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Abstract

This Master Thesis presents different Hardware acceleration algorithms and its benefits
compared to the software implementation. The proposed algorithms are implemented on
Xilinx ZYNQ-7000 series XC7Z020 SoC using High-Level-Synthesis (HLS) tool. With
todays System-on-Chips from Xilinx or Intel, a process can be chosen to be implemented
in the Programmable Logic or in the Processing System.

In order to have a better acceleration factor, different approximate and accurate adders
and multipliers were instantiated in Verilog, synthesized and simulated using Vivado and
finally they were compared between each other to see if they really offer benefits or not. In
the case of approximated adders, they showed very promising results for the application
written in this Thesis. On the other hand, approximated multipliers exhibited worse results
than the accurate ones.
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1 introduction

1.1 Context

Hardware accelerators have a wide range of applications that include surveillance, automo-
tive, robotics and medical diagnosis. Hardware acceleration is the use of specific hardware
to perform more efficiently than a general-purpose Central Processing Unit (CPU) run-
ning a software designed to perform the same function. Hardware accelerators give the
opportunity to decrease the latency and increase the throughput for a given computation.
Any function or data transformation can be computed or calculated purely in software
on a generic CPU. Each approach, developing software in a generic CPU or developing
hardware for a specific function, has advantages and disadvantages.

The most known advantage of software is easier development (leading to faster times to
market) and also there are more software developers than hardware ones. Other advan-
tages like: heightened portability, and ease of updating features or patching bugs, at the
cost of overhead to compute general operations.

Hardware acceleration is an old idea. For instance, 86 Family processors [9] could have an
arithmetic coprocessor for floating point operations. But right now with the appearance
of SoCs (System-on-Chips), which offer the possibility to implement a whole system into
a single chip, there is a need to have complex processes running in real time systems (Real
Time Recognition, Autonomous driving). This have made hardware accelerators a very
current need. In the figure 1 can be seen the general structure of this SoC devices, in this
case a Xilinx Zynq Family FPGA.

Figure 1: A simplified model of the Zynq architecture [3].

In this simplified model, the SoC is divided in two main parts:

� Processing System (PS): All Zynq devices have the same basic architecture, and
all of them contain, as the basis of the processing system, a dual-core ARM Cortex-
A9 processor. This is a ‘hard’ processor — it exists as a dedicated and optimised
silicon element on the device.
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� Programable Logic (PL): this will be the FPGA. The PL section is ideal for
implementing high-speed logic, arithmetic and data flow subsystems.

While the PS supports software routines and/or operating systems, meaning that the
overall functionality of any designed system can be appropriately partitioned between
hardware and software. Links between the PL and PS are made using industry standard
Advanced eXtensible Interface (AXI) connections [3].

FPGA logic fabric permits a high-speed, fully parallel version of a design to be imple-
mented. This ‘off-loading’ of operations from the processor into hardware has the potential
to greatly reduce the overall execution time, as illustrated in Figure 2 for the case of FIR
filtering. It also frees up the processor, such that it can undertake other operations using
the processing cycles vacated by the accelerated function.

Figure 2: Processor activity before (top) and after (bottom) hardware acceleration of
FIR filtering [3].

With the advent of reprogrammable logic devices such as FPGAs, the restriction of hard-
ware acceleration to fully fixed algorithms has been removed these last years, allowing
hardware acceleration to be applied to problem domains requiring modification to algo-
rithms and specific solutions.

Software or hardware can compute any computable function. Hardware description lan-
guages (HDLs) such as Verilog and VHDL can model the same semantics as software and
synthesize the design into a netlist that can be programmed to an FPGA or composed
into logic gates of an application-specific integrated circuit. They normally offer higher
performance per watt for the same functions implemented in software.

Custom hardware is limited in parallel processing capability only by the area and logic
blocks available on the integrated circuit die. Therefore, hardware is much more free to
offer massive parallelism than software on general-purpose processors, but this comes with
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a cost. Right now, the space in an ASIC or in an FPGA is a very cost sensitive parameter.
There are very large FPGAs where you can implement many hardware designs but those
FPGAs are not intended to be used by a wide range of people due to its cost (≈ 30, 000$).

An another hot topic right now that was also studied in this Thesis was implementing
Approximated Arithmetics. Apprximated multipliers or adders are intended to use in ap-
plications where the 100% accuracy is not needed. Approximate computing is extensively
researched in its multiple forms and sources [5, 7].

1.2 Applications

Conventionally, processors were sequential (instructions are executed one at a time), and
were designed to run general purpose algorithms controlled by instructions (for example
moving temporary registers data from one register to another). Hardware accelerators
improve the execution of a specific algorithm by allowing greater concurrency, having
specific data paths for their temporary variables, and reducing the overhead of instruction
control.

Modern processors are multi-core and often feature parallel ”single-instruction; multiple
data” (SIMD) units. Even so, hardware acceleration still yields benefits. Hardware accel-
eration is suitable for any computation-intensive algorithm which is executed frequently
in a task or program. Depending upon the granularity, hardware acceleration can vary
from a small functional unit, to a large functional block.

There are many applications and fields were hardware accelerators work pretty well. These
are some examples:

1. Computer Graphics: the hardware accelerator here for excellence is the Graphical
processing unit, also known as GPU.

2. Digital signal processing: in this application the specific chip is called DSP,
Digital Signal Processor.

3. Multilinear algebra: This application is for Machine Learning, a really hot topic
right now for many systems [1, 2]. Google developed the TPU, Tensor Process-
ing Unit, an ASIC for Artificial Neural Networks and optimized to be used with
Tensorflow, a very known library for machine learning.

On the other hand, here we will see how we implement hardware accelerators in FPGAs,
which has a really big benefit from an ASIC, his reconfiguration capability. In an ever-
changing world, this characteristic of an FPGA gives them a really good advantage versus
ASICs.

FPGA technology is really good for emerging technologies which are constantly evolving,
and the reconfiguration is a key aspect for this kind of situations.

As one can see, hardware accelerators can be used in many different sectors, but in this
Thesis, different IP Cores are going to be developed with one application in mind, Au-
tonomous driving .

13



1.3 Problem statement

The aim of this Thesis is to show different design methodologies in order to implement
different hardware accelerators in FPGAs and compare the results regarding to resource
usage, execution time and precision.

A comparative on how hardware and software is processed in Xilinx platforms will be
shown and how to manage which functions are executed on the Programable Logic or in
the Processing System of the FPGA.

Afterwards, a comparison in the PL side, comparing exact adders and multipliers with
approximate adders/multipliers. This could lead to errors but a cost of speed and re-
source utilization. In applications were probability is involved (Machine Learning, Image
Recognition), these kind of operands are of real interest if there is a better acceleration.

1.4 Research question

The research question can be formulated as: Which are the tradeoffs between implementing
specific functions on the Programable Logic of an FPGA versus programming them in
the Processing system? Which is the design flow(s) on the different tools? Which are the
benefits of implementing pure adders/multipliers against approximated versions of these?

There are more questions derived from the main one:

� Hardware utilization?

� Which steps have to be followed by the designer in order to implement a model on
an FPGA?

� Which tools are available?

� Maximum frequency?

� Processing times for Hardware, Software and approximated Hardware?

1.5 Outline

In the 2nd chapter the different tools for the project development and the design flow
will be explained. In the 3er chapter different design examples with different topologies
will be shown. In the 4th chapter, the results of the experiments and in the 5th chapter
conclusions and future work.

14



2 State of the Art

In this chapter, information about the project development and the different tools will
be explained. First, an explanation on Vivado HLS, and how can be C code synthetized
into HDL code. Once that the software code has been succesfully exported to an IP Core
Then, a Vivado project with its corresponding Standalone Application. Afterwards, a new
open-source tool from Xilinx, PYNQ.

2.1 Vivado HLS

The Xilinx Vivado High-Level Synthesis (HLS) tool transforms a C specification into a
register transfer level (RTL) implementation that you can synthesize into a Xilinx FPGA
[6]. You can write C specifications in C, C++, or SystemC, and the FPGA provides a mas-
sively parallel architecture with benefits in performance, cost, and power over traditional
processors. This chapter provides an overview of high-level synthesis.

High-level synthesis includes the following phases:

� Scheduling

Determines which operations occur during each clock cycle based on:

– Length of the clock cycle or clock frequency.

– Time it takes for the operation to complete, as defined by the target device.

– User-specified optimization directives.

If the clock period is longer or a faster FPGA is targeted, more operations are
completed within a single clock cycle, and all operations might complete in one
clock cycle. Conversely, if the clock period is shorter or a slower FPGA is targeted,
high-level synthesis automatically schedules the operations over more clock cycles,
and some operations might need to be implemented as multicycle resources.

� Binding

Determines which hardware resource implements each scheduled operation. Binding
determines which library cell is used for each operation in the C code.

� Control logic extraction

Extracts the control logic to create a finite state machine (FSM) that sequences the
operations in the RTL design.

HLS synthesizes the C code as follows:

� Top-level function arguments synthesize into RTL I/O ports.

� C functions synthesize into blocks in the RTL hierarchy.

If the C code includes a hierarchy of sub-functions, the final RTL design includes
a hierarchy of modules or entities that have a one-to-one correspondence with the

15



original C function hierarchy. All instances of a function use the same RTL imple-
mentation or block.

� Loops in the C functions are kept rolled by default.

When loops are rolled, synthesis creates the logic for one iteration of the loop, and
the RTL design executes this logic for each iteration of the loop in sequence. Using
optimization directives, you can unroll loops, which allows all iterations to occur in
parallel.

2.1.1 Scheduling and Binding example

In the following figure 3, shows an example of the scheduling and binding phases for this
code.

Figure 3: C code example

In the scheduling phase of this example, high-level synthesis schedules the following op-
erations to occur during each clock cycle:

� First clock cycle: Multiplication and the first addition.

� Second clock cycle: Second addition and output generation.

In the preceding figure, the square between the first and second clock cycles indicates when
an internal register stores a variable. In this example, high-level synthesis only requires
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that the output of the addition is registered across a clock cycle. The first cycle reads x,
a, and b data ports. The second cycle reads data port c and generates output y.

In the final hardware implementation, HLS implements the arguments to the toplevel
function as input and output (I/O) ports. In this example, the arguments are simple data
ports. Because each input variable is a char type, the input data ports are all 8-bits wide.
The function return is a 32-bit int data type, and the output data port is 32-bits wide.

The main advantage of implementing the C code in the hardware is that all operations
finish in a shorter number of clock cycles. In this example, the operations complete in
only two clock cycles. In a CPU, even this simple code example takes more clock cycles
to complete.

2.2 PYNQ

As mentioned before, PYNQ is an open-source project from Xilinx, which tries to make
easier to program their platforms with high-level programming languages like Python [8].

Figure 4: PYNQ Framework

Using high-level programming languages like Python and his libraries, designers can ex-
ploit the benefits of Programable logic and microprocessors to build more easily exiting
electronics systems. PYNQ can be used with these FPGA families from Xilinx: Zynq,
ZynqUltrascale+, Zynq RFSoC, Alveo accelerator boards and AWS-F1.

With this project, Xilinx tries to include more developers and designers to program their
platforms. People like:
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� Software developers who want to take advantage of hardware accelerators and Xilinx
board’s capabilities without having or knowing to use ASIC-style design tools to
design hardware.

� Hardware designers who want their designs to be used by the widest possible audi-
ence.

� System architects who want an easy software interface and framework for rapid
development of their designs.

2.2.1 Key technologies of PYNQ

The three main technologies in order to run this in a Xilinx board are shown in the Figure
5.

Figure 5: PYNQ Key technologies

Jupyter notebooks is a browser based interactive computing environment. Jupyter note-
book documents can be created that include live code, interactive widgets, plots, explana-
tory text, images and video.

A board running PYNQ, can be easily programmed using Python. Using Python, develop-
ers can easily preload what is called an overlay or hardware library which is reconfiguring
the FPGA with a new bitstream. The main advantage of this is the ease programmability
of the SoCs, with just two clicks in the web browser one can change FPGA’s configuration.

In order to run the software PYNQ into a Xilinx board, one needs to create a bootable
SD card preloaded with a PYNQ image. Everything is explained in the github repository:
https://github.com/Xilinx/PYNQ.git.

2.3 Vivado

Vivado Design Suite is a software suite produced by Xilinx for synthesis and analysis
of HDL designs, superseding Xilinx ISE with additional features for system on a chip
development and high-level synthesis.
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2.4 SDK

The Xilinx Software Development Kit (SDK) is an Integrated Development Environment
(IDE) for development of embedded software applications targeted towards Xilinx em-
bedded processors. SDK works with hardware designs created with Vivado Design Suite.
SDK is based on the Eclipse open source standard. SDK features include:

� Feature-rich C/C++ code editor and compilation environment.

� Project management.

� Application build configuration and automatic Makefile generation.

� Error navigation.

� Well-integrated environment for seamless debugging and profiling of embedded tar-
gets.

� Source code version control.

� System level performance analysis.

� Focussed special tools to configure FPGA.

� Bootable Image creation.

� Flash Programming.

� Scriptable command-line tool.

2.5 Methodology / Project development

With the used tools explained, the project development involves the following steps.

2.5.1 Vivado HLS

The first step was thinking in a hardware accelerator application for a real time processing
system and implement it using the Vivado HLS tool. We will see later on that Vivado HLS
sometimes adds more logic to the design so it will be better always to implement the HDL
code. As it is been previously mentioned, the Vivado HLS tool has been chosen because
of the fast prototyping possibilities of having an IP Core from a well known programming
language like C or C++.

As this tool synthesises hardware from a software description, this tool works very well
for this development flow.

In order to check the correct functionality of the IP, a simulation of the desired function
was done also in C. This is the same as a hardware testbench. Once created a C simulation,
one can check the correct behaviour of the signals with the Vivado HLS as well. The
simulation is also done with the same tool, having a testbench (also written in C or
C++) where the wanted software function is used.
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Once the function is synthesisable and the behaviour is as expected, the next step was to
export the C code to HDL code, both Verilog or VHDL and export the new IP Core to
the Vivado IP Catalog.

2.5.2 Vivado

In order to make the design, some of the Vivado Catalog IP Cores were used. In the
subsection 2.6, these IP Cores will be explained with more detail.

As it will be shown later on, almost every IP Core that have been done, have the same
structure/interfaces. So in this case the communication always starts at the processor,
forwarding the information to the IP Cores and finally going back to the processor with
the results.

Once the design has been done, the bitstream must be exported and create a SDK Stan-
dalone Application project.

2.5.3 SDK

Regarding the Zynq platform specifically, Xilinx provides a standalone OS platform that
provides functions such as configuring caches, setting up interrupts and exceptions and
other hardware related functions.

With the aim of seeing the results more graphically, IP Cores output was captured with
a well known application like TeraTerm and then print the results more graphically with
Matlab.

2.5.4 PYNQ development

Once that everything works fine, the bitstream and the block design were loaded into
the FPGA’s SD Card. With this, a Jupyter notebook was also created for the purpose of
”playing” a bit with the design and the different Python libraries.

20



Figure 6: Methodology diagram

2.6 Needed Xilinx IPs or blocks for the project

In this subsection the main needed IPs from the Xilinx IP Catalog will be described.

These cores will be explained:

� AXITimer IP Core. This IP was instantiated in order to measure the latencies
for a given design.

� AXI DMA IP Core. This IP Core was used in order to connect the PL side of
the SoC to the PS. The connection with the SoC will be explained later on.

� AXI interconnect.
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� Processor System Reset.

� Zynq-7000 SoC. The SoC of every implementation is explained here in more detail.

2.6.1 AXI Timer

In order to measure different processing times, the Xilinx IP AXI TIMER was instantiated
in the block design. This AXI TIMER IP Core is a well known Xilinx IP which gives you
the number of clock cycles count for a given clock. In this design, the clock was generated
from the PS side, Xilinx ZYNQ FPGA Family, and had a 100MHz clock frequency.

Figure 7: AXI Timer block diagram
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2.6.2 DMA

The AXI Direct Memory Access (AXI DMA) IP core provides high-bandwidth direct
memory access between the AXI4 memory mapped and AXI4-Stream IP interfaces. Ini-
tialization, status, and management registers are accessed through an AXI4-Lite slave
interface. Figure 8 illustrates the functional composition of the core.

Figure 8: AXI DMA IP Core block diagram

2.6.3 AXI Interconnect

The AXI Interconnect IP connects one or more AXI memory-mapped Master devices to
one or more memory-mapped Slave devices. The AXI interfaces conform to the AMBA
AXI version 4 specifications from ARM, including the AXI4-Lite control register interface
subset. The Interconnect IP is intended for memory-mapped transfers only; AXI4-Stream
transfers are not applicable.

2.6.4 Processor System Reset

This module is used for customized resets for an entire processor system, including the
processor, the interconnect and peripherals.

2.6.5 Zynq-7000 SoC

Well, this is not exactly an IP Core, but it was very necessary in this project in order to
compare hardware and software results.

The Zynq-7000 SoC family integrates the software programmability of an ARM-based
processor with the hardware programmability of an FPGA, enabling key analytics and
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hardware acceleration while integrating CPU, DSP and ASSP.

The communication between the PL and the PS was using the AXI DMA IP Core.

Figure 9: Zynq SoC block diagram
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3 Designs

In this section different designs and development flow will be shown.

First, a Finite Impulse Response, FIR, filter will be explained. This application was
chosen because its well known application and it also can be easily compared/implemented
with Python libraries. Also, it was a kind of warm up with the Vivado HLS tool and how
to manage the different AXI interfaces (Xilinx bus communication protocol).

After this, we will focus more on IP Cores related to Autonomous driving, and in this case
and IP Core for half floating point precision format multiplication was developed.
This kind of data types are used by Maching Learning in the learning process. The weights
and the biases are normally float data type.

To end up, a Convolution IP Core was developed. This kind of process is very com-
mon in Autonomous driving and for edge detection. As matrix convolution has many
multiplications and sumations, we thought implementing the Convolution process with
approximated multipliers and approximated adders [5].

The figure 10 shows the communication between PS and PL of the Zynq-7000 SoC. As
every design had an Standalone Application Project, the communication starts at the
PS side (nº1 of the figure). Then, the processor tells to the AXI DMA IP Core to start
forwarding the data to the custom IP Core (nº2). Once the IP has processed the data, it
forwards it to the DMA again (nº3) and finally the DMA writes the results into registers
of the processor (nº4). In order to use the DMA and have a continous communication
between the PS and PL, AXI-Stream protocol was needed. This interface will be explained
with more detail in subsubsection 3.1.1

Figure 10: PS PL communication for the different hardware accelerators
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3.1 FIR filter

In digital signal processing, an FIR is a filter whose impulse response is of finite period, as
a result of it settles to zero in finite time. This is often in distinction to IIR filters, which
can have internal feedback and will still respond indefinitely. The impulse response of an
Nth order discrete time FIR filter takes precisely N+1 samples before it then settles to
zero. FIR filters are most popular kind of filters executed in software and these filters can
be continuous time, analog or digital and discrete time

Figure 11: FIR Filter of order N

3.1.1 Vivado HLS generated FIR filter

As can be seen in the figure 12, the FIR IP designed by the Vivado HLS has the following
interfaces:

� AXI4-Stream: used for continuous communication, inStream and outStream ports
were used for the input and output data respectively.

� AXI4-Lite: used for reading and writing in memory registers of the IP. CTRL
BUS for synchronization purposes and ORDER BUS for providing the FIR filter
coefficients.

Figure 12: FIR IP Core by Vivado HLS

In order to create those Xilinx-related interfaces like AXI4-Lite or AXI4-Stream, there
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is need to use Vivado HLS directives and declare those variables with AXI4-Stream or
AXI4-Lite data structures.

AXI4-Stream is a protocol designed to transport arbitrary unidirectional data streams. In
AXI4-Stream TDATA width of bits is transferred per clock cycle. The transfer is started
once sender signals TVALID and received responds with TREADY. TLAST signals
the last byte of the stream.

To sum up, AXI4-Stream interface is usually used for high-speed streaming data, and on
the other hand, AXI-Lite is used for simple, low-throughput memory-mapped communi-
cation, for example, to and from control and status registers.

In this case, as we need high-speed streaming data for the FIR application, the data is
forwarded through the PS side to the Direct Memory Access (DMA) and finally to the FIR
IP Core. The coefficients are written into different register through AXI4-Lite interface
because in this case there is no need to be constantly streaming data. When the FIR IP
Core finalizes computing the input data with the coefficients, it writes directly to the PS
memory thanks to the DMA.

In the figure 13 the block design can be appreciated.

Figure 13: FIR IP Core Vivado design

3.1.2 Software FIR implementation

Once generated the bitstream of the previous FPGA configuration, an SDK Standalone
Application was created in order to compare the performance of the Hardware FIR filter
IP Core created by the Vivado HLS tool vs Software implementation of the FIR filter in
the Application project.

3.1.3 PYNQ Hardware vs Software FIR filter comparison

Calling different Overlays will configure the FPGA with different bitstreams. In the next
figure 14 can be appreciated how a bitstream is loaded from a Jupyter notebook and
how we can check the address map from it too calling the Overlay function. Of course, in
order to create an Overlay, a bitstream and a Block design need to be loaded into the SD
card of the FPGA, so the great advantage here is to have different bitstreams and block
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designs loaded into the SD card and be able to change FPGAs configuration in a very
short period of time.

Figure 14: Overlay configuration via Jupyter Notebook

In order to implement the FIR filter design with Python libraries, the user can use the
different Python packages for this purpouse. In this case, the library SciPy package which
contains functions like lfilter can be of great help.

Also, with the time library of Python, it can be easily computed the processing time of
different processes.

3.2 Half float

The work developed in this study was partially made by the DRAC (Designing RISC-V-
based Accelerators for next generation Computers) project, conformed by the institutions
of the BSC and the UPC.

In computing, half precision (sometimes called FP16) is a binary floating-point computer
number format that occupies 16 bits (two bytes in modern computers) in computer mem-
ory.

They can express values in the range ±65,504, with the minimum value above 1 being 1
+ 1

1024
.

Figure 15: Binary16 format

Half precision data compared to higher precision FP32 vs FP64 reduces memory usage of
the neural network, allowing training and deployment of larger networks, and FP16 data
transfers take less time than FP32 or FP64 transfers. In this case, the DRAC project has
a half precision float multiplicator for their neural network biases and weights, but it is
implemented in software.
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So in this case different IP Cores for FP16 and FP32 were created and compared to the
software solution of the DRAC project.

This example is given in bit representation of the floating-point value. This includes the
sign bit, (biased) exponent, and significand:

0 00000 00000000012 = 000116 = 2−14 · (0 +
1

1024
) ≈ 0.000000059604645

For the case of this IP Core, a constant multiplication was also required. So for this, an
AXI4-Stream interface was needed also.

In the figure 16 can be seen the different interfaces of the IP Core. The development of
this IP Core was relatively fast. With the software implementation of the DRAC, there
was just a need to adapt the port interfaces of the IP in order to communicate with the
PS of the SoC.

Figure 16: Half float IP Core by Vivado HLS

Figure 17: Half float IP Core Vivado design

In this case, the interfaces of the IP are the same as the FIR IP Core design. The Port
description of the IP Core is almost the same as explained in the provious subsection,
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except the s axi B AXI port. This AXI4-Lite input port is constantly multiplied by the
input data that comes from the AXI4-Stream input port A.

In the figure 17 can be appreciated two Vivado HLS IP Cores. One is the Half float IP
Core and the other one is a single precision float IP Core which multiplies single precision
float data types. This IP was created in order to rapidly compare the half precision floating
point multiplication. In this case, each IP has a DMA connected to the PS of the SoC.

3.3 Image Convolution

The last IP Core developed for this study was an Image Convolution IP Core. As we will
see in the section 4.3 in this case the acceleration factor is the greater one.

Convolution operation is the main operation in Machine Learning and Edge detection
processes. Every dataset which can be sorted in a matrix form will have a convolution
operation. Not just for Image Recognition, but for Voice recognition

The formula for matrix convolution is the following:

g(x, y) = w ∗ f(x, y) =
a∑

dx=−a

b∑
dy=−b

w(dx, dy) · f(x+ dx, y + dy)

Where g(x, y) is the filtered image, f(x, y) is the original image and ω is the filter kernel.
Every element of the filter kernel is considered by a ≤ dx ≤ a and b ≤ dy ≤ b.

Depending on the kernel values, a kernel can cause a wide range of effects. In the table 1
can be seen some examples with different kernel values for edge detection [4].

Figure 18: Image convolution example
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Table 1: Kernel multiplication examples
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In order to implement this kind of operations which are most of the times computation
intensive, Vivado HLS tool offers different tips in terms of synchronization signal handling
and memoery architectures. Synchronization was previously explained with the AXI4-
Stream interface, when it comes to memory architecture, two different architectures were
designed: Memory Windows for the kernel and Line Buffers for the input image [6].

� Memory Windows

This kind of memory structure is perfect for kernels in image convolution. A memory
window is defined as a neighborhood of N pixels centered on pixel P. It can be viewed
as a collection of shift register which forms a 2-dimensional data storage element.

One of the main characteristics of memory windows for image convolution is that
all data elements are available simultaneously.

� Line Buffer

A line buffer is a multi-dimensional shift register capable of storing several lines
of pixel data. Typically, line buffers are implemented as block RAMs to avoid the
communication latency to off-chip DRAM memories.

Figure 19: Line Buffer (input pixels of image) multiplied by a Memory Window (Kernel)

Next generation accelerators are intended for applications where the 100% of accuracy is
not needed. That’s why we will see different implementations of the Image Convolution
IP Core with approximated Multipliers and approximated Adders.

32



3.3.1 Approximated Multiplier

Approximated arithmetics is extensively researched in multiple sectors. One of the main
goals of approximated arithmetics is the reduction of the computation time (Slack) and
computed Area, as well as power consumption.

There are many Approximated Multipliers, but in this case the Under Designed Mul-
tiplier (UDM) of Kulkarni was used [7]. This approximation resides in the modification
of the Karnaugh Map of a 2x2 multiplier. The trick here is that the output of the 2x2 bit
multiplication will be represented using only three bits instead of the normal four for this
case. As the fourth bit is used just in one case (3 · 3). So for this case the multiplication
will be correct for fifteen out of sixteen possibilities. The figure 20 shows the modified
Karnaugh Map for a 2x2 multiplication.

Figure 20: Modified Karnaugh Map for approximated multiplier

Furthermore, larger multipliers can be built using the 2x2 block to produce the partial
products and then adding the shifter partial products. This can also be done to obtain
even larger multipliers.

Figure 21: Example of 4x4 Multiplier using 2x2 blocks
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3.3.2 Approximated Adder

There are different approximation sources such as eliminating transistors at transistor
level or layout level of the basic Full Adder cell or at architectural level by truncating the
carry propagation (which also happens to be the critical path in adders) by splitting the
addition into smaller sub-additions and not propagating the carry.

So there are different approximated adders which offer different benefits and counterparts.

These are the different approximate adders:

1. Almost Correct Adder (ACA-I)

2. Accuracy Configurable Adder (ACA-II)

3. Generic Accuracy Configurable Adder (GeAr)

In this case, the Generic Accuracy Configurable Adder (GeAr) was chosen in the
convolution application due to the different benefits presented among the others [5]. This
adder has different parameters: N, lenght of operands to be added; L, length of the sub-
adders in parallel to perform the approximate addition (L ≤ N ); R, represents the number
of resultant bits contributing to the final sum; and P, represents the number of previous
bits used for carry prediction. Each sub-adder produces R-bit results except the first one
that producees L-bit result being L=R+P.

GeAr was implemented with a N=16, R=4 and P=4 configuration, the configuration
which suited most the image convolution for the given data type. The best results where
obtain for this kind of configuration in terms of Area and Slack, but not in precision. For
an application like image recognition or Edge detection, this is the perfect match [?].
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4 Results

This section shows the results obtained with the aforementioned designs. Each section
is divided in two subsections; the first one comparing the Vivado General working flow:
Vivado HLS, importing the IP into Vivado Catalog and after that export the bitstream
or the BSP into a Standalone Software application. And the second subsection, compar-
ing the results in the new framework PYNQ, with the developed IP Cores and Python
implementation of these.

Every IP was developed with a 100MHz clock signal in mind coming from the PS side.

These were the indicators for the different IP Cores:

� Timing/critical path.

� Resources.

� Acceleration factor, Software vs Hardware. Which was calculated with the given
formula:

Accelerationfactor =
Softwaretime

Hardwaretime

� Precision for the case of approximated arithmetics.

4.1 FIR

Three different implementations

There were three FIR implementations:

1. HW FIR IP Core generated by Vivado HLS.

2. HW FIR IP Core from Vivado Catalog.

3. SW FIR implementation in the Standalone Application project. A C function
running in the PS side of the Zynq SoC.

Timing/Critical path

First, the Timing or critical path. Here the Vivado HLS IP showed a critical path of
8.165ns meaning a maximum frequency of 122.47MHz. The FIR IP from the Vivado
Catalog showed better numbers, in this case a delay path of 7.47ns, which means a
maximum clock speed of 133.8MHz.

Resource utilization

The timing values are a consequence of the resource utilization. Looking at the table 2,
can be appreciated that the Xilinx IP uses 23 DSPs. This was one drawback of the Vivado
HLS tool, that even if there were two for loops and the user uses directives in order to
use DSP for continously processing data, one cannot control the used hardware in the
final IP Core.
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Table 2: Hardware FIR filters Resource utilization

Acceleration factor

In the following table 3 can be appreciated the different results in terms of processing
time for the Vivado HLS generated FIR IP Core compared to the Vivado Catalog FIR IP
Core and a Software developed FIR implementation.

Table 3: FIR filter results with Vivado General flow

It is pretty obviuos that having dedicated hardware will lead to time acceleration. The
acceleration factors versus the Software FIR filter implementation are:

� Vivado HLS IP Core: 25,98

� Vivado Catalog FIR IP Core: 21,74

Vivado Catalog IP Core shows the best numbers here. This may be due to its low number
of interfaces (figure 22) and a better HDL code performance. It has the same structure
than the Vivado HLS generated IP Core. Also, was seen that Vivado HLS sometimes
adds extra logic that could be avoided by creating the IP from scratch by HDL languages.
Obviously, Xilinx IP is highly configurable. Thanks to this, it does not modify the FIR
filter coefficients through an AXI4-Lite interface, they can be modified by generics in the
Vivado GUI.

Figure 22: Vivado Catalog FIR IP Core
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PYNQ design flow

Using the PYNQ framework, the processing times for the different implementations were
checked.

The results for the PYNQ development flow are summarized in the table 4. Here there
were also three implementations:

1. FIR IP Core generated by Vivado HLS called by Python, using Overlays. (see figure
14).

2. FIR IP Core taken from Vivado Catalog, called by Python, using also Overlays.

3. Python implementation of the FIR filter.

Table 4: FIR filter results with PYNQ development flow

In this case, the numbers are a bit worse when it comes to processing time. This is due to
the Linux Operating System that is running in the PYNQ development tool. It is obvious
that having these kind of Software Application running on top of the hardware design,
will lead to more complex designs, thus, having greater processing times.

Still, the processing times are much better with an RTL FIR design with a whole Linux
enviroment than a Software implementation on a Baremetal solution.

The acceleration factors in this case compared to a Software Python implementation are:

� Vivado HLS IP Core: 26,63

� Vivado Catalog FIR IP Core: 18,06
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4.2 Half float

In this case, two IP Cores were implemented both using the Vivado HLS.

1. Half precision floating point multiplication IP Core.

2. Single precision floating point multiplication IP Core.

When it comes to Half precision floating point multiplication, the same behaviour as in
the FIR implementation is shown.

Timing/Critical path

The data path delays for these implementations were:

� Half = 8.910ns→ fmax ≈ 112MHz

� Single = 8.510ns→ fmax ≈ 117MHz

Also the latencies were worse for the Half multiplication:

� Half = 9000 clock cycles ≈ 90µs

� Single = 3000 clock cycles ≈ 30µs

The timing results are also conditioned by the hardware utilization. In the table 5 the
hardware utilization will be shown and discussed.

Resource utilization

As the implementation of the Half precision float is relatively new, the Vivado HLS tool
uses less DSPs for it, thus, giving worse numbers compared to a well known single precision
float data type.

Table 5: Utilization report comparing half and single precision floating point
multiplication

Having this kind of difference in the hardware utilization, lead to big procressing time
differences as shown as in the table 6. One may think that having a half precision floating
point multiplication will be faster, but in this case, as it does not have specific hardware
like DSPs, lead to worse processing times.

In order to use DSPs, the Synthesis tool needs to know exactly that this block wants
to be used. In other words, a specific RTL code, DSP instantiation must be done. If the
Synthesis tool does not understand that multiplication process, it will use a combination
of LUTs and Flip-Flops like in this case.
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Table 6: Processing times of half and single precision floating point multiplication

And when it comes to errors, both IPs were designed with a 100MHz clock in mind.
Even though a 250MHz clock signal was selected in the PS side and the timing was not
succesful (there were timing violations), both IPs did not have errors or in other words,
the critical path was not met.

There was an evident difference in the results of both IPs, which was caused by the loss
of precision of the Half precision floating point multiplication.

In this case the difference in the results between both IPs was:

1

N

N∑
i=1

(xh,i − xs,i)2 ≈ 0.104%

Where:

� N : is the number of samples. In this case N was 1000.

� xh,i: is the ith result of the half precision IP Core multiplication.

� xs,i: is the ith result of the single precision IP Core multiplication.

The acceleration factor in this case was low. Software implementation of multiplying 1000
single precision floating point numbers was done in 0.000035 seconds.

This is mainly because this operation was not really demanding in processing time and
also this SoC has a Single and double precision Vector Floating Point Unit (VFPU).

So, even if Vivado HLS directives are used for rolling the for function, Vivado HLS still
adds some logic to the process, leading into a not fully optimized/parallel function.

4.3 Convolution

In this subsection the results obtained with the Image convolution IP Core will be dis-
cussed. First, the results of the Normal Convolution will be shown and afterwards the
different implementations with the approximated arithmetics.

For the case of Normal convolutions, we will discuss first different parameters results
obtained for an operation like convolution (input matrix size, data type). Critical path
and Resource utilization will be discussed later on comparing the normal arithmetics with
the approximated ones.
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Normal convolution

One of the main parameters in image convolution is the input and output image size and
the data type of each pixel.

In this case, the input image size was implemented with two different resolutions:

� 320x240 = 76, 800 pixels

� 360x640 = 230, 400 pixels

When it comes to the data type, the first implementation was with 8− bit pixels (values
between 0 to 255) for input/output image and kernel matrix, which is the basic operand for
image convolution. In order to have an Edge detection application, the kernel must have
negative values, so in this case a kernel with short data types (16− bit) was implemented.
In the case that the sumation of a window gives negative values it will be set to 0 and if
it gives values greater than 255 the pixel will be set to 255. And the last data type which
was implemented was the float data type.

The figures 23 and 24 shows the different Area usage for the different data types and for
76, 800 pixels and 230, 400 pixels respectively.

Figure 23: Area usage vs data type for 76,800 pixels

The results were as expected, the same number of BRAMs and DSP, because the Line
Buffers and Memory Windows were defined with the same size in both implementations
and the addition and multiplication process can be done with the same number of DSPs.

When it comes to processing times, the figure 25 summarizes the different implementa-
tions. Having an input image with higher resolution lead to higher processing times. This
relation is completely linear, as can be seen in the case of char data type.
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Figure 24: Area usage vs data type for 230,400 pixels

Both resolutions that were implemented have a x3 relation, and the Hardware convolu-
tion for the 76.800 resolution and for the 230.400 resolutions are 0, 007244 and 0, 021491
respectively, which is also a x3 relation.

Figure 25: Processing times vs data types

Regarding the acceleration factor, with the results of the figure 25 a hardware acceler-
ation is pretty obvious for the different cases. The arithmetic mean is:

1

N

N∑
i=1

Softwaretime

Hardwaretime

≈ 7.028
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(a) Original image (b) Convolved image

Figure 26: image convolved by an edge detection kernel

Approximate arithmetics

As in the section 3.3 was explained, the new trend in Machine Learning or AI is the
approximated arithmetics, and as the convolution process [5, 7] has many multiplications
and additions, both approximated arithmetics have been implemented in the convolution
process with interesting results.

Three different Convolution IP were implemented:

� Normal convolution IP.

� Approximated multiplication convolution IP.

� Approximated addition convolution IP.

The implementations of the approximated adder and multiplier were in Verilog and were
instantiated in the HDL code generated by the HLS tool.

Timing/Critical Path

When it comes to the critical path, the approximated arithmetics didn’t give a very
promissing results compared to the exact ones:

� Normal = 9.870ns→ fmax ≈ 101.3MHz

� Approx. Adder = 11.570ns→ fmax ≈ 86.4MHz

� Approx. Multiplier = 16.89ns→ fmax ≈ 59.2MHz

The Master Thesis of Imanol Etxezarreta [5] showed a similar data path delays ≈ 10ns
for approximated multiplier, so adding the logic for multiply negative numbers and the
interfaces of the IP, lead to have 16ns.

With the same input image as shown in the figure 26, the approximated arithmetics
implemented in the convolution give the results shown in the figure 27.

The approximate multiplier was not good enough for this application due to its critical
path. That’s why the image in 27 seems like ”decentralized”.
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(a) Convolution with approximated adder (b) Convolution with approximated multiplier

Figure 27: Images of approx arithmetics applied into edge detection

Resources

The same thing that happened to the Half precision multiplication IP happens here for
the convolution process. Once modified the RTL code generated by Vivado HLS, Vivado
starts using more LUTs instead of DSP leading to greater delays in the logic.

Table 7: Resource utilization for different convolution implementations

Acceleration factor

When it comes to the acceleration factor for the approximated arithmetics compared to
the pure ones, the table 8 shows that the processing times were quite similar.

Table 8: Processing times for different convolution implementations

� Approx. Multiplier = 1.0004

� Approx. Adder = 0.9974

Precision

In this case, a comparison with multiple images was done just for the approximated adder.
The following figures show some examples.
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(a) (b)

(c)

Figure 28: (a) input image. (b) Normal convolution. (c) Approximated adder convolution
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(a) (b)

(c)

Figure 29: (a) input image. (b) Normal convolution. (c) Approximated adder convolution

45



(a) (b)

(c)

Figure 30: (a) input image. (b) Normal convolution. (c) Approximated adder convolution

For the given kernel for edge detection the precision was of 100%. The thing is that for
having edge detection, there are normally too many 0s in the output image and few pixels
close to the maximum value. This leads to a very high precision for this type of kernels.

Looking at the truth table of the approximated multiplier, it gives wrong values for
the high output numbers (in this case close to white pixel), that’s why convolving the
input image by positive kernels, for instance the Identity kernel, lead to lost in precision
(≈ 95%). It can be appreciated in the figure 31 that in the white pixels (top corners),
there is a slight difference in the output images. The approximated multiplication give
well the values becuase the critical path was met when multipliying negative values.

1− 1

N

N∑
i=1

(xnormal conv − xapprox adder)
2 ≈ 0.954%

1− 1

N

N∑
i=1

(xnormal conv − xapprox multiplier)
2 ≈ 0.942%
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(a) (b)

(c)

Figure 31: (a) Normal convolution (b) Approx. multiplier convolution (c) Approx. adder
convolution. The kernel in this case was the Identity
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5 Conclusions

To end up with the study, conclusions about the results are presented, with the objective
of assesing wether the usage of hardware accelerators and approximated arithmetics are
beneficial for different applications like Image Recognition in Machine Learning. First,
the conclusions about the different tools available for RTL development, that in this
case were Vivado HLS and PYNQ framework. Then the conclusions about the hardware
acceleration are exposed as well as the Vivado HLS tool for hardware development and
then the conclusions about the approximated adders and multipliers.

When it comes to the HLS tool, it showed great advantajes like fast developing, not
just the process that wants to be implemented in the PL logic, but also implementing
different interfaces was relatively fast. Apart from fast developing, Vivado HLS also creates
C function drivers for the given IP in order to rapidly communicate with it from the
Processing System. This was really helpful for rapidly write and read different registers
of the given IP Core. On the other hand, not having the total control on the generated
hardware can lead to extra logic in the IP, giving worse performance of the hardware.

As regard the PYNQ framework, as Python is a really hot topic right know for Machine
Learning applications, it is nice to have this kind of working enviroments where one can
program the FPGA using Python. But obviously, running a Linux application on top of
the hardware will always lead to greater processing times. A Standalone Application will
be always be faster in terms of performance. But when it comes to rapidly modify the
bitstream of the FPGA, the PYNQ framework offer great advantages here as well as usign
Python libraries.

Regarding the hardware acceleration, it is obvious that they offer great advantages when
it comes to processing times for real time applications. In todays real time processing sys-
tems, these kind of System-on-Chips like the Xilinx Zynq-7000, can offer a very interesting
interaction between software and hardware, giving the possibility to decide which process
is executed in hardware or in software. This kind of ”feature” of this All-in hardware will
play an important role in the near future for Real Time processing systems [1].

To sum up with the hardware accelerators, depending on the application and the specifi-
cations, they could be very beneficial. Again, thanks to the System-on-Chip Architecture,
one can decide which functions are programmed in the PL side of the SoC, thus, having
an improvement in most of the cases.

From the speed point of view, this approximate adder that was instantiated in the IP
was always faster than the accurate one. Regarding the area, the normal adder and the
approximated adder showed very similar numbers. As always, there will be a relationship,
begin normally the fastest adder the one that require higher area.

To end up with the multiplier’s conclusions, the studied approximate multiplier do not
show to be promising in almost any aspect that has been able to study. Even though that
the it showed the best numbers compared to others [5], still was worse than the accurate
version.
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