
foreach t € {1,...,T}, that way defining the A-sequence of length T. However,
since 7! can take 3 different values (-1, 0 and 1), we use the following two

variables to represent the row engagement:

1, ifrf=-1
Tf,—l{, o

0, otherwise

' 1, ifri=1
T 1= X
b 0, otherwise

And we create the clauses:
t t
Ty Vi

This way, if both 7§ _; and r}, are false in the assignment, then 7{ = 0. Oth-
erwise, at least one of them will be false, and then the other represents the
direction of the row engagement.

The lifts that should never move are the lifts /; ; such that A7, = 0. We
make sure that they are not moved by adding the clauses:

—\rf,_l \ _‘C;
—w"f,l V =t
The lifts /; ; that have to move towards direction d = sign(A} ;) € {-1,1}
can not move towards direction —d, and we force that by adding the following
clauses:
—mfﬁd V —|c§-

Note that so far we need O(T'(n+m)) variables and O(nmT') clauses. They
are only invalidating wrong lift movements, and the SAT solver has the flexibility
to choose which lifts to move to legal directions on each A!. However, we still
have to enforce that all the lifts that need to move, does so until they all reach
the target configuration. We encode this with a cardinality constraint, but first

28



we need some auxiliary variables af ; that are true iff the lifts [; ; move in A”.
That is:

—|a§’j V rfyd
t t
_‘a/id‘ V Cj

t t t
a; ; vV T q Ve

Finally, each lift /; ; that needs to move does so until they reach their target
configuration thanks to the following cardinality constraint:

t _ A*
E :am‘ =45
t

We have used the Minicard SAT solver and the Cardinality Networks [1] to
encode this cardinality constraint, since this combination showed the best em-
pirical results.

3.5 Experimentation
3.5.1 Metrics

We use the execution time and the length T of the found A-sequences as metrics
when comparing the proposed algorithms. These two metrics are the quantities
that we are most concerned about, since they determine the time needed to reach
a target configuration. In fact, the overall time will be the sum of the execution
time plus 27 seconds, since each A? is applied during 2 seconds, which is the
time it takes to move a lift 1cm up or down: The motor rotates at 300rpm and it
takes 10 revolutions to move a lift 1cm because the lead of its leadscrew is 1mm.

Hence, we might prefer a fast algorithm that obtains a sub-optimal T" over
one that obtains the optimal T in much greater execution time.

We compare the algorithms using different A* that act as benchmarks, shown
in Figure 16. We also use the dimensions of the target full-mattress size: n = 40,
m = 14 and Z = 10. These A* used for the comparisons are created as follows:

e Random: We generate C' and C* randomly where each C;; ~ U[0, Z]
and CF; ~ U0, Z]. Thus, A}, ~ U[0,Z] — U[0,Z]. This A* is useful
to check the behaviour of the algorithms to go from an arbitrary initial
configuration to an arbitrary target configuration, but it does not reflect
real-life scenarios where the configurations are much “smoother”’.

e Overlapping Gaussian: We generate initial and target configurations
by sampling a multivariate normal distribution parameterized by = and y,
which determine the position of the distribution’s mean.

29



e Down-to-body: C = 0,x.,, and C* is built using multiple Gaussian
distributions from the previous benchmark in a way such that it roughly
resembles the shape of a human body lying upwards. It represents the

task of adapting to a user that has just laid down over a previously flat
mattress.

e Body-horizontal-shift: C' is built using multiple Gaussians to resemble
a human body lying upwards and C* is the same as C' but sligthly shifted
to the right. It represents the task of adapting to a user that has moved
slightly to the right while preserving the face upward posture.

Lifts to move Lifts to move
o - | 10 e - 10
u [ 9 9
=+ -~ I | a2 8 = - 8
i - é o - é
Yy B> i -2
NgmEy N 80 R o3
o —-f = -2 o - = -2
~ IH - -1 — - -1
o - -0 o - -0
o~ --1 o~ --1
g - lb | e ::% A ::%
T e -4 _ o= -4
87 5 | -5 & -5
=u o 6 ~ B
N 7 o g
RT L 9
L | -10 -10
I [ I A I A
ONT OO OMNTIOOOMN
—— ——
(a) Random (b) Overlapping-gaussians
Lifts to move Lifts to move
o - 10 o - 9
=t - % = - g
6
S TR | T 5
_ R _ -4
o ] r4 ph II i -3
o - -2 © - -2
: S 3
o - -0 o - n -0
~ -1 ~ - I --1
< - -2 o - 8 -2
~ - -3 ™~ a -3
o - :“4 o - -4
™~ -3 ~ 5
o~ - '51 o - 6
m ’8 m —_f
] 5 8" £
LI I I R B | _10 A I I A _g
ONT OO OMNTOOOMN
—— ——
(¢) Down-to-body (d) Body-horizontal-shift

Figure 16: Different A* used to compare the algorithms

30



3.5.2 Results

Using the described A*, we get the total time (execution time + 27") shown in
Figure 17:

300

- ) [
250 &
60
40
100
20
5 - Exec time
0 0
GCE GSI Gss

(s)
N
8

Total time
@
8

Total time (s

= Exec. time
= T

SAT

(a) Random (b) Overlapping-gaussians
o I 120 —
100
Ch ® 80
E £
%40 é 60
40
20
L Exec time » L Exec time
0 — 0 —
(c) Down-to-body (d) Body-horizontal-shift

Figure 17: Different A* used to compare the algorithms

As expected, the GLR algorithm takes a lot of execution time compared to
the rest with this mattress size (more than 1 hour) and hence, it is not included
in these plots. Also, note that SAT has only been able to improve the initial
solution of the greedy algorithm in the Overlapping-gaussians benchmark. This
is because with the current timeout of 2 seconds, it is not able to find sorter
A-sequences in the other benchmarks. However, as already indicated, it is not
worth to spend more time to find them. Even in the Overlapping-gaussians
case where it does find sorter A-sequences of length T' = 41, it does not find the
optimal T* = 35 in the allocated time.

In the case of Overlapping-gaussians where the SAT algorithm does find

better solutions, the sizes of the A? are noticeably different respect to the sizes
that the other algorithms find, shown in Figure 18:

31



100
— @ | — GCE
\ csl
w0 | -
I €= 80

60

Delta size
Delta size

40

20

0 20 40 60 80 100 120 140 0 10 20 30 40 50
t t

(a) Random (b) Overlapping-gaussians

200 120
100
80

60

Delta size
5]
8
Delta size

40

20

0 10 20 30 40 0 10 20 30 40 50 60
t t

(c) Down-to-body (d) Body-horizontal-shift

Figure 18: Sizes of Af

This shows that the greedy algorithms try to find A? greedily as large as
possible, although a better approach would be to select slightly smaller A? but
in greater quantity, reducing the length of the A-sequence in the long run. The
last At of the greedy algorithms are very small (only moving a couple of lifts at
a time) because they did not forsee that situation when previously selecting A?
as large as possible. This is due to the nature of the proposed greedy algorithms,
that only try to minimize T by selecting large A?, but as shown in these cases
and in the counter-example from the GLR algorithm, this strategy is not always
the best one.

The asymptotic time complexity of the greedy algorithms is shown empiri-
cally in Figure 19:

32



Exec. time
Exec. time

0 500 1000 1500 2000 2500

(a) Random (b) Overlapping-gaussians

Figure 19: Execution times for different sizes of squared A*

In these experiments, we generate squared A* of different sizes following the
benchmarks Random and Overlapping-gaussians. This way, we obtain problem
instances of increasing size and we can evaluate the scalability of the algorithms.
GSS is the fastest one by a large difference, followed by GSI. The other two (GCE
and GLR) are not scalable and should not be used for large mattress sizes (or
larger lift density).

33



4 Electronic component

The electronic component of this project involves all the electric circuitry to
control the motors of the mattress, including the main motor and the servos.
But it also involves the design and use of sensors to obtain current information
of the user’s position and weight distribution.

We have used an Arduino Mega board as microcontroller in order to control
all the electronic components. This Arduino is also connected to a computer that
runs the higher-level logic, such as the planning algorithms. Hence, a constant
communication channel is created between the computer and the Arduino, and
instructions and sensor readings are being constantly shared between the two.

4.1 Pressure sensors

One of the main challenges that we faced was related to how to determine the
current user’s posture and weight distribution. We have considered using a ther-
mal camera centered above the mattress with which to infer the user’s position
and pressure points using computer vision techniques. Besides the technical
challenge of accomplishing this accurately, there is also the potential sense of
intimacy violation that a user might feel when there is a camera recording while
sleeping.

Instead, we have taken the approach of measuring the weight that each in-
dividual lift holds. That is, to have some kind of sensor on each lift to measure
its supported weight. However, we had constraints both related to space and
price, and this was a difficult task. Since we need 560 sensors (one per lift), the
cost of each sensor should not be greater than 0.5€ to avoid the overall price to
skyrocket.

Given our constraints, this design phase was a hard challenge, and we con-
templated many alternatives that for some reason (mostly price or space) did
not work. Some of these discarded alternatives are:

e Force-sensitive sensor: The idea would be to have a force-sensitive sensor
between the nut and the telescopic tube. Then, the weight load that the
telescopic tube holds would be measured by the sensor. The main problem
is the price of such sensors, which is 3.7€ each.

e Spring + sliding potentiometer: By placing a spring between the telescopic
tube and the nut, the spring will compress depending on the weight load
of the telescopic tube. By knowing its Hooke’s constant and by measuring
the elongation of the spring, we can infer the weight. This approach uses a
sliding potentiometer to measure such elongation. There are cheap sliding
potentiometer (for 0.7€) that adjust to our needs, but they are too big
and do not fit into the lifts. Also, the fabrication of the lifts becomes
highly challenging.

34


https://www.digikey.es/product-detail/es/ohmite/FSR06BE/FSR06BE-ND/10127623
https://www.digikey.es/product-detail/es/bourns-inc/PTA6043-2015CPB103/PTA6043-2015CPB103-ND/3781230

e Spring + ultrasonic distance sensor: This idea replaces the sliding po-
tentiometer by an ultrasonic distance sensor. With some adaptations to
common ultrasonic sensors we could fit them into the lifts. However, they
are too expensive (3€ each).

As an observation, the sensors that use a spring have an extra advantage:
The mattress surface is no longer rigid, and becomes more similar to a regular
“soft” mattress that offers a floaty surface to support the body (usually thanks
to springs, but also foam, latex, etc).

Fortunately, we found a very simple but perfect idea that also uses a spring
to infer the weight load. It adjusts perfectly to our specific constraints and ca-
suistic, and it is much cheaper than the previous alternatives. This idea consists
in measuring light intensity to measure the weight.

More in detail, the idea initially consisted in placing a laser diode just next
to the nut pointing up. Then, between the spring and the telescopic tube we
place a photoresistor that is perfectly aligned respect to the laser (thanks to the
rails that fix the nut rotation). Hence, the photoresistor can measure the light
intensity of the laser: The more weight that the lift holds, the more compressed
the spring will become, so the laser will be closer to the photoresistor, increasing
the light intensity. The initial prototype is shown in Figure 20:

(a) Initial prototype (b) Laser not completely pointing to the
photoresistor

Figure 20: Measuring weight with the light intensity of a laser

35


https://es.rs-online.com/web/p/kits-de-desarrollo-de-sensores/1743238/

Although this idea seemed to work well, and we were able to get accurate
readings, there were some inconsistent readings too. These were caused by very
little oscillations of the nut, which resulted in a misalignment of the laser and
the photoresistor, which made the photoresistor to wrongly receive less light in-
tensity than it should for that fixed spring elongation. This behaviour is shown
in Figure 20.

To mechanically avoid such misalignments is unfeasible, and what we did
instead was to replace the laser by a led, shown in Figure 21. This has several
advantages, the first of them being the price, since the cost of a led is much
smaller than a laser. Also, a led emits a much broader light beam, instead
of the narrow beam that a laser emits. This minimizes a lot the variation of
readings due to the alignment of the led and photoresistor, which allows us to
obtain more smooth and accurate readings.

Figure 21: Weight sensor after replacing the laser by a white led

As already mentioned in the mechanical section, some kind of blocking sys-

36



tem of the nut was needed since the housing has a circular profile. The common
solution is to use a fixed rod that acts as a rail and that allows the vertical
displacement of the nut while blocking its rotation. This is the approach that
we took, but instead of using a single rail, we use three, because we use them
as wires in order to connect the two components of the weight sensor (led and
photoresistor). One of the rails is the ground, to which both components are
connected, and the other two conduct the current for each component. This was
a good idea because we give two functionalities to the same piece: blocking the
nut and conducting electricity, and it is much better than simple wires, since
they could affect the sensor’s readings by covering the light of the led (which
could happen when the spring compresses).

However, a seemingly trivial but actually annoying challenge appears: The
electric contact from the electronic components to the rails. They can not be
soldered because they need to move freely, so the solution consists in using
brushes. However, it was very difficult to find a specific design that guaranteed
a good conductivity while not creating much friction that affected the movement
of the pieces. Several iterations of design were needed to find an appropriate
solution, and in Figure 22 a couple of them are shown. Also, the inability of
soldering onto the aluminium rails (due to the aluminum oxide) difficulted the
connection of the sensors to the rest of the circuit, and we also had to iterate
over many different alternatives.

g

Figure 22: Lift’s brushed contacts

4.2 Multiplexing the sensors

Some kind of multiplexation to connect the microcontroller to the weight sensors
is needed, since for similar reasons as to the mechanical section, it is infeasible
to route O(nm) wires connecting them.

Our solution allows to read an entire row at a time by enabling it while

disabling all the others. When a row is enabled, all the leds from that row are
turned on. This row activation is done using an NPN transistor on each row.

37



This way, the photoresistors’ resistance takes the respective value depending on
the compression of the spring, and we read them individually thanks to a wire
that connects all the lifts from the same column. This reading is trivially done
thanks to a voltage divider (10k{) resistor in series to the active lift on each
column) and using an analog converter of the Arduino for each column. The
circuit is shown in Figure 23:

3.75V 4.38V 4v
1kQ

5MQ 5MQ 5MQ
e
l§%mkn § %mm

N
I
"

R e

1 2 m

Figure 23: Weight sensor multiplexing circuit while reading row 2

In general, it would not be possible to implement such sensor multiplexation
since the resistors are not actually in parallel and they would affect each other.
However, we use the fact that the photoresistors’ resistance becomes very large
when in absence of light. More precisely, in total darkness the resistance of
the photoresistors becomes 5 M(2, which in our case can be approximated to an
open circuit. i.e., There is almost no current flowing through “disabled” lifts
and thus, they do not interfere in the readings of the active sensors.

The implementation of the circuit from Figure 23 in our prototype is shown
in Figure 24. Note that we used a very cheap adhesive copper tape as wires,
and this is key in order to scale this for a full-size mattress. This way, each wire
line, of which there are O(n +m), only takes O(1) time to place. Using regular
wires we would need to spend O(nm) time.

38



Figure 24: Weight sensor multiplexing circuit in our prototype

4.3 Motor driver and rotary encoder

A common way of driving a motor with a microcontroller is using an interme-
diate device, called motor driver, that controls the voltage of the motor and
thus, its speed. We follow that same scheme, shown in Figure 25, so our mi-
crocontroller can choose the voltage of the main motor to be between 0V and
24V.

39



Figure 25: Driving the main motor

However, the actual speed of the motor will be unknown, since in a practical
scenario it will be influenced by many factors, including the number and load
of the driven lifts. That is why, in order to accurately control the lifts, it is nec-
essary to exactly know how many revolutions the lift’s leadscrews have rotated
so far. A rotary encoder is used in order to receive such feedback. It consists
in a device that by some mechanical system, generates a voltage pulse for each
discretized rotation step. Then, using a hardware interruption, the microcon-
troller can track the rotation of the lift’s leadscrews in order to disengage the
row and column servos just after 10 leadscrew’s rotations (after moving the lifts
lem).

We also use the rotary encoder to measure the speed of the motor in order
to briefly adjust it to some low rpm when engaging a row or a column. This is
needed because the gears’ teeth have to align when engaging, and at high speeds
this engagement is very abrupt and damages them, while if it is very slow, there
are more chances that the teeth do not engage well.

4.4 End of travel sensors

We also needed to find a scalable way of detecting the end of travel of the lifts.
That is, to detect when the vertical position of a lift arrives to a limit, both
superior and inferior.

This is needed in order to set the origin of the lifts, making sure that all of
them share the same origin. In fact, we have to periodically move all the lifts
to their origins in order to re-calibrate them. This is important because even
though we try to move each lift exactly 1cm each time we move them, and thus
we can keep track of their current position, some minor errors (gear backlash

40



mostly) will accumulate and our tracked position will differ a lot respect to the
real position after some time. Hence, after each night, the system should re-
calibrate in order to reset that error to 0.

The scalable approach that we took consists in placing a laser and a pho-
toresistor for each row and thus, having a cost O(n) instead of O(nm). When
a lift arrives to its end of travel, a screw will intercept the laser, covering the
photoresistor and thus, allowing the microcontroller to detect it. This is shown
in Figure 26:

(a) Lasers (back) and photoresistors (front) (b) Laser interception

Figure 26: System to detect the end of travel of the lifts

The process of resetting the origin of all the lifts consists in, for each column

e Move down all the lifts from column j until each row’s laser is intercepted.
When a row is intercepted, stop moving that lift.

e Move lcm up all the lifts from column j.

We can determine that a laser is being intercepted by some lift by toggling
the laser while measuring the resistance of the photoresistor. If the resistance
is similar in both cases (laser on and off), then we infer that the laser is being
intercepted. Otherwise, the laser reaches the photoresistor and the two readings
will differ greatly.

The superior end of travel can be detected programatically just using the

weight sensors, since thanks to our design, the springs will be compressed when
they arrive to the end of travel.

41



5 Al component

This component is responsible of interpreting the weight sensor’s readings in
order to infer the current posture of the user and his weight distribution. Then,
the most appropriate lift configuration at that moment is determined and the
planning algorithms from section 3 are used to actually modify the lift positions
as fast as possible. This process should be repeated constantly every time the
lifts reach the desired configuration.

The first step is to translate the weight sensor readings into actual weights.
Note that we should expect differences between each lift’s sensor, mostly due to
physical irregularities from the fabrication step and tolerances of the electronic
components (resistors, photoresistors, leds, wires, solder joints, etc). We solve
this by individually calibrating each sensor. The procedure consists in record-
ing readings for some known (ground-truth) weights, and then fitting a curve
in order to accurately predict the weight of future unseen readings.

The next step is considerably harder, and it consists in translating the weight
sensor’s readings into a model of the user’s posture and weight distribution. This
should be tackled using computer vision and machine learning techniques.

The final step, related to determining the appropriate lift configuration, can
be achieved with heuristics and local search algorithms. For example, an in-
tuitive heuristic could consist in finding a lift configuration that minimizes the
maximum weight that a single lift supports. Another potentially good heuristic
could be to minimize the gradient of weights.

Unfortunately, due to lack of time, we have not been able to tackle this
component of the project.

42



6 Conclusion

We have provided a radically new mattress design that is intelligent and able
to adapt to any person’s physical qualities. Such a mattress also has interesting
applications in the medical field, since in hospitals there are patients that can
not move and they need a mattress that is periodically changing their posture
to avoid the generation of ulcers. Our proposed design allows for a finer adap-
tation to the patient’s body than the existing solutions.

This project required dividing a big problem into smaller ones, and solving
them in novel ways tacking into account multiple constraints (price, weight,
performance, etc). Most of the efforts invested into this project have consisted
in ideating the pieces and components of our design from scratch. There is not
much formalism or theoretical analysis involved, but intuitive ideas and prac-
tical applications. Although this might not seem appropriate for a thesis of a
Master program in research, we strongly believe that this project required a lot
of inventive mindset and having to discover unusual and new ways of solving
novel problems. Also, it forced us to learn a lot from fields very different to our
backgrounds, which also allowed us to introduce fresh ideas.

Although we have not been able to build a full-scale prototype as we intended
(due to time constraints), the 5 x 5 version of it shows all the ideas that we
introduced and it validates our design. We also have not been able to tackle the
artificial intelligence component of the project, but we will work on that in the
near future. The project was already too big and we had to invest a lot of time
in other fronts.

References

[1] Roberto Javier Asin Achd, R. Nieuwenhuis, Albert Oliveras, and Enric
Rodriguez-Carbonell. “Cardinality Networks and Their Applications”. In:
SAT. 2009. DOL: https://doi.org/10.1007 /978-3-642-02777-2_18. URL:
https://www.cs.upc.edu/~roberto/papers/sat09a.pdf.

[2] J Amilhastre, M.C Vilarem, and P Janssen. “Complexity of minimum bi-
clique cover and minimum biclique decomposition for bipartite domino-free
graphs”. In: Discrete Applied Mathematics 86.2 (1998), pp. 125-144. 1sSN:
0166-218X. DOI: https://doi.org/10.1016/S0166-218X(98)00039-0. URL:
https://www.sciencedirect.com /science/article/pii/S0166218X98000390.

[3] James Orlin. “Contentment in graph theory: Covering graphs with cliques”.
In: Indagationes Mathematicae (Proceedings) 80.5 (1977), pp. 406-424. 1SSN:
1385-7258. DOI: https: / /doi.org/10.1016 / 1385- 7258(77) 90055 5. URL:
https://www.sciencedirect.com/science/article/pii/1385725877900555.

43


https://doi.org/https://doi.org/10.1007/978-3-642-02777-2_18
https://www.cs.upc.edu/~roberto/papers/sat09a.pdf
https://doi.org/https://doi.org/10.1016/S0166-218X(98)00039-0
https://www.sciencedirect.com/science/article/pii/S0166218X98000390
https://doi.org/https://doi.org/10.1016/1385-7258(77)90055-5
https://www.sciencedirect.com/science/article/pii/1385725877900555

Hideaki Otsuki. “A study of the biclique edge partition and cover prob-
lems”. In: 2015. URL: https://nagoya.repo.nii.ac.jp/record /19889 /files /
07121 _thesis.pdf.

René Peeters. “The maximum edge biclique problem is NP-complete”. In:
Discrete Applied Mathematics 131.3 (2003), pp. 651-654. 1sSN: 0166-218X.
DOTI: https://doi.org/10.1016/S0166-218X(03)00333-0. URL: http://www.
sciencedirect.com/science/article/pii/S0166218X03003330.

Mozhgan Pourmoradnasseri and Dirk Theis. “The Rectangle Covering Num-
ber of Random Boolean Matrices”. In: Electronic Journal of Combinatorics
24 (June 2017). por: 10.37236/5576.

Yuan Sun, Shiwei Ye, Yi Sun, and Tiko Kameda. “Exact and approxi-
mate Boolean matrix decomposition with column-use condition”. In: In-
ternational Journal of Data Science and Analytics 1 (Nov. 2016). DOIL:
10.1007/s41060-016-0012-3.

Jaideep Vaidya. “Boolean Matrix Decomposition Problem: Theory, Vari-
ations and Applications to Data Engineering”. In: Proceedings - Interna-
tional Conference on Data Engineering (Apr. 2012), pp. 1222-1224. pOI:
10.1109/ICDE.2012.144.

Valerie L. Watts. “Boolean rank of Kronecker products”. In: Linear Alge-
bra and its Applications 336.1 (2001), pp. 261-264. 1SSN: 0024-3795. DOI:
https: / /doi.org/10.1016 /S0024- 3795(01)00338- X. URL: https://www.
sciencedirect.com/science/article/pii/S002437950100338X.

44


https://nagoya.repo.nii.ac.jp/record/19889/files/o7121_thesis.pdf
https://nagoya.repo.nii.ac.jp/record/19889/files/o7121_thesis.pdf
https://doi.org/https://doi.org/10.1016/S0166-218X(03)00333-0
http://www.sciencedirect.com/science/article/pii/S0166218X03003330
http://www.sciencedirect.com/science/article/pii/S0166218X03003330
https://doi.org/10.37236/5576
https://doi.org/10.1007/s41060-016-0012-3
https://doi.org/10.1109/ICDE.2012.144
https://doi.org/https://doi.org/10.1016/S0024-3795(01)00338-X
https://www.sciencedirect.com/science/article/pii/S002437950100338X
https://www.sciencedirect.com/science/article/pii/S002437950100338X

	Introduction
	Motivation
	The idea
	State of the art
	Scope

	Mechanical component
	Lift design
	Multiplexed drivetrain
	Fabrication
	Final prototype

	Algorithmic component
	Problem formulation
	Naive algorithms
	Related problems
	Maximum Edge Biclique Problem
	Rectangle Partitioning Number

	Algorithms
	GreedyLargestRectangle or GLR
	GreedySweepingSubset or GSS
	GreedySweepingIntersection or GSI
	GreedyCellExpander or GCE
	SATReduction or SAT

	Experimentation
	Metrics
	Results


	Electronic component
	Pressure sensors
	Multiplexing the sensors
	Motor driver and rotary encoder
	End of travel sensors

	AI component
	Conclusion

