
Goal-oriented Models for Teaching and Understanding
Data Structures

Xavier Franch1[0000-0001-9733-8830] and Marcela Ruiz2[0000-0002-0592-1779] ✉

1Universitat Politècnica de Catalunya, Barcelona, Spain
2Zürich University of Applied Sciences, Winterthur, Switzerland

franch@essi.upc.edu
marcela.ruiz@zhaw.ch

Abstract. Most computer science curricula include a compulsory course on data
structures. Students are prone to memorise facts about data structures instead of
understanding the essence of underlying concepts. This can be explained by the
fact that learning the basics of each data structure, the difference with each other,
and the adequacy of each of them to the most appropriate context of use, is far
from trivial. This paper explores the idea of providing adequate levels of abstrac-
tions to describe data structures from an intentional point of view. Our hypothesis
is that adopting a goal-oriented perspective could emphasise the main goals of
each data structure, its qualities, and its relationships with the potential context
of use. Following this hypothesis, in this paper we present the use of iStar2.0 to
teach and understand data structures. We conducted a comparative quasi-experi-
ment with undergraduate students to evaluate the effectiveness of the approach.
Significant results show the great potential of goal modeling for teaching tech-
nical courses like data structures. We conclude this paper by reflecting on further
teaching and conceptual modeling research to be conducted in this field.

Keywords: goal-oriented models; iStar2.0; i*; data structures; software selec-
tion; comparative quasi-experiment.

1 Introduction

Data structures (DS for short) are a programming concept that emerged in the early 70s
as standardized solutions to the need of storing and manipulating data elements accord-
ing to some particular requirements [19]. In spite of the profound changes that the com-
puting discipline has experienced since then, DS still play a crucial role in program-
ming. Fundamental DS such as lists and hash tables are in use in a myriad of contexts,
from classical problems such as compiler construction or networking [21], to emerging
domains such as blockchain [17]. In addition, new DS emerge to respond to specific
challenges, e.g., compact DS [31] for storing large quantities of data, or concurrent DS
[25] used in programs running on server machines with hundreds of cores.

As a result, most (if not all) computer science curricula include a compulsory course
on DS to ensure that students acquire the necessary knowledge and skills on the topic.
However, teaching DS and conversely, from the students’ point of view, learning the

Franch, X.; Ruiz, M. Goal-oriented models for teaching and understanding data structures. A: International
Conference on Conceptual Modeling. "Conceptual Modeling: 40th International Conference, ER 2021: virtual
event, October 18–21, 2021: proceedings". Springer Nature, 2021, p. 227-241. ISBN 978-3-030-89022-3.
The final authenticated version is available online at https://doi.org/10.1007/978-3-030-89022-3_19

mailto:franch@essi.upc.edu

2

basics of each DS, the difference with each other, and the adequacy of a DS to a context
of use, is far from trivial. On the one hand, student difficulties with DS span over com-
prehension of recursive programs, analysis, identification, and implementation of basic
DS [29, 38]. On the other hand, students are prone to memorize facts about DS instead
of understanding the essence of the underlying concepts [38].

One possible solution to provide an adequate level of abstraction to the description
of DS is to adopt an intentional viewpoint [37] for their teaching and study. This way,
the emphasis is shifted towards understanding the main goals of every DS, what are
their qualities, and relationships with their context of use.

Aligning with this vision, we explore in this paper the use of goal-oriented models
[7] for describing DS. To this end, we propose an extension of the iStar2.0 language
[6] as the basis for building these models and we evaluate the effectiveness of the ap-
proach through a quasi-experiment with students. We show that a group of students
who studied DS specified with the iStar2.0 language is significantly more effective
when analysing DS in contrast to a control group that studied DS without iStar2.0.

The rest of the paper is organized as follows. Section 2 describes the background of
this research and related work. Section 3 states the problem context and the main re-
search question of our research. Section 4 introduces iStarDust, an extension to iStar2.0
for DS. Section 5 describes the design and results from a controlled quasi-experiment
conducted with a group of 2nd year computer science students of an algorithms and DS
course. Finally, in Section 6 we summarise the main conclusions and future work.

2 Background and Related Work

2.1 DS as implementations of abstract data types

As commented above, DS emerged at the early 70s, at the same time as the related
concept of abstract data type (ADT) [13]. ADTs provide a high-level specification of a
DS, declaring its operations and the properties that they fulfil. ADTs are implemented
using DS which remain hidden to the client of the ADT. In the context of programming
with ADTs [24], two questions arise:
1) Which is the most appropriate ADT according to some functional characteristics?

Typical ADTs are lists, mappings, graphs and trees.
2) What is the DS that best implements the chosen ADT according to some quality

requirements? DS differ mainly in efficiency both in time (of their operations) and
space (to store its elements).

Along time, there were a number of proposals either defining new languages with spe-
cific constructs for manipulating ADTs and DS, like CLU [23] and SETL [33], or an-
notation systems like NoFun [3]. Both types of proposals supported the declaration of
main characteristics of DS (like their efficiency) and requirements from the program
looking for the most appropriate implementation. While they provided some support to
the problem of DS selection, their constructs were at the programming level and made
their use cumbersome when a more lightweight approach suffices, e.g. to summarize
the main characteristics of the DS in a teaching context. This motivates the use of a
higher-level notation as i*.

3

2.2 i* as a conceptual tool for software analysis

The i* language has been primarily used for strategic reasoning in the context of socio-
technical systems that include human-related actors (people, organizations, etc.) [37].
However, a line of research has focused on using i* as a conceptual tool for software
analysis. The common characteristic of these works is the predominant role that soft-
ware elements, represented as actors, play in the model, in contrast to human-related
actors, which are less significant (or even are not represented in the models).

There are several proposals using i* for software analysis. Some researchers propose
i* models as a representation of software architectures [14, 35]: software components
are modelled as actors and their connections represent expectations from one compo-
nent to another (e.g., a goal to be fulfilled, a file to be delivered, an API to be provided).
In a similar vein, other works use i* to model or reason about product lines [1], service-
oriented systems [8] and systems in domains like IoT [1] or business intelligence [20].
These proposals made use of i* constructs in a particular way (e.g., importance of i*
positions to represent components that cover different roles), and relied on softgoals to
represent software quality (inside actors) or quality requirements (as dependencies).

In our paper, we are primarily interested in the use of i* to support software package
selection [11], considering DS as the software to be selected. We explored this objective
in a short paper presented at the iStar’20 workshop [12]. The current paper extends this
preliminary contribution in several directions. On the one hand, the proposal is formu-
lated following a well-defined methodology for extending i* that includes a systematic
analysis of requirements and needs for the extension, and the inclusion of the new pro-
posed constructs in the i* metamodel. On the other hand, it includes a preliminary eval-
uation of the proposal by means of a controlled quasi-experiment.

2.3 Teaching DS

Students suffer from misconceptions during their learning process [4], whose existence
needs to be identified and mitigated to continuously improve a subject matter. In the
computing science discipline, several works have focused on misconceptions related to
introductory programming [27], while for more specialized topics like DS, contribu-
tions are scarce, but indeed still exist, as enumerated below.

Some researchers have focused on particular DS, e.g., misconceptions on heaps [34]
or in binary search trees and hash tables [18]. In our paper, we take a more general
viewpoint and target DS in general, looking for a framework that can be customized or
extended to any set of DS.

In 2018, Zingaro et al. [38] reported a multi-method empirical study about the diffi-
culties that students have on understanding DS. After a round of think-aloud interviews
to gather a series of questions to elicit barriers to understanding, the authors ran a final
exam study session containing 7 questions for a Java-based CS2 course on DS. While
the results of this paper are highly interesting, the study was explorative in nature and
focuses on highlight students difficulties; in contrast, our paper seeks for a constructive
solution proposing a concrete framework to improve students’ DS understanding and
effectiveness, and provides empirical data to elucidate potential benefits in helping stu-
dents to achieve intended learning goals.

4

3 Problem Scope

The goal of this paper can be stated as: to analyse i* for the purpose of teaching and
learning DS with respect to functional and non-functional requirements from the
point of view of educators and students in the context of software development. In
order to make this goal more concrete, we have taken the following decisions:

• We select iStar2.0 [6] as the language used to formulate i* models. The reason is
that iStar2.0 has been proposed as a standard di facto in the i* community with the
purpose of having an agreed definition of the language core constructs.

• We follow the PRISE method [15] to extend iStar2.0 with constructs that fit the goal.
For space reasons, in this paper the reporting of the method application is kept at the
level of main steps (sub-processes) and focusing on the essential tasks and artifacts.

• We select as DS a typical subset that is taught in a DS introductory course in a com-
puter science syllabus, namely sequences and tables, well-documented in a number
of classical textbooks [5, 10].

From this goal and these decisions, we derive the following research questions:
RQ1: What extensions can be applied over iStar 2.0 to make it suitable to describe

DS? Following PRISE [15], we will identify the constructs needed to make iStar2.0
suitable to the DS domain. We will identify the needs, conceptualize the solution, and
extend the iStar2.0 metamodel [6].

RQ2: When the subjects study DS specified with iStar2.0, is their performance in
describing DS affected? To answer this question, we compare completeness and valid-
ity of described DS by subjects that have studied DS specified with iStar; to a control
group that has studied DS specified in the traditional way (without iStar2.0).

4 iStarDust: iStar2.0 for DS

In this section, we show the application of PRISE to the domain of DS in order to an-
swer RQ1. We call iStarDust (arguably, quasi-acronym of iStar2.0 for DS) the resulting
language extension. We focus on the first three PRISE steps, because: Step 4 is evalu-
ation of the extension, which deserves a full section in this paper (Section 5); Step 5
provides a sense of iteration which is in fact embedded in our way of working; Step 6
consists of reporting and publicizing the results, which turns out to be this very paper.

4.1 Analyse the need for an extension

PRISE first step checks whether an extension of iStar2.0 is really needed. It may cer-
tainly happen that the iStar2.0 constructs suffice to represent the concepts that we need.
We list below the requirements that make iStar2.0 fall short to support DS description:

• Req1. The language should allow relating specification and implementation of DS.
As explained in Section 2, we distinguish among the specification of a DS (i.e., the
ADT it represents) and the implementation of a DS (i.e., the code used to implement
the operations). We need to keep this relation explicit in order to accurately describe

5

the DS. The current actors, and association among actors, that iStar2.0 includes, do
not allow representing this concept.

• Req2. The language should allow to encapsulate intentional descriptions. DS are
modular in nature. They become integrated into software programs as building
blocks. In fact, they are normally reused from some existing software library. The
original iStar2.0 does not provide such encapsulation mechanisms, beyond the no-
tion of actor, which is not enough for our purposes.

• Req3. The language should allow representing similarities among DS. Typical DS
are organized following a hierarchical structure to keep similarities among them. For
instance, sequences are a category of DS, including stacks, queues and lists. At their
turn, lists can be sub-categorized (at least) in one-direction lists and bi-directional
lists (depending on the type of traversals they support). Likewise, there are several
variations of hash tables that share a number of commonalities. iStar2.0 does not
include a concept for representing such hierarchies.

These requirements yield to the concepts to be included in iStarDust extending iStar2.0:

• Conc1. Specification and implementation of a DS
• Conc2. Relationship among specification and implementation of a DS
• Conc3. Encapsulation of specifications and implementations of DS
• Conc4. Hierarchical organization of specifications & implementations of similar DS

4.2 Describe concepts of the iStar2.0 extension

Following PRISE recommendations, we first
searched in the available i* literature for con-
structs already proposed, and found Const1
and Const3 (see below). In addition, we pro-
posed an additional construct (Const2) to
cover a missing concept. Fig. 1 shows the
mapping between concepts and constructs.

Fig. 1. From requirements to constructs

• Const1. The concept of module for representing encapsulation. Modules have been
proposed as a means to encapsulate a set of actors and dependencies [28]. With re-
spect to this proposal [28], we restrict modules to contain only one actor that will
represent either the specification or the implementation of a DS. We prefer not to
distinguish explicitly the two types of modules to keep the number of new constructs
as low as possible. Every module will have open incoming or outcoming dependen-
cies to/from its enclosed actors, representing the intentions that the DS specification
or implementation offers/requires. These open dependencies become complete when
the DS is inserted in a particular context. Fig. 2 shows three examples: two modules
encapsulating a specification (Stack, Mapping) and one module encapsulating an
implementation (Hash Table). While Stack does not require anything from its con-
text of use, Mapping requires that the stored elements have the concept of Key (to
provide individual element look-up). The Hash Table implementation offers fast
look-up and requires to know the approximate number of elements to store (to size
the table) plus a hashing function.

6

Fig. 2. Modules for the Stack and Mapping specifications, and Hash Table implementation1,2

• Const2. A type of actor link, implements, to connect an implementation to the cor-
responding specification. A specification may (and usually, will) have several im-
plementations, while the opposite is false. As a side effect, the link allows to clearly
identify when a module defines an implementation or a specification, considering
whether it is the source or the target of an implements link. Fig. 3 shows the link
from the Hash Table implementation to the Mapping specification presented above.

Fig. 3. The Hash Table implementation implements the Mapping specification

• Const3. The concept of specialization for representing the requested hierarchies.
Specialization makes a good fit to represent commonalities and differences. We
adopt López et al.’s framework to make precise the effects of the iStar2.0 is-a actor
link at the level of intentional elements [26], distinguishing three types of speciali-
zations: extension, reinforcement and cancellation. Fig. 4 shows an example that
puts the Mapping specification presented above into context. As root of the hierar-
chy, the Function specification represents the family of DS that support individual
operations (addition, removal and access). Mapping and Set are two particular DS
belonging to this family. They only specialize through reinforcement the access op-
eration to better reflect the differences: while sets provide membership only, map-
ping allows looking up elements. These specifications can be further specialized, as
we show with Mathematical Set, which extends Set with Union and Intersection.

4.3 Develop iStar2.0 extension

In this step, the original iStar2.0 metamodel [6] is enriched with the new constructs,
also including integrity constraints needed to ensure the correctness of the models.

Fig. 5 shows the excerpt of the iStarDust metamodel which contains changes with
respect to the iStar2.0 metamodel. Table 1 lists the corresponding integrity constraints
and one derivation rule. We observe:

1 All diagrams have been drawn with the piStar tool, https://www.cin.ufpe.br/~jhcp/pistar/, and
manually modified to add constructs not included in iStar 2.0.

2 For clarity of the paper, the examples already present the concrete syntax proposed for the
constructs, which PRISE considers as part of the next step (developing an iStar2.0 extension).

https://www.cin.ufpe.br/%7Ejhcp/pistar/

7

Fig. 4. Specialization for functions3

• The new Module class contains one actor and a number of open dependencies in and
out. For clarity, we add a derived attribute stating whether the module corresponds
to a specification or an implementation (DR). An intentional element cannot partic-
ipate in more than one association (IC1), and specifications cannot have qualities as
dependencies (IC2) (qualities should appear only at the level of implementations).

• The new implements association among actors is required to bind one implementa-
tion to one specification (IC3, IC4).

• Last, we add the notion of reinforcement at the intentional element level. IC5 ensures
that, given a reinforcement at the level of intentional elements, there is a correspond-
ing is-a relationship at the level of actors, while IC6 states that the types of inten-
tional elements match according to [26] (e.g., we cannot reinforce a task into a goal).

Fig. 5. iStarDust metamodel (elements added to the iStar2.0 metamodel appear in blue colour)

3 We fill with yellow colour the elements affected by the specialization.

8

Table 1. iStarDust integrity constraints required by the added constructs
ID Derivation Rules and Integrity Constraints
DR context Module def: spec? = not actor.implements <> null
IC1 context IntentionalElement inv: actor->size() + incoming->size() + outgoing->size() = 1
IC2 context Module inv: spec? implies

(not elem-in->exists(type=quality) and not elem-out->exists(type=quality))
IC3 context Actor inv: spec <> null implies actor.module.spec? = false
IC4 context Actor inv: impl->notEmpty() implies actor.module.spec? = true
IC5 context IntentionalElement inv: super <> null implies

(incoming.actor.super = super.incoming.actor or outgoing.actor.super = super.outgoing.actor)
IC6 context IntentionalElement inv: super <> null and type <> super.type implies

((type = task or type = resource) implies (super.type = goal or super.type = quality) and
 (type = goal implies super.type = quality))

5 Validation by means of a comparative quasi-experiment

We have performed a comparative quasi-experiment to measure undergraduate stu-
dents’ performance in describing DS, after being exposed to DS described with the
iStar2.0 language. This quasi-experiment has been designed according to Wohlin et al.
[36], and it is reported according to Jedlitschka and Pfahl [16].

5.1 Experimental design

The experimental goal, according to the Goal/Question/Metric template [2] is to ana-
lyse DS descriptions for the purpose of understanding whether iStar2.0 could help to
describe DS in a more structured form, with respect to its effectiveness from the point
of view of computer science students and teachers in the context of a bachelor course
on algorithms and DS at the Zürich University of Applied Sciences in Switzerland. The
main research question of this experiment is formulated as RQ2 presented in Section 3.

Experimental subjects. The experiment was conducted in the academic year 2020-
2021 (from September 2020 until January 2021) within the bachelor-level course of
Algorithms and DS (ADS) offered at the Zürich University of Applied Sciences4. The
subjects were 61 second year students of the computer science curriculum enrolled in
two different groups with distinct schedules. Both groups have students with experience
in industry. In general, some students are currently working in industry (79%), and none
of them had been in contact with the i* framework or used iStar2.0 for describing DS.
The course planning was not updated to incorporate the experimental set-up, still main-
taining the original course objectives. However, the content presented to one of the two
groups was updated adding an iStar2.0 description to some of the DS taught. The group
who received materials of DS with iStar was considered as experimental group. The
subjects executed the experimental task as part of the course’s end-of-semester exam.
Properly speaking, we have performed a quasi-experiment because the subjects were
not sampled randomly across the population; however, this is typical in software engi-
neering experiments [32].

4 Course description available at https://tinyurl.com/3pdnb3xa

https://tinyurl.com/3pdnb3xa

9

Variables. We consider one independent variable:
• DS specification. The way DS are described by the subjects. This variable has two

values:
─ DS specified with iStar2.0, as defined in Section 4.
─ DS specified without iStar2.0, serving the purpose of a control group.

We consider the following dependent variables, which are expected to be influenced to
some extent by the independent variable. We have adapted the Method Evaluation
Model (MEM) to structure the dependent variables of this experiment [30]. In this way,
the effectiveness of iStar2.0 to describe DS is measured by evaluating subjects’ perfor-
mance regarding completeness and validity of subjects’ described DS [22] (see Fig. 6).
• DS completeness. The degree to which all the intrinsic characteristics that should

be described regarding a certain DS (because they explain the meaning of a DS or
its differences with another DS) are actually mentioned by the subjects. To facilitate
this calculation, the researchers consider a reference solution containing the mini-
mum indispensable description.

• DS validity. The degree to which the characteristics of a certain DS are described
by the subjects in the right way. Acting as reviewers, the researchers identify
properly or wrongly described characteristics based on a reference solution, and then
discuss them until they agree on the verdict.

Fig. 6. Variables structure according to [30], and envisioned variables to be measured in future
empirical evaluations.

For this experiment we consider two types of possible analysis of DS: type A), descrip-
tion of differences between two given DS; type B), description of the most important
requirements or operations of a given DS. We consider these two possibilities to for-
mulate below the hypotheses of our study and experimental objects.

Hypotheses. We define null hypotheses (represented by a 0 in the subscript) that cor-
respond to the absence of an impact of the independent variables on the dependent var-
iables. Alternative hypotheses (represented by a 1 in the subscript, e.g., H11 is the al-
ternative hypothesis to H10) suppose the existence of such an impact. Alternative hy-
potheses correspond to our expectations: DS specified with iStar2.0 will have a positive
impact on the dependent variables (For the sake of brevity, alternative hypotheses are
omitted).

DEPENDENT VARIABLESINDEPENDENT
VARIABLE

COMPLETENESS VALIDITY

EFFORT

PERCEIVED
USEFULNESS

PERCEIVED
EASE OF USE

INTENTION TO
USE

ACTUAL
USAGE

EFFICIENCY

EFFECTIVENESS

DATA
STRUCTURES

SPECIFICATION

PERFORMANCE PERCEPTIONS INTENTIONS

BEHAVIOUR

LEGEND
VARIABLE MEASURED
IN EXPERIMENT
VARIABLE TO BE MEASURE
IN THE FUTURE
INFLUENCE

SUCCESS DIMENSION

TRADITIONAL:
WIHTOUT
ISTAR 2.0

ISTAR 2.0

10

Table 2. Hypothesis description

Null Hypothesis id Statement: DS specified with iStar2.0 does not influence the…
H10 …completeness of identified differences between two given DS
H20 …completeness of described requirements of a given DS
H30 … validity of stated characteristics of a given DS when subjects intent to

draw differences
H40 … validity of described characteristics of a given DS

5.2 Procedure and data analysis5

As part of the experimental task, we provided to the subjects with three different types
of input questions to increase the external validity of the experiment based on ques-
tions’ objective (see Table 3).

Table 3. Description of the experimental objects

Question type Objective of the question Example
A Description of the main differences

and similarities between two DS.
Which are the differences and
similarities between stacks and
lists in ADS?

B Description of the main requirements
(i.e., operations) of a given DS.

What is a stack, and which are
the basic operations?

C Control question about DS without
associated iStar 2.0 language descrip-
tion.

What is the main difference be-
tween a singly and doubly linked
list?

We created four equivalent versions for each question type, changing the type of DS
(e.g., queues, lists, etc.) but maintaining the overall objective of the question so that
resulting answers are isomorphic. The design, according to [36] is a “one factor with
two treatments”, where the factor is the DS specification and treatments are the DS
specified with iStar2.0 or in the traditional way (without iStar 2.0). The experimental
procedure is presented in Fig. 7. The control group received the ADS content as it was
designed for the course. In contrast, the experimental group received slides with the
prescribed ADS content including DS exemplified by means of iStar2.0. Before the
exam, the students answered some learning questions, and the experimental group pro-
vided qualitative feedback regarding the use of iStar2.0. The experimental task was
executed in the context of the oral end-of-semester exam. During the exam, each subject
randomly selected a set of questions and received the experimental objects as presented
in Table 3. Two teachers assessed the subjects’ performance, gave a grade, and took
notes of the answers.

Data Analysis. For this type of experimental design, the most common analysis is to
compare the means of the dependent variable for each treatment [36].

5 To facilitate further replication of this controlled experiment, the material describing the ex-

perimental objects, sample slides of DS in iStar provided to experimental subjects, set of ques-
tions used during the execution of the experimental task, experimental design, and output from
statistical analysis can be found at https://drive.switch.ch/index.php/s/6IuFjGtONSWV2bB

11

Fig. 7. Experimental procedure

DS completeness. The results of descriptive statistics for the control group show com-
pleteness average of 12% for question type A, 96% for question type B, and 89% for
question type C; vs 72% for question type A, 91% for type B, and 84% for type C of
the experimental group. The ANOVA Test was applied, and we verified a significant
difference (p<0,05) between the two groups for H10. Thus, the alternative hypothesis
H11 is corroborated, demonstrating that iStar2.0 does influence the completeness of
described DS when subjects are comparing them. On the other hand, no significant
difference was observed for question type B. As a result, our hypothesis H21 is not
corroborated and we conclude that iStar2.0 does not influence the completeness of de-
scribed DS.

DS validity. The results of descriptive statistics show an average of 48% of valid an-
swers for question type A, 84% for questions type B, and 90% for our control question
type C for the control group, versus 91% for questions type A, 88% for type B, and
81% for type C for the experimental group. By applying the ANOVA test, we observe
there is significant difference for question type A (p < 0,05) between the two groups.
Therefore, the null hypothesis H30 is rejected and the alternative hypothesis H31 is cor-
roborated demonstrating that iStar2.0 does influence the validity of described DS when
the subjects are analysing differences. Nevertheless, no significant difference is ob-
served for questions type B. As a result, our hypothesis H41 is not corroborated and we
conclude that iStar2.0 does not influence the validity of described DS.

Results to the control question type C did not show any significant difference between
the two groups when answering questions without associated iStar2.0 DS. This mini-
mises the internal validity threat regarding the maturity and experience of the subjects.
Further research needs to be conducted for question type B.

5.3 Analysis of the threats to the validity of the results

Internal validity. The subjects matured their competence in DS through the semester,
which can have had a positive impact in their performance. To minimise this threat, we

CONTROL
GROUP

EXPERIMENTAL
GROUP

LEARNING DS WITH
ISTAR 2.0

LEARNING DS
TRADITIONAL WAY

ANSWER TRAINING
AND FEEDBACK

QUESTIONS DURING
THE LECTURE

ALL SUBJECTS
SOLVE QUESTIONS
TYPE A, B, AND C

TRADITIONAL
SLIDES OF ADS

FEEDBACK
SLIDES OF ADS

SPECIFIED WITH
 ISTAR 2.0

QUESTIONS
FOR FEEDBACK

ANSWERS: DATA STRUCTURE
 DESCRIPTIONS

QUESTION TYPES

LEGEND
TASK

EXPERIMENTAL TASK

SEQUENCE
INPUT/OUTPUT

12

conceived an experimental design involving both control and experimental groups. The
selection-maturation threat could indicate that the experimental group could have learnt
DS skills faster and better than the control group. To minimise this threat, we have
included a control question in our experiment that is not related to a DS we had intro-
duced with iStar2.0. Social threats are unlikely to happen because control and experi-
mental groups are totally independent from each other through their course of studies.
Our experimental design assures that both control and experimental groups do not suf-
fer disadvantages by keeping the original course’s plan and objectives for both groups.

External validity. Since this experiment is conceived to be conducted in an educational
context, the subjects have been properly selected. However, we acknowledge limits in
the generalisation of the experiment results. We have performed a quasi-experiment
since our subjects were not randomly selected from the target population. Yet the ex-
periment was conducted in a real educational setting. We acknowledge that we need to
conduct further experiments involving groups of students from different countries and
take into consideration variations in the computer science curricula. The results from
this study just apply to the set of DS selected for this quasi-experiment. As explained
below in the construct validity analysis, we plan to perform deep analysis on the impact
of iStarDust for each data type. Moreover, we plan to investigate the extent iStarDust
affects overall subjects’ performance.

Construct validity. We minimised the threat of inadequate preoperational explication
of constructs by means of using a widely accepted model for method evaluation. On
other matters, the fact that we compare a new method for describing DS with traditional
approaches may seem an inadequate comparison of treatments. Nevertheless, our ob-
jective is to advance current DS teaching practices by involving conceptual modeling
methods and techniques. A potential threat regarding the equivalence of questions’ sets
given to the subjects’ groups could pose a mono-method bias threat. The questions’
sets evaluate the extent a subject can identify similarities, differences, and requirements
for given DS, which are wide-known difficulties when understanding DS. Since our
subjects did not answer the questions at the same time, we opted for not giving the same
questions to both groups. We plan to perform further experiments where each data type
is analysed in a controlled experiment. This experiment presents valuable results to-
wards a new generation of teaching content for traditional computer science courses.

6 Conclusions and Future Work

This paper presents our research efforts in effectively implementing goal-oriented per-
spectives for the teaching and understanding of DS concepts. Our research is motivated
by the need to augment how DS are taught to mitigate students’ difficulties when using
DS, and their need to simply memorise DS characteristics to excel in their studies [38].
Our hypothesis is that by teaching DS with a goal-oriented perspective, students will
be able to experience a better understanding of the main goals of every DS, what their
qualities are, and relationships with their context of use. To test this hypothesis, we
follow the PRISE method [15] to extend iStar2.0 with constructs that facilitate teaching

13

and learning DS with respect to functional and non-functional requirements. In this
paper we present iStarDust: iStar 2.0 for DS, and report on an initial validation regard-
ing students’ effectiveness by means of a controlled experiment. The results from the
controlled experiment have shown that iStar 2.0 can improve students’ effectiveness in
terms of completeness and validity of described DS. However, further experiments
must be conducted to be able to generalise the results to a wider population.

As part of our future endeavours, we plan to conduct further controlled experiments
to observe students’ effectiveness, efficiency, perceptions, and intentions when using
iStarDust for learning DS (see Fig. 6). Despite having students as a target population to
validate iStarDust is considered a valid approach in software engineering [9], we also
envision to investigate to what extent iStarDust can also be adopted by professionals.
We also envision to perform a focused analysis on the impact of using iStarDust for
each data type concerning wide-known learning difficulties. This would allow us to
observe the benefits of teaching each data type and the impact in students’ effectiveness
when learning DS. Last, to facilitate the adoption of iStarDust by both instructors and
students, we plan to develop a plug-in for the piStar tool to support the specification of
iStar models with the extensions provided by iStarDust.

Acknowledgements
This work has been partially supported by the by the DOGO4ML Spanish research

project (ref. PID2020-117191RB-I00), the Digitalization Initiative of the Canton of Zü-
rich (DIZH), and ZHAW Digital.

References

1. Ayala, I., Amor, M., Horcas, J.M., Fuentes, L.: A Goal-driven Software Product Line Approach
for Evolving Multi-agent Systems in the Internet of Things. Knowledge-Based Systems 184,
2019: 104883.

2. Basili, V., Caldiera, C., Rombach, H.D.: Goal Question Metric Paradigm. Encyclopedia of
Software Engineering (Marciniak, J.J., ed.), John Wiley Sons. 1, 528–532 (1994).

3. Botella, P., Burgués, X., et al.: Modeling Non-Functional Requirements. JIRA 2001.
4. Confrey, J.: A Review of the Research on Student Conceptions in Mathematics, Science, and

Programming. Review of Research in Education, 16(1), 1990: 3–56.
5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press, 1990.
6. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide. arXiv preprint

arXiv:1605.07767, 2016.
7. Dardenne, A., Lamsweerde, A. van, Fickas, S.: Goal-Directed Requirements Acquisition. Sci-

ence of Computer Programming 20(1-2), 1993: 3-50.
8. Estrada, H., Rebollar, A.M., Pastor, O., Mylopoulos, J.: An Empirical Evaluation of the i*

Framework in a Model-Based Software Generation Environment. CAiSE 2006: 513-527.
9. Falessi, D., Juristo, N., et al. Empirical software engineering experts on the use of students and

professionals in experiments. Empirical Software Engineering 23, 452–489 (2018).
10. Franch, X.: Estructuras de Datos: Especificación, Diseño e Implementación. Ed. UPC, 1993.
11. Carvallo, J.P., Franch, X., Quer, C.: Determining Criteria for Selecting Software Components:

Lessons Learned. IEEE Software 24(3): 84-94 (2007).

14

12. Franch, X.: Using i* to Describe Data Structures. iStar Workshop 2020: 59-64.
13. Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An Initial Algebra Approach to the Specification,

Correctness and Implementation of Abstract Data Types. In Current Trends in Programming
Methodology, Vol. IV, Prentice-Hall, 1978.

14. Grau, G., Franch, X.: On the Adequacy of i* Models for Representing and Analyzing Software
Architectures. ER Workshops 2007: 296-305.

15. Gonçalves, G., Araujo, J., Castro, J.: PRISE: A Process to support iStar Extensions. Journal of
Systems and Software 168, 2020: 110649.

16. Jedlitschka, A., Pfahl, D.: Reporting guidelines for controlled experiments in software
engineering. ESEM 2005.

17. Junhui, W., Tuolei, W., Yusheng, W., Jie, C., Kaiyan, L., Huiping, S.: Improved Blockchain
Commodity Traceability System using Distributed Hash Table. CAC 2020: 1419-1424.

18. Karpierz, K., Wolfman, S.A.: Misconceptions and Concept Inventory Questions for Binary
Search Trees and Hash Tables. SIGCSE 2014: 109–114.

19. Knuth, D.E.: The Art of Computer Programming, Vol. 3. Addison-Wesley, 1973.
20. Lavalle, A., Maté, A., Trujillo, J., Rizzi, S.: Visualization Requirements for Business Intelli-

gence Analytics: A Goal-Based, Iterative Framework. RE 2019: 109-119.
21. Le Scouarnec, N.: Cuckoo++ Hash Tables: High-Performance Hash Tables for Networking

Applications. ANCS 2018: 41-54.
22. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual Modeling. IEEE

Software 11(2): 42-49 (1994).
23. Liskov, B.H., Guttag, J.V. Abstraction and Specification in Program Development. MIT, 1986.
24. Liskov, B., Zilles, S.: Programming with Abstract Data Types. ACM SIGPLAN Notices 9(4):

50–59, 1974.
25. Liu, Z., Calciu, I., Herlihy, M., Mutlu, O.: Concurrent Data Structures for Near-Memory Com-

puting. SPAA 2017: 235–245.
26. López, L., Franch, X., Marco, J.: Specialization in the iStar2.0 Language. IEEE Access 7, 2019.
27. Ma, L., Ferguson, J., Roper, M., Wood, M.: Investigating and Improving the Models of Pro-

gramming Concepts held by Novice Programmers. Comp. Science Educ., 21(1), 2011: 57–80.
28. Maté, A., Trujillo, J., Franch, X.: Adding Semantic Modules to improve Goal-Oriented Anal-

ysis of Data Warehouses using I-star. Journal of Systems and Software 88, 2014.
29. McAuley, R., Hanks, B., et al. Recursion vs. Iteration: An Empirical Study of Comprehension

Revisited. SIGSE 2015: 350-355.
30. Moody, D.: The Method Evaluation Model: A Theoretical Model for Validating Information

Systems Design Methods. ECIS 2003: 1327-1336.
31. Navarro, G.: Compact Data Structures. Cambridge University Press, 2016
32. Robson, C.: Real World Research: A Resource for Social Scientists and Practitioner-

Researchers. Wiley-Blackwell (2002).
33. Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E.: Programming with Sets: An In-

troduction to SETL. Springer, 1986.
34. Seppälä, O., Malmi, L., Korhonen, A.: Observations on Student Misconceptions—A Case

Study of the Build-Heap Algorithm. Computer Science Education, 16(3), 2006: 241–255.
35. Soares, M., Pimentel, J., et al.: Automatic Generation of Architectural Models from Goal Mod-

els. SEKE 2012: 444-447.
36. Wohlin, C., Runeson, P. et al.: Experimentation in Software Engineering. Springer (2012).
37. Yu, E.: Modeling Organisations for Information Systems Requirements Engineering. ISRE

1993: 34-41.
38. Zingaro, D., Taylor, C. et al.: Identifying Student Difficulties with Basic Data Structures. ICER

2018: 169–177.

https://dblp.uni-trier.de/pid/67/925.html
https://dblp.uni-trier.de/db/conf/er/erw2007.html#GrauF07

	1 Introduction
	2 Background and Related Work
	2.1 DS as implementations of abstract data types
	2.2 i* as a conceptual tool for software analysis
	2.3 Teaching DS

	3 Problem Scope
	4 iStarDust: iStar2.0 for DS
	4.1 Analyse the need for an extension
	4.2 Describe concepts of the iStar2.0 extension
	4.3 Develop iStar2.0 extension

	5 Validation by means of a comparative quasi-experiment
	5.1 Experimental design
	5.2 Procedure and data analysis4F
	5.3 Analysis of the threats to the validity of the results

	6 Conclusions and Future Work
	Acknowledgements
	References

