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A B S T R A C T   

Building condition assessment requires the integration of various types of data such as building characteristics, 
the properties of elements/systems and maintenance records. Previous research has focused on identifying these 
data and developing a building condition risk assessment model based on Bayesian networks (BN). However, due 
to interoperability issues, the process of transferring the data is performed manually, which requires considerable 
time and effort. To address this issue, this paper presents a data model to integrate the building condition risk 
assessment model into BIM. The proposed data model is implemented in existing software as a case study and 
tested and evaluated on three scenarios. Addressing interoperability will leverage the BIM tool as a data re
pository to automate the data transfer process and improve its consistency and reliability. It will also enable BIM 
to be a more effective tool for building condition and causality analysis visualization.   

1. Introduction 

In the life cycle of a project, the operation and maintenance (O&M) 
phases are as important as the planning and construction of the project 
itself. Compared with other phases, the highest costs occur during the 
O&M phase [1], which shows the importance of Facility Management 
(FM) activities. In the broad context of FM, building maintenance is 
generally recognized as the main activity, since more than 65% of the 
total cost of FM comes from facility maintenance management [2]. 
There are some challenges in current FM practices that have required a 
paradigm shift in the sector in recent years. Clients are demanding 
strategies for predicting events instead of responding to problems [3]. 
This shift marks the transition from corrective or planned strategies to 
preventive and predictive strategies. The failure of building elements 
can be predicted by preventive maintenance through an analysis of 
condition data and historical maintenance records. This increases their 
efficiency, reliability and safety [4]. 

Buildings tend to deteriorate unless they are properly maintained. 
The lack of a preventive maintenance plan and the building’s natural 
aging accelerates the degradation of existing buildings [5,6]. The 
application of maintenance actions is imperative to prevent defects and 
failure of building elements and to extent the service life of the materials 
[7]. A condition assessment system is used primarily to facilitate the 
ranking of all the elements of the asset according to the amount of repair 

that is needed, which is detected during an inspection, and to produce 
consistent, relevant, useful information [8]. 

A Bayesian network (BN) method can be used to simulate cause- 
effect relationships of uncertain factors that impact building condi
tions. The BN is a probabilistic graphical model that offers a framework 
for reasoning about partial beliefs in uncertain situations [9]. It is 
regarded as a strong technique for modelling risks, based on uncertain 
data [10–12]. In a reasoning process, the BN can represent complicated 
linkages among building elements and systems, and qualitatively and 
quantitatively characterize variable dependencies. In addition, it can 
model a building’s condition as a probabilistic process, contrary to 
deterministic models [13]. Bortolini and Forcada [13] developed a 
probabilistic model based on a BN that covers several interconnected 
elements for assisting decision-making on building maintenance and 
retrofitting measures to improve building conditions. Although the 
model can handle uncertainty and make predictions, the data that is 
required is dispersed among platforms. What is worse, the data is 
transferred manually, which is a laborious, inefficient process [14–16]. 

Building Information Modelling (BIM) can be a unit of the overall 
system architecture to solve the issues of information reliability for 
maintenance operations [15] and help decision-makers to address 
building maintenance concerns. BIM is “an approach to design, con
struction, and facilities management, in which a digital representation 
of the building process is used to facilitate the exchange and 
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interoperability of information in digital format” [1]. BIM, integrated 
with a Decision Support System (DSS), may constitute a powerful 
methodology to support the selection of strategic management activities 
[17,18]. Nevertheless, the greatest obstacle of this integration is the lack 
of interoperability in the O&M context [19,20]. 

To tackle this issue, this research presents a data model to enable 
interoperability between BIM models and the building condition risk 
assessment model based on BN. The research provides the system ar
chitecture to implement the data model in a case study. The integration 
of BIM with BN models facilitates data transfer and reduces the time and 
effort that the FM team spends on manual input. It also allows BIM tools 
to visualize the building elements/systems in an integrated, interactive 
way for decision-makers. Moreover, it helps the FM team to optimize 
building operation strategies and supports decision-making on FM ac
tivities (e.g., predictive maintenance) to improve building performance. 
The first step of this paper was to identify the required data for the BN 
model. Then, BIM and BN models were integrated, based on the pro
posed data model to assess building condition and visualize the current 
condition of the building elements and systems, established within Revit 
Software and employing a color scale. Finally, a case study was used to 
test and validate the proposed data model on three scenarios. 

2. Literature review 

2.1. Decision support system for O&M 

A DSS can be used to make decisions in an early design development 
stage and during the O&M phase. The former helps designers to identify 
multiple technical and commercial options that are compliant with pre- 
determined specifications and the latter help facility managers to opti
mize building operations techniques [21]. To support decision-making 
on building condition assessment, Matos et al. [22] prioritized mainte
nance actions, using Key Performance Indicators (KPI) and a support 
tool. During the O&M phase, existing studies utilized probabilistic 
models to make decisions on improving building condition. Frederik 
et al. [23] created a probabilistic model that learns from user feedback 
and adapts to the users’ specific preferences over time to analyze 
building conditions. Yang et al. [24] developed a probabilistic model 
based on a comprehensive survey of air handling unit (AHU) fault 
detection and diagnosis methods. Lee et al. [11] developed a Bayesian 
method for probabilistic occupant thermal preference categorization 
and prediction in office buildings, to provide predictions for personal
ized thermal preference profiles. Bortolini and Forcada [13] developed a 
model for assessing the condition of a building using a Bayesian network 
(BN) method. Despite the fact that these researchers have made a sig
nificant contribution, none of them automatized the data transfer pro
cess or integrated BIM into their probabilistic models, which would 
facilitate data transfer due to the interoperability issues [25]. 

2.2. Information standards for O&M 

BuildingSMART, the worldwide industry body, has developed a 
standard data format, the Industry Foundation Classes (IFC). The IFC 
data model is intended to describe architectural, building and con
struction industry data and has been mostly used as the data exchange 
schema between BIM and other systems such as Computerized Mainte
nance Management Systems (CMMS) and electrical instrumentation 
control (EIC) [3,26–29]. 

The Construction Operations Building Information Exchange 
(COBie), a subset of IFC data, is an international standard for exchanging 
data from the design phase to the O&M phase using a formal spread
sheet. The version of COBie for the FM handover Model View Definition 
(MVD), [30] is the MVD delivered in a file format that can be viewed and 
edited in Microsoft Office Excel [31]. However, it allows for the storage 
of a large volume of different kinds of data, which results in overloading 
[32]. Accordingly, COBie needs to be customized for facility information 

as a means to building operation [33]. Becerik-Gerber et al. [34] showed 
that each FM activity is data-intensive and requires specific data re
quirements. Kim et al. [35] focused on identifying specific data for FM 
maintenance activity and proposed a data management approach to 
integrate IFC objects, COBie data, and maintenance work information 
from the FM system database. 

2.3. BIM interoperability for O&M 

Efforts to address BIM interoperability for O&M have been made by 
many researchers. Ahmed Gouda et al. developed a framework by 
employing semantic web technology to store maintenance information 
and BIM data using COBie [36]. Cheng et al. [37] determined FM in
formation requirements referring to the Information Delivery Manual 
(IDM) and developed an integrated data-driven system based on BIM 
and IoT technologies for predictive maintenance of building facilities 
using COBie and the IFC extension. To enhance decision-making in FM, 
Chen et al. [2] proposed a system for automated maintenance work 
order scheduling, based on BIM and FM software using COBie and the 
IFC extension. Marmo et al. developed a framework to address the 
interoperability issue by mapping the IFC into a relational database for 
maintenance and performance management [29]. Other researchers 
developed applications on BIM by integrating various systems to execute 
maintainability analysis [38–41], indoor localization [42], fire emer
gency simulation and analysis [43–45], fault detection and diagnosis 
[46,47], sustainability assessment [48,49], and energy simulation and 
forecast [50–52]. 

The variety of standards and technologies available (i.e., building 
automation protocols such as BACnet, Modbus, ZigBee and C-Bus) is one 
of the BIM–O&M interoperability problems [19]. Hence, many re
searchers have focused on system-based approaches to address the 
specific interoperability issue between BIM and software systems, 
standards or protocols in the O&M phase [51,53–55]. The system-based 
approaches propose a systematic architecture for data integration [56]. 
Such approaches make full use of open libraries, components and 
commercial software tools, and implement data integration architecture 
[56]. Kang and Hong [56] proposed system architecture to effectively 
integrate BIM into geographic information system (GIS)-based FM 
software. Such approaches make full use of open libraries, components 
and commercial software tools, and implement data integration archi
tecture [56]. Motawa et al. [57] developed system architecture to collect 
data and knowledge about building maintenance activities while and 
after they are performed. Lee and Cheng et al. [44,58] presented a 
system architecture to integrate BIM with Barcodes and Radio- 
Frequency Identification (RFID) tags to enable timely data access. 
Quinn et al. [59] proposed system architecture to extract data from a 
Building Automation System (BAS) and incorporate it in BIM using a 
linked data structure. However, research on the integration of building 
condition assessment and BIM is scarce. Only Ani et al. [60] integrated 
information from a survey on a water ponding defect on a flat roof to the 
BIM model to identify the flat roof condition. 

With respect to visualization, Tashakkori et al. [61] integrated BIM- 
based 3D indoor navigation functions with the proposed emergency 
management systems. Moreover, Wang et al. [43] applied the same 
approach to find the escape route to support fire safety management of 
buildings. Oti et al. [62] utilized color scheme visualization in BIM to 
visualize data related to the energy management systems, to reflect 
time-dependent energy consumption information. Regarding mainte
nance activities, some researchers utilized BIM 3D visualizations to 
locate building components and support troubleshooting in proposed 
maintenance systems [43,63]. In conclusion, although many studies 
address BIM interoperability, none of them focus on interoperability 
between BIM and building condition assessment. 
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3. BN model for building condition assessment 

With the aim of assessing the entire condition of a building, Bortolini 
and Forcada [13] developed a BN model for building condition assess
ment. This model was created using cause-and-effect relationships be
tween uncertain elements that impact building conditions. The 
condition of building elements and systems was categorized as high, 
medium or low. For example, the term “high condition” refers to a piece 
of equipment that is in high working order and can be used to its 
maximum potential for its intended function. The BN model to assess 
building conditions is presented in Fig. 1. Hierarchical levels could be 
visualized in the model that include all the general civil and architec
tural elements, as well as MEP (mechanical, electrical, and plumbing) 
systems. 

The development of the model required several cycles of analysis, 
implementation and verification. Once the variables that have the most 
impact on building condition had been identified, several methods were 
used in these steps. These included obtaining quantitative (real data 
from existing buildings, statistical analysis and literature reviews) and 
qualitative evidence (a survey with domain experts). To legitimate the 
inference of cause-effect relationships between nodes, a database on 
1974 building defects and 5373 maintenance requests from 40 buildings 
was used. Finally, to check and improve the model structure, experts in 
the field of building performance and facility management were inter
viewed. The model was then refined after rounds of questions with 
feedback and consensus between experts. For this purpose, nine experts 
were interviewed in the field of building pathology and facility man
agement. All interviewees had over ten years of experience in facility 
management, consultation and maintenance activities. The detailed 
process of the model development can be consulted in [13]. 

The BN model was divided into building elements and systems. The 
building elements were classified as: 1) structure, 2) façade, 3) roofing, 
4) flooring, 5) interior partitions and 6) doors/windows. The building 
systems were also defined as follows: 1) electrical systems, 2) plumbing 
systems, 3) HVAC systems, 4) elevator and 5) fire systems. 

Variables that impact the performance of building elements and 
systems were classified as: design and construction errors; policy for 

building operation and maintenance; defects in building elements/sys
tems; environmental agents; and building properties including age, type 
of elements, and whether or not preventive maintenance actions are 
planned. Weather conditions, the surrounding environment, the danger 
of natural catastrophes and geological conditions are examples of 
environmental agents. 

In the BN model, variables that impact the condition of building el
ements and systems were represented as nodes. Depending on the data 
type, they were defined as discrete (labeled, Boolean, discrete real or 
ranked) or continuous [64]. Some nodes were defined as ranked and had 
various states such as ‘High’, ‘Medium’, and ‘Low’. Others were specified 
as Boolean, with binary states like ‘Yes’ and ‘No’. For whatever element 
or system condition, the model can be queried by inserting evidence in 
the BN model and setting its state (i.e., low condition). Then, the BN 
calculates the probability function of the parent nodes by conducting 
backward propagation, and estimates the most likely causes (e.g., age of 
the equipment, lack of preventive maintenance and design errors). 

In this study, the TNormal distribution was utilized to determine the 
probability distribution. When the mean (μ) and variance (σ2) are 
determined, TNormal is a suitable distribution since it allows for the 
creation of many distribution forms [64]. Unlike the regular Normal 
distribution, TNormal has finite endpoints that range from 0 to 1 in 
equal intervals. The variance parameter reflects the influence of parent 
nodes’ uncertainties. In the simplest case, the parameter mean is 
determined as a weighted mean of the parent nodes with the following 
expression: 

Wmean =
Σi = 1…n wiXi

n
(1)  

where wi ≥ 0 are weights, and n is the number of parent nodes. 
The BN structure was constructed by identifying the causal relation 

between the variables based on the data available and expert judgment. 
A panel of experts provided feedback on the causal relations constructed 
by data, which helped to identify key variables or processes that were 
overlooked and fix potential errors of the model. Conditional probability 
tables for the variables can be consulted in [13]. AgenaRisk was chosen 
to construct the BN model for building condition assessment, due to its 

Fig. 1. BN model for assessing a building’s condition assessment [13].  
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power, versatility and user-friendly interface [65]. It can visualize the 
sensitivity analysis for the BN model to represent the importance of 
causal factors. 

4. Methodological approach 

A data model was designed to integrate risk condition assessment 
into BIM. Then, the data model was implemented into existing BIM tools 
and finally it was validated in three scenarios. The data model consisted 
of seven thematic classes, namely: “BuildingCondition”, “CMMS”, 
“EnvironmentalCondition”, “IfcBuilding”, “IfcPset”, “Interface” and 
“Visualization”. A Unified Modelling Language (UML) class diagram, 
which is a worldwide industry standard [66], was employed to present 
the data model. A class diagram in the UML is a type of static structure 
diagram that describes the structure of a system by showing its classes, 
attributes and behavior (e.g., operations). Fig. 2 highlights the concep
tual design of the proposed data model for BIM and BN model integra
tion. In Fig. 2, the “interface” class for building elements/systems 
merged all data sources and transformed data into the appropriate 
format by creating new attributes to support compatibility of a BIM 
model and a BN model. To create new attributes, algorithms for various 
data types such as Number, Boolean and String were created. These 
attributes were then required by the “BuildingCondition” class, using an 
interface to assess a building’s condition. 

To enhance the readability of the UML diagrams, classes were 

depicted in different colors, considering different data sources. The 
“CMMS” class (in yellow, [a]) includes maintenance requests and pre
ventive maintenance records, which play an important role in identi
fying defects in building elements/systems. The 
“EnvironmentalCondition” class contains a sensor to obtain the weather 
conditions (in blue, [d]). Fig. 3 shows the UML diagram for “CMMS” and 
“EnvironmentalCondition” classes. 

The “IfcBuilding” class (in white, [c]) is considered a major data 
exchange schema standard for BIM [67]. The IFC Property Set known as 
“IfcPset” is a class (in red, [b]) that contains required data on building 
condition assessments. These data are assigned to an IFC model object 
and their class names are preceded by the prefix IfcPset. 

The “BuildingCondition” classes (in green, [f]) were divided into 
building system condition and building element condition for ease of 
reading, as shown in Fig. 4 and Fig. 5. Due to the complexity of the 
model and limitations of space, the attributes are not illustrated in the 
class diagrams (see the Appendix A for the complete data model). 

The “BuildingCondition” classes that are based on causality analysis 
use “interface” class (in grey, [e]) to assess a building’s condition. This 
requires the acquisition of data from various sources such as “CMMS”, 
“IfcBuilding”, “IfcPset” and “EnvironmentalCondition” classes, followed 
by the transformation of these data into an appropriate format. 

UML diagrams for building system condition and building element 
condition differ according to their characteristics. For instance, the 
“IfcBuilding” class for building element condition is comprised of IFC for 

Fig. 2. Conceptual design of the UML diagram for the proposed data model.  

Fig. 3. UML diagram of (a) “CMMS” class and (d) “EnvironmentalCondition” class.  
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elements such as IfcDoor, IfcWindow, Ifcwall and IfcRoof, while for 
building system condition it consists of various IFC with respect to 
systems (e.g., IfcChiller, IfcDamper and IfcBoiler). 

Finally, among all the thematic classes, the “Visualization” class 
(light green, [g]) represents a link through which the results of the 
building condition assessments can be imported into any possible data 
visualization tool. 

5. Case study implementation 

The data model was implemented in Autodesk Revit, which is one of 
the most popular BIM tools in the AEC sector. The system architecture of 
implementing the data model into Autodesk Revit (i.e., a BIM tool) to 
facilitate the assessment of building conditions consisted of three main 
steps, illustrated in Fig. 6. (1) The parameters for the Revit model were 
created as IfcPset, based on the required data for building condition 
assessment. (2) The Revit model was integrated with the BN model to 
evaluate building condition using Dynamo, a visual programming 
extension for Autodesk Revit, and Python programming language. (3) 
The BN results of the building condition assessment were exported to 
local storage and visualized in Revit in a way that the FM team can easily 
understand the data. 

5.1. Parameter creation 

To allow BIM models to contain the required data on building con
dition assessments, a Dynamo script was used to create parameters for 
data that could not be obtained from the BIM model, such as the age of 
each building element and system. All variables of the BN model were 
considered parameters in Dynamo. Fig. 7 shows the process of creating 
parameters to host relevant data in BIM using a Dynamo script. 

In this study, the parameter name of the required data was exported 
from the BN model as an .XML file converted into Microsoft Excel (.xls), 
an intermediate format, before mapping it to the BIM model. Then, 
authors manually defined the parameter types and families to assign the 
required data into their relevant families in BIM. There were different 
kinds of parameter types, including Numbers, Strings and Yes/No 
Boolean. For example, the “HVAC age” parameter requires a numeric 
value since it contains the age of equipment. Therefore, its type was 
considered as “Numbers” and its corresponding family was defined as 
“Mechanical Equipment” in the BIM model. Next, the .xls file containing 
the parameter’s name, type (i.e., data type) and family for each item of 
data, was imported into the Dynamo through a Data.ImportExcel node. 
Eventually, all the parameters were created in the BIM model based on 
the required data from the BN model to host relevant data using a 
ParameterCreateSharedParameter node in Dynamo. 

Fig. 4. UML diagram of the data model on the building element condition.  
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Fig. 5. UML diagram of the data model on the building system condition.  

Fig. 6. System architecture for the integration.  
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5.2. BIM-BN data integration 

To transfer data between BIM and BN models bidirectionally, firstly 
the required data was extracted from the BIM model using Dynamo and 
Python scripts, by creating a dataset in a JavaScript Object Notation (. 
Json) format, which is a lightweight format for storing and transferring 
data. The dataset containing all the required data was then imported 
into the BN tool, AgenaRisk, which utilized the data as ‘evidence’. Then, 
the FM team could run the BN model straightaway to acquire the results 
of analyzing the condition of a building. Secondly, the assessment results 
of a building’s condition were extracted from the AgenaRisk tool into a 
Json format and imported into the BIM model using Dynamo and Python 
to visualize the results in a 3D model. 

5.2.1. BIM data transfer processes 
The options of whether or not to have preventive maintenance, 

cooling, heating and different kinds of data such as building properties 
(e.g., age, type of elements) can be obtained from the BIM model. 
However, before extracting these data from the BIM model, they must be 

transformed into an appropriate format so as to be compatible with the 
BN model. To achieve this, a bunch of Python scripts was designed in 
Dynamo to transform data from the BIM into the appropriate format. 
Dynamo is a scalable way to extract data from centralized spreadsheets 
and update common parameters with a range of data types including 
Boolean, Strings and Numbers. Table 1 shows all the parameters that 
need to be transformed to be utilized in the BN model. 

For those data expressed in numbers (e.g., roof age, floor age), a 
Python code block was used to calculate the average age of all elements 
in BIM since the BN model evaluated the condition of entire buildings 
rather than a single element. For example, when one floor of a building 
is renovated, the “floor age” is determined by the Python code block 
calculating the average age of all floors in a building and transforming 
the results into an appropriate format for the BN model which is “<10” if 
the average age is less than 10 years, “10 to 30” if the average age is 
between 10 and 30 years, and “>30” if the average age is greater than 
30 years. 

For data expressed in a Boolean form (e.g., “Yes” having or “No” not 
having preventive maintenance, cooling or heating), a Python code 
block was designed to enumerate all the “Yes” and “No” for each Bool
ean to determine which one was repeated more than the other. For 
instance, for data on Having or not having heating in a room, all the 
rooms were considered in a Python code block and all “Yes” and “No” 
were enumerated to find out whether the building had heating or not. 
The most repeated answer was considered the result for the question of 
whether or not there was heating in the building. If the number of “Yes” 
and “No” were equal, the result would be considered “No”. 

A similar approach to Boolean and numbers can be used for strings 

Fig. 7. Dynamo scripts to create parameters.  

Table 1 
Parameters in the BN model for building condition assessments.  

Type Parameters  States in the BN model 

Boolean Façade prev. 
maintenance 
Roof prev. 
maintenance 
Doors/windows 
prev. maintenance 
Cooling 
Heating 
HVAC prev. 
maintenance 
Electrical prev. 
maintenance 

Elevators prev. 
maintenance 
Structure prev. 
maintenance 
Floor prev. 
maintenance 
Interior partitions 
prev. maintenance 
Plumbing–hot water 
Plumbing prev. 
maintenance 
Fire system prev. 
maintenance 

Yes, No 

String Façade type  Concrete panels/ 
masonry, metal panels, 
glazed, others 

Roof type  Flat concrete, flat metal 
panels, glazed, others 

Ventilation  Forced, natural 
Structure type  Concrete, masonry, steel, 

others 
Floor type  Continuous, 

discontinuous, others 
Interior partition 
type  

Masonry walls, light 
partition walls, others 

Number Façade age 
Roof age 
Doors/windows 
age 

Elevator’s age 
Electrical age 

<10, 10 to 20, >20 

Structure age 
Floor age 

Interior partitions 
age 

<10, 10 to 30, >30 

Plumbing age 
HVAC age 

Fire system age <3, 3 to 10, >10  

Table 2 
Examples of Python code blocks for transforming data.  

Nodes Type States in 
BN 

Locate in 
BIM 

Python code block 
in Dynamo 

Floor preventive 
maintenance 

Boolean Yes / No Spaces Yes_Count = list. 
count(data, ‘Yes’) 
No_Count = list. 
count(data, ‘No’) 
if Yes_Count >
No_Count:  
result = “Yes”  
else:  
result = “No” 

Floor age Numbers <10 
10 to 30 
>30 

Building 
elements 

average = sum 
(data)/len(data) 
if average < 10:  
result = “< 10”  
elif average > 20:  
result = “> 20”  
else:  
result = “10 to 20” 

Ventilation String Forced/ 
Natural 

Spaces if data == Forced  
result = “Forced”  
else:  
result = “Natural”  
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(e.g., ventilation). For example, the ventilation type in the BN model for 
buildings was either forced or natural. A Python code block recognized 
whether the building had forced ventilation or not. If not, the type of 
ventilation was considered natural. If there were more than two options 
(e.g., façade type), the “if…elif…else” statement could be used (i.e., the 
same as floor age). Table 2 shows an example of Python code blocks for 
floor age as numbers, floor preventive maintenance as Boolean, and 
ventilation as strings. 

5.2.2. Mapping BN results into BIM 
In accordance with the BN model, the BN results assessed conditions 

of entire buildings, comprising various groups of elements. For example, 
all windows and floors (i.e., different elements) in the building had to be 
taken into account to evaluate the condition of the window and floor 
respectively. Therefore, various categories were designed using the 
“Categories” node in Dynamo to match the results of the building con
dition assessment with the corresponding groups of elements in the BIM 
model. 

Even though categories in BIM provide various groups of elements, 
some categories on building condition assessments based on the BN 
model still cannot be represented. Hence, Dynamo and Python scripts 

were used to create a new category for BIM to be compatible with the BN 
results. For instance, the BN model assessed the condition of either 
façade or interior partitions individually, both of which have the same 
category in the BIM model called “wall category”. In this example, 
regular expressions, a sequence of characters that specifies a search 
pattern in a Python code block were designed to distinguish the wall 
category between the interior partitions and façade, to create new cat
egories in BIM for both of them. Regular expressions utilize text to 
conduct pattern matching and “search-and-replace” operations. Fig. 8 
illustrates an example of creating a new category in BIM for façade. 

Three steps were imperative to create a new category for façade as an 
example. Firstly, a list of all wall elements for the building was created in 
the first step. Then, this list was converted to string using the “String from 
Object” node as a regular expression supports strings. A regular 
expression was used to find the “exterior walls” among the list by string- 
searching algorithms. Secondly, the material of all walls was obtained 
using FamilyType.CompoundStructureLayers and Element.Name nodes in 
Dynamo, creating a list of material (Step 2). Thirdly, the list of all wall 
elements was connected to the Python code block as input#0, and the 
list of material was connected as input#1. Next, a Python code block 
queried input#0 to filter a list by exterior walls (i.e., façade). Then, it 

Fig. 8. Dynamo scripts to create a new category in BIM for façade, as an example.  
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queried input#1 to find materials that matched those from the exterior 
walls (input#0) and create a new list with the exterior walls and their 
corresponding material. Eventually, the category for façade was created 
to be consistent with the BN results of building condition assessments. 

5.3. Data visualization 

The results of the building condition assessments were extracted 
from the AgenaRisk tool into Json format and imported into Revit using 
a Python programming language in Dynamo to be matched with cor
responding building elements. A Python code block queried the BN re
sults to find the condition of elements categorized as high, medium or 

low. Then, the condition for each element was mapped to its corre
sponding elements in the BIM model using GetItemAtIndex and SetPar
ameterByName nodes. Fig. 9 illustrates the process of mapping the BN 
results for interior partitions as an example. 

Lastly, the BIM model visualizes the results with different colors to 
vary from ‘High’ to ‘Low’. The tabulated data taken from Revit’s 
schedule were visualized in a 3D format in the BIM model by applying 
view filters. For a given element, the relevant results of the building 
condition assessment were identified. Fig. 10 illustrates the BIM visu
alization of the building’s condition as an example. 

BIM visualization allows the FM team and owners to evaluate 
building and system elements based on the causality analysis using 
different color codes, where red represents a low performance condition, 
yellow a medium performance condition, and green a high-performance 
condition. The FM team would be able to filter the elements in the BIM 
model to view the color associated with their condition. It is also 
possible to compare building elements between different buildings. 

6. Model evaluation 

In this study, two types of evaluation were carried out as follows: (1) 
scientific data model validation and (2) software verification. 

6.1. Scientific data model validation 

The data model was validated by implementing it in three buildings 
(TR5, TR11 and TR14) of the Terrassa campus from the Universitat 
Politècnica de Catalunya (UPC), (Fig. 11). The campus includes 25 
buildings with classrooms, offices, laboratories, dining rooms, 

Fig. 9. Dynamo scripts to map the BN results for interior partitions as an example.  

Fig. 10. The visualization of a building’s condition in BIM.  
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restrooms, common areas and study areas. 
The consistency of the data model was validated by running the 

proposed system architecture in TR5, TR11 and TR14 and comparing the 
condition assessment results with those obtained from the existing 
manual method (e.g., AgenaRisk) in which the FM is required to perform 
the data transfer process manually. Furthermore, 18 scenarios per 
building were simulated and compared with the results obtained from 
the existing manual method. 

The completeness of the data model was validated by [68]: a) 
checking the Json data formatting, b) checking either an empty or null 
value for each data item in the Json file. 

The first step validates the Json data for correctness and provides a 
list of missing data in the validation report one after another, until all the 
required data is complete. In this study, a Json validator (e.g., 
http://jsonlint.com/) was used to validate Json data for formatting. If 
the data in the Json file is incorrect or incomplete, the validation will 
report a failure to assist in the debugging of Json data [69]. 

The second step ensures that all data have their value, demonstrating 
the data completeness. Once the Json data formatting had been evalu
ated, the value of the transferred data is checked to meet data 
completeness. If the value for data is missing, it should be presented 
either as empty (“”) or a null value in the Json file. Therefore, the Json 
file is parsed using the json.load() method in Spyder [70]. The Python 
script is then used to check whether the value for each data is empty 
(null) or not. 

The benefits of using the proposed system architecture (task effi
ciency analysis) were analyzed in terms of time reduction in comparison 
with the manual method. The advantages of the visualization in terms of 
intuitiveness were discussed. 

All buildings were maintained by the same Facility Management 
company. Therefore, all have the same maintenance protocols. TR5 was 
constructed in 1960, it has five floors with 11,492 m2; TR11 was built in 
1997 and has 4 floors with a total area of 2779 m2; and TR 14 was built 
in 2011 and is a six-story building with one parking lot and 7378 m2. 

Both TR5 and TR11 have a reinforced concrete structure, flat roofs 
and masonry façades, while TR14 has a metal panel façade. Regarding 
HVAC in TR5, most classrooms and offices have radiators, air-water 
systems and multi splits while TR14 is heated and cooled by fan coils, 
one chiller and two boilers. In TR11, there is no cooling system at all, 
and the ventilation is only natural, by opening windows. 

To run the proposed system architecture, many parameters were 

created, such as the age of elements and whether or not they have 
preventive maintenance or ventilation. The Python code blocks were 
used to calculate the data required by the BN (square meters, average 
age, etc.). Other parameters were created to adapt the classification of 
the elements obtained from the BIM model to those required by the BN 
model. For example, the façade type was classified as “concrete panels/ 
masonry”, “metal panels”, “glazed” and “others”. 

As an example, to allow data integration and interoperability 
regarding the ventilation system, the algorithm for “HVAC interface” 
created new attributes to be compatible with the BN model considering 
the entire buildings. In TR5, for instance, since most rooms (e.g., offices, 
classrooms and corridors) have an air-water system, the new “Forced” 
attribute was created while in TR11 the new attribute was “Natural”. For 
TR14, it was also considered as “Forced” on account of having air 
handling units (AHU) and fan coils in all rooms. 

With respect to flooring, the algorithm for floor “interface” created 
new attributes for buildings. In TR14, the floor is “discontinuous” as it 
was constructed in various phases. For other buildings (TR5, TR11), the 
attribute is “continuous”. 

The BN results (condition of the building elements and systems) were 
visualized in the BIM model (Fig. 12) by the proposed system architec
ture and compared with those obtained using the AgenaRisk in which 
data are introduced manually. The system architecture showed the same 
results as the existing manual method but in a user-friendly way, 
allowing the FM team to quickly identify problems in buildings. Besides, 
54 different scenarios for all three buildings (i.e., 18 scenarios for each 
building) were simulated in the proposed system architecture and the 
existing manual method. After running all these scenarios, the results in 
both methods were the same and thus confirmed the data consistency. 

Regarding the task efficiency analysis, the same approach as Kang 
and Hong [56] was used in this study. To achieve this, two tasks were 
classified as follows. (1) BIM Data Transfer Process (BDTP), which 
transfers data from the BIM into the BN model. (2) Mapping BN results 
into BIM (MBB), which imports the BN assessment results into the BIM 
model to visualize a building’s condition. Then, each task was timed and 
compared with the others listed in Table 3. 

The time for performing the “BDTP” task, which is known as the most 
time-consuming, decreased nearly 100% in all buildings when the pro
posed system architecture was used. This shows the importance of 
automation of data transfer. In general, using the existing manual 
method, it took 39.5 h for TR5, 31.7 h for TR11 and 24.8 h for TR14 to 

Fig. 11. Case study projects.  
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perform “BDTP” and “MBB” tasks. When the system architecture was 
used, the same task took 0.95 h, 0.9 h and 0.8 h for each building 
respectively to check that all algorithms were running correctly. 

Regarding data completeness, the results from a Json validator 
showed that the Json data (containing BIM data) formatting was correct 
and there was no incorrect Json syntax or missing data. Once the Json 
data formatting was found to be correct, the value of the transferred data 
was checked to meet the data completeness criterion. To achieve this, 
the Python script was used for all 54 scenarios. The results demonstrated 
that there were 1728 data items, all of which had a specific value, 
explaining that data from the BIM model were transferred to the BN 
model completely without losing data. 

Fig. 12. The visualization of building conditions and causality analysis results.  

Table 3 
Task efficiency analysis.  

Building Task Time to perform each task (minutes [hours])   

AgenaRisk 
(manual) 

Proposed system architecture 
(automated) 

TR5 BDTP 1845 (30.7) 44 (0.7)  
MBB 530 (8.8) 15 (0.25) 

TR11 BDTP 1390 (23.2) 40 (0.7)  
MBB 510 (8.5) 13 (0.2) 

TR14 BDTP 1000 (16.6) 37 (0.6)  
MBB 495 (8.2) 10 (0.2)  
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With regard to the transfer of the assessment results of a building’s 
condition to the BIM model, the same approach was applied. Firstly, the 
Json data formatting was checked for the Json file containing the results 
of the building condition assessments, which were correct. Secondly, the 
Python script revealed that none of the values were empty (null). Be
sides, if a value is missing, the Dynamo will report an error while it runs 
for the visualization. Hence, it was concluded that the process of data 
transfer from the BN model to the BIM model was also performed 
properly and showed no data loss. 

The visualization of the condition of the elements and systems from 
the campus buildings facilitated prioritization of investments in build
ings. In the case of the three campus buildings, the roof from TR5 was 
found to require renovation and thus prioritization. Furthermore, the BN 
results allowed an evaluation of the causal factors of the condition of the 
elements, using sensitivity analysis. The length of the bars is a measure 
of the influence of parameters on the building condition assessment. 
Therefore, the FM team can evaluate the most probable cause of those 
building elements/systems associated with poor condition to implement 
corrective actions and plan future preventive measures. 

From a sensitivity analysis of the TR5 roof, cracks in the tiles due to 
age and a lack of preventive actions were found to be the main causes of 
this poor condition. Substituting tiles, painting them with a waterproof 
coating to avoid efflorescence and sealing them were found to be 
appropriate corrective actions for the poor roof condition, while peri
odic inspections of roof tiles (cracked or chipped tiles) and replacement 
when necessary were implemented as preventive maintenance actions. 

6.2. Software verification 

Based on the case study results, the technical efforts were evaluated 
using the six criteria developed by Tang et al. [71]. (1) Degree of 
automation: the process of integrating BIM and BN is semi-automated. 
The first step of parameter creation, assigning the type of parameters 
and their families, was done manually, while the rest of the process was 
automated. (2) Required input & output assumptions: the required in
puts are stored in the BIM model. These can be semantic information 
that is necessary for the BN model to run and assess building condition. 
(3) Computational complexity: the computational complexity of the 
model is low and the process can be executed on standard performance 
computers. The model is highly adaptable and requires only some 
modification if the size of the data or the number of element types in
creases. (4) Extensibility to new environments: the data model can be 
applied to different types of environments and is not specific to one or a 
certain class of spaces. (5) Learning capabilities: although the BN model 
can learn from data to improve its performance when it develops, there 
is no learning element in it. (6) Uncertainty modelling: one of the ad
vantages of integrating the BIM and BN model is that the BN model can 
deal with uncertainty. Due to the wide range of elements that may 
impact a building’s condition, there are varying degrees of uncertainty. 
As a result, evaluating the performance of a building’s condition re
quires the examination of many factors in the presence of uncertainty. 

7. Conclusions 

The data model allows interoperability between the BIM and BN 
model to evaluate building elements and systems. The proposed system 
architecture automatizes the data workflows to increase the use effi
ciency of the BN model, reducing the time and effort that the FM team 
spends on manual input. Enabling interoperability between BIM and the 
BN model allows transformation of the data into an appropriate format 
automatically to run the BN model. Automating data transfer enables the 
FM team to take advantage of the BN model in favor. Thus, the FM team 
could use the proposed system architecture to prioritize the work order 

to improve maintenance activities and support decision-making, extend 
the lifespan of building elements or systems and increase building 
durability. Besides, it enables the FM team to address the challenges of 
information reliability, interoperability, usability and minimization of 
labor time. The data model can be applied to any building typology and 
is very relevant because its application allows the assessment of building 
conditions in a semi-automated way. 

The method of visualization in this approach focuses on the condi
tion of building elements and systems, which is demonstrated on a color 
scale where red indicates urgency in building elements and systems 
intervention, yellow indicates deteriorating performance condition, and 
green indicates satisfactory condition of the building elements and 
systems. This visualization makes it possible to detect the condition of 
current building elements and systems more intuitively, and potentially 
makes it easier to deal with the problem. This will result in a consider
able improvement in building performance. Overall, the workflow for 
the FM team to use the system architecture is:  

• Run the system architecture in all buildings managed by the FM 
company  

• Visualize the condition of the building elements/systems for those 
buildings  

• Check sensitivity analysis to determine the most probable causes for 
the building elements/systems with low-performance condition  

• Make corrective action plans  
• Propose preventive maintenance plans 

There are some limitations: (1) the condition risk assessment model 
based on BN was developed to evaluate and prioritize building reno
vations managed by big facility management companies. The approach 
of this condition risk assessment considers different elements (façade, 
interior partitions, etc.) and systems (plumbing, HVAC, etc.) in each 
building as entities. Therefore, the data model to integrate the BIM and 
the BN was based on these assumptions. Further analysis can adapt this 
condition risk assessment model to other functionalities. (2) The meth
odology is semi-automated. Hence, an end-user is recommended be
tween each step of extraction to ensure that the exported files are stored 
in the right location with the correct names. For instance, the Python 
scripts used in the BIM model can only read the exported file (e.g., BN 
results), which is matched with its name and location. 

Future work could extend the model further using industry 4.0 
technologies, sensor-based systems, AI, IoT, BIM, and other technologies 
together to create a fully integrated and automated solution. It could 
also move further still towards dark factory environments where a 
building is controlled by robots without any human intervention. 
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