
Reliable and Accurate Autonomous Flow Operation

based on Off-line Trained Reinforcement Learning

Sima Barzegar, Marc Ruiz, and Luis Velasco*

Optical Communications Group (GCO), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

e-mail: luis.velasco@upc.edu

Abstract: A RL agent trained offline for reliability and able to refine its policies during online

operation is proposed. Results for three illustrative flow automation use cases show

remarkable performance with extraordinary adaptability to changes. © 2021 The Authors1

1. Introduction

Autonomous network operation evolves from software-defined networking and promises to reduce operational

expenditures by implementing closed-loops based on data analytics. Such control loops can be implemented

based on policies that specify the action to be taken under some circumstance (policy-based management).

Although such policies can be modified, they do not define the desired performance and thus, agents

implementing those policies are unable to learn the best actions to be taken. Another approach for network

automation is Intent-Based Networking (IBN) [1]. IBN allows the definition of operational objectives that a

network entity, e.g., a traffic flow, has to meet without specifying how to meet them. IBN is in charge of

implementing and enforcing those objectives, often with the help of Machine Learning (ML).

In our previous work in [2], we proposed an IBN solution based on Reinforcement Learning (RL), which

demonstrated the ability to learn the optimal policy based on the specified operational objectives related to the

allocated capacity or the delay. The key here is the time needed to learn such optimal policies, as exploration

entails low reward decision making (i.e., far from optimal operation). To solve this issue, the authors in [3]

proposed a general learning life-cycle that included both offline training and online learning, in the context of

supervised ML. The objective of that work was to accelerate autonomous operation by deploying accurate

models that are firstly trained offline and fine-tuned while in operation.

In this paper, we apply the main lessons learnt from [3] to IBN agents based on RL. Here, a policy-based

management is used to generate the initial database for the offline learner. Note that the policy-based operation

is highly reliable, as it is based on specific rules that can be defined and understood by human operators. From

such an operation, we show how the proposed offline+online learner can learn the operational rules and is able

to improve the quality of the operational decisions through online learning. In addition, we show that by

iterating the offline and online cycle, the proposed RL agent is able to adapt to changes that would otherwise

require manually reprogramming the rules under the policy-based management approach.

2. Autonomous operation

Fig. 1a represents the simplest form of autonomous operation of a flow based on some policy, e.g., some

thresholds; an agent is in charge of collecting monitoring data from the network and taking actions. Let us

assume that the monitoring data includes the bit count since the last monitoring sample (amount of traffic) and

the actual capacity allocated to the flow, and the actions to be taken are related to the actual capacity allocated to

the flow, which can be increased or decreased as needed with some granularity. The value of the threshold

should be selected to absorb variations in the traffic from one monitoring sample to the next one, plus the time

to increase the allocated capacity. For instance, imagine a virtual link (vlink) supported by one lightpath (i.e., the

capacity allocated to the vlink is 100Gb/s) and that the threshold to increase capacity is set to 80%. Then, if the

measured traffic is 81Gb/s, the agent would request increasing the capacity, which, in this case, entails setting-

up a new parallel lightpath and increasing to 200Gb/s the total capacity allocated to the vlink. When the traffic

decreases, the action of deallocating capacity can be taken if the traffic is below the threshold.

Although this simple approach enables dynamic flow capacity allocation, fixing the right values for the

thresholds that minimize overprovisioning (defined as capacity - traffic) while avoiding traffic loss is not a

straightforward task, since it depends on the variability of the flow traffic. Here is where RL can help, as the

agent is able to learn automatically from the environment, so it can take actions without being explicitly

programmed. Fig. 1b depicts a RL-based approach with three interrelated modules: i) the environment

adaptation is in charge of representing the state (s) based on the monitoring data and of computing the reward;

ii) the agent that contains the models, thus linking states to actions (a); and iii) the learner that stores operation

in a buffer and is able to learn effective policies, which are used to update the models (online learning). This

approach can potentially improve the performance of the policy-based operation, once the policies that avoid

traffic losses and minimize overprovisioning are learned; however, this requires time. In addition, there are

several issues that can impact on the aforementioned online learning performance, e.g.: 1) changes in traffic

1The research leading to these results has received funding from the Spanish MINECO TWINS project (TEC2017-90097-R) and by the ICREA institution.

F2G.1 OFC 2021 © OSA 2021

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on December 23,2021 at 13:42:56 UTC from IEEE Xplore. Restrictions apply.

State
function

Reward
function

Required
Capacity

Reward

State

Models

Buffer
Online Learner

Value estimationModel Updates

Policy-based
Operation

Flow Monitoring:
Traffic, Capacity

Action: Allocate/
Deallocate Capacity

State
function

Reward
function

Training
Database

Offline
Learner

New
Model

Flow

Flow Monitoring:
Traffic, Capacity

Action: Allocate/
Deallocate Capacity

Flow Monitoring
and action

(a) Policy-based
Operation

(c) Offline Learning (b) RL-based Operation

Observations

Flow

(d) Expected Performance

Time

Overprovisioning

Threshold
Online RL
Offline-Online RL

Time

Traffic Loss

Observations

0

Breakeven Point

Environment Adaptation

Agent

Learner

Diagnosis

Fig. 1. Policy-based Flow autonomous operation (a), based on RL with online learning (b), and based on RL with offline

learning (c). Expected performance (d).

variability that might produce loss before new policies are learned (denoted as Issue 1 -I1); 2) smooth model

fine tuning could not be enough to mitigate persistent errors in taking some specific actions (I2); and 3) online

learning tends to forget valuable learning in the long run, thus reducing the accuracy of the model (I3) [4].

In light of the above, it seems of paramount importance to periodically analyze offline the evolution of the

traffic variation to detect changes, as well as the reward obtained by the decisions made to detect persistent low

reward actions and a reduction of the accuracy of the model. Therefore, this work proposes an operation scheme

based on two phases: i) pre-training the models (offline learning): an initial model can be trained with the

observations obtained while the conservative policy-based approach is in operation; to generate the

observations, the state and reward functions in the environment adaptation module are used (Fig. 1c); and ii)

once accurate models are obtained, the operation is governed by the RL approach that, starting from those

models, can progressively perform an online fine tuning. We expect that the offline learning agent will start

operating with a performance like that of the policy-based approach, thus avoiding the initial poor-performance

of the online learning phase, and continue learning to reach a similar performance to the online learning agent

(Fig. 1d). Note that the offline+online cycle can be completed several times during the operation to improve the

learned models based on the collected observations, which will also enable adaptability to changes.

3. Offline+Online cycle based on Q-learning

In this section, we start from our previous work on Q-learning modelling for capacity flow management [2]. In

summary, we define the state as the ratio of traffic over capacity and a reward function that highly penalizes

those actions that cause traffic loss and moderately penalizes those leading to capacity overprovisioning. The

action selected for a given state (i.e., the capacity units to be added/subtracted) is that returning the maximum

value of the Q-function, defined as a table of states and actions (Q-table).

Let us consider that a policy-based operation based on a conservative threshold-based capacity allocation is

firstly run to generate a significant number of observations for offline training. Then, Q-table is first initialized

with high reward values and next, is trained without exploration from the set of observations in the training

dataset. Due to the absence of exploration, some states might remain unseen. Therefore, for the sake of

robustness, the cells corresponding to the safest action for every unseen state are updated with a high reward.

Once the model is in operation, the online learner smoothly adapts the model to improve performance. Note that

offline learning is mainly devoted to ensuring no loss while having moderated capacity overprovisioning. Thus,

by fixing the learning rate (lr) and the discount factor (df) to low values, the model will smoothly adapt to

reduce capacity overprovisioning during online learning, while avoiding traffic loss.

Although this operational regime based on online learning can work well most of the time, the issues anticipated

in the previous section (I1 - I3) need to be accurately detected, as they require large, deep changes of the model.

To that end, the Diagnosis block, in the offline learning system, executes Algorithm I every time a new

observation (a tuple with a timestamp, the measured traffic, and the reward value) is received from online

operation (see Fig. 1b-c); it also receives the database with the decisions that got reward value below a reward

bound (DBlow), the observed traffic is stored in a time series database (Y), and the current traffic variance

observed (σcur). The algorithm analyzes the decisions made in terms of its reward value and returns the diagnosis

needed by the offline learner for a proper model re-learning; it first computes the variance σ2 observed in the last

δ time units in Y that is used to statistically corroborate the hypothesis H0 of equality [5] with the current traffic

variance σcur. If such a hypothesis is not accepted, diagnosis of traffic variance change is returned with the

updated current variance (lines 1-3 in Algorithm I). Next, it checks the reward in the received observation (line

4) and, if it is below the bound, it looks for a persistent low rewarded action (lines 5-7) and for a long record of

F2G.1 OFC 2021 © OSA 2021

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on December 23,2021 at 13:42:56 UTC from IEEE Xplore. Restrictions apply.

low rewarded actions in the last δ time units (lines 8-10). Null

diagnosis is returned if no offline action is needed (line 12).

The offline learner proceeds when the diagnosis ends with an

identification; in case of persistence of a pair <s,a>, all the

observations of that pair are selected while other observations

are sampled; lr is set to 0 for this specific pair to force keeping

during online operation the decisions obtained during offline

learning. For the other two cases, all the received observations

within the last δ time units are selected together with others

belonging to states that are not observed recently.

4. Results and discussion

For evaluation purposes, the systems in Fig. 1, including

threshold- and RL- based operation, were implemented and

Algorithm I. Model diagnosis

INPUT: obs, DBlow, Y, σcur

OUTPUT: diagnosis, results

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

σ←computeTrafficVariance(Y)

if H0[σcur==σ] = FALSE then (I1)

return ’trafficChange’, σ

if obs.reward < bound

<s,a>max, count←max(count(DBlow,by=<s,a>))

if count > m then (I2 and I3)

return ‘persistent’, <s,a>max

DB’←select(DBlow, ‘time’>obs.time-δ)

if |DB’|>n then (I3)

return ‘decay’, DB’

return null, -

realistic synthetic traffic traces were generated for three different

use cases according to the methodology in [6]. Use case 1 emulates

an agent managing a flow of an application, so capacity increments

are with a granularity of 1Gb/s, whereas in use case 2, the agent

manages a vlink supported by lightpaths in the optical layer, so

capacity increments are with a granularity of one lightpath

(100Gb/s). Finally, use case 3 considers an agent managing the

capacity of a vlink with granularity of 1Gb/s and that such capacity

is used to decide the number of lightpaths needed.

For the first use case, traffic flows in the range [20, 90] Gb/s were

generated. Fig. 2a-b shows the results in terms of traffic loss and

average relative overprovisioning (threshold = 80%), respectively,

against normalized time (0 is the starting time of RL-based online

operation and 1 the time when online RL converged to the best

model). As expected, the RL-based agent with online learning

starts operation with inadmissible traffic loss, which hinders

0 0.25 0.5 0.75 1

0

5

10

15

20

M
ax

 lo
ss

 (
G

b
/s

)

O
ve

rp
ro

vi
si

o
n

in
g

0 0.25 0.5 0.75 1

-40%

0%

40%

80%

120%
(a)

(b)

Normalized time

Threshold

RL [Online]

RL [Offline-Online]

Fig. 2. Performance for use case 1

B
it

ra
te

(G
b

/s
)

Normalized time

0

25

50

75

100

125

150

175

200

0 0.2 0.4 0.6 0.8 1

traffic
cap [Threshold]
cap [RL]

0 0.2 0.4 0.6 0.8 1

Fig. 3. Capacity allocation for use case 2

its eligibility for reliable operation. On the contrary,

both threshold and RL with offline+online learning

(lr=0.1 and df=0.4) agents ensure no loss, being

overprovisioning reduced by the latter as soon as

operation allows improving models online. At

normalized time 1, both RL-based agents reduced

overprovisioning to about 40%.

Fig. 3 illustrates the incoming traffic and the capacity

allocated by the threshold-based and the RL agent with

offline+online learning for use case 2; the gain of the

RL- based method is obtained in terms of the number

of lightpaths. Although both methods start with similar

performance, RL learns a more efficient capacity

usage, thus avoiding setting up additional lightpaths.

0

10

20

30

40

0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

250
traffic requested capacity allocated capacity

B
it

ra
te

 (
G

b
/s

)
V

ar
ia

n
ce

 (
G

b
/s

)

Normalized time

Loss in time [0.3,0.7] Average Max
Online RL 0.1 Gb/s 45 Gb/s
Offline + Online No loss

H0 rejection limit
Offline cycle

(a)

(b)

Fig. 4. Capacity and offline-online cycles for use case 3

Finally, in use case 3, traffic gradually doubles from time 0 to 1 and increases its variance 4 times. Algorithm I

was configured with δ=120 minutes and ran to detect when an offline learning cycle needed to be triggered. Fig.

4a shows the traffic and the requested and allocated capacity for the flow. Fig. 4b shows the computed variance

over time and the limit of accepting hypothesis H0. We observe that three cycles were triggered, each one

increasing the reference variance and consequently, the limit of the hypothesis test. This operation allows good

capacity adjustment ensuring no traffic loss, even during the hard traffic changing period (from time 0.3 to 0.7).

Note that the same scenario in a pure online RL-based operation with no offline RL support produced loss as

high as 45 Gb/s in the same period (see inset in Fig. 4b).

To sum up, the RL-based flow operation extended with the offline phase showed to be as robust as that of a

threshold-based one, while reducing overprovisioning. Results on three use cases with static and evolutionary

traffic validate the applicability of the proposed offline-online learning cycle.

References
[1] A. Clemm et al., “Intent-Based Networking - Concepts and Definitions,” IRTF draft, work-in-progress, 2020.

[2] S. Barzegar et al., “Reinforcement Learning -based Autonomous Multilayer Network,” ECOC 2020.

[3] L. Velasco et al., “A Learning Life-Cycle to Speed-up Autonomic Optical Transmission and Networking Adoption,” JOCN, 2019.

[4] R. Sutton and A. Barto, Reinforcement learning: an introduction, MIT Press, 1998.

[5] P. Brockwell and R. Davis, Introduction to Time Series and Forecasting, Springer, 2016.

[6] M. Ruiz et al., “CURSA-SQ: A Methodology for Service-Centric Traffic Flow Analysis,” JOCN, 2018.

F2G.1 OFC 2021 © OSA 2021

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on December 23,2021 at 13:42:56 UTC from IEEE Xplore. Restrictions apply.

		2021-07-20T23:00:31-0400
	Preflight Ticket Signature

