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Abstract

Motivation

Graphlet adjacency extends regular node adjacency in a network by considering a pair of

nodes being adjacent if they participate in a given graphlet (small, connected, induced sub-

graph). Graphlet adjacencies captured by different graphlets were shown to contain comple-

mentary biological functions and cancer mechanisms. To further investigate the

relationships between the topological features of genes participating in molecular networks,

as captured by graphlet adjacencies, and their biological functions, we build more descrip-

tive pathway-based approaches.

Contribution

We introduce a new graphlet-based definition of eigencentrality of genes in a pathway,

graphlet eigencentrality, to identify pathways and cancer mechanisms described by a given

graphlet adjacency. We compute the centrality of genes in a pathway either from the local

perspective of the pathway or from the global perspective of the entire network.

Results

We show that in molecular networks of human and yeast, different local graphlet adjacen-

cies describe different pathways (i.e., all the genes that are functionally important in a path-

way are also considered topologically important by their local graphlet eigencentrality).

Pathways described by the same graphlet adjacency are functionally similar, suggesting

that each graphlet adjacency captures different pathway topology and function relation-

ships. Additionally, we show that different graphlet eigencentralities describe different can-

cer driver genes that play central roles in pathways, or in the crosstalk between them (i.e.

we can predict cancer driver genes participating in a pathway by their local or global graphlet

eigencentrality). This result suggests that by considering different graphlet eigencentralities,

we can capture different functional roles of genes in and between pathways.
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Introduction

Biology is flooded with large scale “omic” data. Genomic, proteomic, interatomic and other

data are typically modeled as networks (also called graphs). In molecular networks, nodes usu-

ally represent genes or proteins and edges represent interactions or relationships between

them, such as physical bonds between the proteins (PPI), genetic interactions (GI), or co-

expressions (COEX) [1, 2].

To infer new information about the genes in these networks (or equivalently, proteins),

such as their participation in pathways, their biological function, or their roles in diseases,

three main categories of approaches exist. Guilt by association approaches infer annotations of

a given node (gene, or protein) based on the annotations of the nodes adjacent to it. Implicitly,

these approaches are based on one of the core ideas in network biology, which considers bio-

logical function to arise from groups of genes forming functional modules [3]. In practice,

many network-based learning approaches are based on a slightly more strict version of this

assumption called homophily, which assumes that these functional modules are densely con-

nected [4]. For instance, spectral clustering uncovers functional groups of genes by cutting the

full network into densely connected subnetworks [5]. This homophily assumption is widely

present in network-based learning and is not always as explicit. For instance, Hierarchical Hot-

Net applies heat-diffusion of somatic mutation scores on a molecular network, which quanti-

fies for each gene how likely it is to be somatically mutated in cancer. After diffusion,

subnetworks that have maintained a lot of ‘heat’ are predicted as being cancer-related [6]. The

nature of heat-diffusion makes it more likely that heat is retained within densely connected

areas of the molecular network, thus implicitly assuming homophily.

Centrality based approaches infer gene annotations based on their importance in the net-

work. Centrality measures quantify the importance of a node either based its connectivity, or

based on its frequency of occurrence on shortest paths. Ever since [7] showed that perturbing

highly connected nodes in PPI networks has a higher probability of impacting cell viability,

these methods have become a major tool for discovering gene functions and uncovering dis-

ease-related genes (e.g., see [8–10]). For instance, ‘local radiality’ measures how frequently a

node is found on the shortest path between genes that have their expression perturbed by a

given drug and is used for drug-target prioritization [11].

Approaches based on graphlets, small, connected, induced subgraphs, infer new knowledge

about a given node based on the annotations of nodes with a similar wiring pattern, indepen-

dent of them being in the same network neighbourhood [12]. Informally, local wiring patterns

are quantified by counting how often a node touches different graphlets. For instance, graphlet

based methods have been applied to predict protein function [13] and identify age-related

genes [14] based on their interaction patterns in PPI networks.

To combine graphlet-based topological information and network neighbourhood informa-

tion, we recently introduced graphlet adjacencies, which consider a pair of nodes to be ‘adja-

cent’ if they simultaneously touch a given graphlet [15]. We have shown that graphlet

adjacency for different underlying graphlets captures complementary biological functions, by

performing network clustering followed by cluster enrichment analysis. Additionally, diffusing

pan-cancer gene mutation scores over the human PPI network based on different types of

graphlet adjacencies showed that graphlet adjacencies captures complementary disease

mechanisms.

Where detailed insight is needed, network-biology resorts to studying pathways: functional

subnetworks within the cell that once activated lead to a certain product, or a change within

the cell. Pathway-based approaches are frequently used to study cancer genes, as only a few

genes are frequently mutated and studying them as part of pathways provides insight into the
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underlying processes. This, in turn, helps to generate testable hypotheses, identifying drug tar-

gets and tumour subtypes [16]. Three major pathway-based approaches exist. Gene set enrich-
ment analysis considers pathways as gene-sets (ignoring information about interactions

between the genes) and identifies pathways enriched in mutated, or differentially expressed

genes. Network-modeling-based approaches study pathways taking topology into account. For

instance, PathOlogist measures the consistency between gene expression data and pathway

topology, enabling the identification of diseased pathways [17]. Both types of approaches

assume pathways to be a part of prior knowledge. The function of a pathway, the genes that

take part in it and the interactions between them, are assumed to be known in advance.

Curated pathways can be found in the Reactome database [18]. Being based on curated biolog-

ical pathways, both types of approaches lead to highly interpretable results. However, as path-

way knowledge is incomplete, de novo network construction methods aim at uncovering and

studying subnetworks significantly perturbed in disease. For instance, given a large biological

interaction network, KeyPathwayMiner extracts connected subnetworks enriched in differen-

tially expressed genes and interprets them as functional modules or de novo pathways.

Problem

Although we have shown that graphlet adjacencies capture complementary biological function

and cancer mechanisms, we have not provided insight into the underlying biology [15]. In par-

ticular, we concluded that different graphlet adjacencies capture complementary biological

functions by showing that graphlet adjacency based network clustering leads to functionally

differently enriched clusters depending on the underlying graphlet. However, we have not

investigated why some functional annotations are better captured than others by each graphlet

adjacency. Similarly, we concluded that different graphlet adjacencies capture complementary

disease mechanisms by diffusing pan-cancer gene mutation scores over the human PPI net-

work and finding different cancer gene predictions based on the underlying graphlet; again we

have not investigated why this is the case.

Contribution

To further investigate the relationships between the topological features of genes in molecular

networks in human and yeast, as captured by graphlet adjacencies, and the biological functions

of the genes, we build more descriptive pathway-based approaches. We extend eigencentrality

to graphlet eigencentrality, to study the importance (centrality) of genes in pathways; either

from the local pathway perspective or the global perspective of the entire network.

First, we identify the pathways that are described by each graphlet adjacency, i.e. all genes

participating in a pathway are also captured as topologically important by the graphlet adja-

cency. To do so, we use our graphlet eigencentralities to predict which genes belong to a given

pathway, considering the pathways for which we achieve the highest prediction accuracies as

being described by that graphlet adjacency. We find that local pathway-based graphlet eigen-

centralities well predict which genes participate in a given pathway, outperforming state-of-

the-art predictor GeneMANIA (validating our approach) and our global approach. To explain

this result, we show that pathways, even when functionally unrelated, show large amounts of

overlap. As our local approach considers each pathway as an individual entity disentangled

from the full network, it is able to best capture the topological essence of a pathway. Further,

we show that the pathways that are described by a given graphlet adjacency, are functionally

similar, implying that each graphlet adjacency uncovers different pathway topology and func-

tion relationships. We illustrate this relationship in the ‘Receptor Mediated Mitophagy’
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pathway, where we show how, unlike regular adjacency, graphlet adjacencies capture the rele-

vance of all genes in the pathway.

Second, by considering different graphlet adjacencies, from the local and global perspective,

we uncover complementary sets of cancer driver genes (known to be drivers in at least one

type of cancer) that are described by playing central roles in pathways and the crosstalk

between them. This suggests that by considering different graphlet eigencentralities, we can

capture different functional roles of genes in and between pathways. We illustrate this in the

‘Formation of Senescence-Associated Heterochromatin Foci’-pathway, where we show how,

unlike regular adjacency, graphlet adjacencies capture the central roles of cancer driver genes

TP53 and RB1.

Materials and methods

Network centrality measures quantify the importance of a node in a network. We consider the

formal definition of eigencentrality (Section: Eigencentrality) and extend this definition to

graphlet eigencentrality (Section: Graphlet eigencentrality). Next, we explain how we use

graphlet eigencentralities to measure the centrality of a gene in a pathway, or its pathway cen-
trality. We can measure pathway centrality from the pathway perspective (the centrality of the

genes is computed on the genes known to participate in the pathway, Section: Local pathway

centrality), or from the global network perspective (the centrality of the genes is computed on

the full network before inducing the set of nodes corresponding to genes participating in the

pathway, Section: Global pathway centrality). Finally, we explain how we use pathway central-

ity to predict which genes participate in a given pathway (Section: Predicting pathway

participation).

Eigencentrality

Eigencentrality considers the nodes that are highly connected to other highly connected nodes

in the network to be the most important nodes [19].

Formally, for a given unweighted and undirected network H = (V, E), where V is the set of

nodes in network H and E is the set of interactions between the nodes, the centrality of a node

u 2 V, cu, is defined as the average of the centralities of its n neighbours:

cu ¼
1

l

Xn

v¼1

cvAuv; ð1Þ

where λ is a constant and A is the adjacency matrix of the network. To be able to solve this

equation, we write it in matrix form:

Ac ¼ lc; ð2Þ

where c is the vector of centralities, c = (c1, c2, . . .). From this, it is clear that c is an eigenvector

of A and λ is an eigenvalue for which a non-zero eigenvector solution exists; hence the name

‘eigencentrality’. Furthermore, as the entries of c are required to be non-negative for an inter-

pretation as a centrality measure, it can be shown that c is the eigenvector corresponding to

the largest eigenvalue of A.

Many variations of eigencentrality exist. For instance, the Katz centrality generalises the

eigencentrality to directed networks [20]. The contribution centrality extends the eigencentral-

ity by amplifying a node’s centrality if it serves as a hub node connecting densely connected

parts of the network [21].
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Graphlet eigencentrality

Graphlets are small, connected, non-isomorphic, induced subgraphs of a large network [12].

All graphlets up to four nodes are depicted in Fig 1A. Two nodes u and v of H are considered

graphlet adjacent with respect to a given graphlet, Gi, if they simultaneously touch Gi [15]. In

the example network presented in Fig 1B, we find that nodes a and b are graphlet adjacent

with respect to graphlet G1 twice, as G1 can be induced on the example network twice includ-

ing both nodes a and b: along paths a-b-c and a-b-e. Given this extended definition of adja-

cency, the graphlet based adjacency matrix is defined as:

AGi
ðu; vÞ ¼

cGi
uv=yGi

if u 6¼ v

0 otherwise;
ð3Þ

(

where cGi
uv is equal to the number of times the nodes u and v simultaneously touch graphlet Gi

and yGi
is a scaling constant equal to the number of nodes in graphlet Gi minus 1. Note that

graphlet adjacency matrix AG0
, is equivalent to the standard adjacency matrix. We illustrate

AG0
and AG1

in Fig 1C.

Fig 1. An illustration of graphlets and graphlet adjacencies. Node a and its graphlet adjacencies are coloured in green throughout. A: All graphlets with

up to 4 nodes, labelled G0 to G8. B: Example network H. C: The graphlet adjacency matrices AG0
and AG1

for graphlets G0 and G1 of the example network H,

shown in panel B. The off-diagonal elements correspond to the number of times two nodes touch a given graphlet together. AG0
ða; bÞ ¼ 1, as a and b form

G0 once. AG1
ða; bÞ ¼ 2, as a and b form G1 twice, via paths a-b-c and a-b-e. This figure is adapted from Fig 1 in [15].

https://doi.org/10.1371/journal.pone.0261676.g001
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Analogously, the graphlet degree generalizes the node degree as the number of times node u
touches graphlet Gi. The Graphlet Degree matrix for graphlet Gi, DGi

, is defined as:

DGi
ðu; vÞ ¼

dGi
u if u ¼ v

0 otherwise;
ð4Þ

(

where dGi
u is the number of times node u touches graphlet Gi.

The symmetrically normalised graphlet adjacency matrix is defined as:

fAGi
¼ D� 1=2

Gi
AGi

D� 1=2

Gi
ð5Þ

Intuitively, the symmetric normalisation rescales the weight of a given edge relative to its

importance to both nodes involved [22].

We generalize normalised eigencentrality to graphlet eigencentrality by replacing A with

the normalised graphlet adjacency matrix, fAGi
, in Eq 2:

fAGi
cGi
¼ lGi

cGi
; ð6Þ

Pathway centrality

We aim to measure the centrality of the set of genes that participate in a given pathway. We

can do this from the pathway perspective, which we will refer to as ‘Local pathway centrality’,

or from the perspective of the entire network, which we will refer to as ‘Global pathway

centrality’.

Local pathway centrality. We take the submatrix of the adjacency matrix of the full net-

work corresponding to the m genes participating in the pathway, to create the m × m dimen-

sional local adjacency matrix P. Then, for a given underlying graphlet Gi, we compute the

corresponding graphlet adjacency matrix, PGi
, and compute the normalised graphlet eigencen-

trality applying Eq 6.

Global pathway centrality. For a given underlying graphlet Gi, we compute the global

graphlet eigencentrality vector, cGi
, on the normalised graphlet adjacency matrix, fAGi

, applying

Eq 6. Then, we take the subvector of the global eigenvector corresponding the m to genes par-

ticipating in the pathway, cGi
, to determine their pathway centrality.

Predicting pathway participation

Pathways are functional subgraphs in which a group of genes work together to perform a

given biological function. For a pathway to perform its function, each gene is essential. We

consider a pathway to be described by a given graphlet adjacency if the topology captured by it

correctly recognises that all genes in the pathway are important to performing its function. To

evaluate which pathways are described by a given graphlet adjacency, we use our local and

global pathway centrality eigencentralities to predict which genes belong to a given pathway,

as described below. We consider the pathways for which we achieve the highest prediction

accuracies as being described by that graphlet adjacency; as for those pathways we can best dis-

tinguish between the genes are relevant w.r.t. the pathway and those are not. To show our

approach captures biological signal, we compare our prediction accuracy to that of gene anno-

tation predictor GeneMANIA, [23].

Given a molecular network and graphlet adjacency, we apply for each pathway ten itera-

tions of 5-fold cross-validation, where we predict which genes participate in it based on their
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pathway-based graphlet eigencentrality (see Section: Annotation data, for details on the col-

lected pathways). We evaluate prediction performance per pathway. That is, for each pathway

and fold, we randomly hold out 20% of the genes known to participate in the pathway to form

the positive examples in our test-set. The negative examples in the test-set are all genes in the

full network that directly interact with one of the m (i.e., 80%) of the remaining genes known

to participate in the pathway.

Prediction based on local pathway centrality. For each gene in the test set, we compute

how central it would be in the pathway if it were to participate in it. That is, for each gene in

the test set, we induce the nodes corresponding to the gene and the m remaining genes known

to participate in the pathway on the full network to define a local (m + 1) × (m + 1) dimen-

sional adjacency matrix P, based on which we compute the local pathway centrality of the gene

(see Section: Local pathway centrality). In this way, the centrality of each gene in the test set is

based on local pathway topology, avoiding taking into account the ‘noise’ coming from inter-

actions with nodes outside the pathway.

Prediction based on global pathway centrality. For a given pathway, the underlying

graphlet and a given fold, we compute the global pathway-based graphlet eigencentralities for

all the genes in the test set (see Section Global pathway centrality). We consider genes with a

higher global pathway-based graphlet eigencentrality to be more likely to be participating in

the pathway.

GeneMANIA. GeneMANIA is a supervised approach that uses a label propagation algo-

rithm to predict gene annotations. We choose to compare against GeneMANIA as it: (1) is

one of the few gene annotation predictors that, like our method, can be trained using only pos-

itive examples and (2) allows for sampling annotations from the pathway perspective rather

than the gene perspective (i.e. for each pathway we hold out precisely 20% of the genes partici-

pating in it instead holding out the pathway annotations for 20% of all the genes, which would

lead to pathways being unevenly sampled).

Predicting cancer-related genes

We hypothesise that cancer-related genes play central roles in pathways and hence can be pre-

dicted based on their pathway based graphlet eigencentralities. For each pathway and graphlet

adjacency, we directly use global or local graphlet eigencentrality to rank the genes participat-

ing in a given pathway, assuming that genes with a higher eigencentrality are more likely to be

cancer-related (see Section Annotation data, for details on the collected pathways). For each

pathway, we consider the set of known cancer driver genes participating in the pathway as the

set of true positives. As here our approach is unsupervised (i.e. we do not use the information

of which genes are known cancer drivers when computing pathway centralities), no cross-fold

validation is needed.

Evaluating prediction performance

We evaluate prediction performance on a per pathway and per graphlet adjacency basis using

the area under the precision-recall curve (AUC-PR) and the area under the receiver operating

characteristic curve (AUC-ROC), which are defined as follows.

For a given prediction, the true positive rate (TPR) is the number of correctly predicted true

positives (i.e., the genes correctly predicted as part of the pathway or to be cancer driver genes)

over all known true positives (i.e., all genes known to be part of the pathway or all cancer driv-

ers in the pathway). The false positive rate (FPR) is defined as the number of genes falsely pre-

dicted as positive (i.e., the genes falsely predicted to be participating in a pathway or to be

cancer driver genes). The ROC curve sets out the relationship between the TPR and FPR for
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predicting pathway participation at various cut-offs. The AUC-ROC is used as a single number

summary of the ROC curve, as a measure of prediction accuracy.

Similarly, for a given prediction, the precision is defined as the number of correctly pre-

dicted true positives (i.e., the number of genes correctly predicted to participate in the path-

way, or the number of genes correctly predicted as cancer drivers) over the total number of

genes in the prediction set (e.g., the known genes participating in the pathways and the genes

they are directly connected with outside the pathway, or the all genes known to participate in

the pathway). Recall is synonymous to the TPR, defined above. The precision-recall curve sets

out the relationship between the precision and recall at various cut-offs. The area under the PR

curve is then used as a single number summary of the precision-recall curve, as a measure of

prediction accuracy.

To be able to identify the pathways or cancer mechanisms that are exceptionally well cap-

tured by a given graphlet adjacency, we define the normalized AUC-PR. For each graphlet

adjacency and a given prediction task, we normalize the distribution of AUC-PR scores over

all pathways by subtracting the median and dividing by the mean absolute deviation.

Data

Biological networks. We create five unweighted and undirected networks based on three

types of generic molecular interactions in human and baker’s yeast (S. cerevisiae). We combine

the experimentally validated protein-protein interactions (PPIs, validated using Two-hybrid

or Affinity Capture based methods) from BioGRID version 3.5.178 [1] and PPIs from the

Reactome Pathways [18] to form PPI networks, where nodes represent genes and edges repre-

sent physical interactions between their protein products. We collect gene co-expression

(COEX) scores from COXPRESdb version 7.3 [2] to build COEX networks, where nodes rep-

resent genes and edges represent pairs of genes being co-expressed. We consider each gene to

be co-expressed with its top 1% highest scoring co-expressed genes. For yeast, we collect exper-

imentally validated genetic interactions (GIs) from BioGRID version 3.5.178 [1]. We exclude

the human GI network from our analysis, as only a limited number of GIs is available. S1

Table in S1 File provides basic network statistics of these networks.

Annotation data. We collect pathway annotation data assigning genes to pathways, from

the Reactome pathway ontology [18]. For each of our five molecular networks, we create a set

of pathway networks by inducing the gene set of each pathway on the network. For each

molecular network, we consider those pathways that, once induced on the full network, form a

connected subgraph of a size of at least 10 and up to 100 nodes. We provide the distribution of

pathway sizes for each of our molecular networks in S1 Fig in S1 File. The number of pathways

considered per molecular network is summarized in S2 Table in S1 File.

We collect experimentally validated functional annotations from the Gene Ontology (i.e.,

evidence codes ‘EXP’, ‘IDA’, ‘IPI’, ‘IMP’, ‘IGI’, ‘IEP’), that assign genes to biological process

annotations (GO-BP), cellular component annotations (GO-CC) and molecular function

annotations (GO-MF) [24].

We collect 586 cancer driver annotations from the intOGen database [25]. We consider a

gene to be a cancer driver if it is a known cancer driver in at least one cancer type.

Results and discussion

While this paper focuses on providing insight into the biology captured by the different graph-

let adjacencies, in the appendix, we also investigate the agreement between our new graphlet

eigencentrality measures and state-of-the-art centrality measures used in network biology (S1

File, Section: Comparing graphlet eigencentrality to other node centralities). There we show in
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well-investigated model networks and our set of molecular networks that there are strong cor-

relations between the different centralities, that depend on the network’s topology. Despite

this, we show in each of our model networks that there is some disagreement between the top

100 most central nodes based on the different graphlet eigencentralities, indicating their

potential to capture complementary biological signal, which we investigate below.

Graphlet adjacencies describe topologically and biologically distinct

pathways

First, we validate that graphlet adjacencies can capture topological relationships between the

nodes in a pathway by evaluating pathway participation prediction accuracy (Section: Graphlet

adjacency captures pathway specific topology). Additionally, we validate that the pathways

that are described by a given graphlet adjacency, i.e. the set of pathways for which we achieve

the highest prediction accuracy considering a given graphlet adjacency, are topologically statis-

tically significantly different from the rest of the pathways based on their degree distribution,

average clustering coefficient and correlations between their graphlet counts (S1 File, Section:

Pathways described by the same graphlet adjacency are topologically similar). Then, we find

for each set of pathways, the set of model networks they are most similar to (e.g., Erdős-Rènyi

random networks, scale-free networks, geometric networks, etc. See S1 File, Section: Linking

pathways described by graphlet adjacencies to model networks). Then, we show that the path-

ways that are described by the same graphlet adjacency, share biological functional similarities

that are different dependent on the graphlet adjacency considered (Section: Graphlet adjacen-

cies describe complementary groups of functionally related pathways). We conclude this sec-

tion with a case study, where we focus on the ‘Receptor mediated mitophagy’ pathway and

explain why some graphlet adjacencies best capture the topological-functional relationships

between nodes in the pathway (Section: Case study: Receptor mediated mitophagy).

Here we present results for the human PPI network. The results for our other molecular

networks are presented in S1 File.

Graphlet adjacency captures pathway specific topology. We assess if graphlet adjacen-

cies capture pathway topological signal by evaluating the performance of graphlet eigencen-

trality for the purpose of pathway participation prediction. In S17A Fig in S1 File. we observe

that regardless of the underlying graphlet adjacency, our local approaches and GeneMANIA

consistently perform better than random (AUC-ROC = 0.5), achieving median AUC-ROC

scores higher than 0.7. Our global approach performs as by random when applied on graphlet

adjacencies for fAG1
, fAG2

and fAG8
. Given that the ratio of positive examples in each test-set is

only 0.15 on average, AUC-PR is a better measure for comparison. In S17B Fig in S1 File, we

observe that our local approach outperforms our global approach, as well as GeneMANIA. To

explain this result, we found that each pathway annotated gene participates in 6 pathways on

average. Furthermore, on average, these 6 pathways are descendants of 2 (of the 23) different

root nodes of the pathway ontology. This implies that from the perspective of the global net-

work, pathways are intertwined, even functionally very distinct ones, making it harder to pre-

dict if a gene participates in a pathway or not. Our local approach, however, considers each

pathway as an individual entity, disentangled from the rest of the network. This validates our

intuition that, from the perspective of the pathway, all genes participating in it are important.

Next, to validate that different graphlet adjacencies best capture different sets of pathways,

we compare the set of top-scoring pathways of each graphlet adjacency. We will be referring to

the pathways for which we achieve the highest prediction accuracy considering a given graph-

let adjacency as described by that graphlet adjacency. Formally, for each graphlet adjacency, we

consider those pathways with a normalised AUC-PR score (see Section Evaluating prediction
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performance) larger than 3 (in analogy to the 99.7% confidence interval for variables following

a standard normal distribution) to be described by that graphlet adjacency. On average, 55

pathways are found to be described by a graphlet adjacency. By measuring the pairwise overlap

between the set of pathways described by the different graphlet adjacencies, we find that the

average of the Jaccard indices is 0.17. We conclude that graphlet adjacencies capture pathway

topologies that are different and described by the underlying graphlet.

Graphlet adjacencies describe complementary groups of functionally related path-

ways. Having shown that graphlet adjacencies capture pathway topologies, we assess if any

graphlet adjacency describes functionally similar pathways and compare the biological func-

tions captured by different graphlet adjacencies.

To assess if a given graphlet adjacency captures similar pathways, we annotate each pathway

with its second level ancestors, i.e. annotations in the second most general level of the pathway

ontology, one step away from the root nodes and perform pathway set enrichment analysis

(see S1 File, Section: Set enrichment analysis). The number of enriched ancestors in each set of

pathways described by the different graphlet adjacencies are shown as bars in the bar chart in

the top of Fig 2. We observe that each set of described pathways is enriched in at least three

ancestor terms, meaning each set of described pathways has a comonality in terms of their

pathway function. For instance, the set of pathways described by graphlet adjacency fAG3
is

enriched in pathways related to ‘Signaling by GPCR’ (9 out of 59 pathways are descendants of

this ancestor, adjusted p-value 2.23E–5), ‘Transmission across Chemical Synapses’ (9 out of 59

pathways are descendants of this ancestor, adjusted p-value 2.23E–5) and ‘Platelet activation,

signalling and aggregation’ (6 out of 59 pathways are descendants of this ancestor, adjusted p-

value 7.61E–23). Having established that the pathways described by the same graphlet adja-

cency are functionally related, we investigate if different graphlet adjacencies describe func-

tionally different pathways. In the bottom of Fig 2, we present the Jaccard indices on the

enriched ancestor terms, over all pairwise combinations of sets of pathways described by dif-

ferent graphlet adjacencies. The average of the Jaccard indices measuring the overlaps between

the ancestors enriched in pathways described by two different graphlet adjacencies is 0.21, sug-

gesting that different graphlet adjacencies capture functionally different pathways. For

instance, while the ancestor annotation ‘Signaling by GPCR’ is enriched in the set of pathways

described by graphlet adjacency fAG3
, none of the 63 pathways described by graphlet adjacency

fAG6
are annotated with it.

Analogously, we investigate if a given graphlet adjacency captures pathways that enriched

in similar GO-terms (GO-BP, GO-CC and GO-MF, see Section Annotation data). We present

the results in S1 File, Section: Graphlet adjacencies describe complementary groups of func-

tionally related pathways. There, we observe that each set of pathways described by a given

graphlet adjacency is highly enriched in pathways that are enriched in similar GO-BP, GO-CC

and GO-MF terms, indicating that each graphlet adjacency describes biologically functionally

similar pathways. We also observe that the average of the pairwise Jaccard indices, measuring

the overlap in GO-terms enriched in pathways described by different graphlet adjacencies, is

low: 0.51 for GO-BP, 0.47 for GO-CC and 0.49 for GO-MF. We present similar results for our

other molecular networks. We conclude, with a few exceptions detailed in the appendix, that

pathways described by a given graphlet adjacency are biologically functionally similar in terms

of the ancestral, GO-BP, GO-CC and GO-MF terms in which they are enriched, and that these

functional similarities depend on the graphlet adjacency. This suggests that each graphlet adja-

cency captures different pathway topology and function relationships.

Case study: Receptor mediated mitophagy. ‘Receptor Mediated Mitophagy’ (RMM) is a

degradation process in the cell focused on the degradation of damaged mitochondria. We

PLOS ONE Graphlet eigencentralities capture novel central roles

PLOS ONE | https://doi.org/10.1371/journal.pone.0261676 January 25, 2022 10 / 19

https://doi.org/10.1371/journal.pone.0261676


Fig 2. Functional similarity between pathways described bydifferent graphlet adjacencies. (Bottom) A clustered heat map of the Jaccard similarity

indices between the sets of ancestor annotations enriched in the sets of pathways described by different types of graphlet adjacencies. (Top) A bar-chart

indicating the number of ancestor annotations enriched in the pathways described by each corresponding graphlet adjacency.

https://doi.org/10.1371/journal.pone.0261676.g002
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found the pathway to be highly described by graphlet adjacencygAG6
(normalised AUC-PR

5.98) and not described bygAG0
(normalised AUC-PR 0.04), and will be focusing on this path-

way to explain why some graphlet adjacencies better capture some pathways than others.

In Fig 3 we show the spring embedding of RMM based on normalised graphlet adjacencies

gAG0
andgAG6

. For graphlet adjacencygAG0
, the RMM pathway is composed of two densely con-

nected modules, the control mechanism (genes CSNK2A, CSNK21, CSNK2B, SRC) and the

phagophore formation process (genes ATG5, ATG12, MAP1LCA, MAP1LCB, ULK1), which

interact through a single hub gene, FUNDC1. This is unfavourable for prediction, as a gene

would be predicted to be part of the pathway if it is densely connected with just one of the two

clusters. Graphlet adjacencygAG6
, however, does capture the fact that, through hub node

FUNDC1, all the genes in the control mechanism and the phagophore formation process are

functionally related (i.e. executing the RMM process), as both groups of genes are now highly

Fig 3. Graphlet adjacency gAG6
captures RMM functional organisation. Spring embedding of RMM based on normalised graphlet adjacencygAG0

(left)

andgAG6
(right), where nodes represent genes (red) and edges represent weighted normalised graphlet adjacency (see legend). Graphlet G6 is indicated in

purple in the spring embedding based on G0, connecting genes CSNK2A1, CSNK2A2, FUNDC1 and ATG12. The subnetwork obtained by inducing these

same nodes is also indicated in purple in the spring embedding based on graphlet adjacencygAG6
. Although only connected via FUNDC1 when considering

regular adjacency, ATG12 is directly connected to CSNK2A1 and CSNK2A2 in the spring embedding based on graphlet adjacencygAG6
, illustrating how

graphlet adjacencies capture functionally relevant indirect relationships between nodes.

https://doi.org/10.1371/journal.pone.0261676.g003
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connected. This also better captures the pathway from a topological perspective, as genes pre-

dicted to be part of the pathway would have to interact (in the form of graphlet G6) with all

pathway members. We conclude that graphlet adjacency allows us to describe the functional

organization of the pathway.

Graphlet adjacencies capture complementary cancer mechanisms

Here, we illustrate how graphlet eigencentralities enable us to relate specific local wiring pat-

terns of genes in a pathway with their individual biological function. We focus on predicting

cancer driver genes. We first verify that cancer-related genes play central roles in pathways

(Section: Graphlet eigencentrality captures the central roles of cancer related genes). Then, we

show that the set of cancer driver genes recognised for playing central roles in pathways are

different based on the graphlet adjacency considered (Section Different graphlet adjacencies

uncover different cancer-related genes). To explain this, we illustrate it with a case study,

where we show why graphlet adjacencygAG6
best captures the central roles of cancer driver

genes, TP53 and RB1, in the ‘Formation of Senescence-Associated Heterochromatin Foci’

pathway (Section: Case study: Formation of Senescence-Associated Heterochromatin Foci

(FSAHF)).

In this part of the study, we consider all non-disease specific pathways in Reactome (see S1

File, Section: Basic network statistics). We present results for the human PPI network, with the

corresponding results for the human COEX network presented in the appendix.

Graphlet eigencentrality captures the central roles of cancer related genes. We assess if

cancer driver genes tend to have central positions in pathways by performing the following

analysis. For each pathway, we predict its genes to be cancer-related according to their pathway

centrality. We consider the set of cancer driver genes provided by intOGen as our set of true

positives (Section: Annotation data). The results are presented in S38 Fig in S1 File. We

observe that both our local and our global approach perform better than random

(AUC-ROC = 0.5), as median AUC-ROC scores over all pathways are typically higher than

0.60, regardless of the underlying graphlet adjacency. We observe that global graphlet eigen-

centrality consistently outperforms local graphlet eigencentrality. To explain this, we perform

a Mann-Whitney U (MWU) test comparing the distribution of the number of pathways that

each cancer driver genes occurs in, with the distribution of the number of pathways that each

non-cancer driver gene occurs in. We find that, in the human PPI network, cancer driver

genes occur on average in almost twice as many pathways as non-cancer driver genes (10.56

compared to 6.07), which is statistically significantly different with a p-value of 5.19E–20.

Therefore, while cancer genes tend to have a central role in pathways (as indicated by our local

graphlet eigencentralities), our results also suggest that they play a more critical role in the

crosstalk between the pathways regulating the cell (as indicated by global graphlet eigencentr-

alities). These results are in line with the existing literature, as cancer driver genes have been

shown to have a statistically significantly higher betweenness centrality than other genes in the

PPI network [26]. Looking for specific examples of cancer driver genes playing a role in cancer

through crosstalk, we find, for instance, that the crosstalk between cancer driver STAT3 and

the p53/RAS signaling pathway controls cancer cell metastasis [27]. Similarly, crosstalk

between p53 and the IGF-1R/AKT/mTORC1 pathway can lead to chemo resistance [28].

We consider the study of how cancer related genes interact between pathways as future

work and will be focussing on illustrating how graphlet eigencentralities capture pathway

mechanisms within pathways.

Different graphlet adjacencies uncover different cancer-related genes. First, we focus

on those pathways described by central cancer driver genes, i.e. those pathways for which we
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achieve a normalized AUC-PR score larger than 3 applying local graphlet eigencentralities.

Additionally, we determine for each pathway a set of correctly predicted cancer-related genes.
For each pathway, we determine the threshold such that the F1 score for predicting cancer

drivers in that pathway is maximal and consider all the known cancer driver genes with a cen-

trality score higher than this threshold as correctly predicted cancer-related genes. In Fig 4, we

show the pairwise Jaccard indices between the sets of correctly predicted genes uncovered

based on different graphlet adjacencies. With an average Jaccard index of 0.30, we conclude

that different graphlet adjacencies describe the role in cancer of different sets of cancer related

genes.

Case study: Formation of Senescence-Associated Heterochromatin Foci (FSAHF). The

formation of senescence-associated heterochromatin foci (FSAHF), contributes to senescence

(permanent interruption of cell division) by repressing the expression of proliferation-promot-

ing genes through reorganisation of chromatin [29]. Cellular senescence plays a vital role in

permanently restricting the propagation of damaged and defective cells and forms a natural

tumour-suppressor mechanism. We found the cancer mechanism in the FSAHF pathway to

be described by graphlet adjacencygAG6
(normalised AUC-PR 3.2) and poorly described by

gAG0
(normalised AUC-PR −0.56). We will be focusing on this pathway to explain how graphlet

adjacencies can capture different cancer mechanisms in pathways.

In Fig 5, we show the spring embedding of the SAHF formation pathway-based on normal-

ised graphlet adjacencygAG0
andgAG6

. From the perspective of graphlet adjacencygAG0
, cancer

drivers RB1 and TP53 do not play a central role in this pathway, as they appear peripheral to

the other nodes in the pathway. The mediating role of TP53 and RB1 trough hub node

HMGA2 is well captured by graphlet adjacencygAG6
, connecting them with all nodes in the

pathway. Additionally, through literature curation, we find that HMGA2, the most central

node in the pathway according to graphlet adjacencygAG6
and predicted as cancer-related in

Section: Different graphlet adjacencies uncover different cancer-related genes, is also a driver

of tumour metastasis [30]. Lastly, it should be noted that within this pathway, nodes UBN1,

ASF1A, TP53 touch graphlet G0 the most (i.e. have the highest degree) and nodes EP400, RB1

and H1–0 touch graphlet G6 the most (i.e. have the highest graphlet degree for graphlet G6).

This means that the central roles of TP53 and RB1 trough hub node HMGA2 could not have

been captured neither by using the simple degree centrality, nor by using their graphlet degree

centrality for graphlet G6. We conclude that graphlet eigencentrality enables considering dif-

ferent notions of the centrality of genes in pathways, allowing the capturing of different func-

tional roles of genes in pathways.

Conclusion

In this paper, we introduce graphlet eigencentrality, allowing us to capture different notions of

the centrality of nodes in a network. We apply it on measuring the centrality of genes in path-

ways, enabling a detailed investigation of how different graphlet adjacencies capture different

biological functions. We apply our method at two levels: from the local pathway perspective or

the global network perspective.

We apply our graphlet eigencentralities to identify pathways described by different graphlet

adjacencies, i.e. all genes participating in a pathway are also be important from the topological

perspective. To do so, we use our graphlet eigencentralities to predict which genes belong to a

given pathway, considering the pathways for which we achieve the highest prediction accura-

cies as being described by that graphlet adjacency. We find that local pathway-based graphlet

eigencentralities well predict which genes participate in a given pathway, outperforming state
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Fig 4. The overlap between correctly predicted cancer genes in pathways described by central cancer genes based on different graphlet adjacencies. A

clustered heat map of the Jaccard similarity indices between the sets of correctly predicted cancer genes found in pathways described by central driver genes

based on different types of graphlet adjacencies. At the top, the bar-chart indicates the number of correctly predicted genes corresponding to each graphlet

adjacency.

https://doi.org/10.1371/journal.pone.0261676.g004
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of the art predictor GeneMANIA (validating our approach) and our global approach. To

explain this result, we show that pathways, even when functionally unrelated, show large

amounts of overlap. As our local approach considers each pathway as an individual entity dis-

entangled from the full network, it is able to best capture the topological essence of a pathway.

We go on to show that pathways that are described by a given graphlet adjacency are biologi-

cally functionally similar in terms of the ancestral, GO-BP, GO-CC and GO-MF terms in

which they are enriched, and that these functional similarities depend on the graphlet adja-

cency. We illustrate these results by a case study of the ‘Receptor mediated mitophagy’ path-

way, where we show how graphlet adjacencygAG6
captures the hub-role of FUNDC1, allowing

us to capture the functional organisation of the pathway.

Secondly, we apply our graphlet eigencentrality at predicting cancer-related genes in path-

ways. We observe that global graphlet eigencentrality consistently outperforms local graphlet

Fig 5. Graphlet adjacency gAG6
captures centrality of cancer driver genes in the FSAHF pathway. Spring embedding of FSAHF based on normalised

graphlet adjacencygAG0
(left) andgAG6

(right), where nodes represent non-cancer-related genes (red) and known cancer driver genes RB1 and TP53

(yellow), and edges represent weighted normalised graphlet adjacency (see legend). Graphlet G6 is indicated in translucent purple in the spring embedding

based on G0, connecting genes RB1, TP53, HMGA2 and CABIN1. The subnetwork obtained by inducing these same nodes is also indicated in translucent

purple in the spring embedding based on graphlet adjacencygAG6
. Although only connected via HMGA2 when considering regular adjacency, TP53 and

RB1 are directly connected to CABIN1 in the spring embedding based on graphlet adjacencygAG6
, illustrating how graphlet adjacencies can capture

functionally relevant indirect relationships between nodes.

https://doi.org/10.1371/journal.pone.0261676.g005
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eigencentrality. To explain this result, we show that cancer driver genes participate in statisti-

cally significantly more pathways than non-cancer-related genes. Therefore, while cancer

genes tend to have central roles in pathways (as indicated by our local graphlet eigencentral-

ities), our results also suggest that they play a more essential role in the crosstalk that occurs

between pathways to regulate the cell (as indicated by our global graphlet eigencentralities).

This is a key insight, as it indicates that pathway-focused approaches for studying cancer

should focus on the interactions between pathways, although most current state-of-the-art

approaches focus on their individual differential expression or rewiring. Additionally, we

show that by considering pathway centrality based on different graphlets, we can uncover

complementary sets of cancer genes. We illustrate these results by a case study of the FSAHF

pathway, where we show how graphlet adjacency, unlike regular adjacency, captures the cen-

tral roles of cancer driver genes, RB1 and TP53. We conclude that graphlet eigencentralities

allow us to capture different functional roles of genes in and between pathways.

Finally, our graphlet eigencentralities can be applied to study diseases outside cancer. For

instance, it has been shown that rare-disease genes are characterised by a high degree and a

high betweenness centrality in the PPI network [31]. Further, the study of the centrality of

nodes is not limited to biology, making our graphlet eigencentralities applicable in many disci-

plines that use networks as models, including physics, social sciences and economics.
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12. Pržulj N, Corneil DG, Jurisica I. Modeling interactome: scale-free or geometric? Bioinformatics. 2004;

20(18):3508–3515. PMID: 15284103
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