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Abstract

In this thesis, we establish the theoretical basis of dimensional reduction algorithms like
the Gaussian Process Latent Variable Model, that captures the best information we can get
with the latent dimensions we are given by marginalizing over the reconstruction parameters
and optimizing over the latent variables itself. Their application to the reproduction of a
time series of observable data via a Markov chain dependency with the Gaussian Process
Dynamical Model, and its generalization with control, the Controlled GPDM. Then, we are
going to introduce a new model, which is more time efficient and better at generalization,
the Mixture of CGPDM applying the mixture of experts’ ideas to the problem. And the last
section will consist in fine-tuning the model and comparing it to the previous model.
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MSC2020: 68T40

Resumen

En esta tesis, estableceremos la base teórica de algunos algoritmos de reducción de la
dimensionalidad como el Gaussian Process Latent Variable Model, que captura la mejor in-
formación que podemos obtener con las dimensiones del espacio latente que nos son dadas
marginalizando los parámetros que usamos para la reconstrucción de los datos y optimizando
sobre las propias variables latentes; su aplicación a la reproducción de una serie temporal de
observables aplicando la dependencia de una cadena de Markov con el Gaussian Process Dy-
namical Model, y su generalización con control, el Controlled GPDM. Finalmente, vamos a
introducir un nuevo modelo, que es más eficiente en tiempo de cálculo y generaliza mejor, el
Mixture of CGPDM aplicando la idea de una mezcla de expertos. La última sección consistirá
en afinar el modelo y compararlo con el modelo previo.
Palabras clave:

Aprendizaje automático, Procesos Gaussianos, Modelos dinámicos, mezcla de expertos

MSC2020: 68T40

Resum

En aquesta tesi, establirem la base teòrica d’alguns algoritmes de reducció de la dimension-
alitat com el Gaussian Process Latent Variable Model, que captura la millor informació que
podem obtenir amb les dimensions de l’espai latent que ens són donades marginalitzant els
paràmetres que fem servir per a la reconstrucció de les dades i optimitzant sobre les pròpies
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variables latents; seva aplicació a la reproducció d’una sèrie temporal d’observables aplicant
la dependència d’una cadena de Markov amb el Gaussian Process Dynamical Model, i la seva
generalització amb control, el Controlled GPDM. Finalment, anem a introduir un nou model,
que és més eficient en temps de càlcul i generalitza millor, el Mixture of CGPDM aplicant la
idea d’una barreja d’experts. L’última secció consistirà en afinar el model i comparar-lo amb
el model previ.
Paraules clau: Aprenentatge automàtic, Processos Gaussians, Models dinàmics, barreja
d’experts

MSC2020: 68T40
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1. Introduction

In robotics, the control and manipulation of objects is one of the biggest and most prolific fields of
investigation. Although significant advances have been done over the manipulation of rigid bodies,
the manipulation of non-rigid objects is still challenging and a state-of-the-art problem. The main
difficulties come from the high uncertainty that the motion of deformable bodies have, and we
cannot parametrize nor control easily. To overcome those inconveniences, we must rely on a robust
perception module that can perceive the real state of the object with very little error, and a very
effective control policy.

To obtain a good control policy, it has been shown that model-based control performs much
better than the standard feedback control, especially when we have to deal with very nonlinear
systems. These policies rely on the capacity of knowing how the system will behave given certain
control and the state of the system to get ahead and make the appropriate decisions.

The modeling of non-rigid objects typically involves the approximation and prediction of a high
number of parameters (sometimes arbitrarily many elements, like in the dynamic finite element
methods) which will lead to a great computational cost. And almost always, prior knowledge of
some parameters of the materal is needed to infer the objects behaviour.

To avoid these limitations, most of the models make the assumption of quasi-static manipulation
(to elude complicated situations like the folding of a cloth), but some other data-driven models have
been proposed [1] with only collision-free assumptions, and which are capable of making dynamical
predictions by only feeding them with time series of data points. This involves a dimensional reduction
of the observable data to make it computationally tractable.

In this thesis, we were motivated to improve the time efficiency of state-of-the-art models like
the CGPDM, as those models are not capable to make enough predictions in real time, and they are
very limited in the amount of data that they can digest while keeping the usability of the model.

2



2. Theoretical background

In this section, we introduce all the previous work that formed a path to the development of the
model that we are presenting. It starts with the definition of a Gaussian Process and how we can
use them to model and predict the dynamics of a cloth, and ends with the definition of the Mixtures
of Experts and the special challenges that the Gaussian processes imposes to this idea.

2.1 Gaussian Process

Gaussian processes [7] are a powerful tool in machine learning, they allow us to make predictions
about our data by incorporating prior knowledge. Statistically, a Gaussian process is a stochastic
process (a collection of random variables indexed), such that every finite collection of those random
variables has a multivariate normal distribution.

Firstly, we have to remember that in the multivariate Gaussian distribution is a set of random
variables, where each one is distributed normally, and their joint distribution is also defined by a
Gaussian with a mean vector µ and a covariance matrix Σ.

X =


X1

X2
...

Xn−1

Xn

 ∼ N (µ, Σ)

The µ vector represents the expected value of the multivariable distribution, and the covariance
matrix Σ represents in its diagonal the variance of each dimension σ2

i ,i and the off-diagonal elements
describes the correlation between the elements of X treated as random variables σi ,j = σ(Xi , Xj).
This matrix will always be symmetric and positive semi-definite.

The Gaussian distributions are chosen due to their good properties of marginalization and condi-
tioning. If we split the set of variables into two subsets X and Y , we can use the following notation
to describe the distribution.

PX ,Y =

[
X
Y

]
∼ N (µ, Σ) = N

([
µX
µY

]
,

[
ΣXX ΣXY

ΣYX ΣYY

])
Through marginalization [8], we can extract partial information from multivariate probability

distributions and determine the distributions for each subset as

X ∼ N (µX , ΣXX )

Y ∼ N (µY , ΣYY )

where each partition will only depend on its correspondent entries µ and Σ.

The conditioning is used to determine the probability of one variable depending on another
variable, and similarly to the marginal distribution, this operation is also closed and yields a modified
Gaussian distribution.
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X |Y ∼ N (µX + ΣXY Σ−1
YY (Y − µY ), ΣXX − ΣXY Σ−1

YY ΣYX )

Y |X ∼ N (µY + ΣYXΣ−1
XX (X − µX ), ΣYY − ΣYXΣ−1

XXΣXY )

This latter property is the keystone of the Gaussian processes, since it will allow us to introduce
and sample new variables in an extended multivariable Gaussian distribution from a given set of data
points and the correspondent correlation matrices.

Note that we have not imposed any restriction on the dimensions of the variables, so as long as
the dimensions of the Xi variables and µi are the same dimensions, and we can define the correlation
function for each set of variables, the multivariable Gaussian distribution can be defined and therefore
the Gaussian process.

The covariance matrix is usually obtained with a kernel function, that, given two input variables,
always returns a scalar representing the correlation. Some of the most widely used kernels are:

The white Gaussian Noise KGN(x .x ′) = σ2δ(x , x ′) without correlation

The linear kernel KL(x , x ′) = σ2
base + σ2(x − c)T (x ′ − c)

The Radial Basis Function (RBF) KRBF (x , x ′) = σ2exp

(
‖x − x ′‖2

2 · `2

)
The Ornstein-Uhlenbeck KOU(x , x ′) = σ2exp

(
‖x − x ′‖

`

)
where the σ parameters determine the intensity of the kernel and therefore the average distance of

your function away from its mean. It is just a scale factor. The c parameter of the linear kernel is the
offset and determines the point where the kernel will reach its minimum variance. The ` parameter
of the two last kernels represents the length scale and determines the length of the ”wiggles” of your
function. In general, you won’t be able to extrapolate more than ` units away from your data. We
can see a representation over a one dimensional vector of input points in the figure 1.

To use this tool to predict the behavior of a smooth continuous function, we have to consider the
outputs of the function as Normal variables, and the covariance function only dependent on the input
variables of the objective function. Once we have the output of some given set of points f = f (x),
we can predict the value of the function evaluated in other points f∗ = f (x∗) with some variance by
the conditioned probability distribution.

f∗|f ∼ N (µf∗ + Σx∗,xΣ−1
x ,x(f − µf ), Σx∗,x∗ − Σx∗,xΣ−1

x ,xΣx ,x∗)

To apply this formula, we have to know the expected mean of the distribution µf∗ . It is usually
considered the mean of the actual data as a plausible approximation of the distribution’s mean, but
sometimes it is supposed to have a zero-mean normal, and the predictions will be based on the near
data exclusively.

As we can see from the prediction’s distribution of the figure 2, the Gaussian noise kernel predic-
tions will not depend on the input and the smoothest predictions comes from the RBF kernel. This
is one reason why it is one of the most used and normally chosen by default. The linear kernel only
predicts alinear regression over the dataset, and it is usually combined with other kernels instead of
employing it roughly.
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(a) Gaussian noise kernel (b) Linear kernel

(c) RBF kernel (d) Ornstein-Uhlenbeck kernel

Figure 1: All the covariance matrices are obtained with the same input variables (a hundred points
from 0 to 5), and the parameters are σ = 1 for the Gaussian noise kernel, σbase = 0.3, σ = 0.55 and
c = 2 for the linear kernel and ` = 0.8 for the RBF and OU kernels. The images are obtained with
the python imshow module.
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(a) Gaussian noise kernel (b) Linear kernel

(c) RBF kernel (d) Ornstein-Uhlenbeck kernel

Figure 2: The data points are represented with a red dots, the dark blue line represents the predicted
mean for each input and the blue shaded area is the 95% confidence interval obtained from the
standard deviation. The parameters are σ = 1 for the Gaussian noise kernel, σbase = 0.4, σ = 0.05
and c = 0 for the linear kernel and ` = 0.4 for the RBF and OU kernels, and the a priori mean
estimator is the mean of the ouputs µf∗ = f̄ .
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2.2 Gaussian Process Latent Variable Model

Machine learning is often split into three categories: supervised learning, where a data set is split
into inputs and outputs; reinforcement learning, where typically a reward is associated with achieving
a set goal, and unsupervised learning where the objective is to understand the structure of a data
set. One approach to unsupervised learning is to represent the data, Y, in some lower dimensional
embedded space, X, often called latent variables.

Principal component analysis (PCA) seeks a lower dimensional sub-space and can be used to
capture the variance of the data from a deterministic approach by finding the projection according
to which the data is best represented in terms of least squares, but has many limitations as the
data may not be structured linearly and the dimensional reduction could lead to not very accurate
reconstruction of the data (loss of information). To overcome those problems, we can introduce the
latent variable models, where a set of latent variables X ∈ RN×d are related to a set of observed
variables Y ∈ RN×D , through a set of parameters. The model is defined probabilistically, and
typically the latent variables are then marginalized so the parameters can be found by maximizing
the likelihood. Otherwise, we can also marginalize over the parameters and optimize the latent
variables.

The Gaussian Process Latent Variable Model [4] is a generalization of the dual version of the
Pobabilistic PCA (dual PPCA). To define the probabilistic PCA, let’s assume that we are given a
set of centred D-dimensional data Y = [y1 ... yN ]T and denote the d-dimensional latent variable
associated to each data point xi . The relationship between the latent variable and the data point is
linear with added noise.

yi = Wxi + ηi

where the matrix W ∈ RD×d specifies the linear relationship between the latent space and the
data space. The noise values, ηi ∈ RD×1, are taken to be an independent sample from a spherical
Gaussian distribution with mean zero and covariance β−1Id

ηi ∼ N (0,β−1Id)

The likelihood for a each data point can then be written as

p(yi |xi , W ,β) ∼ N (0, WW T + β−1Id)

To find the maximum likelihood solution for the parameters, we have to marginalize the latent
varibales by assuming an appropiate prior distribution over them, like the zero mean unit covariance
Gaussian distribution

xi ∼ N (0, Id)

And then, the marginalization can be found analitically

P(yi |W ,β) =

∫
P(yi |xi , W ,β)P(xi )dxi = N (yi |0, WW T + β−1Id)

7
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where N (yi |0, WW T +β−1Id) is the likelihood of yi given that yi ∼ N (0, WW T +β−1Id). And
the likelihood of the whole set of data can be given by taking advantage of the independence of the
data points.

P(Y |W ,β) =
N∏
i=1

P(yi |W ,β)

Then the parameters can be optimized to maximize the likelihood and it can be shown that the
analytical solution is achieved when the matrix W spans the principal sub-space of the data. So, it
can be considered a probabilistic version of the PCA.

In the other hand, the dual approach to this PPCA is to optimize the latent variables while we
marginalize the parameters. To do so, we have to define a prior distribution over the rows of the W
parameters. The simplest choice is the spherical Gaussian distribution with unit covariance and zero
mean.

P(W ) =
D∏
i=1

N (wi |0, Id)

where N (wi |0, Id) is the likelihood of wi given that wi ∼ N (0, Id) and wi are the rows of the W
matrix and are considered independent variables. Now we have to marginalize the parameters from
the data likelihood

P(Y |X ,β) =

∫
P(Y |W , X ,β)P(W )dW

With the conjugate prior of W that we have chosen, the marginalization is straightforward and
the resulting likelihood takes form

P(Y |X ,β) =
D∏
i=1

P(Y:,i |X ,β)

where

P(Y:,i |X ,β) = N (Y:,i |0, XXT + β−1Id)

Then we have to optimize the likelihood with respect to the latent variables X . To simplify the
terms, we can optimize the log-likelihood instead thanks to the monotonicity of the logarithm. The
resulting objective function will be

L = −DN

2
log 2π − D

2
log |K | − 1

2
tr(K−1YY T )

where

K = XXT + β−1Id

This latter version is known as the dual probabilistic PCA (dual PPCA).
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Now we want to introduce the Gaussian processes. If we condiser a simple Gaussian process prior
over the space of functions that are fundamentally linear, but are corrupted by Gaussian noise of
variance β−1Id. The covariance kernel for such a prior is given by a linear plus Gaussian kernel.

k(x , x ′) = xT x + β−1δ(x , x ′)

If we apply this kernel over the latent variables, we recover the covariance matrix K that can be
recognized as the covariance associated with each factor of the marginal likelihood for dual PPCA.
The marginal likelihood for dual PPCA is therefore a product of D independent Gaussian processes
(each one for each dimension of the data points).

This interpretation gives us a possibility to generalize the dual PPCA latent variable model to a
range of Gaussian Process Latent Variable Models (GPLVM) by breaking the assumptions of linearity,
independency and identically distributed. For example, we can break the identically distributed
assumption by introducing a different kernel function for each dimension and scaling them, or we
can break the linear assumption by using non-linear kernels to define the K matrix like the widely
known RBF kernel.

Although originally proposed for dimension reduction, GPLVM has been extended and widely used
in many machine learning scenarios for classification and clustering tasks outperforming other Latent
Variables Models thanks to the advantages it presents [16]: the non-linear learning characteristic of
GPs, and the non-parametric property, as most of the existing LVMs are parametric models in which
there is a strong assumption on the projection function or data distribution. However, those improved
classification and clustering capabilities are not enough to adjust temporal series of observations, and
we will need to introduce new features in order to obtain a dynamical model.

2.3 Gaussian Process Dynamical Model

The Gaussian Process Dynamical Model was firstly introduced by J. M. Wang, A. Hertzmann, and
D. J. Fleet in 2005 [3] to model a time-series observations that can capture the non-linearities of
the data without overfitting. They took a Bayesian approach to modeling dynamics, averaging over
dynamics parameters rather than estimating them leading the group to the Gaussian processes, The
high dimensionality of the observable parameters space drove them to the need of a low dimensional
representation of the observables, since Gaussian processes don’t perform well with high dimensional
inputs.

The work was inspired by the unsupervised learning of the GPLVM but without assuming the
independency of the observed data by introducing a dependency to subsequent observations. The
Gaussian Process Dynamical Model (GPDM) involves two function estimations, the mapping from
a latent space to the data space, and a dynamical model in the latent space (mapping from the
previous time steps to the following ones). Those functions are typically non-linear and to optimize
the likelihood, they proceeded like the GPLVM, they marginalized the parameters of the functions
and optimized over the latent variables.

Let’s denote the data matrix as before Y = [y1, ... , yi , ... , yN ]T ∈ RN×D and the latent variables
matrix X = [x1, ... , xi , ... , xN ]T ∈ RN×d where D is the dimension of the observable data and d is the
dimensions of the latent space. Then we can define the two mapping functions with a discrete-time
Markovian dynamics:

9
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Figure 3: Graphical representation of the dynamical model. There is a time dependency in the latent
space parametrized by A and B

xi = f (xi−1; A) + ηx ,i

yi = g(xi ; B) + ηy ,i

where ηx ,i and ηy ,i are zero-mean Gaussian noise processes, f and g are non-linear mappings
parameterized by A and B, respectively. We can see a graphical representation of the time series in
the figure 3.

In [3], the authors considered f and g to be a linear combination of basis of non-linear functions

f (xi ; A) =
∑
j

ajφj(xi )

g(xi ; B) =
∑
j

bjψj(xi )

for weights A = [a1, a2, ...], B = [b1, b2, ...] and the basis functions φj and ψk . In order to fit the
parameters of this model to training data, one must select an appropriate number of basis functions,
and ensure that there is enough data to constrain the shape of each basis function. Ensuring both
of these conditions can be very difficult in practice.

However, from a Bayesian perspective, we do not know the specific form of those functions
and, instead, we have to marginalize out the parameters (considering all the possible combination of
them).

For the mapping to the observation function g , the authors in [3] assumed an isotropic Gaussian
prior for the columns of B (the correlation matrix is assumed to be the identity matrix), and the
marginalization of the function can be done in closed form [11], [10] yielding

P(Y |X , β̄) =
|W |N√

(2π)ND |KY |D
exp

(
−1

2
tr(K−1

Y YW 2Y T )

)

10



where KY is the kernel matrix whose elements are defined by a kernel function (KY )i ,j = ky (xi , xj).
In this case, the chosen kernel is the RBF with a Gaussian noise component

kY (xi , xj) = β1 + exp

(
−β2

2
‖xi − xj‖2

)
+ β−1

3 δxi ,xj

and β̄ is constituted by all the parameters β̄ = β1,β2, ..., W including the kernel parameters
and the scaling matrix W = diag(ω1, ... ,ωD) to account for different variances in the different data
dimensions. This is equivalent to a GP with kernel function kY (xi , xj)/ω

2
m for dimension m.

The dynamic mapping on the latent coordinates X is conceptually similar, but proceeding more
carefully. The idea is to marginalize the weights A of the dynamical function g as before.

P(X |ᾱ) =

∫
P(X , A|ᾱ)dA =

∫
P(X |ᾱ, A)P(A|ᾱ)dA

But in this case, they had to incorporate the Markov chain dependency that defined the problem
in the computation of P(X |ᾱ, A) at each time step

P(X |ᾱ) = P(x1)

∫ N∏
i=2

P(xi |xi−1, ᾱ, A)P(A|ᾱ)dA

Creating two data matrices from the latent variables’ matrix, the input one Xin = [x1, ... , xN−1]T

and the output Xout = [x2, ... , xN ]T . They finally assumed an isotropic prior to the colums of the A
matrix to obtain a closed form of the likelihood as before

P(X |ᾱ) = P(x1)
1√

(2π)(N−1)d |KX |d
exp

(
−1

2
tr(K−1

X XoutX
T
out)

)
where xi is assumed to have an isotropic Gaussian prior, and the KX is the (N − 1) × (N − 1)

kernel matrix is formed with the Xin variables and the kernel function. This time, the chosen kernel
function is a RBF+linear kernel with some Gaussian noise

kX (xi , xj) = α1 + exp
(
−α2

2
‖xi − xj‖2

)
+ α3xT

i xj + α−1
4 δxi ,xj

The kernel corresponds to representing g as the sum of a linear term and RBF terms. The
inclusion of the linear term is motivated by the fact that linear dynamical models, such as first or
second-order autoregressive models, are useful for many systems [3]. And the ᾱ is constituted only
by the kernel functions without any scaling matrix, unlike the mapping one.

It should be noted that, due to the nonlinear dynamical mapping, the joint distribution of the
latent coordinates is not Gaussian.

Finally, they set some priors to the ᾱ and β̄ hyperparameters to discourage overfitting

P(ᾱ) ∝
∏
i

α−1
i

P(β̄) ∝
∏
i

β−i 1

11
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Altogether, the priors, the latent mapping, and the dynamics define a generative model for time-
series observations

P(X , Y , ᾱ, β̄) = P(Y |X , β̄)P(X |ᾱ)P(ᾱ)P(β̄)

And learning the GPDM from the observed data entails minimizing the negative log-posterior

L = − ln P(X , ᾱ, β̄|Y ) = − ln P(X , Y , ᾱ, β̄)

The last equivalence comes from the fact that the ”probability” of the observed data is one, and
it is necessary to define correctly the log-likelihood that we want to minimize over the X , β̄ and ᾱ
parameters numerically.

argmin
X ,α,β

L = argmin
X ,α,β

d

2
ln |KX |+

1

2
tr(K−1XoutX

T
out) +

∑
j

lnαj

− N ln |W |+ D

2
ln |KY |+

1

2
tr(K−1

Y YW 2Y T ) +
∑
j

lnβj

2.4 Controlled Gaussian Process Dynamical Models

The Controlled GPDM was introduced by Fabio Amadio, Juan Antonio Delgado-Guerrero, Adrià
Colomé, and Carme Torras in 2020 [1] in an attempt to capture the high dimensionality and the
uncertainty of the dynamics of a cloth during manipulation.

The approach is very similar to the above one, but slightly modifying the first-order Markov
dynamics by introducing the control input to the dynamical function

xi − xi−1 = f (xi−1, ui−1) + ηx ,i

yi = g(xi ) + ηy ,i

In this case, the latent dynamical function depends in both the previous latent position xi−1 and
the previous control instructions ui−1. The output of the latent dynamical function is also modified
to the taken latent step xi − xi−1 instead of the next latent position xi . This was made to improve
smoothness of the latent trajectories as suggested in [12].

As before, the observable data will be named as Y = [y1, ... , yN ]T ∈ RN×D , where D is the
number of dimensions of the observed data (typically a large number). Analogously, the corresponded
latent variables will be named as X = [x1, ... , xN ]T ∈ RN×d , where d stands for the latent space
dimensions. They made the assumption that each one of the j-th columns of the observed matrix (the

j-th dimension of all the observed data) has a normal prior with zero mean and K
(j)
y (X ) covariance

matrix

Y:,j ∼ N (0, K
(j)
y (X ))

where the K
(j)
y (X ) covariance matrix is defined with a kernel k

(j)
y (., .) function over all the latent

variables.
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P(Y:,j |X ) =
exp

(
−1

2 Y T
:,j (K

(j)
y (X ))−1Y:,j

)
√

(2π)N |K (j)
y (X )|

Assuming the independency of the D components of the observations, and that all dimensions

have the same kernel function but scales by a factor k
(j)
y (., .) = ω−2

y ,j ky (., .), they arrive to the same
expression for the mapping likelihood as the GPDM

P(Y |X ) =
|Wy |N√

(2π)ND |Ky (X )|D
exp

(
−1

2
tr(K−1

y (X )YW 2
y Y T )

)
where Wy = diag(ωy ,1, ... ,ωy .D), and they used the same RBF with Gaussian noise kernel

function for the mapping covariance.

For the latent dynamical model, they proceeded similarly. As the output of the Markov function
is the difference between consecutive steps, they defined the ∆ variables as ∆i ,: = xi+1,:− xi ,: so the
whole matrix can be expressed as ∆ = [X2:N,: − X1:N−1,:].

Compactifying the notation of the input of the dynamical function f , they defined xt = [xT
t , uT

t ]T ∈
Rd+E , so the input matrix will be defined as X̃ = [x̃i , ... , x̃N−1]T .

Now they assumed again that the output prior is a zero mean and K
(j)
x (X̃ ) covariance for each

column

∆:,j ∼ N (0, K
(j)
x (X̃ ))

Then, they assumed independency between the dimensions and the same kernel function but

weighted one more time k
(j)
x (., .) = ω−2

x ,j kx(., .). to come up with the likelihood of the latent variables
(this one is different with respect to the GPDM)

P(∆|X̃ ) =
|Wx |N−1√

(2π)(N−1)d |Kx(X̃ )|d
exp

(
−1

2
tr(K−1

x (X̃ )∆W 2
x ∆T )

)

where Wx = diag(ωx ,1, ... ,ωx ,d) and the kernel function is the ”linear+RBF” kernel with Gaus-
sian noise.

Finally, the likelihood P(X |Y , U) = P(Y |X )P(∆|X̃ ) is maximized without assuming any prior
to the parameters by minimizing the negative log-likelihood

L =
D

2
ln |Ky (X )|+ 1

2
tr(K−1

y (X )YW 2
y Y T )− N ln |Wy |+

+
d

2
ln |Kx(X̃ )|+ 1

2
tr(K−1

x (X̃ )∆W 2
x ∆T )− (N − 1) ln |Wx |

2.5 Mixture of Experts

The mixture of Experts is stablished on the divide and conquer principle in which the problem space
is divided between a few experts and supervised by a gating network [9]. There are several strategies
to divide the problem space between the experts, but they can be classified into two groups according
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to the partitioning of the problem. The first one uses a special error function to split the problem
stochastically and then the experts specialize in each sub-space. And in the second one, the space
is explicitly partitioned before the training and then the experts are assigned.

In the first group, we can define two types of mixtures, the competitive, where all the experts are
trained to make good predictions and the gating assigns the correspondent weights to depending on
the performance of each one. The associated loss is depicted as

L =
∑
j

gj‖y − Oj‖2

where y is the target output, Oj is the output of each expert and gj is the gaiting weight assigned
to this expert. In this structure , each expert is updated based on their own error so each expert will
yield a complete output. But this has a downside, the error function does not ensure the localization
of the experts.

And the cooperative structure that will have associated the following error function

L = ‖y −
∑
j

gjOj‖2

The weights of each expert are updated based on the overall ensemble error rather than the errors
of each expert. This strong coupling in the process of updating the weights of the experts tends to
employ almost all of the experts for each data sample.

As a mixture of Gaussian Process is intrinsically partitioned (we have to assign data points to the
experts) and the splitting of the problem space depends on the composition of the experts, we can
classify any mixture of Gaussian experts as an implicit mixture. And the fact that each expert will
have to output a complete prediction and that the Gaussian Processes can only be reliable to predict
the output near the data points that constitutes it means that they should have a competitive gating
structure.

Knowing this will help us to determine how we should train the gating model later on. And it is
only left to know what stochastics that we are we going to use to split the dataset.

2.6 Infinite Mixture of Gaussian Experts

In traditional Mixture of Experts 2.5, the probability distribution of each prediction will depend on
the experts itself and the gating model. We can define the likelihood of some input-output data
point as the addition of the likelihood of all the experts weighted by the gating model.

P(Yi ,:|Xi ,:) =
∑
j∈E

P(Yi ,:|zi = j , Xi ,:, θj)P(zi = j |X ,φ)

where Xi ,: and Yi ,: are the i-th input-output data points, zi is the discrete indicator variable that
assings the i-th data point to one expert, E is the set of all the experts, φ are the parameters of the
gating model, and the θj are the parameters of the j-th expert. The summation is made over all the
experts, and P(zi = j |X ,φ) represents the likelihood of the Xi ,: input to belong to the j-th expert,
what will not only depend on the gating parameters, but also on all the input dataset. Assuming
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independency, the likelihood of the whole dataset will be the multiplication of the likelihood of all
the dataset points.

As stated in [2], the Independently and Identically Distributed (IID) assumption of the indicators is
contrary to GP models which solely model the dependencies in the joint distribution. We should then
define it for every possible assignment of data points to experts. Let’s denote the configuration of the
experts as z = (z1, z2, ...). Therefore, the likelihood of all the dataset is a sum over (exponentially
many) configurations:

P(Y |X , θ) =
∑

z

P(Y |X , z, θ)P(z|X ,φ)

=
∑

z

∏
j∈E

P(Y{i |zi=j},:|X{i |zi=j},:, θj)

P(z|X ,φ)

(1)

where Y{i |zi=j},: and X{i |zi=j},: are the set of data points assigned to the j-th expert. This time,
the gating model has to set the likelihood of the whole configuration z. Whereas the original ME
formulation used expectations of assignment variables called responsibilities, this is inadequate for
inference in the mixture of GP experts. Consequently, we directly represent the indicators, zi , and
Gibbs sample for them to capture their dependencie.

In statistics, Gibbs sampling [5][17] is a Markov Chain Monte Carlo (MCMC) algorithm for
obtaining a sequence of observations which are approximated from a specified multivariate probability
distribution, when direct sampling is difficult. As other MCMC algorithms, Gibbs sampling generates
a Markov chain of samples, each of which is correlated with nearby samples. As a result, care must
be taken if independent samples are desired. Generally, samples from the beginning of the chain (the
burn-in period) may not accurately represent the desired distribution and are usually discarded.

This method is especially useful when we know the conditional distribution of one variable with
respect to the others since the algorithm consist in iteratively sampling and overwriting all the
dimensions of the variable one by one from the previous value. We can see the algorithm in 1.

Algorithm 1 General Gibbs sampling

1: procedure Gibbs X i+1 sampling from X i

2: for j ∈ 1 ... N do
3: x i+1

j ← P(xj |x i+1
1 , ... , x i+1

j−1 , x i
j+1, ... , x i

N)
4: end for
5: end procedure

where X i stands for the i-th sample of the Gibbs algorithm and x i
j stands for each one of its

dimensions. We can loop this sampling as many times as we want, but consecutive samples will be
heavily correlated.

Coming back to the problem, we have to define the posterior conditional distribution for each
indicator given all the remaining indicators and the data that we needed for the Gibbs sampling:

P(zi = j |z(..,̂i ,..), X , Y , θ,φ) ∝ P(Y |X , zi = j , z(..,̂i ,..), θ)P(zi = j |z(..,̂i ,..), X ,φ) (2)

At this moment, we can compute the probability of the i-th indicator given the input data with the
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gating model, and the both likelihood of the output dataset given the input and the new configuration
can be computed as in ??.

Once we have defined this framework, we have to decide what kind of gating model we want to
use. In [2], a gating model based in the Dirichlet Process is proposed, which can be defined as the
limit of a Dirichlet distribution when the number of classes tends to infinity. They started from a
symmetric Dirichlet distribution on proportions:

P(π1, ...,πk |α) ∼ Dirichlet(α/k) =
Γ(α)

Γ(α/k)k

∏
j

π
α/k−1
j

where α is the (positive) concentration parameter. It can be shown [6] that the conditional
probability of a single indicator when integrating over the πj variables and letting k tend to infinity
is given by:

P(zi = j |z(..,̂i ,..),α) =
n(..,̂i ,..),j

n − 1 + α
,∀ components wiht n(..,̂i ,..),j > 0

P(zi 6= zi ′∀i ′ 6= i |z(..,̂i ,..),α) =
α

n − 1 + α
, for all other (non assigned) components

(3)

where n(..,̂i ,..),j =
∑

i ′ 6=i δ(zi , j) is called the occupation number and represents the number of
elements in some particular component excluding the i-th observation, and n is the total number
of data points. We have now determined some probability of assigning the data point to each of
the existent components (proportional to this occupation factor), and some other probability to
create new components if it was necessary. Therefore, we can now introduce the dependency of
this distribution on the input by adapting the occupation number employing a local estimator, like a
kernel classifier [2]:

n(..,̂i ,..),j = (n − 1)

∑
i ′ 6=i Kφ(Xi ,:, Xi ′,:)δ(zi , j)∑

i ′ 6=i Kφ(Xi ,:, Xi ′,:)

Where the δ(., .) is the Dirac’s Delta function to sum up only the points correspondent to each
cluster. The kernel function Kφ will be parametrized by φ and can be defined separately later.
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3. Mixture of Controlled Gaussian Process Dy-
namical Model

3.1 Background Theory

As we have done earlier in section 2.4, we represent the deformations of the material with a high
dimensional mesh. This discretization of the object will turn the problem into a prediction of a finite
number of features (3 positional dimensions times the number of points of the mesh). The greater
the number of points we are using to represent the deformable solid, the better capacity of a precise
representation of the object, but it will also come with a greater computational cost in the dynamical
prediction and will be unmanageable for building a tractable state-action space policy.

Therefore, it will be mandatory to employ Dimensional Reduction (DR) methods such as the
Gaussian Process Latent Variable Model [4] and the dynamical extensions depicted in [3] and [1],
where the observables of high dimensionality (for example 3× 64 dimensions for a 8 by 8 mesh of a
cloth) are transformed to a low dimensional representation latent space, where we can perform the
dynamics of the model and define a tractable task space for the control problem.

Here in the Mixture of Controlled Gaussian Process Dynamical Models, we incorporate some
concepts of the Infinite Mixture of Gaussian Experts defined above 2.6 to get rid of two important
limitations of the GPs. Firstly, the inference requires the inversion and multiplication of n×n matrix,
where the n is the size of the whole dataset, what results in a cubical computational complexity,
and therefore, makes it impractical to use it for real time applications with medium large datasets.
Secondly, the covariance functions are commonly assumed to be stationary (same parameters) along
all the dataset, leading to some lack of flexibility in the model. The use of several experts will
allow us to both: define different covariance functions, and train unassociated parameters for each
expert, resulting in a better adaptation to the disparate circumstances of separate data points sets
and distinct regions of the input space.

As we have seen in the CGPDM section 2.4, we want to maximize the likelihood of the latent
variables X and model parameters, α for the latent dynamics mapping and β for the latent space
projection given the data:

argmax
X ,α,β

P(X ,α,β|Y , U) = argmax
X ,α,β

P(Y , X ,α,β, U) = argmax
X ,α,β

P(Y |X ,β)P(X |α, U)

Where P(Y |X ,β) and P(X |α, U) can be considered two separated Gaussian Process Models that
we can convert into two Infinite Mixture of Gaussian Experts. For an easier identification from now
on, we are going to name the first term as the Mapping Model, because it is related to the capacity
of the model to infer the observations from the latent points, and the second term will be named
the Latent Dynamics Model, because it is related to the capacity of the model to predict the next
point in the latent space given the previous positions and the current control. As it can be useful
later on, we are going to name D the total number of dimensions of the observable space and d the
number of dimensions of the latent space.
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The Mapping Model likelihood can be written as a Infinite Mixture of GPs:

P(Y |X ,β) =
∑
zmap

∏
j∈E

P(Y{i |zmap
i =j},:|X{i |zmap

i =j},:, θ
map
j )

P(zmap|X ,φmap) (4)

Following the notation as in eq (1), the zmap is the vector variable that indicates the configuration
of the experts, Y{i |zmap

i =j},: and X{i |zmap
i =j},: are the set of data points assigned to the j-th expert.

Here we have also splitted all the Mapping Model parameters β into the different experts and gating
parameters, θmap

j and φmap respectively.

For the Latent Dynamics Model, we have to preprocess the data before interpreting P(X |α, U)
as a Infinite Mixture of GPs. If we consider the Markov chain dynamics in the latent space only
dependent on the two previous latent positions of the same trajectory and the current control action,
we can establish this equality:

P(X |α, U) = P(X1,:, X2,:)

∫ N∏
i=3

P(Xi ,:|Xi−1,:, Xi−2,:, Ui ,:,α, A)P(A|α)dA

Where Xi ,: is the i-th data point of the latent variables, P(X1,:, X2,:) is the probability of the
first two latent variables, that we can consider invariant over model parameters and latent variables
alterations. Therefore, this term will be ignored from now on in the optimization problem. And finally,
A are the weights of a linear combination of basis functions of the dynamical predictor depicted in
the GPFM 2.3 [3].

This distribution will be identical if we change the random variable Xi ,: to Xi ,:−Xi−1,: when the
distribution is conditioned to the second term of the substraction.

P(X |α, U) = P(X1,:, X2,:)

∫ N∏
i=3

P(Xi ,: − Xi−1,:|Xi−1,:, Xi−2,:, Ui ,:,α, A)P(A|α)dA

After that, we can rename some of the variables to employ the same notation as the before cited
paper, ∆i ,: := Xi ,: − Xi−1,: and X̂i ,: := (Xi−1,:, Xi−2,:, Ui ,:).

P(X |α, U) = P(X1,:, X2,:)

∫ N∏
i=3

P(∆i ,:|X̂i ,:,α, A)P(A|α)dA

Assuming an isotropic Gaussian prior on the columns of A and using the matrix form of this
variables (∆ := X(3..N),: − X(2..N−1),: and X̂ := (X(2..N−1),:, X(1..N−2), U(3..N),:)), it can be shown [3]
that this expression simplifies to:

P(X |α, U) = P(X1,:, X2,:)
1√

(2π)(N−2)d |KX̂ |d
exp

(
−1

2
tr(K−1

X̂
∆∆T )

)
=: P(∆|X̂ ,α)

Where the kernel (KX̂ ) has yet to be definded, N is the number of data points of this sequence
and d is the number of dimensions of the latent space (also the number of colums of the X matrix).
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This expression can be extended to as many sequences as we want if each one has at least 3
data points for a correct definition of the ∆ and X̂ matrices for each one and we can joint them all
at the end.

Then, we can introduce the Infinite Mixture of Gaussian Experts to this second term of the
likelihood equation.

P(∆|X̂ ,α) =
∑
zlat

∏
j∈E

P(∆{i |z lati =j},:|X̂{i |z lati =j},:, θ
lat
j )

P(zlat |X̂ ,φlat) (5)

Following the same notation, the zlat vector is the configuration variable, ∆{i |z lati =j},: and X̂{i |z lati =j},:
are the points assigned to the j-th expert, and we have splitted the Latent Dynamical Model’s pa-
rameters β into the experts and gating parameters, θlatj and φlatj respectively.

Finally, we have al the terms of the optimization problem properly developed, and it will end up
looking like

argmax
X ,α,β

P(Y |X ,β)P(X |α, U) =

argmax
X ,θmap

j ,φmap ,θlatj ,φlat

(∑
zmap

∏
j∈E

P(Y{i |zmap
i =j},:|X{i |zmap

i =j},:, θ
map
j )

P(zmap|X ,φmap)


∑

zlat

∏
j∈E

P(∆{i |z lati =j},:|X̂{i |z lati =j},:, θ
lat
j )

P(zlat |X̂ ,φlat)


(6)

What includes many not differentiable variables (the inidicators zmap and zlat) and the summation
of exponentially many terms, so the optimization cannot be done straightforwardly.

3.2 Designing choices

As in any project, we have had to make many designing choices to obtain better performance in the
problem that we want to solve inside the theoretical framework that we have developed earlier. In
the following sections, we aim to explain some of the decisions that we have made and some few
reasons of why those are the best solutions we have found. But some other hyperparameters had
to be chosen empirically and will be chosen in the Experimets section along with some experimental
results that we explored.

3.2.1 Experts structure and kernels

One of the first and more important choices that we made are the different kernels that we are going
to employ for the experts and the gating models. These are going to determine how the data will
relate to the nearby input points giving that notion of locality that the Gaussian Process need for
their interpolation.

For the Mapping Experts, we have chosen the kernel proposed in the CGPDM [1] because they
have demonstrated a better performance compared to other standard kernels in the single expert
configuration. It is based in the widely used Radial Basis Function (RBF) kernel, but with a more
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Figure 4: On the left side, we can see the correlation matrix of one expert with traditional RBF
kernel and on the right side we can see the correlation matrix of a modified and trained RBF kernel.
Images obtained with the imshow module inside the matplotlib package of python.

flexible structure. The authors splitted the single length-scale parameter into one independet length-
scale for each dimension of the input points and integrated them into a weighted computation of the
distance (instead of using the regular norm of a vector)

ky (Xi ,:, Xj ,:) = exp (−‖Xi ,: − Xj ,:‖Λmap) + (σmap)2δ(Xi ,:, Xj ,:)

Where ‖Xi ,:−Xj ,:‖Λmap will be calculated as
√

(λmap
1 )2(Xi ,1 − Xj ,1)2 + ... + (λmap

d )2(Xi ,d − Xj ,d)2,

and δ(., .) is the Kronecker delta function.

As we can see in the Figure 4, the modified kernel allows a much better connection between the
similar points than the standard kernel outside the diagonal. This will translate in more correlation
between points of the same and other trajectories and, therefore, having more points as reference to
make the predictions.

In addition, for each one of the dimensions of the observable space, we are going to use the same
kernel, but scaled by a factor (ω) in the calculation of the likelihood of the data in this expert. This
will affect the relevance of each observable dimension in the final likelihood formula:

P(Y{i |zmap
i =j},:|X{i |zmap

i =j},:, θ
map
j ) =

|Wy ,j |Nexp(−1
2 tr((Ky (X∗))−1Y∗W

2
y ,jY

T
∗ ))√

(2π)(ND)|Ky (X∗)|D
(7)

Where θmap
j represents the whole set of parameters (ωmap

j ,1 , ... , ωmap
j ,D , λmap

j ,1 , ... , λmap
j ,d , σmap

j ),

Y∗ and X∗ are the points assigned to this expert (we have substituted the ({i |zmap
i = j}, :) subscript

with ∗ in the left-hand side of the equation for esthetical purposes), N is the size of this subset of
points, |Wy ,j | is the diag(ωmap

j ,1 , ...,ωmap
j ,D ) matrix, and Ky (X ) is the covariance matrix built with the

kernel function that we have just described.

For the Latent Dynamics Experts, we are going to perform similarly, we have also chosen the
kernel proposed in [1] due to its performance characteristics in a single expert configuration. This
time it is based in the modified RBF kernel plus a scaled linear term, but adding more parameters,
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(a) (b)

(c) (d)

Figure 5: In 5a we have the standard RBF+linear kernel over the points of one expert, in 5b we have
the modified version, and 5c and 5d are the RBF and the linear components of the latent kernel
respectively.

in the calculus of the norm as in the mapping experts (length-scales) and in the linear components:

kx(X̂i ,:, X̂j ,:) = exp
(
−‖X̂i ,: − X̂j ,:‖Λlat

)
+ [X̂T

i ,: , 1]Ψlat [X̂T
j ,: , 1]T + (σlat)2δ(X̂i ,:, X̂j ,:)

Where ‖X̂i ,: − X̂j ,:‖Λlat is computed exactly as before, but with 2d + u dim dimensions instead
of d, u dim is the number of dimensions of the control variables, and Ψlat is a diagonal matrix
diag(ψ2

1, ... ,ψ2
2d+u dim+1) that can be multiplied and act like a scalar product matrix.

As we can see in the Figure 5, there is not a significant and qualitative change in the shape of
the kernel after the training of the different components, but there is a very noticeable quantitative
change in the magnitude of the covariance values. When we compare the two components of the
kernel in the two lower images of the figure, we can also appreciate that the linear kernel takes
much more relevance for the total covariance matrix, and it is also much more diffuse than the RBF
kernel. This will increase the importance of all the close points without excluding the relatively less
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correlated points. The lack of specificity when choosing the reference points will help us to perform
predictions even in a sparse input space with more dimensions.

Then, we can also introduce the scaling factor of each dimension to compute the likelihood as
done before.

P(∆{i |z lati =j},:|X̂{i |z lati =j},:, θ
lat
j ) =

|Wx ,j |Nexp(−1
2 tr((Kx(X̂∗))−1∆∗W

2
x ,j∆

T
∗ ))√

(2π)(Nd)|Kx(X̂∗)|D
(8)

Where θlatj represents the whole set of parameters (ωlat
j ,1 , ... , ωlat

j ,d , λlatj ,1, ... , λlatj ,d ,ψj ,1, ...,

ψj ,2d+u dim+1, σlatj ), ∆∗ and X̂∗ are the points assigned to this expert (we have again substituted the

({i |z lat
i = j}, :) subscript with ∗ in the left-hand side of the equation for esthetical purposes), N is

the size of this subset of points, |Wx ,j | is the diag(ωlat
j ,1 , ...,ωlat

j ,d) matrix, and Kx(X̂ ) is the covariance
matrix built with the kernel function that we have just described.

For the gating kernels, we are choosing the same one for both, Mapping and Latent Dynamics
gating. This will be a simple scaled square distance, that is flexible enough to give more relevance to
some dimensions, but without introducing too much complexity. For the Mapping Gating, we define

kmap
φ (Xi ,:, Xj ,:) = exp

(
−1

2

d∑
k=1

(Xi ,k , Xj ,k)2/(φmap
k )2

)

And for the Latent Dynamics

k lat
φ (X̂i ,:, X̂j ,:) = exp

(
−1

2

2d+ud im∑
k=1

(X̂i ,k , X̂j ,k)2/(φlatk )2

)

As we can see, the greater the φ parameters get, the narrower will be the influence of some points
to others, and therefore, more distinct will be the separation between the points of different experts.
This knowledge will be useful later on to evaluate how the model is performing and were the errors
can come from.

3.2.2 Latent dimensions

As we suppose that the dimensions of the observable data are correlated in some degree, the idea
of reducing the dimensions of the observable into a latent space of lower dimension to obtain better
computational performance seems natural, but how many dimensions we have to use at least for a
correct representation in normal circumstances is an issue itself (it is obvious that a non-bijective
reduction of dimensions will always have some loss of information, or at least representation capa-
bilities).

To make this decision, we have to take into account mainly two things, we want to have enough
dimensions, so the reconstruction with the mapping model could be effective at least with the data
(enough capacity of representation), but we want as few dimensions as we can because increasing
the dimensions will hurt performance both in time and in the capability of generalize the model. The
capability of generalizing will be given by the way that we can fill the input space of the experts
(both mapping and dynamical) as the Gaussian Process interpolates the output of a new input by
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Figure 6: Explained Variance Ratio of the components of a PCA decomposition averaged over 20
different training sequences of the cloth and it’s standard deviation.

considering the near input points of the known output dataset. If we have points with enough kernel
correlation to any point of the usable input space of the experts (close enough), we can then evaluate
any input point and have a reliable output (generalization).

Although it is impractical to fill all the input space of the experts no matter the dimensions we
have, we can extend that intuition and say that the more dimensions we have, the worse capabilities
of predicting the output will the experts have even for the places close to known points because there
will be very few correlated points.

To resolve this trade off between the representation capacity and the experts’ performance, we can
take as reference the explained variance of the PCA resulting components. This parameter measures
the relative amount of variance explained by each component, so taking the few components with the
greatest explained variance would be a sensible decision. This will implicitly represent the precision
that the mapping experts will have at least while reconstructing the observable data from the latent
space , but the expected precision of reconstructing the given data after training is much better.

As we can see (Fig:6), with only three variables we can capture most of the variance that is
present in the data, but we will need at least five components to guarantee a good representation of
the observed data, and this is the value we are going to use from now on.

3.2.3 Training Algorithm

As the likelihood that we are aiming to optimize now involves the optimization over some discrete
variables (the configuration of the infinite mixture of experts), it can’t be performed straightforwardly
with a regular optimizer (that can only optimize differentiable functions). To do so, we need to split
the optimization algorithm in several steps as in [2].

The First step will always be to initialize the parameters of the model and the latent variables. An
easy and fast way to initialize the latent variables will be to perform a Principal Component Analysis
(PCA) decomposition over the observed trajectories and choose the d most significant components
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to make sure that we have some ability to recover the previous data from the latent variables since
the beginning with a linear projection. The PCA matrices that we have computed here will be saved
because we are going to need them later on to transform new observations into latent space points
faster and without modification of the previous transformations.

Then, we have to split the input points of the two parts of the model. For the Mapping Model,
we wanted to preserve some notion of locality of the experts, so we have chosen to initialize the
experts with a k-means algorithm over the latent variables space. For the Latent Dynamics Model,
we have prioritized the ability to reproduce complete sequences of points. This means that the points
of the same trajectory will need to be in the same expert and therefore, the initial configuration of
the latent experts will be done by defining the joint X̂ matrix and choosing the trajectories we want
to assign instead of assigning individual points.

Once the experts’ configurations are determined, we can initialize the parameters that correspond
to each one of them. One easy way that we propose is beginning with a standard RBF kernel for the
mapping experts by setting to one all the length-scales (λmap

j ,1 , ... ,λmap
j ,d ) = ones(d), the σmap

j = 1 and

the weights of the different observable dimensions to also one (ωmap
j ,1 , ... ,ωmap

j ,D ) = ones(D). For the
latent dynamics’ experts, we also propose to initialize with the standard version of the RBF plus linear
kernel, (λlatj ,1, ... ,λlatj ,2d+ud im

) = ones(2d + ud im), (ψlat
j ,1 , ... ,ψlat

j ,2d+ud im+1) = ones(2d + ud im + 1),

σlatj = 1 and (ωlat
j ,1 , ... ,ωlat

j ,d) = ones(d). As the likelihood of the model could be not convex, we
will need to take care and be able to detect when the optimization reaches a local optimum or the
parameters grows very quickly, so we can initialize these parameters with some other reasonable
random values (randomly distributed from 0.5 to 1 for example).

And last but not least, we have to initialize the parameters of the gating models. We have
found that initializing with some fixed low values (e.g. φ = 1 for all of them) leads to a very poor
performance when we have not trained them enough. This will lead to a very poor performance
during the Gibbs updating of the indicators at the beginning of the training. One way to avoid this
is initializing with greater values, this will solve partially the problem, but will also lead us to a bad
Gibbs sampling in later steps due to the narrow influence of the points in the local kernel. The best
way that we have found until now is initializing with a greater value of φs and pre-train them to
optimize the likelihood of assigning each point to the kernel it belongs. We will discuss this method
later in this section. Also, if we are going to train similar models but with different data, we have also
found that the trained φ parameters of one model can be a very good initialization values as long
as the hyperparameters like the size of the observation space D, the size of the latent space d and
the size of the control space udim don’t change (this provides us some notion of transfer learning),
unlike the parameters of the experts.

In the Second Step we will maximize the likelihood of all the experts without modifying the
configuration variables zmap and zlat of the mixture. This means that we won’t need to perform the
exponentially many summation of the eq (6) and focus on the likelihood of the existing experts.

argmax
X ,θmap ,θlat

P(Y |X , θmap, zmap)P(X |θlat , U, zlat)

= argmax
X ,θmap ,θlat

∏
j∈Emap

P(Y{i |zmap
i =j},:|X{i |zmap

i =j},:, θ
map
j ) ·

∏
j∈E lat

P(∆{i |z lati =j},:|X̂{i |z lati =j},:, θ
lat
j )

= argmin
X ,θmap ,θlat

∑
j∈Emap

Lmap
j +

∑
j∈E lat

Llatj

24



where θmap and θlat stands for all the parameters of the mapping experts and the latent dynamics
experts jointly, and the Lmap

j and Llatj are the negative log-likelihood of the experts.

Lmap
j = log

(
P(Y{i |zmap

i =j},:|X{i |zmap
i =j},:, θ

map
j )

)
=

D

2
log(|Ky (X∗)|) +

1

2
tr((Ky (X∗))−1Y∗W

2
y ,jY

T
∗ )− N log(|Wy ,j |) + consts

where, as we have done before, X∗ and Y∗ represents X{i |zmap
i =j},: and Y{i |zmap

i =j},: respectively,
whose other terms and parameters are described in eq. 7. And

Llatj = log
(

P(∆{i |z lati =j},:|X̂{i |z lati =j},:, θ
lat
j )
)

=
d

2
log(|Kx(X̂∗)|) +

1

2
tr((Kx(X̂∗))−1∆∗W

2
x ,j∆

T
∗ ))− N log(|Wx ,j |) + consts

whose the parameters are described in eq. 8.

We have taken advantage of the monotonously growing property of the logarithm and the prob-
abilities are non-negative to simplify the expression and make the computation and optimization of
the likelihood more tractable.

The Third Step consists in a Gibbs sampling of all the indicators of both models. To do so, we
will use the equation described in eq. 2 and update the indicators one by one as described in the
following algorithm.

Algorithm 2 Gibbs sampling

1: procedure Gibbs sample the mapping experts
2: for i ∈ random shuffle indexes do
3: detach the i-th point from its expert

4: for j ∈ Emap do
5: if size({i |zi = j}) < Nmap

max then
6: p[j ]← P(Y |X , zmap

i = j , zmap

(..,̂i ,..)
, θmap)P(zmap

i = j |zmap

(..,̂i ,..)
, X ,φmap)

7: else
8: p[j ] = 0
9: end if

10: end for
11: concatenate(p, α

n−1+α)
12: Sample j from the p distribution

13: if j ∈ Emap then
14: Attach the i-th point to the expert

15: else
16: Create a new expert

17: end if
18: end for
19: end procedure

where Nmap
max is the maximum size of the experts who will guarantee that there will not be a small

number of experts that absorbs all the points resulting in a severe hit on the time performance later on
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(remember that the cost of computing the prediction and likelihood of one expert escalates cubically
since it involves the inversion and multiplication of the covariance matrix). In our experiments
section, we are going to tune this hyperparameter, but the general idea is that it must be big enough
to contain some variability inside each expert and to not end up having too many experts, but also
be small enough to compute predictions in a very small period of time.

In the line 11 of the Gibbs sampling algorithm 2, we have added an extra term to the probabilities
vector p to give the possibility of adding a new expert if the likelihood of belonging to an existing
expert is very low. We decided to add this term and compare them to the total likelihood of belonging
to existing experts instead of comparing it only to the other gating probabilities as suggested in cite:
[2] because we considered it important to know if it was really necessary to create new experts since
having too many experts will increase significantly the time we need to perform future iterations of
the Gibbs sampling. As the computed probabilities are all proportional to the real probability, they
comparable to each other but not to the extra term. We can consider substituting α

n−1+α with a
simple variable α that we can easily fine-tunned to obtain the effects that we desire. Since we want
to create new experts with a low probability, this value should be small, for example 10 000 times
smaller than the probability of one point to belong to the expert it has been detached from, that will
be about 0.1 for the mapping and 0.001 for the latent dynamic model following our simple tests.

If the sampling creates new experts, we will need to initialize the parameters associated to this.
Ideally, this expert should have similar performance when predicting the data that it contains, so
simply initializing the parameters with the standard version of the RBF or the RBF plus linear kernels
will not suffice this condition. One slow but sure way to do it is by optimizing the likelihood of this
expert modifying only the parameters, but this will lead us to a slow creation of experts that have a
high chance of been removed in no time. We have decided that a good heuristic of what parameters
it should have is by assigning the mean of the parameters of all the experts, this won’t make a perfect
initialization, but it is very fast to perform, and the results will try to take advantage of the learned
knowledge of the other experts. The Third Step consists in a Gibbs sampling of all the indicators
of both models. To do so, we will use the equation described in eq. 2 and update the indicators one
by one as described in the following algorithm.

We have also found that adding a final step after the for loop where we merge all the expert with
fewer points than a given threshold (let’s say 5) will grant us a better performance, as we will avoid
having many small and not significant experts and also confer us a better time efficient algorithm,
as we will not waste time computing the probability of the points to belong to many small clusters
after one complete iteration of the algorithm. Note that these small clusters will survive during the
looping, but not after it, thanks to this addition.

These experts actually act like ”trash bins” that collects all the unwanted points, but, as the
experts only has relevance locally, and the gating will give it less local relevance than other specialized
experts, the existence of this type of experts should not hurt the performance of the predictions.
They only holds the points, so they can be recycled in later iterations without wasting too much
computing time.

For the sampling of the latent dynamics experts, the algorithm will look exactly the same, but
replacing the elements of the probabilities vector p by the equivalent version in the latent dynamics
model p[j ]← P(∆|X̂ , z lat

i = j , zlat
(..,̂i ,..)

, θlat)P(z lat
i = j |zlat

(..,̂i ,..)
, X̂ ,φlat).

Then we need to perform this updating of indicators a few times. We have to find the equilibrium
between having a fully uncorrelated sample (by looping this several times) and taking some reasonable
time to obtain a good enough sample. In our experiments, we have decided to prioritize the time
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efficiency and don’t care at all about having uncorrelated samples (we just want to slowly update
the indicators), so we loop only one time at each step.

The Forth Step is to train the gating parameters φmap and φlat . This will be done by maximizing
the prediction likelihood of each point when detached from the expert. This means that we are
computing the likelihood of the output that each expert will predict, and then multiply it with the
probability of assigning this input to those experts of the gating model with a scalar product. That
value is what we sum up for all the points and then maximize the value of the summation over the
gating parameters. To compute the value that we want to maximize, we are going to go along with
the algorithm 3:

Algorithm 3 Gating Objective funtion

1: procedure Compute the Objective Function
2: Obj ← 0
3: for i ← 1..n do
4: detach the i-th point from its expert

5: for j ∈ Emap do
6: p[j ] = P(Yi |Xi , Y{i |zi=j},:, X{i |zi=j},:, θ

map
j )

7: pz [j ] =
∑

i′ 6=i Kφ(Xi ,:,Xi′,:)δ(zi ,j)∑
i′ 6=i Kφ(Xi ,:,Xi′,:)

8: end for
9: Obj ← Obj + 〈p, pz〉

10: reattach the i-th point to the previous expert

11: end for
12: Return Obj
13: end procedure

The objective function for the latent dynamics model would be analogous.

Finally, we loop from the second step to fourth until we are satisfied with the prediction capa-
bilities of the model.

To summarize, the training algorithm will consist in some few steps were we optimize and sample
different parts of the models sequentially but always trying to maximize the final likelihood of the
complete model:

1. Initialize all the parameters, from the latent varaibles to the experts configuration and param-
eters.

2. Maximize the likelihood of the experts.

3. Gibbs sample the discrete configuration indicators.

4. Maximize the likelihood of the predictions with the gating models

5. Loop from step 2 to 4 until satisfactory performance

3.2.4 Covariance matrix inverse management

To increase the time efficiency during the computation of the likelihood of the experts, we have
to store the inverse of the covariance matrix of every expert throughout the Gibbs sampling. This
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will allow us to get rid of the costly computation of inverses that will not change in general terms,
since the experts’ parameters and the latent variables values are frozen. The only changes that will
modify these matrices are the changes of the configuration of the experts during the detachment
and attachments of points to experts. Both of them involve attaching or detaching one line and one
column on the covariance matrices of the affected experts, so updating the inverses of the matrices
can be done with rank one updates on the inverses of the matrix (one for the column and one for
the row) instead of the expensive recalculation of the covariance matrices (at least one detachment
at the beginning and one attachment per expert to obtain the probabilities vector p).

This can be achieved with the Sherman-Morrison formula [13]:

(
A−1 + uvT

)−1
= A−1 +

A−1uvTA−1

1 + vTA−1u

where u and v are vertical vectors of the same size as the matrix A, and A−1 its inverse. To
detach one point (let’s say the i-th row and column) from the covariance matrix inverse, we will have
to perform two one rank matrix updates.

A
′−1 = ((A−W1)−W2)−1

where

W1 =

î



0 ... q1 ... 0
...

. . .
...

. . .
...

qi−1

0 ... 0 ... 0
qi+1

...
. . .

...
. . .

...
0 ... qn ... 0

=



q1
...

qi−1

0
qi+1

...
qn


î

( )0 ... 1 ... 0

and

W2 =





0 ... 0 ... 0
...

. . .
...

. . .
...

î q1 ... qi−1 0 qi+1 ... qn

...
. . .

...
. . .

...
0 ... 0 ... 0

=




0
...

î 1
...
0

(
q1 ... qi−1 0 qi+1 ... qn

)

where q∗ = k(Xi , X∗) the correspondent covariance between the i-th input and the *-th input of
the expert. Doing it like this, we have turned the updating of the inverse from a cubical complexity
(O(n3)) to a squared complexity (O(n2)) only in the multiplication of a matrix with a vector and
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the summation of two matrices but also with a much smaller cost even with small n. After obtaining
the A

′−1 matrix, we will obtain the inverse of the submatrix by excluding the i-th row and column
from it. This can be done when the correspondent row and column are zeros except for the (i , i)
position and easily demonstrated by preforming operations with submatrices of A′

Proof.A1,1 0 A1,2

0 ai ,i 0
A2,1 0 A2,2

−1

=

ST

A1,1 A1,2 0
A2,1 A2,2 0

0 0 ai ,i

S

−1

= ST

A1,1 A1,2 0
A2,1 A2,2 0

0 0 ai ,i

−1

S =

= ST

B1,1 B1,2 0
B2,1 B2,2 0

0 0 a−1
i ,i

S =

B1,1 0 B1,2

0 a−1
i ,i 0

B2,1 0 B2,2


where S is the change-of-basis matrix that will help us permute the elements and is defined as

S =

Id1,1 0 01,2

Id1,2 0 Id2,2

0 1 0


and the B submatrices are defined by the inverse of the joint submatrices of A

[
B1,1 B1,2

B2,1 B2,2

]
=

[
A1,1 A1,2

A2,1 A2,2

]−1

We have used the subscripts of the matrices to help us keep track of the dimensions of the
block wise operations and taken advantage of the inversion of a block wise diagonal matrix tajes the
following shape

[
A1,1 0

0 A2,2

]−1

=

[
A−1

1,1 0

0 A−1
2,2

]

To obtain the inverse of a supermatrix (attaching a point to the expert’s covariance matrix), we
will start adding a column and a row of zeros in the i-th position where the point would be, and the
(i , i) position of the new inverse have to start with 1/k(Xi , Xi ) as the inverse of this ”submatrix” of
one by one. Then, the updates will be performed similarly as detaching an element.

A−1 = ((A′ + W1) + W2)−1

To compute the likelihood of the experts, we also need to know the logarithm of the determinant
of the covariance matrix. As performing these calculations also involves cubical complexity operations,
it would also be pretty natural to store and update efficiently the value of the log-determinant of the
covariance matrices. To do so, we can introduce and demonstrate the effects on the determinant of
a matrix with a rank one perturbation.

det(A + uvT ) = det(A)(1 + vA−1u)
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Proof. To proof the equality, we will use the distributive property of the determinant det(AB) =
det(A)det(B) and the fact that the determinant of a triangular matrix is the product of the elements
of the diagonal. First we can have that:

(A + uvT ) = A(Id + A−1uvT )

Then, we only have to obtain the determinant of the second multiplicand.

det(Id + A−1uvT ) = det

(
Id + A−1uvT A−1u

0 1

)
= det

((
Id 0
vT 1

)(
Id + A−1uvT A−1u

0 1

)(
Id 0
−vT 1

))
= det

((
Id + A−1uvT A−1u

vT + vTA−1uvT vTA−1u + 1

)(
Id 0
−vT 1

))
= det

(
Id + A−1uvT − A−1uvT A−1u

vT + vTA−1uvT − (vTA−1u + 1)vT vTA−1u + 1

)
= det

(
Id A−1u
0 vTA−1u + 1

)
= (vTA−1u + 1)

And finally, we substitute the terms in the equality

det(A + uvT ) = det
(

A(Id + A−1uvT )
)

= det(A)det(Id + A−1uvT ) = det(A)(1 + vA−1u)

And the rank one updates to detach and attach elements to the experts will be the same as the
updating of the inverse.

As all of these operations involves the product of big matrices, the numerical errors cannot be
ignored. Specially if we are going to concatenate several modifications of the experts’ compositions,
the compounding of the errors can grow very fast, leading to bad calculations of the likelihood or
even fatal errors like dividing by zero. As we cannot detect those errors fast, we cannot rely on
the compounded updates, and we are using these new matrices just to compute the probabilities to
assign different experts, but the stored and updated matrices at the end of each assignment will be
computed with traditional methods.

3.2.5 Predictions Algorithm

We have at least two ways to make predictions with the Mixture of Gaussian Experts. The first
one is by considering the predictions of each expert as separate, uncorrelated random variables with
normal distributions. Then, the mixture of experts can be considered as a weighted sum of all the
random variables. As all the variables are uncorrelated and the covariance matrices we generate are
diagonal (each dimension of the output is also uncorrelated), the outcome will also have a normal
distribution.
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Ymodel =
∑
j∈E

P(j)Yj ∼
∑
j∈E

P(j)N (µj ,σ
2
j ) ∼ N

∑
j∈E

P(j)µj ,
∑
j∈E

P(j)2σ2
j


Proof. The demonstration of the avobe equation can be done with each dimension of the

prediction individually. Let’s consider two normal variables with unit variance X .Y ∼ N (0, 1) and
the sumation of the two variables Z = X + Y . We denote the probability distribution function of
each one as

f (x) =
1√
2π

e−x
2/2, g(y) =

1√
2π

e−y
2/2,

Then, the Cumulative Distribution Function of Z looks like

z 7−→
∫
x+y≤z

f (x)g(y)dxdy

The key observation is that

f (x)g(y) =
1

2π
e−(x2+y2)/2

is radially simetric, so we rotate the coordinate plane about the origin such that the line x +y = z
is described by the equation x ′ = c , where c = c(z) can be determined geometrically, and thanks to
the radial simetry, f (x)g(y) = f (x ′)g(y ′), and the y ′ can be integrated out from the CDF of Z

∫
x ′≤c,y ′∈R

f (x ′)g(y ′)dx ′dy ′ =

∫ c(z)

− inf
f (x ′)dx ′ = Φ(c(z))

We then have that the c(z) has a normal distribution of zero mean and unit variance. To
determine the function, we find that after the rotation, the x ′ coordinates must be perpendicular to
the x + y = z line, so c(z) will be the distance of that line to the origin c(z) =

√
(z/2)2 + (z/2)2 =

z/
√

2, and therefore

z/
√

2 ∼ N (0, 1)⇒ z ∼ N (0, 2)

For any a, b, we can obtain the distribution of Z = aX + bY with the same argument but using
the correspondent plane ax + by = z leading to c(z) = z√

a2+b2

aX + bY ∼ N (0, a2 + b2)

And the same argumet follows with N variables in a N-dimensional space

N∑
i=1

aiXi ∼ N (0,
N∑
i=1

a2
i )

Finally, applying the following equivalence
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Xi ∼ N (µi ,σ
2
i )⇔ 1

σi
(Xi − µ) ∼ N (0, 1)

We can get the desired formula

N∑
i=1

(aiσi )
1

σi
(Xi − µi ) ∼ N

(
0,

N∑
i=1

(aiσi )
2

)
⇒

N∑
i=1

aiXi ∼
N∑
i=1

aiµiN

(
0,

N∑
i=1

(aiσi )
2

)

where Ymodel denotes the random variable that is the output of the model, Yj the ones of each
expert and P(j) is the probability of choosing the j-th expert, and employs the gating models:

P(j) = P(j |Xinput , X ,φ) =

∑
i Kφ(Xi ,:, Xinput)δ(zi , j)∑

i Kφ(Xi ,:, Xinput

Although this will give us a very simple way of the sample the predictions, and the flexibility to
use only the mean output instead of sampling for a fast execution of the predictions, this can result
in pretty bad results as we could fall in between of several experts’ predictions with an overall low
likelihood.

The other way to sample the predictions is by generating a new distribution as the result of
the weighted sum of all the experts’ distributions (the Mixture of Gaussian Experts distribution).
This might not have a simple shape and the direct sampling could be pretty hard to obtain, as we
have to sample each dimension one by one and integrating over the space to obtain the Cumulative
Probability Distribution.

P(Ypred |Xinput , Y , X ) =
∑
j∈E

P(j |Xinput , X ,φ)P(Ypred |Xinput , Y(i |zi=j),:, X(i |zi=j),:, θj)

If we choose to use the Mixture of Gaussian Experts Distribution, we can also sample first which
expert we are going to use, and then sample the prediction with this expert (or use a simple predictor
like the mean output instead of sampling). As a result, we will obtain one sample of the distribution,
but this has the risk of choosing the wrong expert and maybe end up having inconsistent predictions.

As we can see in figure 7, there are several advantages and disadvantages of choosing one
method over the other when we try to make the predictions. In the left image, the two experts
are very separated, and the predictor will have to choose either one or the other expert to have a
plausible prediction, so it will have several local maxima. If we average the two experts’ predictions,
it will generate a distribution with the maxima in a very low likelihood point, but it will be more
conservative than choosing only one expert. When we perform the mean predictor (choose one mean
of the distribution instead of sampling) for a faster performance, the two different methods will
clearly cast very disparate results.

In the right image, the experts have an overlapped distribution, and the average distribution will
be very similar to the Mixture of Gaussian Experts distribution, so probably choosing this predictor
will have much better performance than choosing only one expert if we are going to perform a
sampling or a mean predictor. We will discuss later in the experiments section 4 which option has
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Figure 7: Distribution of the Mixture of Experts, in green and continuous line the Mixture of Gaussian
Experts (weighted sum of the two Experts Distribution), and in red and dashdot line, the distribution
of the average predictor (single normal distribution with weighted average mean and variance).

better performance. This will mostly depend on the composition of the experts and the compounding
of the distributions of the experts, as well as the relative relevance of the critical points when we
have to choose one or the other.

3.2.6 Observation to latent space

If we want to use the model to predict the dynamics of a deformable object given the known control
and the training data, we need to be able to translate the currently observed position to the latent
space. As we have seen, the model does not provide us any straightforward way to obtain the latent
representation of new data, we have to find the way to obtain the desired latent variable.

This method should fulfill at least two conditions, it has to be fast, as we will need to perform
it before initializing the rollout of the model. And it has to be accurate, as any little error will be
compounded once we have started the predictions. To decide how we do it, we are going to propose
a few options and then choose the one that fits better our needs.

The first and fastest option is by computing the distance of the new observation to the obser-
vations of the training set and choose the latent variable of the closest point (that already has a
representation in the latent space built in the model). This will have a very fast linear complexity
and may give pretty good results if the observations are very close to the training set.

Another option will be to choose a few closest points instead of one and averaging their latent
representations. This option would be almost as fast as the previous one and might be more robust
when it comes to assigning the representation as there is no chance that in a bunch of points, all of
them has a bad latent variable counterpart. But it also comes with the downside that we have to
choose the threshold distance that we are going to consider or the minimum and maximum number
of points that we are going to average.

The next option will be saving the PCA matrices that we have created during the initialization of
the latent variables and fit the new observed data to the dimensional reduction. This operation could
be very efficient in time, as it only involves the multiplication of a small matrix with the observable.
But it is very likely that the latent space has shifted from the one created by the PCA.
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And the last option is the hardest to implement and slower to execute, but it should return
better latent representations. This one consists in initializing with some latent representation of the
observed data (with any of the previous methods) and maximize the likelihood of predicting this
observable by the mapping model.

argmax
Xnew

P(Ynew |Xnew , Y , X ,β)

In general, we will consider enough to average the few closest points setting a maximum of 10
points, and a maximum relative distance of 0.5. The relative distance will be computed as

di =
‖Ynew − Yi ,:‖
‖Ynew‖

3.2.7 Balance hyperparameter

During the training of experts, we are optimizing the summation of the negative log-likelihood of
the mapping experts and the latent experts. This induces us to consider the two likelihood terms
equivalent during the calculus of the gradient using back propagation algorithms, although both
terms could be of a very different scale of magnitude because the mapping have multipliers of the
size of the output and the latent only have the multipliers of the magnitude of the latent space.

L = Lmap + Llat =
∑

j∈Emap

D

2
log(|Ky (X∗)|) +

1

2
tr((Ky (X∗))−1Y∗W

2
y ,jY

T
∗ )− N log(|Wy ,j |)

+
∑
j∈E lat

d

2
log(|Kx(X̂∗)|) +

1

2
tr((Kx(X̂∗))−1∆∗W

2
x ,j∆

T
∗ ))− N log(|Wx ,j |) + consts

If the two loss functions had separate variables to optimize, we could ignore this fact and just wait
until both functions reach their minimum independently, but in our case, the latent space variables
determine the evaluation of the two functions. As one of the functions could be overrepresented
due to the nature of the composition, with an a posteriori thought, we considered adding an extra
balance parameter that can equilibrate the two terms weight during the optimization of the latent
variables. By default, the balance parameter is set to one, since this value recovers the original
function we were optimizing.

The addition of this parameter shifts the likelihood that we are maximizing, therefore changing
the optimal solution of all the parameters, so we have to proceed with care when we change this
value.

argmin
X ,θmap ,θlat

Lmap + balance · Llat = argmax
X ,θmap ,θlat

P(Y |X , θmap, zmap)P(X |θlat , U, zlat)balance

Later on, we are also going to discuss how different values will affect to the final predictors’
capabilities and several problems that we encountered when we impose too small or big balance
parameters.
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Figure 8: Simplification of the mapping negative log-likelihood computational graph

3.2.8 PyTorch

For the implementation of the model, we decided to employ python as the main programming
language because it is widely adopted on machine learning applications and its easiness of use thanks
to the huge quantity of libraries available like numpy, sklearn and specially the pytorch library. This
last library is based on torch library and developed by the Facebook AI Research lab (FAIR) but with
free and open-source modified BSD (Berkeley Software Distribution) license, what imposes minimal
restrictions on the use and distribution of covered software.

It is also implemented on C, what has maximum relevance, because interpreted languages as
python cannot reach the computation efficiency that compiled languages has when we involve complex
operations with matrices and repetitive loops when searching the gradient of functions. Of the
modules that are built in the pytorch library, we are going to use the torch.nn module as it has very
useful functions as backward(), that automatically computes the gradient over the parameters, and
optimizers, that manages those gradients over different optimization steps and situations where the
simple gradient descent will not be effective enough.

To compute the gradient of the loss function, these oriented to machine learning and deep
learning libraries usually have implemented the back propagation algorithm to compute the gradient
for optimization purposes. To do so, they take advantage of the chain rule and form computation
graphs to organize the propagation of the gradient similar to the one represented in 8 applying the
correspondent derivation rules to each operation one by one and compound them altogether at the
end. This will allow us to compute analytically the gradient of any function, no matter the complexity,
as long as the function is differentiable (at least piece wise).

One of the main advantages of the torch library over the TensorFlow one is how the computational
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graph is built. In TensorFlow, you have to predefine all the structure of the graph before you can
perform any real computation, so if you are going to use any external data, you are going to have
the structure of them predefined in some placeholders that you need to fill during the runtime. On
the other hand, the PyTorch library believes in dynamic graphs, that means that the graph can be
defined/manipulated on-the-go during the forward propagation. The aforementioned property allows
us a much more flexible way to calculate the loss function since we can be free of introducing and
detaching variables from the graph, make many conditional operations without having to worry about
the stability or the efficiency of the graph (avoiding unnecessary back propagation of gradients that
are not going to intervene later) and the construction of fancier graphs structures. The dynamical
approach will also give us a better debugging experience, as the graphic is defined at runtime you
can use any Python debugging tools or even old trusty print statements.

3.2.9 Optimization algorithms

The PyTorch library has many optimizers available, most of them are specialized in very specific cases.
The sparse optimizers are particularly efficient when we are trying to train models that involve sparse
tensors (with many zeros) and only back propagates through the non-zero elements, The stochastic
gradient descent algorithms are particularly good at managing the cases when we cannot encompass
all the dataset in one iteration of the back propagation (generally due to memory limitations) this
may result in a saw tooth shape of the loss function along the training (as the loss value will depend
on the data we are evaluating). Most of these optimizers will handle the problem by averaging the
gradients over several iterations (also called with momentum) or other heuristics to end up decreasing
the loss values in average.

In our case, we have a pretty tractable amount of data, so we won’t need to split the data,
and we don’t expect having very sparse tensors along the model, hence, we can use pretty standard
algorithms. Here, we are going to delve into the three that we considered more relevant for our
model.

The Gradient Descent is an optimization algorithm that consists in performing consecutive
updates following the gradient direction in the parameters space and taking steps of the size of the
learning rate (usually denoted as α). This is one of the simplest algorithms to train machine learning
models, and it is the foundation of most of those algorithms, like a dynamical learning rate (that
reduces the length of the learning rate as we are training the model and therefore approaching to
the optima).

If we consider the loss function that we want to minimize as a function of the parameters f (θ),
the updating of the parameters at step t can be written as

θ(t + 1) = θ(t)− α ∗ ∇f (θ(t))

The Adam optimizer implements the Adaptive Moment Estimator algorithm [14], it is an ex-
tension to gradient descent and automatically adapts a learning rate for each input variable for
the objective function and further smooths the search process by using an exponentially decreasing
moving average of the gradient to make updates to variables.

Each learning rate is automatically adapted throughout the search process based on the gradients
encountered for each variable, maintaining a first and second moment of the gradient. First, we
must maintain a moment vector and exponentially weighted infinity norm for each parameter being
optimized as part of the search, referred to as m and ν respectively. They are initialized to 0.0 at
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the start of the search. Then, at each time step t, we update the first moment with the gradient
and the hyperparameter β1:

m(t + 1) = β1m(t) + (1− β1)∇f (θ(t))

and then we update the second moment with the squared gradient and the hyperparameter β2:

ν(t + 1) = β2ν(t) + (1− β2)∇f (θ(t))2

As they are initialized with zero, the moments will be biased during the first steps (previous values
of the moments are influenced by the initialization), and the moments need to be corrected.

m̂(t) = m(t)/(1− β1)

ν̂(t) = ν(t)/(1− β2)

The updating of the parameters will finally look like this

θ(t + 1) = θ(t) + αm̂(t)/(
√
ν̂(t) + ε)

where the ε is some small value (like 1e−8) that grant that we don’t divide by zero. The decaying
values will be typically β1 = 0.9 and β2 = 0.999, values that will make the previous gradients still
relevant in the few following steps (the greater, the more relevant up to a maximum of one), but
can always be modified or even have dynamical values.

The L-BFGS (Limited memory Broyden–Fletcher–Goldfarb–Shanno) [15] algorithm is an opti-
mization algorithm in the family of quasi-Newton methods that approximates the BFGS using a
limited amount of computer memory.

The Newton’s method iteratively updates the parameters with a quadratic Taylor expansion of
the function near the parameters at each time step:

f (θn + ∆θ) ≈ f (θn) + ∆θT∇f (θn) +
1

2
∆θT (∇2f (θn))∆θ

were we can simplify the equation by renaming some terms hn(∆θ) := f (θn +∆θ), gn := ∇f (θn)
and Hn := ∇2f (θn). Then, we want to choose the ∆θ that minimizes the hn(∆θ) function.

∂hn(∆θ)

∂∆θ
= gn +Hn∆θ

If we assume that the hessianHn is positive definite, any local extreme of hn(.) is a local minimum,
so we only need to find a ∆θ that evaluates the left-hand side of the previous equation.

∆θ = −H−1
n gn

As in previous optimization algorithms, this will determine some direction to optimize the function,
but typically we will choose some value 0 < α to perform the parameters update.
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θn+1 = θn + α(−H−1
n gn)

As the function that we need to optimize grows in the number of parameters, the computation
of the hessian and its inverse ends up been not tractable, so new methods emerge to solve these
problems like the quasi-Newton methods, where instead of computing it at each step, we try to
recover the information of the hessian (or an approximation) by updating the initial hessian matrix
(or some guess of the hessian) at each optimization step.

Some of the properties that we can impose to a good hessian update could be the secant condition,
what means that the gradient of the quadratic Taylor approximation (hn(∆θ) = f (θn) + ∆θTgn +
∆θTHn∆θ) and the gradient of the actual function are equal in the current parameters and previous
parameters point.

{
∇hn(0) = ∇f (θn) =: gn

∇hn(θn−1 − θn) = ∇f (θn−1) =: gn−1
⇒ ∇hn(0)−∇hn(θn−1 − θn) = gn − gn−1

⇒ f (θn) + gn +Hn · 0− f (θn)− gn −Hn(θn−1 − θn) = gn − gn−1 ⇒ Hn(θn − θn−1) = (gn − gn−1)

This ensures that the updated version of the hessian behaves like a hessian, at least for the
difference (θn−θn−1). Assuming the hessian is invertible, renaming yn := gn−gn−1 and sn = θn−θn−1

we obtain the secant condition:

H−1
n yn = sn

The other essential condition that the hessian must satisfy is the symmetrical condition, since we
assume that the loss function is at least order two derivable and the order of differentiation doesn’t
matter.

Given these conditions, we would like to find the best approximation to the real Hn+1 hessian
matrix that can satisfy them.

min
H−1
‖H−1 −Hn‖2

s.t.H−1yn = sn

H−1is symetric

The norm used here is the weighted frobenius norm. The solution to this problem is:

Hn+1 = (Id− ρnynsTn )H−1
n (Id− ρnynsTn ) + ρnsnsTn

where ρn = (yT
n sn)−1. This is the BFGS update, and it keeps the positive definite property (if

Hn is psd, Hn+1 also is), and we only need to have stored the initial H0 and the successive sn and
yn vectors to construct at each step the approximation of the hessian. As we only need to be able
to compute the product of the matrix with a vector H−1

n gn and obtain the direction of optimization,
now we have a procedural algorithm to obtain the direction and without computing any real hessian
4.

As we keep iterating the algorithm, we need to keep track of all the vectors ending with a
potentially infinite memory requirement. To solve this, the limited memory version of the BFGS
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Algorithm 4 Compute the product H−1
n gn

1: procedure BFGS multiplication(H−1
0 , {sk}, {yk}, gn)

2: d ← gn
3: // Compute the right product
4: for i ← 1..n do
5: αi ← ρi s

T
i d

6: d ← d − αiyi
7: end for
8: // Compute center
9: d ← H0d

10: // Compute the left product
11: for i ← 1..n do
12: β ← ρiyid
13: d ← d + (αn−i+1 − β)si
14: end for
15: Return d
16: end procedure

(L-BFGS) only stores the last m vectors of yk and sk , and usually starts every time with the same
not dense hessian (e.g Hn−m is always Id). Then computes the direction of optimization with the
same algorithm as before.

Even with these limited-memory variant, the requirements still pretty high and can easily fulfil
the 16 GB of RAM memory that we have available in the Google Colab environment resulting in
crashes of the kernel during the trainings. Specially if we don’t take care of detaching the branches
that are irrelevant to us during the forward calculation graph (e.g. during the training of the gating
parameters, we need to detach the latent variables every time we use them as we are not going to
modify them, but they will fill memory space). Despite those inconveniences, this method has shown
to outperform the Gradient descent variants specially where the surface of the loss function is not
flat, both in number of iterations and the final loss function.

In general, we will prefer to use the more sensitive algorithms, that are capable of fine tune
the parameters better, but in situations where there are many small local minims, we need a rough
algorithm like the simple Gradient Descent with a fixed α parameter, otherwise, we take the risk of
falling in suboptimal parameters without the capacity of reaching the optima. This will be especially
relevant when we are training the parameters of the gating model, as the predictions’ likelihood can
be full of local minima for each data point and in the experiments, we found that in most of the
cases, the gradient was erratically enough that the Adam and LBFGS algorithms were not able to
even change the parameters, where the simpler version of the Gradient Descent successfully trained
the parameters in the long term.
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4. Experiments

In this section, we want to make an overview of the experimentation process that guided us on
deciding how to create the best models that we can get with this theoretical frame, and make
qualitative comparisons against the previous model (Controlled GPDM) both in time efficiency and
predictions reliability.

To compare the models’ performance, we have to introduce some parameters. Firstly, we will
measure the accuracy of the observable space prediction with the relative error along one complete
trajectory (or some subsequence of the trajectory):

εk = 100 ·
N∑
t=1

‖yk
t − y∗kt ‖
‖yk

t ‖

where the k superscript indicates that it corresponds to the k-th test trajectory, the yt represents
the observation of the t-th time step of the reference trajectory and the y∗t is the analogous but for
the predicted trajectory. This latter trajectory is obtained by mapping from the latent trajectory x∗

with the mapping model, and the latent trajectory is obtained by compounding the predictions of
the latent dynamical model.

If we perform this measurement over several test trajectories, we can get an idea of how it will
perform predicting those long sequences and even know the confidence interval in which we can
expect the errors to happen by computing the standard deviation of the relative error of those test
trajectories.

Before we start using this error function, we have to clarify that the error is not constant along
the whole sequence, as we introduce the first steps to start the rollout, the error near them will be
very small (if any, it will come from the mapping model, not from the dynamical model) but as
we keep going, we will be compounding the error in the latent space leading to very big and not
representative trajectory error as we can see in the figure 9. In general, the mean of the error will
grow monotonously with the number of steps until we reach regions where there is not any near
point and the predictions generates random samples without correlation with the training data.

To simplify the measure of the relative error, we will use the mean over all the sequence as a
reliability parameter, but we have to have in mind that the rollout over shorter sequences in general
will have smaller relative error values than the longer ones. We will specially need to keep this in
mind if we use different datasets with different lengths, and we should know that this value is only
comparable inside the same dataset.

To measure the execution time, we will measure the time it takes to predict each step during the
rollout of a complete trajectory and the parameters that we are going to consider are the mean and
the standard deviation that exhibits the variability of this parameter.

t̄ =

∑N
i=1 ti
N

std =

√∑N
i=1(ti − t̄)2

N

To measure the training time, we will only measure the mean of a few training steps because
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Figure 9: The error evolution plot has been obtained averaging 20 rollouts with a trained MoGPDM.
The dark blue line is the mean relative error, and the blue shaded area is the 95% confidence interval
computed with the standar deviation.

training some of the greatest models requires hours, and it would take days to complete the plot
otherwise.

To keep coherence for the time performance, we will use the same hardware set up for all the
tests. This is composed by a laptop with 32 GB of DDR4 RAM memory with 3200 MHz of clock
speed, a mobile AMD Ryzen 9 5900HX CPU with 3,30 GHz of base clock speed and 4,80 GHz of
max boost speed, and 8 cores with 16 threads.

The dataset that we are going to use to perform the experiments comes from a finite elements’
simulation of a cloth developed at the Institut de Robòtica i Informàtica Industrial (IRII) [18]. It is a
modified version of the dataset that the investigation group used to evaluate the CGPDM [1] and it
is divided into four subsets with different range of movements R ∈ {30, 60, 90, 120}. In our dataset,
the upper right corner always stays in the origin of coordinates, so the model only has to learn the
deformations of the cloth and not the spatial position.

Once we have defined the variables that we want to compare, and the experimental framework,
we can start to make the experiments and show some results.

4.1 MoCGPDM tuning

We have previously defined the training algorithm that we are going to use 3.2.3, but we have not
specified yet some of the hyperparameters that we are going to employ like the number of training
loops, the balance hyperparameters or the experts’ optimization steps that we need to perform in
each step of the algorithm. This is because those parameters cannot be optimally chosen for all the
models, and therefore they are subject to be chosen empirically.
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Figure 10: Here we can see how much time can it take to perform one training step of the different
steps of the training algorithm.

4.1.1 Equilibrium betweeen experts training and Gibbs sampling of the indicators

Firstly, we need to balance between the optimization of the experts’ parameters plus latent variables
(second step of the algorithm) and the update of the experts’ components (third step). The need to
find that consideration comes from the high computational cost that the Gibbs update has compared
to the computational cost of performing one step of parameters and latent variables’ optimization
(figure 10).

But more importantly, the balance is needed due to the fact that optimizing the latent variables
with separated experts may result in the specialization of those latent variables to its experts. This
means that if one latent point belongs to one expert, the optimization steps may drag it to another
direction as it belonged to another expert, and then, the latent space could lose meaning as one
joint latent space because each expert would have its own latent space representation. It entails the
futility of performing the dynamics in a latent space and using a gating model to choose the experts
that are going to predict both de dynamic and the mapping.

As the latent variable model is supposed to be continuous (proximal data point will also have
proximal latent representation), one way to know if we have fallen into a non-representative latent
space is by visually inspecting the different trajectories in the latent space (see figure 11). If there
are many trajectories with a saw tooth shape, it means that consecutive observations (proximal data
points) have very different representation in the latent space. To automate the inspection, we can
also define some parameter that determines the ”quality” of the trajectories based on the continuity
of the curvature approximation of each point inside each trajectory computed, for example as

κi =
2 sinϕi

‖xi+1 − xi−1‖

where ϕi is the angle between the segments xi−1xi and xixi+1.

To achieve this equilibrium, we need to employ several methods. One is to ensure that all the
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Figure 11: One smooth latent trajectory that has been bad trained fixing the points to different
experts and overfitting them on purpose.

latent variables are free enough to keep moving between different experts and, therefore, averaging
the gradient that comes from different experts keeping the meaning of the whole latent space. This
means that we need to alternate between training the experts and Gibbs sampling the indicators with
a reasonable ratio so the specialization of the latent variables does not occur.

Another important thing we have to be careful about is to train the latent variables with a small
learning rate. This will avoid making big turns every time we update them inside one expert. As
the LBFGS optimizer does not admit separate learning rates for different parameters, we will have
to choose either training with a small learning rate or employing another optimizer, like Adam.

At first, we can expect a similar performance with the Adam and the LBFGS optimizer as both
of them make second order estimations to search the training direction, but there are fundamental
differences when we try to apply the optimizers to this the problem. The LBFGS will perform several
training steps each time we call it as it needs to fill the memory with the gradient approximations to
estimate the Hessian, and the learning rate is not modular, so it is mandatory to have small learning
rates for all the parameters. In the other hand, the Adam optimizer makes small gradient updates
each time we call it (faster, but each step is less relevant), and the flexibility of the learning rates
will allow us to set more aggressive learning rates to the expert’s parameters while we keep been
conservative training the latent variables. Those characteristics of the Adam optimizer translate into
a greater capacity keeping a higher rate between experts training steps and Gibbs updates without
overfitting (the latent variables to the experts) using the Adam optimizer compared to the LBFGS.

To compare how the two optimizers behave, we are setting two model training loops with the
same 10 sequences of training data. The first one with the Adam optimizer performing 50 training
steps with lr = 0.01 for the parameters and lr = 0.0001 for the latent variables against each Gibbs
updating. And the second model with the LBFGS optimizer performing only 2 training steps with a
lr = 0.0001 for each Gibbs update. As we can see in figure 12, both of the optimizers have a saw
tooth outline of the loss function during training. The descents happen during the experts training
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Figure 12: The evolution of the negative log-likelihood value during the training process comparing
Adam and the LBFGS optimizer.

and the loss increments takes place when we Gibbs update the experts 1. The minimum loss will be
reached when the random loss increments during the Gibbs update and the ability of optimizers to
decrease the loss with the given constrains reach an equilibrium. And, as we expected, Adam will
outperform the LBFGS in the long term thanks to the number of steps that it is allowed to take.
Note that in general, the LBFGS performs better with the same number of training steps (but with
a worse computational cost) and usually can reach similar losses with less time if the number of
variables is moderate. It was also the default optimizer that they used to train the CGPDM [3], and
so the comparison between the optimizers.

In the figure 13 we can see a comparison of the same latent trajectory in both models. The
represented trajectory in the Adam trained model is noticeably smoother, and the same happens
with the rest of the trajectories of the training set. We have found that indeed, smoother trajectories
tend to come with a better capacity of prediction (figure 14) as the experts will learn to reproduce
a more consistent behavior in the latent dynamics instead of an erratically one.

Note that we can always make the learning rate smaller for the LBFGS optimizer and then be able
to train more times at each loop step. There will be always ways to fine-tune the hyperparameters to
make this training methods plausible, but it requires much more work than straight using the Adam
optimizer. And in any case, the learning rates of the latent variables will always be bound to the
learning rate of the latent variables. The only way to ”modify” the learning rate using the LBFGS is
by detaching the latent variables from the computational graph (see figure 8) at some steps, resulting
in a slower alteration of the latent variables, but we are not going to explore this option during this
thesis project.

1This might sound counterintuitive as we performed the sampling giving more probabilities to enhance the loss, but
we also need to take into account the effect of the gating model and the randomness of the process.
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Figure 13: Representation of the three more relevant latent variables of the same trajectory of the
training set of the two optimizers. On the left side, in blue, the one corresponding to the Adam
optimizer, and on the right side, in red, the corresponding to the LBFGS optimizer.

Figure 14: Here we can see the time evolution of the error with different trajectories. On the left
side, in blue, the error committed by the model trained with Adam, in the middle the analogous by
the model trained with the LBFGS, and on the right side, the mean error and the standard deviation
of all the error committed by each model.
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4.1.2 Balance hyperparameter

Another parameter we have to consider and evaluate the performance of is the balance hyperparam-
eter. As we have seen before, this is introduced to give more relevance to the likelihood related to
the latent dynamical mapping, as its negative log-likelihood is about a hundred times smaller. As the
dynamical model is the one that will compound the error by iterating over the previously predicted
steps, it seems pretty reasonable to give it more weight in order to shift the optimal result to a more
suited to predict the dynamics.

Before performing the experiments to compare the behavior of models trained with different
balance hyperparameters, we can make some guesses of how the models will change when we modify
this. Firstly, we are going to assume that the experts’ parameters are always going to reach the
optimum for whatever latent variables that we throw in, so the main doubt will come from how
we should train the latent variables and how much relevance should any of the experts have while
training them.

What we can see about the log-likelihood is that the one corresponding to the mapping is about a
hundred times greater than the one corresponding to the latent dynamics. This is because there are
much more dimensions in the observable space than in the latent space. This magnitude discrepancy
could turn into a better optimization of the mapping experts as most of the gradient will be driven to
those experts instead of the latent experts. In this scenario, incrementing the balance hyperparameter
could result in a great advantage.

In the other hand, the portion of the gradient of the latent variables that belongs to the latent
experts usually behaves more erratically (small changes in the parameters may return very different
gradients) due to the fact that it goes through both the input and the output of those experts. In
addition, if we train the latent space to achieve a better mapping, we will have a more representative
latent space, and therefore, smoother trajectories at least at first. Those could constitute a downside
of incrementing the balance hyperparameter.

To make the experiments, we have chosen the same 10 training sequences of 102 observations
each (a total of 1020 data points) for all the models. The maximum number of points for each
expert is 450, to fit at least 4 sequences per expert and have at least 3 experts. And the training
loop is designed with the Adam optimizer of the previous section. The balance hyperparameters that
we are going to check with the experiments will be 0.1, 1, 10 and 100.

At first sight, we can see in the figure 15 that there is not a significant discrepancy in the loss
evolution, but the model with the lower balance values seems to have discontinuous latent trajectories.
This might indicate a worse performance for this model.

As we can see in the figure 16, neither incrementing nor decrementing the value of the balance
hyperparameter will enhance the performance of the model (at least, the optimal balance will be
of the same order of magnitude). In general terms, we can also guarantee the lower values of the
balance tend to have better performance than greater values, so we can say that the arguments that
favor a lower balance are more relevant than the others at the end.

If we want to know how the predictions’ error would look, we can check the following link to a
video where it is represented the movement of the predicted observable and the reference observable
for the current four models. https://youtu.be/sDvdAyr4qWg
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Figure 15: On the left side, we have the loss outline during the training, and at the right size, we
have represented the same trajectory in the latent variables of the different models. The red color is
assigned to the 0.1 balance parameter, blue for the balance = 1, yellow for the 10 and black for the
100.

Figure 16: On the left side, we can see the relative error evolution along the time series of the four
balance hyperparameter models. And on the right side, we have the relative error averaged along
the time series with the 95% confidence interval.
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4.1.3 Maximum size of the experts

This is the most difficult hyperparameter to tune, since we do not know a priori neither the number
of data points that the model is going to have in total nor the shape of the latent variables. We can
only expect certain behavior and then choose the Nmax that we consider that it fits our needs.

In general, the predictions time performance will increase (it will take less time) if we choose
smaller experts, as the predictions performed by each expert depends cubically on the number of
points per expert and only linearly over the number of experts. If we suppose that we will always fill the
experts up to their maximum number, we can make some computational cost approximations. If we
have N data points, we will have dN/Nmaxe experts, each one with cubical complexity at prediction
time O(N/Nmax · N3

max) = O(NN2
max), and the computation of the kernel function to each data

point in the gating model will have linear complexity. This results in a combined complexity for the
prediction algorithm that will depend on the number of points N and Nmax

O(NN2
max) +O(N)

As we reduce the maximum number of points that the experts can have, we expect a performance
reduction. This is because each expert will dispose of fewer points to interpolate the output of some
data, especially next to the borders of each expert, but this effect should also be counteracted by
the gating model. We will see how the performance is hit by this hyperparameter.

The variation of this hyperparameter will also affect the training time. The expert’s complexity
will be given by the cubic scaling of each expert and linearly with the number of experts resulting in

O(N/Nmax · N3
max) = O(NN2

max)

similar to the prediction algorithm, but this time it will take more time as we need to also inverse
the covariance matrix and not only multiply matrices.

During the Gibbs sampling, we loop along all the training set. For each point, we have to detach
the point from the expert (O(N2

max)), and compute the total likelihood if the point belonged to
each expert( assuming dN/Nmaxe experts, the cost is O(N/Nmax ·NN2

max) = O(N2Nmax) and finally
reattach the point to an expert (also O(N2

max)). The resulting total cost will scale as

O(N(2 ∗ N2
max + N2Nmax)) = O(N2N2

max + N3Nmax)

This is the most expensive step of the training algorithm and would also benefit of smaller Nmax .

The gating training is done also by looping over all the training set indicators. We have to detach
one indicator (O(N2

max) and compute the gating weights for each expert (O(N)) and the likelihood
of each expert individually (O(NN2

max). The resulting total cost complexity can be calculated as

O(N(N2
max + NN2

max)) = O(NN2
max + N2N2

max) = O(N2N2
max)

Knowing this, we are going to design the experiments by looking to how many experts we expect
to have. With 10 sequences of the dataset of 102 points each, we will have 1020 points. The Nmax

values that we are going to try are Nmax = 110 to expect 10 experts, Nmax = 230 to expect 5 experts,
Nmax = 450 to have 3 experts and Nmax = 1100 to have only one expert (this is the degenerated
case).
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Figure 17: On the left side, we have portrayed the composition of the training time that each loop
takes in function of the Nmax . And on the right side, we have the time that it takes to perform a
latent prediction for the model with the averaged prediction.

As we can see in the figure 17a, the greater the Nmax , the more time we are going to need at
each training loop. We can also notice how the composition changes as the experts’ training time
starts to grow and become noticeable as the experts’ size grow.

In the figure 17b, the prediction time that the model with Nmax = 110 was the greatest, which
was unexpected and will be investigated as a future work, but the rest of the models followed the
evolution we anticipated.

In the figures 18, we can recognize that the model with smaller experts made unexpectedly good
predictions despite having the latent variables very fragmented. There is a possible explanation to
this case, as the mapping model generally performs pretty well when the latent variables are close
to the training data, the errors of the trajectory come from the compounding of latent dynamics
predictions. In our training algorithm, the experts of the latent space are initialized with whole
sequences of data, and in the Nmax = 110 case, only one sequence can be filled to each latent
expert. If the Gibbs sampling does not mix the experts, or only moves very few data points, the
sequences of the experts will stay intact and there will be a specialization to reproduce the given
sequences both in the gating model and the experts itself.

On the other hand, the rest of the models perform accordingly to what we anticipated, where
the degenerated case was able to make the best predictions and the more fragmented the latent
variables, the worse performance we can expect in general.

If we choose the Nmax parameter in function of the number of points, we will have a reduction
in the training and predicting time by a factor (the square of the number of expected experts in the
predictions), but we will not obtain a complexity reduction. If we fix this parameter to a certain
number, the prediction complexity will become linear (this is necessary to obtain ”usable” dynamical
models) with respect to the data points. But the training algorithms will keep been cubical unless
we modify the Gibbs sampling algorithm.

As we have shown, there are many advantages and disadvantages of incrementing the size of the
experts, as we need to train several models, we want to choose the parameters that allow us to train
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Figure 18: On the left side, we can see the relative error evolution along the time series of the four
models. And on the right side, we have the relative error parameter averaged along the time series.

relatively fast but preserving as much performance as possible. To this end, we have chosen to use
the parameter Nmax = 450 from now on, as we consider that is might be in a sweet point.

4.1.4 Predictions algorithm

In the 3.2.5, we have shown that there are two possible interpretations of how the gating model should
average the predictions of the experts. The weighted averaging of independent Normals (from now
on, we are going to call it the ”averaging” prediction) and the joint likelihood of the distributions
of a mixture of Gaussian process (from now on, ”mixture” prediction). This latter one has to be
sampled by first sampling the expert and then sampling the output using this one expert.

This not only entails two different possible results if we encounter difficult situations, as we have
described before. But also has different computational complexity. The averaging prediction needs
to compute the guesses of all the experts O(NN2

max) and the gating O(N), but this last one is much
faster despite having the same marginal complexity.

However, in the mixture predictions, we only need to compute the gating model O(N) and then
sample one expert and calculate the prediction O(N3

max).

Given that the number of points will always be larger than the largest expert (with more points
associated), the mixture predictions will always be faster or at least as fast as the averaging predic-
tions.

To check which one has better chances to perform better in general, we will train one model
with 10 different sequences as we have done before and compare the committed error in the training
sequences and in 10 similar test sequences.

In the figure 17b we can see that the average error is very similar between the two prediction
techniques, but the average method tends to perform slightly better than the mixture of experts.
This is because by averaging the predictions, we ensure that the error is going to be smaller than
choosing a bad expert. We can say that the averaging predictions are more conservative and robust
in the long term.
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Figure 19: Average error committed by the model comparing the two interpretations of the prediction
algorithm. The average time that the averaging prediction took to make one dynamical prediction
is t = 0.00206s, and the mixture prediction needed 0.00084s to make each step.

4.2 Comparing CGPDM with the proposed MoCGPDM

Summarizing the results of the previous experiments, the best Mixture of Controlled Gaussian Process
Dynamical Models we can get is with a balance hyperparameter equals one, as the original likelihood.
With a maximum size of the experts of 450. The experts must be trained with the Adam optimizer
with a learning rate lr = 0.01 for the experts’ parameters (big enough to allow a fast adaptation
to new data points) and a learning rate lr = 0.0001 for the latent variables (small enough, so we
don’t overfit the latent space to the experts). The Gating parameters should be pretrained at the
beginning to avoid senseless Gibbs updates later on, and the optimizer must be a simple gradient
descent, as higher order optimizers don’t work well. The ratio of training will be 50 steps of the
Adam optimizer, one Gibbs update and two Gates training steps at each training loop.

The size of the latent space will depend on the dataset we are using, in the cloth simulations
dataset that we are using, d = 5 dimensions are enough to represent the observed data. And for the
predictions, we are going to adopt the averaging method, as it has showed to perform slightly better.

The first thing that we can compare is the time required to train and evaluate the model. We have
already described the computational complexity of the MoCGPDM, and the training of the CGPDM
involves the computation of the log-likelihood. This implies the calculation of the covariance matrix,
its inversion and its multiplication with other matrices, so the marginal complexity is cubical over all
the training set O(N3).

To make predictions, we have already accelerated the process by saving the inverse of the covari-
ance matrix after the training loops (saving us the time needed to compute and inverse the covariance
matrix), but it still involves the multiplication of N × N matrices, so the marginal complexity will
also be cubical O(N3). Note that there are algorithms with a better marginal complexity, but with
the size of these matrices, they do not compensate the effort of implementing them and can even
downgrade the overall performance.
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Figure 20: On the left side, the time we needed to perform one optimization loop as function of
the number of data points. We are confronting the time needed to make one training step of the
CGPDM against the time that the MoCGPDM takes to train the experts, Gibbs sample the experts’
indicators and train the gating parameters stacked. On the right side, the average time needed to
perform one prediction step by the two models as function of the dataset size.

As we can see in the figure 20, with a fixed Nmax , the training of the Mixture will grow at a
slower rate than the original CGPDM, and the predictions time will grow linearly for the Mixture
model, against the cubical evolution of the CGPDM.

Note that we typically we will need more training loops for the CGPDM than for the MoCGPDM,
this means that the needed time to train satisfactorily the GPDM will surpass the total time needed
to train the Mixture much earlier.

From the performance perspective, we expect a reduction in the predicting accuracy as none of
the experts dispose of the whole dataset to make the predictions, but this should be counteracted by
the gating model and the more flexibility that having multiple experts parameters should bring us.
This flexibility could even become a benefit in certain cases, where the there are places with a great
density of points and other places where there are very sparse points. The CGPDM would need to
try to equilibrate the lengths of the kernel, but the MoGPDM could handle it by introducing more
experts, one with short length for the dense part and other with long lengths for the sparse space.

In the figure 21 we can see the results of both models in different situations and datasets. As we
expected, in optimal conditions, the CGPDM will outperform the proposed model, but in situations
with a lack of information (5 sequences for greater movement ranges) the averaging of the predictions
can bring us better results than one single expert. The MoGPDM will also outperform the CGPDM
in situations where there are very concentrated spaces (20 seq) where the redundancy of data points
hurts the performance of this latter model.
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Figure 21: Mean relative errors (with 95% C.I.) obtained by different setups in the considered
movement ranges. The red color is assigned to the results of the MoCGPDM and the blue results
correspond to the CGPDM
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5. Conclusions

The objective of this project was to improve the computational efficiency of one state-of-the-art
model that was able to learn the dynamics of a deformable object only by feeding data to it.

To reach this goal, we have introduced the divide and conquer idea by implementing a mixture
of experts with the special considerations that the Gaussian Processes requires to be considered as
viable independent experts.

After shaping the mixture of Gaussian experts to model the data, we had to fine-tune the training
algorithm and all the hyperparameters related with the log-likelihood to avoid the degeneration of
the mixture of experts. This was the part that took most of the time, as it was not easy to find
some proper combination of them that worked well.

This resulted in a usable dynamical model that doesn’t need any previous knowledge of the
system and is fully data driven. It was also capable to generalize the dynamics of high dimensional
observations, like the mesh of points of a cloth under the manipulation of an agent that we are
feeding to it.

This new model has much better computational performance than the previous CGPDM model,
and is capable to make real time predictions even with a high number of trainings data points
accomplishing the goal that we had set at the beginning of the project.

One consideration that we need to have, is that this model, as any Gaussian Process, is only
capable to interpolate the data between training points. This means that is never going to reach the
performance of a real simulation, no matter the number of sequences you feed him. But it is also
able to make some predictions only by giving a few sequences to it if the range of motion is close to
the given ones.

As future work, we will try to train the model in a much general environment, with no restrictions
of movements (but always with the quasi-static manipulation assumption) and see how it performs.

We could also fit this model in a learning from demonstration application, where you show the
robot how to move a cloth, and the machine has to be able to extract the needed data through
a visual module, and then reproduce similar movements with a model-based control or set new
objectives but near the trained dataset.

In anyone wants to see the code behind the model, you can visit the public GitHub repository
MoGPDM that I made with the source code of the torch class object and some examples of usage.
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