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Abstract

We take advantage of the new tasking features in OpenMP to pro-
pose advanced task-parallel algorithms for the inversion of dense matrices
via Gauss-Jordan elimination. Our algorithms perform a partitioning of
the matrix operand into two levels of tasks: The matrix is first divided
vertically, by column blocks (or panels), in order to accommodate the
standard partial pivoting scheme that ensures the numerical stability of
the method. In addition, depending on the particular kernel to be ap-
plied, each panel is partitioned either horizontally by row blocks (tiles)
or vertically by µ-panels (of columns), in order to extract sufficient task
parallelism to feed a many-threaded general purpose processor (CPU).

The results of the experimental evaluation show the performance ben-
efits of the advanced tasking algorithms on an Intel Xeon Gold processor
with 20 cores.

Keywords: Task parallelism, OpenMP, matrix inversion, high perfor-
mance.

1 Introduction

Task parallelism has been proposed as a response to tackle algorithms with
an irregular and runtime dependent execution flow [17]. Furthermore, task
parallelism is also appealing as a means to deal with the increasing number of
cores of current and future general-purpose processors (hereafter, CPUs) with
a large count of cores.

Following the two opening assertions in this section, in recent years a num-
ber of efforts have demonstrated the benefits of extracting task parallelism for
dense linear algebra operations; see, e.g., PLASMA [4, 11], libFLAME [14, 18],
StarPU [15], and OmpSs [2, 10]. In the case of the PLASMA library, its native
runtime system (Quark) was recently abandoned in favour of OpenMP 4.5 [6].
In contrast, OmpSs and StarPU are research tools to explore the design space
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for multi-threading parallelism, with the objective of extending OpenMP with
new directives to support, among others, asynchronous parallelism and hetero-
geneity.

In response to the integration of an increasing number of cores in CPUs, in
this paper we target the parallelization of matrix inversion, using OpenMP task-
ing, on many-threaded architectures. While matrix inversion can be viewed as
a representative operation for many other dense matrix factorizations [7], there
exist a few relevant applications (arising, e.g., in statistics, numerical integra-
tion in superconductivity computations, and computation of the stable subspace
in control theory) in which a matrix inverse must be explicitly computed [12].
In this case, the Gauss-Jordan elimination (GJE) [9, 8] yields a highly parallel
method, with a constant (regular) workload per iteration that is alluring from
the parallelization perspective on clusters as well as platforms equipped with
hardware accelerators [12, 1, 3].

The integration of partial pivoting to ensure the (practical) numerical stabil-
ity of matrix inversion via GJE [8] restricts the options to exploit task parallelism
for this particular operation, much like it occurs for the LU factorization [4, 14].
The reason is that partial pivoting is realized via a sequence of row permu-
tations, which advocates for a sort of 1D (column-wise) workload distribution
among the threads that limits the parallel scalability of the algorithm. The
same problem has been previously tackled for the LU factorization in a number
of manners: The authors of [13] described a more flexible (incremental) pivot-
ing scheme that was the basis for subsequent work on communication-avoiding
algorithms; the work in [5] introduced a very fine-grain, cache-aware (and com-
plex) multi-threaded parallelization of the panel factorization that stands on
the critical path; and PLASMA leverages OpenMP 4.5 to track dependencies
at the granularity of individual columns, via dummy tasks [6].

In this paper we propose advanced task-parallel (TP) algorithms for ma-
trix inversion via GJE that combine simplicity with row-wise and column-wise
fine-grain task decompositions of the algorithm’s operations in order to accom-
modate partial pivoting while exposing ample task parallelism. In particular,
our paper makes the following contributions:

� We introduce a two-level task partitioning of the workload, analyzing the
impact on performance of distinct horizontal/vertical divisions depending
on the type of kernel: panel factorization, panel permutation, and panel
update.

� We exploit the advanced tasking features in OpenMP to develop simple yet
efficient codes for matrix inversion via GJE that can easily accommodate
these distinct partitioning schemes.

� We present a complete experimental evaluation on a top-of-the-shelf Intel
processor, with 20 cores, that includes performance experiments, analysis
of optimal block size, and use of traces to illustrate the parallel behaviour
and detect performance bottlenecks.

To close this part, we point out that the ideas discussed in the following for
matrix inversion are likely to carry over to other “column-wise”-oriented ma-
trix factorizations: the LU and LDLT decompositions for the solution of linear
systems; the QR factorization for linear least squares problems; and two-sided
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orthogonal reduction to condensed forms for the solution of eigenproblems and
the singular value decomposition [7].

After a short introduction of notation in the next subsection, the rest of the
paper is structured as follows. In Section 2 we briefly review the GJE method
for matrix inversion and discuss the conventional parallelization approach advo-
cated by LAPACK, applied to this procedure. Next, in Section 3 we introduce
a basic TP algorithm for this matrix operation that preserves partial pivoting
by enforcing a simple 1D distribution of the workload by columns. In Section 4
we describe our two-level TP approach to expose additional task parallelism for
the operation. Finally, we close the paper with a few concluding remarks and a
discussion of future work in Section 5.

1.1 Notation

For the remainder of the paper, we will consider a nonsingular n× n matrix A
where, for simplicity, we assume that n is an integer multiple of the algorithmic
block size b. Furthermore, for the presentation of the algorithms, we will parti-
tion A into s = n/b column blocks (also referred to as panels), of dimension n×b
each. In our notation, A(:, c1 : c2) denotes the submatrix of A that spans panels
c1, c1 + 1, . . . , c2 of A, which comprise columns c1 · b, c1 · b+ 1, . . . , c2 · b+ b− 1
of the matrix. (Note that our indices for vector arrays and matrices start at 0.)
In some cases, the panels will be further partitioned into row blocks, or tiles.

2 Matrix inversion via GJE and conventional
parallelization

In this section we introduce the algorithm for matrix inversion via GJE and
review the conventional multi-threaded parallelization approach for this type of
operations adopted in LAPACK.

2.1 Baseline GJE algorithm

Figure 1a displays the GJE algorithm for matrix inversion [9, 12]. The formu-
lation there corresponds to a baseline blocked (BSB) algorithm, presented with
a high level of abstraction that is especially suited for the discussion of the dis-
tinct parallelization strategies that are applied to this operation in the paper.
The three types of kernels inside the algorithm’s loop, indexed by k, perform
the following calculations:

1. Compute the “factorization” of panel k of the matrix (consisting of the
matrix columns k ·b : (k+1)·b−1) via routine PF (for panel factorization).
The practical numerical stability of the GJE procedure is ensured via the
integration within this kernel of a partial pivoting scheme akin to that
used in the LU decomposition [7, 8]. In the formulation of the algorithm,
the row permutations due to the application of the pivoting technique are
assumed to be stored in the array (vector) p.

2. Permute the submatrix (panels) to the left and right of panel k, respec-
tively comprising the matrix columns 0 : k · b − 1 and (k + 1) · b : n − 1,
via routine PP (for panel permutation).
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1 #define K ((k) ∗ b : ((k) + 1) ∗ b− 1)
2 #define S ((s) ∗ b : ((s) + 1) ∗ b− 1)
3
4 void BSB_GJE( matrix A, vector p, int s, int b )

5 {

6 for ( k = 0; k < s; k++ ) {

7 // Factorize panel k
8 PF( A(: , K), p(K) );

9
10 // Permute panels 0 : k − 1 w.r.t. panel k
11 PP( p(K), A(: , 0 : K − 1) );

12 // Update panels 0 : k − 1 w.r.t. panel k
13 PU( A(: , K), A(: , 0 : K − 1) );

14
15 // Permute panels k + 1 : s− 1 w.r.t. panel k
16 PP( p(K), A(: , K + 1 : S − 1) );

17 // Update panels k + 1 : s− 1 w.r.t. panel k
18 PU( A(: , K), A(: , K + 1 : S − 1) );

19 }

20 }

(a) Routine. For clarity, the matrix and vector arguments to the kernels specify the
region of memory that is “accessed” by the operation (using C preprocessor macros).
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the BSB algorithm in Figure 1a. In the latter two types of kernels, the superindices
indicate whether the operations involves the submatrix to the “L”eft or the “R”ight
of panel k.

Figure 1: BSB GJE algorithm for matrix inversion.

3. Update of the submatrix (panels) to the left and right of panel k via
routine PU (for panel update).

A couple of observations about this algorithm are relevant for the discussion
in the rest of the paper:

� Provided the algorithmic block size b is selected to be moderately large,
the BSB algorithm can hide the memory accesses with sufficient floating-
point operations, overcoming the memory bandwidth bottleneck.

� As discussed in detail in the next subsection, the use of partial pivoting
introduces certain data dependencies that restrict the parallelism among
the kernels in the loop body.
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2.2 Dependency analysis and conventional parallelization

In this type of implementations, parallelism is extracted at the kernel level,
using a fork-join approach; that is, sequential implementations are linked with
a parallel BLAS library to gain performance and improve core occupation. As
illustrated in Figure 1b, due to data dependencies the execution of the PF kernel
in iteration k (denoted as PFk,) cannot be overlapped with any of the permuta-
tions and updates in the same iteration (respectively, PPk and PUk). Further-
more, for the range of values that b takes in practice, the PF kernel exhibits
a limited degree of parallelism due to its reduced number of columns, the row
permutations required for partial pivoting, and the complex data dependencies
existing within this particular kernel. Therefore, Amdahl’s law dictates that a
parallelization scheme that only exploits the intrinsic parallelism within each of
the kernels in the loop body will face a scalability bottleneck as the number of
threads tends to grow.

Unfortunately, that is precisely the approach adopted by the conventional
parallelization scheme in LAPACK, which simply extracts all parallelism by
invoking a multi-threaded instance of the BLAS. (Internally, the multi-threaded
BLAS leverage POSIX threads to extract loop parallelism.)

The experiments that close this section show the negative impact of the
panel factorization on the global performance of the matrix inversion algorithm
via GJE. Prior to the discussion of these results, in the next subsection we
introduce the hardware and software setup that will be utilized during all the
experimental evaluation conducted in this work.

2.3 Setup

The experiments in this paper were performed using double precision (DP)
arithmetic on a server equipped with a 20-core Intel Xeon Gold 6138 processor
(Skylake micro-architecture) running at 1.7 GHz. Each core features two AVX-
512 FMA (512-bit wide) units, yielding a peak performance of 51.4 DP GFLOPS
(billions of floating point operations, or flops, per second) per core and a total
of 1,028 DP GFLOPS for the complete socket. This processor includes a 32-
Kbyte L1 data cache per core, a 1-Mbyte L2 per core, and a 1.375-Mbyte L3
cache per core. The server also includes 96 Gbytes of DDR4 RAM memory. On
the software side, we employed the Intel compilers for C/Fortran (icc/ifort)
version 18.

In order to avoid the performance distortions caused by the utilization of the
power modes (and associated processor core frequencies) in the Intel Skylake
architecture, the operating frequency was set to 1.7 GHz for all cores. One single
thread was mapped per physical core and thread migration was prevented via
the appropriate Linux configuration commands.

Unless otherwise stated, the algorithmic block size b (in our work, also re-
ferred to as “outer” block size or panel width) was selected individually for each
algorithm, matrix dimension, and number of cores in order to optimize perfor-
mance. For the variants that compute the PF kernel using a blocked procedure,
the inner block size bin was selected via extensive experimentation with values
ranging between 8 and the (outer) block size b.
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(a) Performance (left) and optimal block size (right).

(b) Trace of the first 1.5 seconds of execution with n = 10, 000, b = 128 and 20
cores showing the task type (top) and core occupation (bottom), using an unblocked
procedure for PF.

(c) Trace of the first 1.5 seconds of execution with n = 10, 000, b = 128, bin = 12 and
20 cores showing the task type (top) and core occupation (bottom), using a blocked
procedure for PF.

Figure 2: Performance study of the BSB GJE routine linked with Intel MT MKL
on Skylake.

2.4 Performance analysis

Figure 2 reports the results for the BSB GJE routine when linked with the
multi-threaded (MT) instance of Intel MKL, mimicking the conventional paral-
lelization scheme for LAPACK. The left-hand side plot in the figure reports the
GFLOPS rate for matrices of dimension n up to 30,000 with 10 and 20 cores. In
addition, we evaluate there two versions of the BSB routine, which respectively
compute the PF kernel via either an unblocked algorithm or a blocked version
based on the same BSB routine (with a smaller “inner” block size). The optimal
values for the block size b determined for each version are reported in the right-
hand side plot in the same figure. Furthermore, the trace in the bottom part of
the figure shows the tasks that are executed during the initial iterations of the
algorithm and the core occupancy, for a particular matrix dimension, number
of cores, and block size.

The results in the top-left plot of Figure 2 report a growth of performance
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with the matrix dimension, reaching 410+ and 750+ GFLOPS for the version
that performs the PF kernel via a blocked algorithm applied to tackle the largest
matrix dimension using 10 and 20 cores, respectively. Furthermore, there is a
clear performance gap (close to a factor 1.5×) between this version and the coun-
terpart that computes PF using an unblocked procedure, see the corresponding
trace. As reported in the top-right plot, and could be expected in practice,
in both cases the optimal block size tends to grow with the dimension of the
matrix, with smaller values in the unblocked version to reduce the impact of the
suboptimal PF factorization.

The traces in the bottom half of the figure expose the synchronous behaviour
of the LAPACK-like conventional parallelization scheme, which strictly alter-
nates the execution of PF with that of the matrix permutations/updates. The
unblocked procedure is composed of Level-2 BLAS kernels, which are executed
sequentially. In contrast, the blocked procedure mainly consists of Level-3 BLAS
kernels, but applied to a narrow panel, as in this case, result in low parallel per-
formance. The application of the row permutations is parallelized by adding
the appropriate OpenMP parallelization pragma in the outermost loop of the
realization of the routine for this purpose in LAPACK (dlaswap).

The insight to take away from these traces is that a non-overlapped execution
of the PF kernels with other operations will likely result on low performance, as
the panel factorization is intrinsically close-to-sequential, yielding a significant
waste of resources (threads/cores) that will remain idle or infra-utilized.

3 Basic task-parallel Algorithms for Matrix In-
version

In this section we describe a basic task-parallel (hereafter BTP) alternative for
the multi-threaded execution of the GJE algorithm that aims to overcome the
performance bottleneck imposed by the PF kernel. One of the main differences
between the TP approach and the LAPACK-like parallelization scheme lies in
the fact that, in the former the kernels are purely sequential, and parallelism is
exposed by the programmer in terms of tasks via OpenMP annotations, which
serve as hints to the runtime in order to control (task) data dependencies, as
explained next. In contrast, for the LAPACK-like scheme the parallelism is
internal to the (multi-threaded) BLAS routines and does not require any action
from the programmer.

3.1 GJE algorithm with dynamic look-ahead via a run-
time

Let us divide the matrix into a collection of panels, of b columns each, so that
at iteration k, there are k panels in the leading submatrix (i.e., to the left of
panel k) and s − k − 1 panels in the trailing one (i.e, to the right of panel k).
The dependencies of this TP algorithm, with the permutations and updates de-
composed into a collection of tasks, are illustrated in Figure 3a. (For simplicity,
some of the dependencies, which are not relevant for the following discussion,
are omitted in the figure.)

The key aspect revealed in Figure 3a is that, at iteration k, the trailing
permutation/updates for panels j = k + 2, k + 3, . . . , s − 1 (i.e., all except j =
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during the same iteration k of the BTP routine in Figure 3b.

1 #define K ((k) ∗ b : ((k) + 1) ∗ b− 1)
2 #define J ((j) ∗ b : ((j) + 1) ∗ b− 1)
3
4 void BTP_GJE( matrix A, vector p, int s, int b )

5 {

6 #pragma omp paral le l {

7 #pragma omp single {

8 for ( k = 0; k < s; k++ ) {

9 // Factorize panel k
10 #pragma omp task depend( inout: A(: , K), out: p(K) )

11 PF( A(: , K), p(K) );

12
13 // Permute and update panels 0 : k − 1 w.r.t. panel k
14 for ( j = 0; j < k; j++ ) {

15 #pragma omp task depend( in: p(K), inout: A(: , J) )

16 PP( p(K), A(: , J) );

17 #pragma omp task depend( in: A(: , K), inout: A(: , J) )

18 PU( A(: , K), A(: , J) );

19 }

20
21 // Permute and update panels k + 1 : s− 1 w.r.t. panel k
22 // Omitted for brevity

23 }}}

24 }

(b) Routine. For brevity, we omit the firstprivate and private clauses that are
included in the actual code.

Figure 3: BTP GJE routine for matrix inversion, with task parallelism extracted
via OpenMP.

k + 1), plus all the leading permutation/updates, for panels j = 0, 1, . . . , k − 1,
can proceed in parallel with the factorization of panel k + 1. This technique is
often referred to as look-ahead [16] and allows to overlap the execution of the
largely sequential PF with the highly parallel PP and PU.

The re-formulation of the code to accommodate a dynamic variant of the
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Figure 4: Performance study of the BTP GJE algorithm on Skylake.

look-ahead technique while extracting task parallelism using OpenMP is shown
in Figure 3b. Note that the specific task schedule is non-deterministic, as it is
decided by the OpenMP runtime during the execution of the algorithm and may
result in an overlapped execution of future panel factorizations (not only that
for panel k + 1) with the permutations/updates that are present at iteration
k of the routine. Thus, the depth or degree of the look-ahead is dynamically
controlled by the runtime.

3.2 Performance analysis

The top-left plot in Figure 4 reports the GFLOPS rates for the BTP GJE
algorithm, using 10 and 20 cores, applied to matrices of dimension n up to
30,000. As in other experiments in this paper, the inner and outer block sizes
are optimized via an extensive experimental evaluation. The bottom trace shows
the parallel behaviour of this routine, for a specific case configuration.

In the trace, we can observe how look-ahead is automatically in place via
the runtime data-dependency management: for a given iteration k, as soon as
the update of the k + 1 panel is accomplished (task in magenta and labelled
as First Right PU), the factorization of panel k + 1 can proceed, effectively
overlapping tasks from different iterations. A relevant aspect to note in the
trace is that, for a few initial iterations, this BTP realization offers a certain
degree of overlapping between the PF kernel and the remaining operations, but
not as much as it is possible. The reason for this suboptimal behaviour is that,
although we included the appropriate OpenMP priority clauses to advance
the execution of the PF kernels (and dependent kernels), the scheduler in Intel’s
OpenMP runtime does not seem to use these hints. (In a separate experiment,
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we could confirm that this version of the compiler does not take into account
OpenMP task priorities.) As a result, the execution of the BTP version does
not offer a significant advantage with respect to a conventional parallelization.
In fact, as the large updates performed on the trailing/leading submatrices are
divided into multiple panels/tasks, each to be executed by a single thread, the
threads compete for shared resources, such as the memory bandwidth. The
net outcome is that the performance diminishes with respect to that of the BSB
routine, as can be observed from a direct comparison between Figures 2a and 4a.

To conclude this section, we note the critical role of the algorithmic block
size b for the TP scheme. Concretely, choosing a large value for b improves the
performance of the individual BLAS that are invoked for the panel updates, at
the cost of reducing the degree of task parallelism and making more difficult
to hide the cost of the PF kernels. Conversely, a small value of b reduces the
performance of the BLAS, though it augments the amount of task parallelism
and decreases the contribution of the panel factorization to the global cost.

4 A New Generation of task-parallel Algorithms
for Matrix Inversion

In this section we propose several advanced task-parallel (ATP) algorithms that
extract additional tasks within the PF kernels as well as the panel permutations
and updates.

4.1 Horizontal partitioning of the panel update

The introduction of partial pivoting seems to impede a “horizontal” division
of the operations on the panels into tasks, constraining the amount of task
parallelism that can be exposed and, therefore, exploited during the inversion.
However, while this is the case for the panel permutations due to the (row)
partial pivoting, it does not hold for the arithmetic operations that are necessary
to perform a panel update.

The code in Listing 1 illustrates how to take advantage of this idea in or-
der to obtain a TP scheme with additional task parallelism via a horizontal
partitioning of each (“parent”) panel update into r = n/t (“child”) tasks, each
processing a “‘tile” of dimension t×b. (For simplicity, we assume that the prob-
lem dimension n is an integer multiple of the tile height t.) Note that the code
for this ATP algorithm includes an OpenMP taskwait pragma to synchronize
a group of child tasks with the corresponding parent task. In addition, the tile
partitioning is only performed on the panel update kernels, but not on the panel
permutations.

An aspect to highlight is that, in order to ensure that the data dependencies
are correctly identified, we need to leverage the support for “array sections”
in OpenMP, passing the complete specification of the memory regions covered
by each panel/tile task. In comparison, for the basic parallelization scheme in
Section 3, the panels operated each on a disjoint region of memory. Therefore,
in order to detect data dependencies in the BTP routine there, it could have
been sufficient to compare the address in memory of the top-left entry of each
panel instead of the whole regions.
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1 #define K ((k) ∗ b : ((k) + 1) ∗ b− 1)
2 #define J ((j) ∗ b : ((j) + 1) ∗ b− 1)
3 #define I ((i) ∗ t : ((i) + 1) ∗ t− 1)
4
5 void ATP_GJE( matrix A, vector p, \

6 int s, int r, int t, int b )

7 {

8 #pragma omp paral le l {

9 #pragma omp single {

10 for ( k = 0; k < s; k++ ) {

11 // Factorize panel k
12 #pragma omp task depend( inout: A(: , K), out: p(K) )

13 PF( A(: , K), p(K) );

14
15 // Permute and update panels 0 : k − 1 w.r.t. panel k
16 for ( j = 0; j < k; j++ ) {

17 #pragma omp task depend( in: p(K), inout: A(: , J) )

18 PP( p(K), A(: , J) );

19
20 // Update tiles in panel j w.r.t. those in panel k
21 #pragma omp task depend( in: A(: , K), inout: A(: , J) )

22 {

23 for ( i = 0; i < r; i++ ) {

24 #pragma omp task depend( in: A(I , K), \

25 inout: A(I , J) )

26 PU( A(I , K), A(I , J) );

27 }

28 #pragma omp taskwait
29 }

30 }

31
32 // Permute and update panels k + 1 : s− 1 w.r.t. panel k
33 // Omitted for brevity

34 }}}

35 }

Listing 1: ATP GJE routine with two-level task parallelism extracted via
OpenMP and the panel updates divided horizontally into tiles to expose
additional (t× b) tasks.

The top two traces in Figure 5 compare the execution of the BTP algorithm
and the ATP counterpart that divides the panel updates horizontally into tasks.
There is a clear unbalance in the workload distribution for the former, where
a significant amount of the cores remain idle during the update part of the
computation due to an insufficient number of tasks. This is tackled in the
ATP variant via the partitioning of the panels into finer-grain tiles, allowing
a better distribution of the work for the panel updates. Unfortunately, for
the combination of block size, matrix dimension, and number of cores in this
experiment, the panel factorization still imposes a major performance bottleneck
for both TP algorithms.

4.2 Partitionings of the panel factorization

The obvious solution to the high cost of a sequential (single-task) execution of
the PF kernel is to divide this operation into multiple tasks as well, exposing
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(a) BTP GJE algorithm.

(b) ATP GJE algorithm with horizontal partitioning of PU.

(c) ATP GJE algorithm with horizontal partitioning of both PF and PU.

(d) ATP GJE algorithm with vertical partitioning of PF into µ-panels and horizontal
partitioning of PU.

Figure 5: Traces of the first two iterations of the execution of the TP GJE
routines, with n = 10, 000, b = 384, t = 1, 250 and 20 cores, on Skylake.

task parallelism which can be leveraged by the system cores to accelerate the
otherwise sequential execution of this type of kernel.

At this point, we remind that, for performance reasons, the PF kernel is real-
ized using a blocked procedure based on the BSB routine (see Section 2). Thus,
at iteration k of the inversion algorithm, the implementation of this procedure
processes panel k of the matrix by dividing its columns into µ-panels of width
bin < b. Therefore, we can consider two ways of parallelizing the inner µ-panel
updates within this BSB procedure:

1. divide each individual inner µ-panel update horizontally into multiple “µ-
tile tasks” (of dimension tin × bin each); or

2. consider each inner µ-panel update itself as “µ-panel task”.

The algorithms for realizing these two parallelizations of the PF kernel are anal-
ogous to those in Figure 3b and Listing 1 (applied to the panel that has to be
factorized instead of the full matrix).

The effect of these two partitioning schemes for the PF kernel, by µ-tiles or
by µ-panels, combined in both cases with a horizontal division of the (outer)
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panel updates, is reported in the bottom two traces in Figure 5. From this
experiment, it seems clear the superiority of the second option, which tackles
the PF kernel via a BSB procedure that considers the inner µ-panel updates
appearing within the execution of this kernel as µ-panel tasks. The reason is
that the alternative that divides PF into µ-tiles yields a three-level partitioning
of the matrix operand into tasks, exposing an excessive number of tasks of
too-fine granularity.

4.3 Vertical partitioning of the panel update

The previous discussions in this section leads to a natural question: Can we
combine the version of PF that operates with µ-panels with an analogous vertical
division of the (outer) panel updates (that is, into µ-panels as well)? While the
answer is yes, we note that, in principle, this is equivalent to reducing the block
size for the BTP algorithm.

Figure 6 evaluates the performance of two ATP algorithms: In both cases,
the inner µ-panel updates appearing in the PF kernel are considered as µ-panel
tasks, so that they differ only in that the outer panel updates are partitioned
into either µ-tiles or µ-panels. The results from this experiment show clear
differences in the optimal block size as well as the execution traces for the first
iterations. Nonetheless, there is a remarkable similarity in the performance
attained by both schemes for 10 and 20 cores and all matrix dimensions.

4.4 Global comparison

We close the experimental evaluation in this paper with a global comparison of
the following four matrix inversion algorithms:

� An standard matrix inversion algorithm based on the LU factorization
using the appropriate calls to the LAPACK routines in Intel MT MKL
(dgetrf+dgetri).

� The BSB GJE routine in Section 2, with parallelism extracted only from
the MT instance of the BLAS in Intel MKL.

� The TP routines from the PLASMA library to compute matrix inversion
via the LU factorization (analogous to dgetrf+dgetri).

� The ATP GJE routine that parallelizes the PF kernel by µ-panels and the
PU kernel by tiles.

This evaluation involves two different types of algorithms for matrix inversion:
one based on the LU factorization and our alternative based on GJE. We note
that the two types of algorithms perform exactly the same arithmetic operations,
though in a different order and, therefore, have the same computational cost.
Furthermore, they integrate the same pivoting strategy, exhibiting the same
numerical stability and producing the same numerical results (within rounding
error). This evaluation is performed using 10 and 20 cores of the Skylake
platform, employing the optimal block size(s) for each algorithm, matrix di-
mension, and number of cores. For the last two inversion procedures (that in
PLASMA and our ATP routine), we also include a configuration that employs a
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(a) Performance (left) and optimal block size (right).

(b) Trace of the first 0.5 seconds of the execution for the TP GJE algorithm with
vertical partitioning of PF and horizontal partitioning of PU, with n = 16, 000, b =
480, bin = 12, t = 4, 000 and 20 cores, showing task type (top) and core occupancy
(bottom).

(c) Trace of the first 0.5 seconds of the execution for the TP GJE algorithm with
vertical partitionings of both PF and PU, with n = 16, 000, b = 480, bin = 12, t = 4, 000
and 20 cores, showing task type (top) and core occupancy (bottom).

Figure 6: Performance study of the ATP GJE algorithm on Skylake.

fixed value for the outer block size (concretely, set to b = 256) in order to assess
the sensibility of performance to this parameter.

The results in Figure 7 show the benefits of the two-level task partitioning
of the workload integrated in our ATP routine, which is only outperformed in
one case: by the BSB routine, for the largest matrix dimension (n=30,000) and
lowest number of cores (10). In all other cases, the ATP routine consistently
delivers a much higher GFLOPS rate compared with the Intel MKL counterpart,
and a considerably larger one when compared with the BSB routine for those
cases where the ratio between problem size and number of cores is small. In
comparison with the PLASMA alternative, the new TP routine is also a clear
winner, both when selecting the best block size and fixing a default value (again,
set to b = 256).

We close this section by noting that the use of the OpenMP array sections
results in simpler parallel codes for our ATP routines, which do not require
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Figure 7: Performance of the algorithms for matrix inversion on Skylake using
10 and 20 cores (left and right, respectively).

the use of dummy tasks, as in PLASMA, to control the execution for the LU
factorization that appears during the matrix inversion [6].

5 Concluding Remarks and Open Research Lines

In this paper, we have designed several strategies to map a representative matrix
factorization routine (matrix inversion via Gauss-Jordan elimination –GJE–)
into a many-core general-purpose architecture. Specifically, we have leveraged
the improved functionality in the newest versions of the OpenMP standard in
terms of tasking, together with the maturity of their implementation in modern
compilers and runtimes, in order to extract additional levels of task-level parall-
lelism in critical parts of the GJE algorithm, necessary to address the increasing
number of cores in present and future many-core architectures.

In more detail, we have proposed a two-level task generation strategy that ac-
commodates a first partitioning scheme based on a vertical (panel-wise) division
of the matrix operand, which is combined with a second horizontal (tile-wise)
division of each panel in order to expose an extra amount of task parallelism
and hence improve core occupation. This strategy has been proved to be valid
both at an outer level as well as (in a complementary way) at an inner level,
recursively applying the same strategy for the factorization of the panel that
emerges as a critical task in the global inversion procedure.

By means of a thorough evaluation, we have demonstrated that, by selecting
proper values for block and tile sizes, the proposed TP scheme yields a high core
occupation, and its parallel performance excels that of 1) a blocked implemen-
tation of GJE (based on multi-threaded Intel MKL BLAS), 2) state-of-the-art
dense linear algebra libraries (such as PLASMA), and 3) the commercial imple-
mentation of the LU-based matrix inversion procedure in Intel MKL.
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The extraction of additional degrees of task parallelism will actually be more
relevant as the number of cores increases in future architectures. Hence, it will be
of wide appeal to test our implementations on massively parallel architectures,
including the new-generation ARM servers with up to 96 cores per system.
Additionally, the efficient exploitation of task- and data-parallelism for each
specific architecture is also in our roadmap as a future research line.

The improvements of the latest versions of OpenMP regarding task paral-
lelism open a plethora of new research lines that will be explored not only for the
GJE-based matrix inversion routine, but also for other matrix factorization rou-
tines with similar features. Among these new functionalities, those improving
tasking support are of wide interest to us:

� Multidependency support using iterators, that will ease and improve the
efficiency of nested task generation and ease the management of complex
data dependencies.

� Task-to-data affinity clauses, that may yield more efficient cache hierar-
chy exploitation and data locality on NUMA architectures for runtime-
based task-parallel implementations. The evaluation of our implemen-
tations armed with task-to-data affinity hints and its comparison with
NUMA-oblivious parallel BLAS implementation is kept as a future re-
search line as soon as the future OpenMP runtimes offer mature support
for this functionality.

� Task priority support in OpenMP runtimes, still immature or non-existent
in modern implementations, will critically affect the overall performance
of many matrix factorization implementations.

� CUDA support within OpenMP, when fully available, will facilitate the
integration of GPUs within portable OpenMP codes, improving perfor-
mance and gaining in portability. In this case, the use of heterogeneous
block/tile size will become mandatory and impact a correct performance
portability across heterogeneous architectures.

� Recursive/nested task generation, with a dynamic recursion depth depend-
ing on the instantaneous necessity of task parallellism, is also an interesting
research line, both in symmetric or asymmetric multicore processors.
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