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Abstract

This doctoral thesis addresses topology optimization problems at a single scale. Based on
this purpose, a new topology optimization approach is developed in order to improve existing
and widespread techniques in the research community on the topic. The proposed technique
presents several characteristics that overcome some of the well-known difficulties in topological
optimization while maintaining a considerable degree of simplicity.

In the first place, the formulation of the topological optimization technique is presented,
as well as its algorithm. The method is based on 4 fundamental features: (1) the use of a
1-0 characteristic function, as well as the precise identification of the material boundaries from
a discrimination function (0-level-set function), (2) the definition of a topological derivative
consistent with the ersatz method (used in the state problem), as an approximation to the exact
topological derivative, (3) the inclusion of a Laplacian regularization with minimum size control
of the different components, and (4) the formulation of an analytical optimality condition aiming
at the optimal topology solution.

The approach is applied to different topology optimization problems, well-reported in the
literature and used as numerical benchmarks (in structural and thermal problems), to examine
their performance. In these fields, stiffness and conductivity maximization problems are con-
sidered for validation, respectively. In addition, different topological optimization problems of
major engineering interest are tackled, including the design of compliant mechanisms within the
structural field and thermal cloaking devices within the thermal field.

Finally, a comparison of the formulation with other existing topology optimization techniques
is performed, including (1) SIMP, (2) ESO/BESO, and (3) Level-set with Hamilton-Jacobi as
the updating equation. The analysis of the results provides a comparison in terms of the quality
of the topology of each method, the computational cost of the optimal solutions, as well as
the simplicity of implementation. The resulting study reveals the potential of the developed
methodology in these specific comparison terms.

In an attempt to bring the method closer to other researchers and to promote its use,
an educational version of the method (written in MATLAB) has been published in an online
repository, together with documentation, facilitating its dissemination and subsequent use in
other applications of interest.

Keywords: topology optimization technique, VARTOP, minimization, structural problems,
thermal problems, optimality criteria, relaxed topological derivative, level-set function, charac-
teristic function, Laplacian regularization, mesh size control, comparative study
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Resumen

El objetivo de esta tesis doctoral es abordar el problema de optimización topológica a una
única escala. En base a este propósito, se desarrolla una nueva técnica de optimización capaz de
competir con técnicas ya existentes y extendidas entre la comunidad investigadora sobre el tema.
Esta técnica presenta caracteŕısticas que superan algunas de las dificultades bien conocidas en
optimización topológica manteniendo un buen grado de simplicidad.

En primer lugar, se presenta la formulación de la técnica de optimización topológica, aśı
como su algoritmia. El método se fundamenta en 4 aspectos básicos: (1) la utilización de una
función caracteŕıstica 1-0, aśı como la definición precisa de las fronteras materiales a partir
de una función de discriminación (isonivel 0 de la función level-set), (2) la definición de una
derivada topológica coherente con el método ersatz (utilizado en la ecuación de estado), como
aproximación a la derivada topológica exacta, (3) la inclusión de una regularización Laplaciana
con control de tamaño mı́nimo de los diferentes componentes, y (4) la definición de una condición
de optimalidad anaĺıtica para la determinación de la solución óptima de la topoloǵıa.

La metodoloǵıa se aplica a diferentes problemas de optimización topológica bien detallados
en la literatura y utilizados como ensayos numéricos para examinar su respuesta frente a prob-
lemas estructurales y térmicos. En estos campos, se incluyen problemas de maximización de la
rigidez y de la conductividad, respectivamente. Además, se resuelven diferentes problemas de
optimización topológica con gran interés ingenieril en los campos estructurales con el diseño de
mecanismos y térmicos con el diseño de dispositivos de camuflaje térmicos.

Finalmente, se realiza una comparación de la formulación con otras técnicas ya existentes,
por ejemplo: (1) SIMP, (2) ESO/BESO, y (3) Level-set con Hamilton-Jacobi como ecuación
de evolución. El análisis de los resultados permite comparar la calidad de la topoloǵıa de
cada método, el coste computacional de las soluciones óptimas, aśı como la simplicidad de
implementación, demostrando el potencial de la metodoloǵıa desarrollada principalmente en
estos términos de comparación.

Con la finalidad de acercar el método a otros investigadores y de promover su utilización,
se ha publicado una versión educativa del mismo (en MATLAB) en un repositorio online, junto
a documentación, permitiendo aśı la divulgación del mismo y la posible utilización en otras
aplicaciones de interés.

Palabras clave: técnica de optimización topológica, VARTOP, minimización, problema
estructural, problema térmico, criterio de optimalidad, derivada topológica relajada, función
level-set, función caracteŕıstica, regularización Laplaciana, control tamaño filamento, estudio
comparativo
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Preface

The ambition to learn and have a deeper understanding of the world that surrounds us drove my
interest in the engineering field, culminating this process with higher studies in Aerospace Engi-
neering. All these years of preparation have provided me with a solid background in engineering
and numerical computation, leading me to pursue doctoral studies in this field.

The expansion of aviation in the 1990s represented a key event in the development of the in-
dustry as we know it today, as well as the current economical globalization, enabling cultural and
knowledge exchange. However, this increase in aeronautical transport entails the consumption
of tons of fuel and greenhouse emissions every year.

The existence of this serious problem for the industry gives rise to the need of developing
new, cleaner transport models, improving engines or even replacing old combustion engines with
new electric models, and designing new aircraft with better efficiencies. Starting from this last
premise, a fundamental objective would be to reduce the weight of the aircraft without affecting
their integrity.

With this purpose, this work aims at reducing the weight of the different structural compo-
nents while maintaining the same structural stiffness, through the use of computational numer-
ical tools such as topology optimization techniques. Therefore, the thesis focuses on developing,
formulating, and implementing a new topology optimization approach capable of obtaining op-
timal topologies at a low-computational cost while including manufacturing constraints that
could be used with the original objective in mind.

D. Yago,
Barcelona, December 2021.
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Chapter 1

Introduction

1.1 Motivation and Scope

In the past three decades, topology optimization has become an active research field to seek new
optimal counterintuitive designs in a wide range of problems governed by different physics, from
which a reduction of the total weight can be obtained. As a result of this substantial effort, the
optimal design obtained from the minimization of a given topology optimization problem can be
used by engineers as a first approximation in the development of new products in a wide range
of applications.

In particular, these methodologies can have a major impact in the automotive and aeronauti-
cal sectors, as they can be applied to achieve a reduction in the weight of automobiles or aircraft
without losing the structural integrity or changing the physical properties. This can result in
significant reductions in fuel consumption and greenhouse emissions, leading to million-dollar
benefits in terms of reduced operating costs.

There is a multitude of material reduction strategies, most notably the use of lightweight
composite materials. This material replacement has become more prevalent in recent years,
especially with new-generation aircraft designs. By contrast, topology optimization techniques
represent another alternative with the same objective, involving mainly the arrangement of
a single material. These topology optimization techniques seek to optimize the topology by
iteratively removing material from a full-domain object, under certain loads and boundary con-
ditions. Therefore, the most important features of topology optimization strategies are both the
location of the voids and the definition of their form, which will depend on the specific problem
to minimize.

Topology optimization techniques have been applied to a large number of physical problems,
including mechanical, thermal, acoustic, and electromagnetic, among others, with promising
results. As a consequence, most commercial structural analysis (FEA) codes have developed
specific computational modules to perform topology optimizations. Nonetheless, this software
requires high computational resources to find optimal topologies, in addition to the adjustment
of numerical parameters, which is one of the main reasons for its lack of popularity compared
to other techniques.

The scope of this thesis will therefore focus on the development of mono-scale techniques
targeting the minimization of an objective function subject to a volume constraint, for differ-
ent physical problems including the most common ones: structural and thermal problems. In
particular, optimal topologies of complex problems will be sought to be obtained at a reduced
computational cost, so that they could be subsequently printed by additive manufacturing tech-
niques.
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1.2 Objective

The objective of this thesis is framed within the development and formulation of a new com-
putational approach to topology optimization of macro-scale components in solid mechanics
problems. This methodology must also consider the required manufacturability constraints en-
forced by modern additive manufacturing techniques.

Consequently, the topology optimization technique must be capable of finding new optimal
topologies that minimize a certain objective function and are subject to some constraints. In
addition, a robust and parameter-independent technique must be defined for solving the opti-
mization problem, unlike the multiple parameters required by other existing methods. At the
same time, the strategy must also intend to outperform or at least match the results in terms of
topology quality, computational cost, and objective function, while addressing some of the nu-
merical issues presented by other methods, such as checkerboard patterns, semi-dense elements,
and mesh size dependence.

As a result, this thesis proposes a new topology optimization technique for minimizing sev-
eral physical problems (e.g., structural and thermal) while prescribing the maximum volume
and minimum bar size. Even though the mathematical complexity, the optimal topology is ob-
tained in a low-computational procedure by computing the corresponding closed-form optimality
condition of each optimization problem.

1.3 Outline

The remainder of this dissertation is organized as follows:

Chapter 2. The state of the art is described in this chapter. A review of the current
state of topology optimization is carried out, pointing out the main topology optimization
methods and their features. The review is focused on gradient-based topology methods,
including SIMP-based techniques, ESO/BESO approaches, Phase-field methodologies, and
Level-set techniques both with shape and topological derivatives. A section is finally
devoted to discuss the most relevant technical challenges faced by all of them.

Chapter 3. This chapter is devoted to detail the scientific contributions made throughout
the thesis. The developed topology optimization technique is first presented in a technical
and general manner (Appendix A), to particularize in the next sections to structural and
thermal topology optimization problems (detailed in Appendices A and B, respectively).
Some representative numerical examples are carried out for each physical problem. Based
on numerical benchmark cases, the topology optimization approach is compared with
several relevant well-known techniques, including SIMP, BESO, and Level-set techniques,
showing the potential of this methodology. Full details of this comparison are specified in
Appendix D.

Chapter 4. The conclusions of this dissertation are summarized in this last chapter,
including the achievements of this work and the dissemination carried out throughout the
doctoral thesis. Potential future lines of research with some academic interest are also
detailed.

Appendices A to D. Post-print editions of the supporting papers are included in the
appendices. As mentioned before, Articles B, C, and D satisfy the minimum requirements
for article-based thesis.
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Chapter 2

State of the art

This chapter provides the reader with a state-of-the-art review of different topology optimiza-
tion techniques, where their major advantages and disadvantages are highlighted. In addition to
this literature review, an overview of some major ill-conditioning problems of the topology op-
timization problem is also presented. These well-known handicaps inherent to the optimization
problem have a major impact on the formulation and convergence of each technique.

2.1 Topology optimization methodology

Topology optimization has gained increasing interest among researchers and engineers in the last
years due to the need for demanding engineering solutions and the increasing computational per-
formance of modern computers. In this context, topology optimization techniques play a major
role in obtaining the best topology layouts (solutions) that satisfy any of the constraints imposed
for a given application. These designs can be then used by engineers as a first approximation in
the development of new products in a wide range of applications.

For instance, in the last three decades, topology optimization has been applied to a wide
range of problems governed by different physics, i.e., solid mechanics [149, 124, 7, 20, 123,
27], fluid dynamics [16, 43, 46], thermal dynamics [67, 41, 141], acoustics [114, 33, 32, 70, 73,
99] and electromagnetism [53, 153, 152], among others. Furthermore, topology optimization of
coupled multiphysics problems has been addressed in recent works, combining structural-thermal
interaction [109, 107, 30], structural-fluid interaction [148, 82, 10, 56] or even thermal-fluid
interaction [2, 19, 140, 78].

One can find a large variety of optimization techniques in the literature that make use of
different design optimization strategies. These methodologies can be roughly classified into three
main areas: (1) size optimization aims at finding the optimal size/thickness/cross-sectional area
of the existing fixed components that minimizes a given functional, (2) shape optimization, on
the other hand, modifies only the boundary of the (stiff) domain to find the optimal geometric
definition of those boundaries that minimizes that functional, and finally (3) topology optimiza-
tion seeks the optimal position and shape of a set of holes to be included in the design, thus
reducing the amount of material while minimizing the objective function. In comparison to
shape optimization, holes in the interior of the structure can be created in topology optimiza-
tion. This thesis is mainly focused on shape and topology optimization, as will be explained in
the following chapters.

According to the methodology used to update the optimal solution, the optimization tech-
niques can be categorized into two blocks: (1) methods based on trial-and-error schemes that
find the optimal topology by means of heuristic algorithms according to the objective function
of the previous iteration, and (2) methods relying on a sensitivity (or gradient) of the objective
function to determine the best way to update the topology, thus obtaining at each iteration a
reduction of the objective function. Even though the former group may have some advantages
for discrete applications, the latter methods are more suitable for the continuum applications.
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The two previously listed groups are now briefly described in the following sections. For an
in-depth review, the reader is referred to [102, 37, 29, 115, 31, 85].

2.1.1 Non-Gradient-based techniques

Nature-inspired optimization techniques are (meta)heuristic algorithms imitating natural phe-
nomena and physical processes that seek the global minima through a global search strategy.
These non-gradient-based or gradient-free (NGTO) techniques do not use any derivative, only
the objective function values to determine the solution that provides the minimum one. Exam-
ples of such strategies are ant (AC) and bee (ABC) algorithms [58, 75], bat algorithm (BA) [147,
145, 55], cuckoo search (CS) [35], firefly algorithms (FA) [83, 129], genetic algorithms (GA) [60,
61, 126], differential evolution (DE) [127, 62], harmony search (HS) [64, 81], simulated annealing
(SA) [134, 21], particle swarm optimizations (PSO) [76], and others. A detailed review of these
methods can be found in [146].

In some circumstances, these NGTO approaches may be more competent in searching for
high-performance designs by using global search techniques in combination with local search
strategies. Nevertheless, the majority of these metaheuristic strategies are based on trial-and-
error schemes to find or discover the best possible solution, thus requiring thousands of evalua-
tions of the objective function for this purpose. In addition, there is no guarantee that optimal
solutions will be reached, although one can expect to obtain solutions close enough to the global
minimum when performing enough global searches in the feasible domain.

In particular, for continuum structures, the use of these methods implies solving the state
equation thousands of times to test each configuration, as stated by Sigmund [113]. Up to this
moment, NGTO approaches have been extensively used for (1) discrete size optimization, and
(2) shape or topology optimization of extremely coarse problems, with great results. In addition,
these algorithms are normally easier to implement and may scale on parallel computers without
major issues. However, the number of evaluations of the state equation and the objective
function increases exponentially with the number of unknowns of the problem, and hence the
computational cost. Consequently, these strategies are not computationally feasible for fine-
discretized problems with thousands or millions of elements, as it is intended here. For that
reason, this entire family of approaches has been discarded as an option for this thesis.

2.1.2 Gradient-based techniques

According to the previous statement, Gradient-based (GTO) techniques are the only feasible
group for optimizing large structures in a reasonable amount of time. These methods, however,
require the computation of a size/shape/topology derivative for deciding where to modify the
topology to minimize the objective function. Even though having to derive and compute the
gradient of the objective function, the enormous reduction in the number of evaluations of the
state equation justifies the additional mathematical difficulty against any other NGTO method.
As a result, the computational cost significantly decreases, allowing to solve large problems.

As a consequence, in the continuum context, topology optimization has received extensive
attention and experienced considerable progress over the past few years due to its great potential
of application in many industrial areas. Up to now, various families of gradient-based techniques
have been well-developed. The most widespread GTO algorithms are (a) topology optimization
within homogenization theory [15], (b) density-based optimization (SIMP) techniques [13, 84,
14], (c) evolutionary methodologies (ESO) [132, 143], (d) Level-set approaches [6, 7, 124], (e)
Topological Derivative method [116], and (f) Phase field approach [18, 122, 120], among others.

As mentioned above, all these topology optimization techniques require either the compu-
tation of a shape or topological derivative/gradient of the objective function with respect to a
change in topology. For shape derivative strategies, the sensitivity is determined when a defor-
mation is applied on a material boundary in the normal direction with unitary modulus. As
the main drawback, methods based on shape derivative can not nucleate new voids, but only
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modify the existing ones through their boundaries, thus being highly dependent on the initial
configuration. In contrast, the topological derivative evaluates the change in the objective func-
tion when an infinitesimal perturbation is performed in the design domain, and can therefore
modify any part of it, avoiding the initial layout dependence.

SIMP-based techniques

The seminal paper of Bendsøe and Kikuchi [15] propitiated the development of one of the
most widespread streams of topology optimization methods, i.e., density-based approaches. In
particular, the Solid Isotropic Material with Penalization (SIMP) method [13, 84, 14] is nowadays
one of the most widely used topology optimization methods due to its computational efficiency
and conceptual simplicity, and is considered a consolidated theory by the community.

The SIMP approach is based on a simple regularization of the discontinuous characteristic
function χ, thus using an element-wise continuous density as the design variable instead of
directly tackling the original 0− 1 problem. As a consequence, semi-dense elements are allowed
in the design domain, ρ ∈ [0, 1]. This density variable, penalized with an exponential factor
p, is used to interpolate the material property (the constitutive tensor, for instance) and the
objective function. According to this definition, a gradient of the objective function can be easily
computed and used in continuous optimization algorithms. For instance, the density variable
can be updated via a heuristic algorithm termed as optimality criteria (OC) method [15, 118],
via the moving asymptotes (MMA) algorithm [119] or other mathematical programming-based
optimization algorithms.

Although the topology almost leads to black-and-white designs once the penalization is
applied, the SIMP method requires some type of filtering procedure to alleviate well-known
numerical instabilities [108, 57] resulting from the ill-posedness of unconstrained topology opti-
mization problems, e.g., gray areas (semi-dense intermediate elements), checkerboard patterns,
and mesh-dependency issues. A large number of regularization schemes have been suggested
to be used regarding topology optimization, including: (1) filtering, via the classical sensitiv-
ity [110, 111, 108] or density [17, 20] filters, projection techniques [44, 45], morphology-based
filters [112, 121] or Helmholtz-type filters [63, 59], among others, and (2) geometric constraint
techniques, e.g., perimeter constraint [48, 40] or gradient constraints [94].

This method has been extensively applied to structural [14, 155, 1], thermal [79, 128, 39] and
acoustic [148, 34] topology optimization problems with promising results. However, gray ele-
ments are obtained in all these applications, and consequently, the method tends to converge to
a local optimal topology with blurry boundaries. These non-optimal solutions require additional
techniques to recover the full black-and-white configuration.

ESO/BESO techniques

Another recognized family of approaches is the one based on the evolutionary structural op-
timization (ESO) approach first introduced by Xie and Steven [132, 130]. ESO methods rely
primarily on a simple heuristic criterion to gradually remove or hard-kill inefficient material
from the initial full-stiff design domain after each finite element analysis. Contrary to SIMP,
a discrete element design variable χ ∈ {0, 1} is now used to define the topology layout, thus
avoiding gray elements from its definition. Despite being an intuitive and easy-to-code method-
ology, this change in design variables results in convergence issues and a high dependency on
the initial configuration (and the sequence of element removal). In addition, there is no proof
of optimality and may easily lead to non-optimal designs [151]. Despite these existing numer-
ical problems, ESO has been applied to a large range of problems, from well-known structural
problems [133, 131, 150, 26], including non-linear problems [96, 77], to thermal problems [66,
67, 95], and contact problems [68, 69].

To overcome these issues, the bidirectional evolutionary structural optimization (BESO)
approach [97, 143, 98] was developed with the capability to add stiff material in certain areas of
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the domain, thereby reducing the likelihood of finding non-optimal solutions. In an attempt to
extend the number of potential applications, the BESO approach has been later combined with
a density-based interpolation and a soft-kill strategy [154, 51]. An excellent overview of some
recent developments in topology optimization using ESO/BESO is provided in [52].

As in density-based formulations, the design variable is normally regularized to reduce nu-
merical instabilities such as mesh-dependency. For instance, these issues are mitigated via a
checkerboard suppression filter [65], a mesh-independent filter [54] or a perimeter control [144],
among others.

Phase-field techniques

On the other hand, Phase-field methods [8, 24, 38] continue to use the regularized model pro-
posed in SIMP methods (using the density as design variable), but with the additional target of
limiting the thickness of the interface between full and void material elements. Consequently, the
resultant optimal solutions present smooth almost black-and-white domains separated by sharp
thin finite thickness interfaces, reducing the total number of gray elements present in a given
configuration and avoiding non-optimal solutions. Although different mathematical techniques
tackle this problem, the gradient regularization of the density [18, 125, 23, 122] can be seen as
the most straightforward one. This term is added to the objective function, thus minimizing the
thickness of the interface.

In this spirit, Yamada et al. [142] has suggested a Phase-field approach based on a level-
set function, used as the design variable, and a topological derivative incorporating a fictitious
interface energy. This last mathematical technique allows controlling the complexity of the
optimal layout. Although being applied to other problems [141, 71], it still resorts to a Hamilton-
Jacobi equation to update the topology design, which may entail high computation resources to
achieve convergence.

Level-set techniques (shape and topology optimization)

The last major stream is constituted by Level-set-based methods. In contrast to the previous
topology optimization approaches, the optimal layout is implicitly defined by a scalar function
ϕ, and the structural boundary of the design Γ is represented by the zero-level iso-contour (or
iso-surface) of this function [92, 104, 91]. As a result, optimal designs with sharp and smooth
edges are obtained, thus avoiding semi-dense (gray) elements and checkerboard patterns, like
those observed in density-based methods. Due to this technical advantage, many formulations
of Level-set-based approaches have been proposed over the years since Haber and Bendsoe [49]
suggested its applications with topology optimization techniques, e.g., [105, 6, 124, 5]. The
most important techniques are the Level-set (based on shape derivative) and the Topological
Derivative methods.

The original Level-set methods are based on the classical shape sensitivity analysis of the
objective function (for a deformation on the boundary) in combination, usually, with a Hamilton-
Jacobi equation to update the level-set function [93, 6, 7, 124], where the shape derivative is
used as a descent direction. As mentioned previously, the inability of nucleating holes and the
large number of iterations make this approach limited and computationally inefficient. Neverthe-
less, these issues have been overcome through a set of mathematical techniques, e.g., nucleation
strategies [36, 103], reinitializations, and alternative updating procedures. With the implemen-
tation of some of these modifications, the Level-set method has been applied to a broad range
of design problems, including structural problems [4], vibration problems [93, 4], and thermal
problems [47], among others.

The topological derivative [116, 25, 42] can also be employed in conjunction (or not) with
shape derivatives in the Topological Derivative approach [22, 5, 86, 9, 50], overcoming, in this
way, some limitations of classical Level-set methods. This set of improved methodologies avoids
any stagnation or sub-optimal solution due to the capability of the sensitivity in determining how
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to update the topology. The topological derivative provides information regarding the change in
the objective function when an infinitesimal perturbation is created in the domain. However, this
improvement entails a complex mathematical asymptotic analysis to obtain the exact topological
derivative of each problem, narrowing then the number of potential applications. In addition,
this family of methods still requires a large number of iterations to obtain the optimal layout as
it normally leans on a Hamilton-Jacobi equation to update the level-set function.

2.2 Main issues of existing topology optimization techniques

The discrete topology optimization problem suffers from numerical instabilities, including the
non-existence of optimal solution, mesh dependence, and checkerboard patterns. It is well-known
that the 0-1 topology optimization problem subject to volume constraint lacks solutions in gen-
eral, since the larger the number of holes in the domain (for the same volume fraction), the lower
the objective function is (for instance, the compliance), i.e., there is a lack of determination of
the set of feasible solutions. When this optimization problem is discretized in finite elements, the
dependence in mesh is then observed, thus requiring regularization techniques as those discussed
in the previous section, including relaxation, filtering techniques, and geometric constraints. On
the other hand, checkerboard patterns are originated due to inaccurate modeling of the physical
properties of the problem. These patterns can be removed from the admissible set of solutions
by applying additional filtering techniques or constraints, or by using appropriate finite element
interpolations for variables. For further information, the reader is referred to [108].

From the analysis of different topology optimization techniques, it can be concluded that,
in most approaches, these numerical problems (mainly checkerboard patterns) are mitigated
by using filtering techniques (e.g., sensitivity filtering) and regularization of the design variable
(as implemented in SIMP). On the other hand, nodal-based design variables (level-set-based
methods) can circumvent these difficulties, although these regularizations are also included to
smooth the solutions while adding additional manufacturing constraints. Therefore, it makes
sense that the combination of a method based on a characteristic function (resulting from the
nodal level-set function) together with a manufacturing regularization of the solution will provide
smooth mesh-independent solutions with no checkerboard patterns.
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Chapter 3

Scientific contributions

3.1 Topology optimization technique

This doctoral thesis proposes a new topology optimization technique, termed as the Variational
Topology Optimization (VARTOP) approach, as an alternative to other well-known and con-
solidated techniques. This methodology combines the mathematical simplicity of SIMP-based
techniques while considering the characteristic function as the design variable from ESO/BESO
methods. As a consequence, the topological design is defined as a binary configuration of two
materials, describing then black-and-white designs. In particular, the boundary of the material
domain is implicitly represented through a 0-level-set function (discrimination function) as in
level-set-based methods, and the characteristic function can also be obtained from this function.

As opposed to other level-set-based methods, the proposed strategy does not require a
Hamilton-Jacobi type function nor a Reaction-Diffusion function to update the discrimination
function, but rather a closed-form optimality criterion, from which the optimal solution is ob-
tained. This fixed-point system is obtained from the topological derivation of the optimization
problem, leading to a result similar to that obtained in the OC method for SIMP approach. In
contrast to more complex methods such as the Topological Derivative method where the exact
topological derivative is considered, the VARTOP technique relies on the relaxed topological
derivative, being consistent with the ersatz material approach while reducing the mathematical
complexity.

The topology optimization problem is normally subjected to a volume constraint expressed
in terms of a pseudo-time variable (volume fraction). This constraint equation is iteratively
increased until the desired volume is achieved, thus obtaining converged topologies for inter-
mediate volume fractions. By means of this procedure, referred to as time-advancing scheme,
the corresponding Pareto Frontier between the objective function and the volume fraction is
obtained. For each time-step, the closed-form optimality criteria have to be solved to compute
both the Lagrange multiplier that fulfills the volume constraint and the optimal characteristic
function.

As for the regularization, a Laplacian regularization, similar to those used in SIMP and
Phase-field approaches, is applied to the discrimination function, providing not only smoothness
in the optimal design but also mesh-size control. Consequently, two of the major existing
problems in topology optimization are mitigated while limiting the complexity of the topology
layout, as may be required by some manufacturing techniques.

3.2 General formulation

In the following sections, the general formulation of the proposed topology optimization tech-
nique is defined in a generic form without particularizing for any objective function and state
problem. A volume constraint is assumed in all the optimization problems.

8
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3.2.1 Design domain and design variable

The optimal topology layout of the design domain, Ω, is here defined in terms of the design
variable, denoted by the characteristic function χ : Ω→ {0, 1}, χ ∈ L∞(Ω) as follows{

Ω+ := {x ∈ Ω / χ(x) = 1}
Ω− := {x ∈ Ω / χ(x) = 0}

, (3.1)

where Ω+ and Ω− stand for the strong/hard and the void material domains, respectively. Al-
ternatively, the topology can also be implicitly defined in terms of a discrimination function
ψ : Ω→ R, ψ ∈ H1(Ω) as{

Ω+ := {x ∈ Ω / ψ(x) > 0}
Ω− := {x ∈ Ω / ψ(x) < 0}

, (3.2)

similar to the level-set function definition. The topology definition (3.1) can be obtained from
equation (3.2) by computing the Heaviside function of the discrimination function, i.e., χ(x) =
H(ψ(x)), χ ∈ L2(Ω), this leading to a bi-material topology optimization problem.

Ω

Ω+

Ω–

Ω–

∂Ω

Γ

���

���

���

���

Figure 3.1: Domain representation: representation of the design domain, Ω, comprising two
disjoint sub-domains Ω+ (strong material domain) and Ω− (void material domain) defined either
via the characteristic function χ (equation (3.1)) or implicitly via the discrimination function ψ
(equation (3.2)).

Instead of dealing with a theoretical 1-0 configuration, the void material is normally replaced
by a weaker (or less conductive) material using a contrast factor α, in the so-called ersatz material
approach [3, 28]. Accordingly to this modification, and considering equations (3.1) and (3.2),
the relaxed characteristic function χβ becomes

χβ(ψ(x)) =

{
1 for ψ(x) > 0

β for ψ(x) < 0
, (3.3)

with β corresponding to the relaxation factor in the void sub-domain. This parameter can be
easily correlated to the contrast factor used in the ersatz material approach. In particular, β is
defined by

β =
m√
α , (3.4)

m denoting an exponential factor, similar as the exponential factor p used in SIMP-based meth-
ods. As a result of this change of variables, it is possible to assign a small value α for the void
subdomain and 1 for the remaining domain, when the relaxed characteristic function is raised
to the exponent m.
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3.2.2 Topology optimization problem

On a general basis, the topology optimization problem aims to obtain an optimal topology layout
that minimizes a given target objective function J subject to certain constraints Ck (e.g., the
volume constraint, the perimeter constraint, or even the maximum stress value) and governed by
a linear or non-linear state equation. In the most straightforward case for the elastic or thermal
problems, the compliance function would be used as the objective function, while the volume
constraint as the constraint equation. In these situations, the stiffness or the conductivity of
the structures are maximized for a certain volume (or weight) fraction. Nevertheless, different
combinations of objective function and constraint equations can be found in the literature.

Based on this concept, the classical mathematical formulation of the corresponding topology
optimization problem can be stated as follows

min
χ∈Uad

J (u(χ), χ) ≡
∫
Ω
j(u(χ), χ,x) dΩ (a)

subject to:

C0(χ) ≡
∫
Ω
c0(χ,x) dΩ ≤ 0 (b)

governed by:

State equation (c)

, (3.5)

assuming the volume constraint C0 as the single constraint equation. The objective function
J : (χ,Ω) → R,J ∈ L2(Ω) and the volume constraint are expressed as volume integrals over
the entire domain of local functions j or co, respectively, in terms of the state variable u, the
design variable χ, and the position x. Additionally, the integrands j and co must be sufficiently
smooth for differentiation purposes.

In particular, the volume constraint C0 can be expressed as an equality equation in terms of
the void volume fraction, with respect to the design domain, through the relaxed characteristic
function χβ as

C0(χβ) ≡ |Ω
−|
|Ω|
− 1

|Ω|

∫
Ω

1− χβ(x)

1− β
dΩ = t−

|Ω−(χβ)|
|Ω|

= 0 , (3.6)

where |Ω| and |Ω−| are the design domain and the target void material volumes (as illustrated
in Figure 3.1), respectively. From the ratio of these two parameter, the pseudo-time variable
t is defined as the target void volume fraction, which will subsequently be used to iteratively
prescribe and increase the volume fraction. Henceforth, the subscript β from the characteristic
function χβ will be omitted.

3.2.3 Relaxed Topological Derivative (RTD)

Regardless of the optimization approach (from the most important group), a gradient (in case
of using a continuous regularized design variable) or topological derivative must be derived to
compute the sensitivities of the objective function and the volume constraint with respect to
the design variable, χ. Such topological derivatives will then be used to define the optimality
conditions for determining the optimal topology.

Generally speaking, the topological derivative measures the change in objective function (or
volume constraint) when a small perturbation in the topology layout is performed at each point,
i.e., when the material from a small region is exchanged from one material to the other (e.g., from
stiff material to void material, or vice-versa).

In mathematical form, this idea can be expressed for the proposed approach via the following
topological asymptotic expansion

J (χ+ ηx̂,ϵ) = J (χ) +
δJ (χ)

δχ
(x̂) µ[Ωϵ(x̂)] + o(µ[Ωϵ(x̂)]) , (3.7)
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where ηx̂,ϵ and µ[Ωϵ(x̂)] correspond to the topology perturbation and the measure of the per-
turbation domain Ωϵ. In this context, the perturbation function ηx̂,ϵ at point x̂ is defined as the
exchange function

∆χ(x̂) =

{
−(1− β) < 0 for x̂ ∈ Ω+

1− β > 0 for x̂ ∈ Ω−
(3.8)

evaluating the increment in the characteristic function χ due to the material exchange (as
illustrated in Figure 3.2), and Ωϵ(x̂) is the circle or the sphere of center x̂ and radius ϵ, for 2D
or 3D domains, which perturbation measure µ[Ωϵ(x̂)] is a smooth positive function that tends
to zero with ϵ.

According to the previous asymptotic expansion (3.7) and the exchange function (3.8), the
relaxed topological derivative (RTD) of a functional J at point x̂ can be computed as

δJ (χ)

δχ
(x̂) = lim

ϵ→0

1

µ[Ωϵ(x̂)]

[
J (χ+ ηx̂,ϵ)− J (χ)

]
(3.9)

when the material phase type is exchange (i.e., χ → χ + ∆χ(x̂)) at the perturbation domain
Ωϵ(x̂). Unlike in the definition of the exact topological derivative [25, 117, 87, 88], here the
perturbed (considering the material exchange, Ω+ \ Ωϵ) and original (Ω+) domains remain the
same domain. This fact reduces the mathematical complexity of solving analytically the corre-
sponding asymptotic analysis of the objective function in the topological derivative approach.
As a result, the relaxed topological derivative can be considered as a fast and easy-to-compute
topological derivative, which approximates the exact one.

Relaxed Topological Derivative of the objective function

The relaxed topological derivative of the objective function J (3.5a) at each point x̂ can be
obtained from the corresponding topological asymptotic expansion in terms of the topology
perturbation ηx̂,ϵ. The perturbed objective function J (χ+ ηx̂,ϵ) can be then expressed as

J (χ+ ηx̂,ϵ) =

∫
Ω
j(χ+ ηx̂,ϵ,x) dΩ =

∫
Ω

(
j(χ,x) +

∂j(χ,x)

∂χ
η(x̂),ϵ + o(ηx̂,ϵ)

)
dΩ =

=J (χ) +

∫
Ω

∂j(χ,x)

∂χ
∆χ(x̂) dΩ + o(µ[Ωϵ(x̂)]) .

(3.10)

By rearranging and replacing it into equation (3.9), the RTD of a generalized objective
function J (u(χ), χ) can be mathematically formulated as

δJ (χ)

δχ
(x̂) = lim

ϵ→0

1

µ[Ωϵ(x̂)]

(∫
Ω

∂j(χ,x)

∂χ
∆χ(x̂) dΩ + o(µ[Ωϵ(x̂)])

)
=

= lim
ϵ→0

|Ωϵ(x̂)|
µ[Ωϵ(x̂)]

[
∂j(χ,x)

∂χ
∆χ(x)

]
x=x̂

=

[
∂j(χ,x)

∂χ

]
x=x̂

∆χ(x̂) ,

(3.11)

where the perturbation measure µ[Ωϵ] corresponds to the volume of the perturbation (i.e., |Ωϵ|)
and lower order terms of the perturbation measure become 0 as the perturbation radius ϵ tends
to 0.

As a result, the relaxed topological derivative of a functional J (u(χ), χ) can be obtained from
the product of the Fréchet derivative of the integrand j and the topology exchange function ∆χ
at each point x̂. Regarding the Fréchet derivative of the integrand, it is important to emphasize
that the state variable u also depends on the topology and must be derived with respect to
χ through the chain rule, thus adding the derivative of the state variable with respect to the
design variable. Instead of explicitly computing this term, the adjoint method is employed [72,
25], where the state equation and Lagrange multipliers are included in the original functional.
The values of the Lagrange multipliers are found by solving an additional state equation. This
will be considered in Section 3.3.
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Figure 3.2: Topological derivative computation: (a) Relaxed Topological Derivative (RTD)
used in the proposed approach and (b) Exact Topological Derivative (TD) used in Topology
Derivative methods.

Relaxed Topological Derivative of the volume constraint

In contrast of a generalized objective function, the volume constraint C0 (3.6) does not depend
on the state variable u, and its topological derivative can be easily derived from equation (3.11).
The corresponding relaxed topological derivative can be computed as

δC0(χ)

δχ
(x̂) = − 1

|Ω|
lim
ϵ→0

|Ωϵ(x̂)|
µ[Ωϵ(x̂)]

[
∂c0(χ,x)

∂χ
∆χ(x)

]
x=x̂

= − 1

|Ω|

[
∂c0(χ,x)

∂χ

]
x=x̂

∆χ(x̂) , (3.12)

where the integrand c0 corresponds to the volume of the void subdomain, as defined in equation
(3.6). By replacing the integrand into the previous equation and considering the definition of
the material exchange function (3.8), one obtains

δC0(χ)

δχ
(x̂) = − 1

|Ω|

[
−1

1− β

]
x=x̂

∆χ(x̂) =
1

|Ω|
∆χ(x̂)

1− β
=

sgn (∆χ(x̂))

|Ω|
, (3.13)

where the sgn (·) operator stands for the sign of the material exchange function, being equal to
−1 for the hard material subdomain, and 1 elsewhere.

Understandably, the relaxed topological derivative of the volume constraint (normalized with
respect to the volume of the design domain) corresponds to the sign function, being negative
for those zones where hard material is replaced with weak material (i.e., material is removed
from the topology layout), and positive for the opposite case (i.e., material is added to the
configuration).
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3.2.4 Optimality criteria

Once the topological derivatives of the objective function J and the volume constraint C0 are
defined, the optimality condition of the constrained topology optimization problem can be stated.
From a logical perspective, the optimality condition has to state the condition for which any
change in the topology leads to an increase in the objective function, hence no further changes
will be of interest and the optimal topology will be obtained in the optimal condition. This
condition can be mathematically defined in terms of the topological derivative of the Lagrangian
function.

The Lagrangian function of the constrained problem (3.5) can be expressed as

L (u(χ), χ, λ) = J (u(χ), χ) + λC0(χ, t) , (3.14)

where the constraint equation C0 has been included in the original Lagrangian function by a
Lagrange multiplier λ, which value must be computed to enforce the target volume fraction, t.

Consequently, the optimality condition for the constrained topology optimization problem,
defined via the corresponding Lagrangian function (3.14), can be written as

δL (u(χ), χ, λ)

δχ
(x̂) =

δJ (u(χ), χ)

δχ
(x̂) + λ

δC0(χ, t)
δχ

(x̂) ≥ 0 ∀x̂ ∈ Ω , (3.15)

which can be further simplified to

δL (u(χ), χ, λ)

δχ
(x̂) =

([
∂j(u(χ), χ,x)

∂χ

]
x=x̂

∆χ(x̂) + λ
sgn (∆χ(x̂))

|Ω|

)
≥ 0 ∀x̂ ∈ Ω , (3.16)

by replacing the topological derivative of the objective function (3.11) and the volume constraint
(3.13). Specific details on the statement of this optimality criteria can be found in Paper A [89].

3.2.5 Closed-form non-linear optimality criteria

The closed-form non-linear optimality criteria rely on the enforcement, in strong form, of the
original volume constraint C0 via the computation of the Lagrange multiplier, λ. As aforemen-
tioned, the exact value of this parameter is obtained using a bisection algorithm of the optimality
criteria.

For the optimality criterion, the most crucial point is to determine its relation to the design
variable of the optimization problem. As an intermediate point, the optimality condition in
the whole design domain is related to the discrimination function ψ, and the latter to the
characteristic function χ by means of the Heaviside function.

In this context, the optimality condition (3.16) particularized for a certain topology layout
featuring two material subdomains Ω+ and Ω− reads as follows

δL (u(χ), χ, λ)

δχ
(x̂) =


(
−(1− β)

[
∂j(u(χ), χ,x)

∂χ

]
x=x̂

− λ

|Ω|

)
≥ 0 ∀x̂ ∈ Ω+(

(1− β)

[
∂j(u(χ), χ,x)

∂χ

]
x=x̂

+
λ

|Ω|

)
≥ 0 ∀x̂ ∈ Ω−

, (3.17)

from which one can identify a single expression that relates to the expression of the discrimination
function ψ at each point x̂ of the design domain, being positive for points included in the strong
material subdomain, and negative, in the void material subdomain.

As a result, for a given pseudo-time t and objective function derivative, the optimal topology
layout can be found by solving the closed-form non-linear optimality criteria, i.e.,

ψ(χ, x̂, λ) := − (1− β)

[
∂j(u(χ), χ,x)

∂χ

]
x=x̂

− λ

|Ω|
χ(x̂, λ) = Hβ [ψ(χ, x̂, λ)]

C0(χ(x̂, λ), t) = t− |Ω
−(χ(x̂, λ))|
|Ω|

= 0

, (3.18)
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where equations (3.3), (3.6) and (3.17) have been considered.

Laplacian regularization

As any other technique, the proposed strategy requires some kind of filtering or regularization
to mitigate the ill-posedness of the topology optimization problem, in terms of checkerboard
patterns, mesh-dependency, and filament size control. In the literature, one can find a variety
of techniques to reduce the effect of these problems, including the distance-based filter and the
Tikhonov regularization [18, 63, 59, 142], among others.

In this approach, a Laplacian regularization is applied to the discrimination function ψ
(3.18), thus obtaining a smooth scalar function ψτ . This smoothed function replaces the original
discontinuous function in the closed-form optimality criteria. As a result, topology smoothness
and mesh-independence are accomplished, and minimum bar-size can also be controlled, thus
providing control over the complexity of topology layouts.

The smoothed discrimination function ψτ comes from the resolution of{
ψτ − (τhe)

2∆xψτ = ψ in Ω

∇xψτ · n = 0 on ∂Ω
, (3.19)

where ∆x(x, ·) and ∇x(x, ·) are respectively the Laplacian and Gradient operators, and n is the
outward normal to the boundary of the design domain, ∂Ω. τ and he stand for the dimensionless
regularization parameter and the typical size of the finite element mesh, respectively.

< �he > �he

x̂��
� � � � � � � � � � ��

�

���

�

����

��

���

����

���
���������
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Figure 3.3: Laplacian regularization: the original discrimination function ψ and the correspond-
ing characteristic function χ are illustrated in blue, while the smoothed ones (i.e., ψτ and χ(ψτ ))
are drawn in green. The minimum characteristic size τhe is displayed in the top left of the fig-
ure, representing the minimum size from which small bars are removed from the final design.
The original topology layout (χ(ψ)) is shaded in gray, and the final smoothed design (χ(ψτ )) is
represented by a left-inclined lines pattern.

Note that, as an alternative to applying the Laplacian regularization to the discrimination
function ψ including the topological derivative of the volume constraint C0, the regularization
can be directly applied to the derivative of the objective function J , henceforth denoted as
ξ. This term is known prior to solving the optimality criterion (3.18) and independent of the
Lagrange multiplier, which is a constant value for the entire design domain. The resolution of
equation (3.19) for the pseudo-energy ξ leads to the corresponding Laplacian-regularized version
ξτ . From this function, the smoothed discrimination function ψτ can be computed together
with the correct value of the Lagrange multiplier λ. As a consequence of this modification, the
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regularization only needs to be applied once per iteration of equation (3.5) instead of equation
(3.18), thus significantly reducing the computational cost of solving the optimality criteria.

Without going into details, the Laplacian filter manages to eliminate those wavelengths
below the regularization parameter τ . Consequently, those bars or components with a thickness
smaller than τhe will be suppressed from the final design. In the case of imposing a zero τ
parameter, a global smoothing would be applied to the pseudo-energy ξ with the mass matrix.
Additionally, the regularization parameter τ can be defined as a tensor to impose different sizes
for each direction, thus obtaining an anisotropic regularization, as tested in Article A.

Volume enforcement strategy

Cutting&bisection algorithm Considering a design topology χ and the corresponding sensi-
tivity of the objective function ξτ , the resulting topology χ and the volume constraint C0 for each
value of the Lagrange multiplier λ can be easily determined, as shown by the expression (3.18).
The fulfillment of the constraint equation is achieved by computing the Lagrange multiplier that
strongly satisfies the target volume fraction t using a bisection method.

According to the discrimination function ψ, for each value of the Lagrange multiplier λ, the
new topology (strong material subdomain Ω+) is defined as those points in the design domain
with pseudo-energy greater than the Lagrange multiplier, i.e., Ω+ = {x ∈ Ω/ξτ (u(χ), χ,x) > λ}
(equation (3.2)). Additionally, the material boundary Γ corresponds to the λ-isocontour of the
pseudo-energy, defined by the zero level of that function, i.e., Γ = {x ∈ Ω/ξτ (u(χ), χ,x) = λ}
(see Figure 3.1). As a consequence, each value of the Lagrange multiplier defines a new topology
layout, which boundary is iso-energetic. By a slightly change in the Lagrange multiplier, a
continuous change in the topology is obtained, allowing the boundary and the material domain
to be precisely detailed.
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Figure 3.4: Cutting and bisection iterative algorithm: (a) Representation of the pseudo-energy
ξτ in the design domain Ω with the corresponding λ-isocontours represented at the bottom,
and (b)-(e) Visual representation of the corresponding discrimination function ψτ when the
pseudo-energy is cut at different λ values. As the Lagrange multiplier increases, the material
domain Ω+ becomes smaller (hence the void domain Ω− increases) and the constraint equation
C0 varies accordingly, thus providing a solution to expression.

In this iso-contour context, the monotonically increasing relationship between the volume
constraint C0(χ(x̂, λ), t) and the Lagrange multiplier λ can be determined for a given pseudo-
time t. The value that satisfies this constraint can be accurately approximated, within a margin
of error, by means of a bisection method as illustrated in Figure 3.4. The strategy used for
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computing the Lagrange multiplier and obtaining the new topology can be formulated as follows



Given χk, t, and the pseudo-energyξ(u(χk), χk, x̂) = − (1− β)

[
∂j(u(χk), χk,x)

∂χ

]
x=x̂

ξτ (u(χk), χk, x̂)← solution to the Laplacian regularization (3.19) for ξ

find χk+1 and λ such that
ψk+1(χk, x̂, λ) = ξτ (u(χk), χk, x̂)− λ

|Ω|
χk+1(x̂, λ) = Hβ [ψk+1(χk, x̂, λ)]

C0(χk+1(x̂, λ), t) = t− |Ω
−(χk+1(x̂, λ))|
|Ω|

= 0→ ∥C0(χk+1(x̂, λ), t)∥ ≤ TolC

(3.20)

where the new topology χk+1 is defined in terms of the topology of the previous iteration χk
and the exact value of the Lagrange multiplier λ.

Augmented Lagrangian algorithm Note that as an alternative to explicitly imposing the
volume using the fixed-point methodology, it is possible to impose the volume constraint using
the augmented Lagrangian method [74]. In this context, the Lagrangian function (3.14) is
modified to include the constraint equation C0 through a Lagrange multiplier λ and a penalty
parameter ρ as follows

L (u(χ), χ, λ) = J (u(χ), χ) + λC0(χ, t) +
1

2
ρC0(χ, t)2 , (3.21)

where per each topology iteration for minimizing the objective function, a λ-iteration for max-
imizing the objective function is performed, i.e., λk+1 = λk + ρC0(χk, t). In this strategy, the
relaxed topological derivative of the Lagrangian function (3.15) is given by

δL (u(χ), χ, λ)

δχ
(x̂) =

δJ (u(χ), χ)

δχ
(x̂) + (λ+ ρC0(χ, t))

δC0(χ, t)
δχ

(x̂) , (3.22)

which is then used to iteratively update the discrimination function ψ via a Hamilton-Jacobi
equation in an incremental scheme. The new topology χk+1 is defined by

ψk+1(χk, x̂, λ) = ψk(χk, x̂, λ) + ∆t κ

(
ξ(u(χk), χk, x̂)− λk + ρkC0(χk, t)

|Ω|

)
ψτ (χk, x̂, λ)← solution to the Laplacian regularization (3.19) for ψk+1

χk+1(x̂, λ) = Hβ [ψτ (χk, x̂, λ)]

, (3.23)

where ∆t and κ stand for a time-relaxation factor and a proportionally coefficient, respectively.

After updating the discrimination function via the Hamilton-Jacobi equation, a Laplacian
regularization must be performed to remove undesired thin bars. The characteristic function can
then be computed from this smooth discrimination function, ψτ . Without going into further de-
tail, other technical modifications are required to prevent the process from stagnating, including
limiting the discrimination function and normalizing the pseudo-energy function, among others.
All required modifications are detailed in Appendix A.C of Article A.

In contrast to the proposed technique, the augmented Lagrangian methodology only imposes
the volume constraint on the last converged iteration instead of on each iteration of the opti-
mization problem, thus losing some global algorithmic robustness and requiring a large number
of iterations to fulfill the volume constraint.

Daniel Yago 16 Chapter 3. Scientific contributions



Ph.D. Thesis A new comp. approach to top. opt. in solid mechanics problems

Time-advancing strategy

As aforementioned, the strategy to enforce the volume constraint C0 is by including a Lagrange
multiplier λ in the Lagrangian function (3.14) of the optimization problem. In the proposed
approach, unlike other techniques that impose a constant volume throughout the optimization,
an incremental time-advancing scheme is implemented. The range of the constraint equation
in terms of the pseudo-time t ∈ [0, T ], T being the final target volume fraction, is divided into
nsteps steps, obtaining for each step the optimal solution. As a result of this strategy, the Pareto
Frontier between the objective function and the volume constraint is obtained for different
volume fractions t [12], as depicted in Figure 3.5 for a characteristic topology optimization
problem.

t

Figure 3.5: Pareto Frontier of a topology optimization example: the time interval t ∈ [0, 0.92]
has been divided into 22 steps, each step increasing the pseudo-time t exponentially.

Since the time interval [0, T ] is divided into a given number of time-steps, the optimal
topology of the previous step can be used as a starting point to find the optimal configuration
of the next step, assuming that the topology layouts are close enough for two consecutive steps.
Consequently, the time-increment value ∆t must be set by the user to a sufficiently small value
so that the convergence of the topology optimization problem can be ensured. Despite requiring
the resolution of multiple topology optimization problems, this incremental strategy increases
the robustness of the resolution process and simultaneously obtains a set of converged solutions
at a reduced computational cost, since a small number of iterations of the topology optimization
problem (3.5) is required for a specific t value.

3.2.6 Flowchart of the algorithm

The flowchart of the general algorithm, used to obtain the optimal topology layouts, is illustrated
in Figure 3.6. The main part of the algorithm consists in solving the state equation to obtain the
unknown field u, and computing the corresponding sensitivities along with the objective function
value (3.5). After computing the relaxed topological derivatives of the objective function J , the
Laplacian regularization must be applied to the pseudo-energy ξ to improve numerical stability,
ensure convergence, and control the complexity of the optimal solution. The topology layout,
in terms of the discrimination function ψ or the characteristic function χ, is then updated
according to the optimality criterion via the closed-form optimality criteria (3.20). Due to the
time-advancing scheme, this topology optimization algorithm must be repeated for each time-
step until the convergence criteria are met, thus obtaining a set of converged solutions over the
Pareto Frontier of optimal solutions between the objective function and the volume constraint.

Compared to other techniques, the pseudo-energy ξ is first shifted and normalized, which
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Figure 3.6: The general flowchart for the proposed topology optimization approach.

leads to the modified energy density defined as

ξ̂(x̂) =
ξ(x̂)− χ(x̂)∆shift

∆norm
, (3.24)

where ∆shift and ∆norm correspond to the shifting and normalization parameters defined at the
first iteration as min(ξmin, 0) and max(ξmax− ξmin, ξmax), respectively, with ξmax and ξmin being
equal to max

x∈Ω
ξ0(x) and min

x∈Ω
ξ0(x). The constant shifting is applied in order to obtain positive

pseudo-energy ξ in Ω at t = 0, thus providing algorithmic time consistency to the problem and
ensuring a converged topology for this time-step. It can be proven that these operations do not
alter the problem solution. This modified pseudo-energy replaces the original pseudo-energy
term.

A detailed scheme of the proposed topology optimization technique is presented in Algorithm
1.

3.3 Structural and thermal formulations

The topology optimization technique presented in the previous section is now applied to differ-
ent physical problems, including the structural problem (Section 3.3.1) and the thermal problem
(Section 3.3.2). For each scenario, the state equation to be solved will be introduced, along with
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Algorithm 1: Optimization algorithm of the proposed topology optimization technique
Data: Given the mesh, state equation, boundary conditions and objective function
Result: Find χn for T := {t0, t1, . . . , tn, . . . , T}
begin

Initialization of the design variables;
for n← 1 to nsteps do

Initialization of step n;
k ← 0;
while ∥∆χ∥L2

> Tolχ and ∥∆λ∥ > Tolλ do

Compute u from the state equation using FEM;
Compute the relaxed topological sensitivity ξ of the Lagrangian function from (3.15);

Compute the modified pseudo-energy ξ̂, via shifting and normalization, from (3.24);

Regularize the modified pseudo-energy by a Laplacian smoothing (ξ̂τ ) from (3.19);
j ← 0;
while ∥C0(χj(x̂, λj), tn)∥ ≥ TolC do

Update the Lagrange multiplier λj+1 from the bisection algorithm;
Compute the corresponding discrimination function ψj+1 from (3.20);
Compute the corresponding characteristic function χj+1 from (3.20);
Compute the corresponding volume constraint C0(χj+1(x̂, λj+1), tn) from (3.20);
j ← j + 1;

end
Update the Lagrange multiplier λk+1 = λj ;
Update the discrimination function ψk+1 from (3.20);
Update the characteristic function χk+1 from (3.20);
k ← k + 1;

end
Compute the converged optimal topology χn = χk;

end

end

different objective functions to be minimized and the corresponding relaxed topological deriva-
tives. The adjoint method will be used to avoid computing the relaxed topological derivative of
the state field with respect to the design variable in equation (3.11).

3.3.1 Structural topology optimization

For the solid elastic problem, the state equation can be mathematically formulated in strong
form as

Find u(χ,x) such that
∇ · σ(χ,x) + b(χ,x) = 0 in Ω

σ(χ,x) · n = tn(x) on ∂σΩ

u(χ,x) = u(x) on ∂uΩ

, (3.25)

where σ(χ,x) and b(χ,x) stand for the second-order stress tensor field and the volumetric force,
respectively, both depending on the topology layouts, and the unknown field u(χ,x) ∈ H1(Ω)
corresponds to the displacement vector for a specific optimal design χ. As depicted in Figure
3.7, the boundary conditions are enforced as tractions tn(x) and displacements u(x) on ∂σΩ and
∂uΩ, respectively. The normal n corresponds to the unit outward normal.

As for the material behavior, the elastic material is governed by the Hooke’s law, i.e., σ(x) =
Cχ(x) : ε(x), with ε being the strain tensor (ε(x) = ∇Suχ(x)) and Cχ being the fourth-order,
elastic constitutive tensor. The tensor Cχ depends on the design variable χ via the material
interpolation, in such a way as to represent the elastic properties of the stiff (C+) and weak
(C− = αC+) materials in the bi-material configuration presented in equation (3.3). From the
expressions (3.3) and (3.4), the constitutive tensor Cχ at each point x is defined by

Cχ(x) = χm(x)C+ , (3.26)

resulting in a constitutive tensor C+ in the stiff material subdomain for χ = 1, and C− or αC+

for χ = β, otherwise.
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Figure 3.7: Elastic problem sketch: (a) fixed analysis domain Ω with boundary conditions
(in which the displacement u(x) or the traction tn(x) can be prescribed at ∂uΩ and ∂σΩ,
respectively) and (b) Bi-material configuration with stiff and soft material domains, Ω+ and
Ω−, respectively, and the same boundary conditions.

Considering a Galerkin-based finite element discretization of equation (3.25), the resulting
equation can be expressed in matrix form as

Kχûχ = fχ

with

Kχ =

∫
Ω
BT(x) Cχ(x) B(x) dΩ ,

fχ =

∫
∂σΩ

Nu
T(x)tn(x) dΓ +

∫
Ω
Nu

T(x)bχ(x) dΩ ,

(3.27)

(3.28)

(3.29)

where Kχ and fχ are the standard stiffness matrix and the external force vector, Nu and B
are the shape function and the strain-displacement matrices, and ûχ is the nodal displacement
vector. Henceforth, the dependence of external forces with respect to the design variable will be
neglected.

Minimum mean compliance

The minimum mean compliance topology optimization problem seeks the optimal topology
layout that maximizes the global stiffness of the structure, or equivalently, minimizes the external
work on the structure. The objective function J from equation (3.5a) can be written as

J (u(χ), χ) =

∫
Ω
ûT
χB

T(x) Cχ(x) B(x)ûχ dΩ = fTûχ , (3.30)

with j(u(χ), χ,x) being ∇Suχ(x) : Cχ(x) : ∇Suχ(x). The corresponding pseudo-energy ξ can
be computed by applying the adjoint method to equation (3.30), which turns out to be self-
adjoint, thus no requiring any additional state equation. The resultant sensitivity can be written
in terms of the characteristic function χ and the nodal displacement vector û as

ξ (u(χ), χ, x̂) = −mχm−1(x̂) ûT(χ, x̂)BT(x̂) C+(x̂) B(x̂)û(χ, x̂) ∆χ(x̂) . (3.31)

The reader is referred to Article A for the complete derivation of this term.

Compliant mechanism synthesis

In this case, the topology optimization problem aims at maximizing the displacement at the
output port due to an action (force or displacement) applied at the input port by designing a
flexible structure. In other words, the objective is to design a flexible mechanism, e.g., a gripper,
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providing a target displacement at the output port (the jaws of the gripper) from a given action
performed at the input port. In the context of a finite element discretization, the corresponding
objective function J can be expressed as

J (u(χ), χ) = −1Tûχ , (3.32)

where 1 represents a dummy constant force vector applied only at the output port in the desired
direction. Additional springs, denoted by Kin and Kout, must be considered in the input and
output ports, respectively, to ensure convergence [111].

(a)

f

uχ

�

�u�

���

�u�

1vert

1vert

(b)

f

�

���

�u�

Kin Kout

(c)

�
�u�

Kin Kout
���

1vert

Figure 3.8: Compliant mechanism sketch: (a) topology optimization domain with an horizontal
load applied on the left side (input port). The displacements at the jaws (output port) are
maximized in the vertical direction. Figures (b) and (c) correspond to the problem settings for
the original and auxiliary state equations, respectively. These problems are used to compute
the state field û(1), and the relaxed topological derivative of the objective function, ξ.

As mentioned previously, the sensitivity is computed from equation (3.32) via the adjoint
method. Nevertheless, the compliant mechanism problem is not self-adjoint, thus requiring the
resolution of an additional state equation. The additional system presents the same stiffness

matrix Kχ from equation (3.28), but a different force vector f
(2)
χ consisting in a dummy constant

force at the output port (i.e., the force vector corresponds to 1). The resolution of this auxil-

iary equation leads to the state field û
(2)
χ , which is subsequently used to compute the relaxed

topological derivative of the objective function as

ξ (u(χ), χ, x̂) = mχm−1(x̂) û(2)T(χ, x̂)BT(x̂) C+(x̂) B(x̂)û(1)(χ, x̂) ∆χ(x̂) , (3.33)

when volumetric forces are neglected. This term corresponds to the mutual potential energy.

In contrast to the previous example, the pseudo-energy is no longer always positive since û(2)

may be different from û(1), which means that ξ may be either positive or negative in different
areas of the design domain. In this particular situation, the shifting of the pseudo-energy ξ
(3.24) results in the convergence of the optimization problem.

3.3.2 Thermal topology optimization

For the thermal problem, the state equation (3.25) now becomes the steady-state thermal prob-
lem, which states the heat energy balance in the design domain Ω. In this case, the unknown field
u(χ,x) corresponds to the temperature distribution θ(χ,x) and can be obtained from solving
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the following problem

Find θ(χ,x), such that
−∇ · q(χ,x) + r(χ,x) = 0 in Ω

q(χ,x) · n = q(x) on ∂qΩ

θ(χ,x) = θ(x) on ∂θΩ

q(χ,x) · n = h (θ(χ,x)− θamb(x)) on ∂hΩ

, (3.34)

where q(χ,x) and r(χ,x) stand for the heat flux and the heat source function, q(x) and θ(x) are
the prescribed heat flux and temperature on the boundaries of Ω, and h and θamb(x) correspond
to the heat transfer coefficient and the ambient temperature imposed at the convective boundary
∂hΩ. The thermal problem and the boundary conditions are illustrated in Figure 3.9.
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Figure 3.9: Steady-state thermal problem sketch: (a) fixed analysis domain Ω with boundary
conditions (in which the temperature θ(x), the normal heat flux q(x) or the convective heat flux
qh(x) can be prescribed at ∂θΩ, ∂qΩ and ∂hΩ, respectively) and (b) Bi-material configuration
with high and low-conductive material domains, Ω+ and Ω−, respectively, and the same bound-
ary conditions.

In the thermal context, the conductive material is governed by the Fourier’s law, which states
that the heat flux field q follows q(χ,x) = −κ(χ,x) ·∇θχ(x). As in the structural problem,
the conductive properties depend on the topology layout, i.e., the thermal conductivity κ and
the heat source r are defined in terms of the characteristic function χ and the location in the
design domain x. Similar to the constitutive tensor C for the structural problem, the symmetric
second-order thermal conductivity tensor κ can be interpolated between the conductivity of the
high-conductive material (κ+) and the property of the low-conductive material (κ− = ακ+)
in the bi-material topology layout. Mimicking the expression (3.26) for the constitutive tensor
C, the material interpolation can be written as

κχ(x) = χm(x)κ+ . (3.35)

The finite element counterpart expressions to equations (3.27)-(3.29) of the structural prob-
lem can be written as

Kχθ̂χ = fχ

with

Kχ =

∫
Ω
BT(x) κχ(x) B(x) dΩ−

∫
∂hΩ

Nθ
T(x)hNθ(x) dΓ ,

fχ =

∫
Ω
Nθ

T(x)rχ(x) dΩ−
∫
∂qΩ

Nθ
T(x)q(x) dΓ−

∫
∂hΩ

Nθ
T(x)hθamb(x) dΓ ,

(3.36)

(3.37)

(3.38)

where the convective term has been included in the stiffness matrix Kχ and the external force
vector fχ. As in the previous problem, it is assumed that the force vector will not depend on
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the topology, thus simplifying the derivation of the sensitivity. The complete derivation of the
thermal equations, objective functions, and the corresponding relaxed topological derivatives
are provided in Article B [139].

Maximum thermal diffusivity

Similarly to the minimum mean compliance problem (Section 3.3.1), the thermal compliance can
now be minimized (in other words, the thermal diffusivity can be maximized) for the thermal
problem. In this case, the objective function J can be defined in terms of the total potential
energy as

J (θ(χ), χ) ≡ 1

2

∫
Ω
θ̂T
χB

T(x) κχ(x) B(x)θ̂χ dΩ− 1

2

∫
∂hΩ

θ̂T
χNθ

T(x) h Nθ(x)θ̂χ dΓ =

=
1

2
fTθ̂χ

, (3.39)

with j(χ,x) ≡ 1
2∇θχ ·κχ(x) ·∇θχ = Uχ(x). Once the adjoint method is applied to the objective

function, the resultant pseudo-energy can be computed as

ξ (θ(χ), χ, x̂) = −1

2
mχm−1(x̂) θ̂T(χ, x̂)BT(x̂) κ+(x̂) B(x̂)θ̂(χ, x̂) ∆χ(x̂) . (3.40)

As in the structural case, no additional state equation is required since this topology optimization
problem turns out to be self-adjoint. Note the similarity of the previous equation with equation
(3.31) from the minimum mean compliance problem.

Thermal cloaking for minimizing heat flux deviation

Up to this point, some illustrative topology optimization problems, that are normally used by
other researchers to prove the capabilities of their techniques to achieve optimal layouts, have
been described for the structural and thermal problems. However, the proposed approach is
now applied to a more complex and academic thermal problem.

The main objective is to hide an object, with different thermal properties, inside of a homo-
geneous structure from being detected by a thermal device measuring any perturbation in the
heat flux field near the boundaries of the structure. Without any modification to the structure,
the heat flux field will be highly perturbed when applying a temperature difference between
the sides of the structure (with respect to the expected homogeneous one), thus revealing the
existence of any external body inside the structure. The problem setting is depicted in Figure
3.10.

To avoid its detection or reduce the probability of the object being detected, it must be
surrounded by a cloaking device, which should be optimized to recover the original heat flux field.
The resultant cloaking device consists of a combination of high-conductive and low-conductive
materials, which location and shape are given by solving a topology optimization problem. The
corresponding objective function J is written as the minimization of the deviation between the
constant heat flux and the actual one in the domain surrounding the cloaking device (Ωc), i.e.,

J (θ(χ), χ) = ∥q(χ,x)− q(x)∥L2(Ωc)
=

(∫
Ωc

|q(χ,x)− q(x)|2 dΩ

) 1
2

, (3.41)

where q(x) corresponds to the prescribed (original) heat flux at each point x. The domain of
integration Ωc of the previous equation (3.41) is replaced by the entire design domain Ω via an
indicator function of the subdomain Ωc, i.e., 1Ωc : Ω→ {0, 1}, 1Ωc ∈ L2(Ω).
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Figure 3.10: Thermal cloaking problem: (a) homogeneous problem setting where a constant
uniform heat flux is observed over all the domain Ω, (b) topology optimization domain with
boundary conditions of original state equation, and (c) topology optimization domain with
boundary conditions of the auxiliary state equation. The objective is to minimize the pertur-
bation of an object (in black) placed at the center of the domain Ω. For that reason, it is
surrounded by a cloaking device, in dark gray, which must be optimized.

The resultant pseudo-energy ξ can be expressed as

ξ (θ(χ), χ, x̂) =−mχm−1(x̂) θ̂θθ
(1)T

χ (x̂)BT(x̂) κ+(x̂) B(x̂)θ̂θθ
(2)

χ (x̂) ∆χ(x̂)

+mχm−1(x̂)
1Ωc(x̂)

J (θ, χ)
θ̂θθ
(1)T

χ (x̂)BT(x) κT
χ (x̂)κ+(x̂) B(x̂)θ̂θθ

(1)

χ (x̂) ∆χ(x̂)

+mχm−1(x̂)
1Ωc(x̂)

J (θ, χ)
q̂
T

(x̂)Nθ
T(x̂) κ+(x̂) B(x̂)θ̂θθ

(1)

χ (x̂) ∆χ(x̂) ,

(3.42)

once the adjoint method has been employed. The adjoint state field θ̂θθ
(2)

χ is obtained from an
auxiliary state equation (3.36) with

f (2) = −
∫
Ω

1Ωc(x)

J (θ, χ)
BT(x)κT

χ (x)
(
−κχ(x)B(x)θ̂θθ

(1)

χ − q(x)
)
dΩ . (3.43)

Thermal cloaking for minimizing temperature

A similar topology optimization problem to the minimization of the heat flux deviation is now
presented. However, in this case, the objective is not to hide an object with different properties,
which could also be considered, but to cloak a high-temperature object from being detected by
a thermal camera pointing at one side of the structure, referred to as the cloaking port ∂cΩ.
The object, placed inside the structure, is once again surrounded by a cloaking device Ωdev,
which must distribute the heat toward the opposite boundary and toward the upper and lower
parts of the left side of the domain. This goal can be addressed as a multi-objective topology
optimization problem where both, the average temperature and the variance over the left surface
are minimized. As a consequence of this objective function, the temperature field is optimized,
reducing any temperature peaks while ensuring a uniform low-temperature field on the left side.
The objective function J , evaluated via a weighted sum of functionals [80], can be expressed as

J (θ(χ), χ) = ω
Jav (θ(χ), χ)− J ◦av
Jmaxav − J ◦av

+ (1− ω)
Jvr (θ(χ), χ)− J ◦vr
Jmaxvr − J ◦vr

, (3.44)

where Jav and Jvr are the objective functions for the average temperature minimization and
the temperature variance minimization, respectively, Jmaxi and J ◦i correspond to the maximum
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objective function value Ji obtained from the minimization of the other functional and the
minimum value (utopia point) of the objective function Ji when minimizing only the i-problem,
and ω stands for the weighting factor between the two objective functions.
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Figure 3.11: Average and variance temperature minimization problem: (a) homogeneous prob-
lem setting with boundary conditions. The object is prescribed at a high temperature θ, and
the left and right sides are subject to convective boundary conditions, while adiabatic condi-
tions are assumed on top and bottom sides of the domain. Figure (b) represents the topology
optimization domain with boundary conditions of original state equation, and (c) illustrates the
boundary conditions of the auxiliary state equations.

In this context, the objective functions Jav and Jvr are defined as
Jav (θ(χ), χ) = C2

∫
∂Ω

1∂cΩ(x) θχ(x) dΓ

Jvr (θ(χ), χ) = C2

∫
∂Ω

1∂cΩ(x) (θχ(x)− Jav (θ(χ), χ))2 dΓ

(3.45)

(3.46)

where C2 corresponds to the inverse of the Lebesgue measure of the cloaking port and 1∂cΩ
represents the indicator function of the subboundary ∂cΩ, i.e., 1∂cΩ : Ω→ {0, 1}, 1∂cΩ ∈ L2(Ω).
The corresponding pseudo-energies ξav and ξvr are given by

ξav (θ(χ), χ, x̂) =C2mχ
m−1(x̂) θ̂θθ

(2)T

χ BT(x̂) κ+(x̂) B(x̂)θ̂θθ
(1)

χ ∆χ(x̂)

ξvr (θ(χ), χ, x̂) =C2mχ
m−1(x̂) θ̂θθ

(3)T

χ BT(x̂) κ+(x̂) B(x̂)θ̂θθ
(1)

χ ∆χ(x̂)

− 2C2

(
θ̂θθ
(1)

χ − IJav
(
θ(1)χ

))T
Nθ

T(x̂)1∂cΩ(x̂) ξav (θ(χ), χ, x̂) ,

(3.47)

(3.48)

where θ̂θθ
(2)

χ and θ̂θθ
(3)

χ correspond to the solution of two additional state equations (3.36). For these
systems, the external force vectors are computed as

f (2) = −
∫
∂Ω

NT (x)1∂cΩ(x) dΓ ,

f (3) = −2

∫
∂Ω

NT 1∂cΩ(x)
(
θ(1)χ (x)− Jav

(
θ(1)χ

))
dΓ .

(3.49)

(3.50)

The problem settings of the original state equation, and the two additional state equations are
illustrated in Figure 3.11.
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3.4 Representative numerical examples

The potential of the approach to find optimal solutions using the relaxed topological derivative
as the sensitivity are shown through some representative numerical examples for the structural
and thermal fields. In particular, the main advantage of the time-advancing strategy to obtain
a set of converged solutions for intermediate volume fractions at a computational cost similar
to the one required by other optimization techniques is exhibited.

3.4.1 Representative examples in structural problems

The focus will first be on the structural applications detailed in Section 3.3.1, both minimizing
the mean compliance of a structure or designing compliant mechanism. The topology optimiza-
tion problem (3.5) is subject to the volume constraint C0 (3.6) and the structural state equation
(3.27).

For the following structural optimization problems, a linear elastic material with a Young’s
modulus E+ = 210GPa and a Poisson’s ratio ν = 0.3 is considered for the material in the stiff
subdomain Ω+. The algorithmic tolerances Tolχ, Tolλ, and TolC , in Algorithm 1, are set to
10−1, 10−1, and 10−5, respectively.

Cantilever beam: minimum mean compliance

This first numerical example refers to the minimization of the structural mean compliance (3.30)
of a cantilever beam in a prismatic domain subjected to specific Dirichlet and Neumann bound-
ary conditions. The displacements are prescribed on the left face of the design domain and a
distributed vertical load is applied on the bottom-right edge of it. The analysis domain Ω, dis-
played in Figure 3.12a, corresponds to a prism of (relative) dimensions 2x1x1, with the largest
dimension oriented in the x-axis. The domain has been discretized using eight-node hexahedral
(Q1) finite elements while the time interval [0, 0.92] has been divided into 22 time-steps using an
exponential evolution of the pseudo-time t. Regarding the ersatz material approach, a contrast
factor α = 10−6 and an exponential factor m = 5 are employed, thus leading to a relaxation
factor β equal to 6.3 · 10−2 and E− = 10−6E+ for the void subdomain Ω−.

F

���

�

�

�u�

���

�

z x

y

(b)(a)

z x

y

Figure 3.12: Cantilever beam: (a) topology optimization domain with boundary conditions
and dimensions. A distributed vertical load F is applied on the bottom-right edge while the
displacements u are prescribed to 0 on the left surface of the domain. The rear surface of the
domain, in soft gray, represents the surface of symmetry. Figure (b) illustrates the optimal
topology for a volume fraction equal to t = 0.92, which corresponds to only 8% of initial stiff
material.
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Figure 3.13: Cantilever beam topology optimization problem: the evolution of the objective
function J in terms of the pseudo-time t (Pareto Frontier) is illustrated here in conjunction
with some relevant topologies for the time interval t ∈ [0, 0.92].

(a) Mesh M1: 432.000 elements ( � = 1; �h = 1.67·10-2) (b) Mesh M1: Topology for t�����

(c) Mesh M2: 3.456.000 elements ( � = 2; �h = 1.67·10-2) (d) Mesh M2: Topology for t�����

(e) Mesh M2: 3.456.000 elements ( � = 1; �h = 8.33·10-3) (f) Mesh M2: Topology for t�����
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y
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y
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Figure 3.14: Cantilever beam. Mesh-size objectivity results via the Laplacian regularization
(τh). Figures (a) to (d) display the results for meshes M1 and M2 with constant τh = 1.67 ·
10−2, while Figures (c) to (f) corresponds to the results for the same mesh, M2, and different
regularization values τh = 1.67 · 10−2 and τh = 8.33 · 10−3, respectively.
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The Pareto Frontier in terms of the objective function J and the pseudo-time t is displayed in
Figure 3.13. As it can be observed, the mean compliance of the structure increases as the volume
fraction of the void subdomain increases, thus reducing the global stiffness of the structure.
The optimal layout gradually changes according to the volume fraction, although the minimum
thickness, defined by the Laplacian filter (3.19), is always preserved. The final optimal topology
for t = 0.92 is represented in Figure 3.12b via the discrimination function ψ(x) = 0, showing
smooth and crisp material boundaries.

In the context of mesh dependence, the Laplacian regularization may ensure almost the
same optimal solution with two different meshes as long as the product τh is kept constant
in both cases. This property of the regularization is illustrated by optimizing the design of
the Cantilever beam using two different meshes: (a) a first reference mesh M1, displayed in
Figure 3.12, and (b) a finer mesh M2, twice as dense in each direction. For this mesh M2, two
different topology optimization are computed, one considering the same τh value as the mesh
M1 and another prescribing the same τ value but different element size h(M2) = h(M1)/2. As
depicted in Figure 3.14, the topology and objective function almost remain the same as the
ones obtained with the reference mesh M1 for the first case, while maintaining just constant
the regularization parameter τ leads to more complex optimal solutions with thinner bars, thus
losing the objectivity in mesh size. As a result, the use of the Laplacian regularization overcomes
one of the main inherent problems of topology optimization problems.

Other minimum mean compliance problems can be found in Articles A, C and D. For in-
stance, a bridge structure is optimized in Article A, obtaining designs easily recognizable by
bridge engineers for high volume fractions t. Other optimizations of structural benchmark cases
are carried out in Article D, including an L-shaped structured and a multi-load cantilever beam.

Gripper: compliant mechanism synthesis

The last structural example corresponds to the design of a compliant mechanism (3.32). In this
case, a 3D gripper is designed to maximize the vertical displacement at the output port (i.e., the
jaws of the gripper) due to an action at the input port. The displacements are prescribed
near the bottom edge at the left side of the domain. As illustrated in Figure 3.15a, a positive,
horizontal distributed load f is applied at the input port (i.e., on the left side of the domain) for
the original state equation (Figure 3.15a-I), while a vertical upward dummy load 1vert is applied
at the output port for the auxiliary state equation (Figure 3.15a-II). In addition to this dummy
load, distributed springs are included in the input and output ports in the same direction as the
input force and target displacements, respectively. As a result, the displacement amplitudes are
limited at these areas, and both the input work of the actuator and the elastic reaction work
are simulated at the input and output ports, respectively. The corresponding numerical values
for the springs are Kin = 3.19 · 1014N/m3 and Eout = 10GPa, while the distributed forces are
f1 = 3.2 · 1013N/m2 and f2 = 3.2 · 1010N/m2, respectively.

Regarding the ersatz material approach, the contrast factor α is increased up to α = 10−2,
while the exponential factor is set to m = 3 in order to improve the optimization convergence.
The topology optimization is performed using a regularization parameter τ = 0.5 and an ex-
ponential updating scheme for the pseudo-time t with 34 time-steps ranging between the full
material layout (i.e., t = 0) and t = 0.94. Consequently, a large spectrum of optimal solutions
can be observed.

As in the previous case, the Pareto Frontier between the objective function J and the
pseudo-time t is represented in Figure 3.15b. In contrast to the previous case where the mean
compliance was minimized, the Pareto Frontier does not exhibit now an increasing monotonicity,
but instead presents a global minima for a volume fraction t = 0.48. This condition does differ
from the full material configuration for the minimum mean compliance problems. Thanks to the
proposed time-advancing strategy, it is possible to obtain not only the optimal topology for the
final volume fraction T , but the topology and volume fraction t for the global minimum of the
optimization problem, too. Figures 3.15c to 3.15f show some optimal topologies for intermediate
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Figure 3.15: Gripper design (compliant mechanism). The topology optimization domain with
boundary conditions and dimensions is depicted in Figure (a). The displacements are prescribed
at the bottom part of the left surface of the domain, and a positive, horizontal distributed load
is applied at the top of the left surface for the state equation (a-I), while a positive, vertical
distributed dummy load is applied at the jaws of the gripper for the additional state equation
(a-II). The top and rear surfaces correspond to the x − y and x − z symmetries, respectively.
Figure (b) represents the evolution of the objective function J in terms of the pseudo-time t
with some relevant optimal configurations, while the optimal layouts for different pseudo-times
are illustrated in Figure (c) to (f).

values of the pseudo-time t, in which the compression displacement in the jaws (output port) is
obtained either from the presence of localized hinges (highlighted in red) or from the deformation
(or distributed compliance) of slender bars (e.g., for t = 0.90).

3.4.2 Representative examples in thermal problems

The following numerical examples will be focused on the thermal problem, detailed in Section
3.3.2. Numerical results will be presented for two representative applications developed in this
thesis: (a) thermal compliance minimization and (b) design of a thermal cloaking device by
temperature control. In this case, the original topology optimization problem (3.5) is subject
to the volume constraint C0 and the steady-state thermal equation (3.36). With respect to the
algorithmic tolerances, the same values as in the structural problems are used here except for
the tolerance in volume constraint, which is increased up to TolC = 10−3.

Thermal component: maximum thermal diffusivity

The first thermal example corresponds to the minimization of thermal compliance (3.39) in a
thermal component, for instance, the topology optimization of the heat pipes for a CPU heat
sink. The aim would therefore be to maximize heat diffusion through heat conduction from the
heat sources (CPU’s IHS) to the dissipation points (heat sink). From this concept, the design
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domain Ω is defined as a one-meter cube with the heat sources placed on the left side and the
cold spots, on the right side of the domain. However, in order to avoid trivial solutions in which
these two areas would be directly connected in a straight line, a prismatic volume is removed
from the center of the design domain, as shown in Figure 3.16a. The temperature on the four
hot areas (colored in red) is prescribed to a high value θh = 293K on the left boundary, while the
nine circular regions (in blue) on the right side of the domain are set to θc = 278K. Adiabatic
boundary conditions are assumed on the other boundaries of the design domain.

x

y

z

(b)(a)

Low temperature 
areas    

High temperature 
areas      

�c

�h

Figure 3.16: Thermal heat conductor. The design domain Ω is illustrated along with the bound-
ary conditions in Figure (a). The temperature is prescribed to θh at the four circular regions on
the left face (colored in red) while a low temperature value θc is prescribed at the nine circular
regions on the right face (colored in blue). The other surfaces are assumed to be adiabatic. The
evolution of the objective function J with respect to the pseudo-time t is represented in Figure
(b). Some relevant topologies are also included in the graphic for different volume fractions.

The design domain Ω is once again discretized with a structured mesh of eight-node hexa-
hedral (Q1) finite elements. According to this mesh, the regularization parameter τ from the
Laplacian regularization is set to 1. Consequently, smooth optimal designs with thin filaments
can be achieved, while the minimum size control is ensured. The interval of interest [0, 0.95] is,
on the other hand, discretized in 19 equally spaced time-steps.

The high-conductive subdomain Ω+ is endowed with an isotropic material with normalized
conductivity κ+ = 1W/(K m) and zero heat sources r = 0W/m3. Analogous to the structural
problem, the parameters of the ersatz material approach are set to α = 10−3 and m = 5, thus
obtaining a conductivity of κ− = ακ+ = 10−3κ+ for any material in the void subdomain Ω−.

The evolution of the thermal diffusivity with respect to the pseudo-time parameter t is
represented in Figure 3.16b, in addition to some illustrative topology layouts for intermediate
volume fractions. Analogous to the minimum mean compliance problem (Section 3.4.1), the
thermal diffusivity J decreases as the volume fraction increases, though obtaining the maximum
possible value for each pseudo-time t. From the topology evolution, it can be observed how the
hot spots on the left surface are connected with the cold ones on the right side of the domain,
thus minimizing the thermal compliance in the domain. For high volume fractions, i.e., t → 1,
the trivial topology configuration is recovered, in which the hot and cold spots are directly
connected with four thin heat pipes.

Thermal cloaking device: temperature average and variance minimization

The last optimization example corresponds to the topology optimization of a thermal cloaking
device, illustrated in Figure 3.17a. The optimization aims at cloaking an object at a different
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temperature value θh, hidden inside a homogeneous structure, from being detected by a thermal
camera pointing to the left surface of the domain ∂cΩ measuring the temperature field, as
detailed in Section 3.3.2. The heat generated by the object (in green) must be dissipated by
the cloaking device Ωdev (in orange) toward the upper and lower part of the left surface and
toward the right surface of the domain, thus reducing the average temperature and the variance
on the left surface. As a result, the corresponding objective function (3.44) is expressed as a
multi-objective function that combines the minimization of the average temperature (3.45) and
the minimization of the variance of the temperature (3.46) on the left surface when the object’s
temperature is set to θh = 313K and thermal convection is considered for the left and right
surfaces (h = 1W/(K m2) and θamb = 283.15K). The other surfaces of the domain are assumed
to be adiabatic.

(b)(a)

Cloaking 
device

Object at high 
temperature,      

Temperature is minimized,        �c�

�dev

x

y

z �h

�amb‾ �amb‾

Figure 3.17: Thermal cloaking device. In Figure (a) the design domain Ω with the corresponding
boundary conditions is depicted. The object to be cloaked (in green) is surrounded by the
cloaking device Ωdev (in orange). The temperature of the object is set to a high value θh and
convective boundary conditions are considered on the left and right surfaces of the domain. The
other surfaces are assumed to be adiabatic. On the other hand, in Figure (b), the evolution of the
objective function J with respect to the pseudo-time t is displayed together with some optimal
layouts for different volume fractions. The low-conductive material subdomain is highlighted in
blue, and the high-conductive one has been omitted.

For this example, a conductivity of κ = 0.57W/(mK) is considered for the surrounding
material and the object, while the cloaking device Ωdev results from the combination of two
materials: (a) a material with a high conductivity equal to κ+ = 403W/(mK) and (b) a low-
conductive material with κ− = 0.22W/(mK). In particular, this second low-conductive material
represents the alternative material in the ersatz material approach, and is obtained from a
contrast value of α = 5.46 ·10−4. The regularization parameter τ is defined as τ = 0.1, while the
interval of interest [0, 0.05] is discretized in 10 equally spaced steps. As detailed in Article B,
the maximum and minimum values of each objective function are obtained from optimizing each
term individually for ω = 1 (average temperature) and ω = 0 (variance of the temperature).
These optimizations determine the values J ◦av = 308.6K, Jmaxvr = 7.4 · 10−2K2, Jmaxav = 310.4K
and J ◦vr = 9 · 10−3K2.

As in the other numerical examples, the evolution of the objective function J is displayed
in Figure 3.17b for ω = 0.5, once the normalization of each term has been performed. As
the volume fraction increases, the objective function decreases, resulting in designs with lower
average temperature and lower temperature variance on the left side of the domain. Figure 3.18
(top) depicts the optimal topology layout of the cloaking device for different steps, in which the
high-conductive material tends to adopt a spine-like design to distribute the heat toward the
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Figure 3.18: Thermal cloaking device: temperature field on ∂cΩ. The optimal layouts (on the
top) and the temperature field of the left y − z plane (on the bottom) are displayed in Figures
(a) to (e) for steps 0, 3, 6, 8 and 10, respectively. As in the previous figure, the low-conductive
and the high-conductive materials are colored in blue and orange, respectively, while the object
is displayed in green at the center of the domain.

upper and lower part of the left side and toward the right side of the domain, sketched in Figure
3.18e. On these surfaces, the heat can be then dissipated by natural convection. Additionally,
the effect of the topology can also be noticed in the temperature field over the control surface
∂cΩ. The temperature peak at the center and the high temperature difference between the
central part and the corners in the initial configuration are minimized as the internal design is
optimized, ultimately leading to a lower average value and higher homogeneity of the field.

The topology optimization of another cloaking device has also been performed, aiming to
design a cloaking device that prevents an object (with different thermal properties, instead of
different temperature values) from being detected by a thermal device measuring any pertur-
bation in the heat flux field (as presented in Section 3.3.2). For more details on this numerical
example, please refer to Article B.

3.5 Comparison

Up to this point, the proposed topology optimization approach has been formulated (Section
3.2) and applied to different numerical problems in the structural and thermal fields (Sections
3.3 and 3.4). Nonetheless, no information is available on how it compares with other well-known
topology optimization techniques, leaving aside the comparisons shown in Articles A and B with
respect to the level-set method using the Hamilton-Jacobi equation. Therefore, the proposed
technique is now compared with different implementations of SIMP using the optimality criteria
method [106, 11], BESO using a soft-kill criterion [52], and level-set approach with Hamilton-
Jacobi updating equation (Section 3.2.5). In particular, the different SIMP implementations
correspond to (a) SIMP with a Helmholtz-type PDE filter for the sensitivities [63, 11] (SIMP(I)),
(b) SIMP(I) formulated now with an incremental time-advancing strategy (SIMP(II)), and (c)
SIMP using a radial sensitivity filter with a linear decaying kernel (SIMP(III)). These three
families of techniques have been selected among all existing ones due to their wide use on both
the professional and research level, and for the convenience of implementation, thus facilitating
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their verification and assuring a fair comparison among the approaches. A detailed description
of each method, the specific conditions for the optimizations, as well as the numerical problems
and their corresponding results are given in Article D [138].

3.5.1 Guidelines for the comparison

As a representative field, the structural problem is here considered for the comparison of the
different topology optimization problems. With this objective in mind, four well-known bench-
mark cases have been addressed. In particular, two minimum mean compliance problems (Sec-
tion 3.3.1), one multi-load mean compliance problem and a compliant mechanism topology
optimization problem (Section 3.3.1) have been performed. The first two minimum compliance
problems deal with the design of a cantilever beam and an L-shaped structure, the multi-load
problem also aims at minimizing the mean compliance in a cantilever beam, but, in this case,
two different loading conditions are considered: (1) a vertical distributed downward load at the
right-bottom edge, and (2) a vertical distributed upward load at the right-top edge, and the
last one involves the design of a compliant mechanism, a gripper. The corresponding problem
setups are illustrated in Figure 3.19. The exact dimensions, finite element meshes, and the rest
of details can be found in Article D.

F1

F2

�

F

�
�

F

(a) (b) (c) (d)
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Figure 3.19: Topology optimization domains of the numerical benchmarks addressed in the
comparison. The corresponding boundary conditions are illustrated in each figure. Figures (a)
to (d) correspond to the cantilever beam (minimum mean compliance), the L-shaped struc-
ture (minimum mean compliance), the multi-load cantilever beam (multi-load minimum mean
compliance), and the gripper mechanism (compliant mechanism synthesis), respectively. The
symmetry surfaces are shaded in soft gray, while the areas where displacements are being im-
posed are shaded in dark gray.

This set of four numerical benchmarks cases have been carefully selected to provide relevant
information about each topology optimization strategy when designing optimal topologies with
a high complexity degree (using industrial-like fine-discretization meshes). In this context, the
comparison is focused on evaluating the computational cost (in terms of the number of iter-
ations), the value of the objective function J , and the topology quality of each method and
benchmark case.

With the idea of ensuring a fair comparison among all methods, the same (or equivalent)
convergence criteria must be used for the volume constraint C0 (TolC = 10−3), the objective
function J (TolJ = 10−3) and the topology in terms of the characteristic function χ or the
density value ρ (Tolχ,ρ = 2.5 · 10−3). For these last two criteria, convergence is evaluated
along n consecutive iterations as a moving mean and as an L2 norm between 2 consecutive
iterations, respectively. Although the objective function J plays an important role in topology
optimization, it has been determined that convergence in this parameter does not provide an
objective criterion for compliant mechanism design. Consequently, this convergence criterion is
not considered in the last benchmark. For the other numerical examples, this criterion is still
used since convergence in topology and in volume constraint guarantee the convergence of the
optimization problem (and in the objective function, too).
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On the other hand, it is particularly critical to ensure that the same replacement material
is used in the ersatz material approach (or in the material interpolation) for all methods, as it
can significantly impact the obtained results, e.g., the objective function and the convergence of
the problem. For this reason, a constant contrast factor α = 10−6 is chosen for minimum mean
compliance problems while this value is increased up to α = 10−2 for compliant mechanism
synthesis. In addition to this consideration, an additional final iteration with an element-wise
bi-material configuration (i.e., each element being represented with a single material) must also
be performed to compare the objective functions among each method. That is mainly due to
the effect that semi-dense elements have on the computation of the objective function.

3.5.2 Comparison analysis

According to the previous guidelines, the results obtained from the different topology optimiza-
tion approaches are now compared with each other for the four numerical benchmarks cases.
As aforementioned, this comparison is carried out in terms of the optimal topology (quality/-
complexity and minimum filament size h), the objective function J , and the computational
cost (iterations). By considering all these aspects, an overall comparison of the different tech-
niques can be made, thus assessing the potential of the proposed technique compared to other
alternatives.

Optimal topologies

As a representative comparison solution, the resultant optimal topologies for the L-shaped struc-
ture are displayed in Table 3.1 for the required volume fraction |Ω+|/|Ω| = 0.1. The results for
the other benchmark cases are illustrated in Article D.

Table 3.1: Comparison of the results for the L-shaped structure.

SIMP(I) SIMP(II) SIMP(III)

SOFTBESO VARTOP Level-set

After analyzing all the results, it can be stated that topologies resulting from Level-set and
VARTOP present low topology complexity and have smooth and accurate interfaces since the
solution is defined via a level-set ϕ or a discrimination function ψ. On the contrary, SIMP-based
and SOFTBESO methods produce element-wise discontinuous designs. In addition, SIMP-based
approaches require special post-processing as semi-dense elements are found in the design, thus
requiring an extra projection procedure to determine the density value that defines the material
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interface. In this procedure, bars might be disconnected or broken up, giving as solution non-
optimal topologies. Additionally, a smoothing post-processing should be performed to achieve
crisp and smooth edges from these two families of approaches. Concerning the complexity of
these two methods, the designs obtained from SIMP(I) and SIMP(III) present a much simpler
design based on thicker bars (similar to those obtained with Level-set and VARTOP), while
SIMP(II) and SOFTBESO exhibit higher topology complexity, with a larger number of thinner
bars (lower minimum filament size h). As the complexity of designs increases (i.e., the minimum
filament size h decreases), the difficulty to manufacture also increases, making the designs more
susceptible to other phenomena such as buckling.

Objective function

From the analysis of the objective function J (see Figure D.8 of Article D), it can be noticed that
SIMP(II) achieves consistently optimal solutions with the lowest objective function as a conse-
quence of the larger number of thinner straight bars, i.e., high topology complexity. However,
the solution with the lowest objective function for the multi-load cantilever beam is obtained via
the SOFTBESO approach, whose designs also exhibit high topology complexity with thinner
or even continuous structures. As for the other topology optimization strategies, the objective
function values does not differ much from one approach to another for each numerical case, and
the values are just between a range of ±15% of the ones obtained using SIMP(I). In particular,
the objective function values obtained from VARTOP, SIMP(I), and SIMP(III) are remarkably
similar to each other, owing to the similarities observed in the topology layouts.

Computational cost

The computational cost is assessed in this paper according to the number of iterations instead
of the computational time, thus obtaining the same results regardless of hardware, software,
and solver, among others. The comparison of the computational cost is shown in Figure 3.20.
As can be seen, the relative computational cost depends on each numerical example, although
it keeps a certain tendency along the considered approaches for (multi-load) minimum mean
compliance problems. SIMP(I), SIMP(III) and VARTOP exhibit similar computational cost with
one approach being sometimes faster than the others, but all three are consistently faster than
SIMP(II) and SOFTBESO, and up to an order of magnitude faster than Level-set technique. In
particular, it is worth noting that VARTOP (and SIMP(II)) not only provides the final optimal
solution but also provides a set of converged solutions for different volume fractions (Pareto
Frontier) at a similar computational cost as SIMP(I) or SIMP(III).

This tendency, however, does not hold true for the compliant mechanism problem. In this
case, VARTOP is the fastest approach by far (almost an order of magnitude faster), followed by
the Level-set and SOFTBESO approaches. Both methods require approximately half as many
iterations as SIMP(I). In the case of SIMP(III) and SIMP(II), these techniques are respectively
20% and 10% faster than the reference method. This trend change in the computational cost
may be caused by the change in the topology optimization problem.

3.5.3 Overall Performance

In addition to the quantitative results (objective function and computational cost) obtained
up to this point, a more qualitative analysis of the results is now performed, comparing also
the smoothness of the surface as well as the complexity of the optimal topology. The first
aspect refers to the surface smoothness required by several manufacturing techniques, in which
abrupt continuous changes must be avoided. On the other hand, the second criterion takes into
account the complexity of the optimal design, and consequently the manufacturing time as well
as other mechanical properties not included in the optimization. As a result, designs based on
thick bars will have better structural behavior in buckling or fatigue compared to designs with a
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Figure 3.20: Relative computational cost in terms of the number of iterations. Each numerical
example is normalized with the number of iterations of the SIMP(I). Legend: (1) the Cantilever
case is represented with a solid black line, (2) the L-shaped case, with a dotted black line, (3)
the Cantilever multi-load case, with a dash-dotted line and (4) the Gripper mechanism with a
dashed line.

greater number of thin bars. According to these four aspects, the different topology optimization
approaches are rated in Figure 3.21 between A and D.

From this figure, it can be concluded that VARTOP, although not being the best approach
in all considered aspects, is presented as a competitive technique to more conventional topology
optimization approaches, such as SIMP(I) and SIMP(III). On the other hand, SOFTBESO and
Level-set do not provide any significant advantages, exhibiting mostly deficiencies in topology
complexity or computational cost, respectively, for these four benchmark cases. In conclusion,
the VARTOP, SIMP(I), and SIMP(III) approaches present topology layouts with a higher topol-
ogy quality than the other methods at a lower computational cost, even though their objective
function is not minimized as much as in other approaches.
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Figure 3.21: Qualitative comparison of the studied methods regarding the smoothness of the
design, the topology complexity, the value of the objective function, and the computational cost
in terms of iterations.
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Chapter 4

Conclusions

4.1 Discussion of the results

This study addresses macro-scale topology optimization problems aiming to reduce the com-
putational cost and the high mathematical complexity of up-to-date techniques. In order to
achieve this goal, the main challenges hinge on the formulation of a topological derivative that
contains all relevant topological information, and the development of an efficient and versatile
topology updating strategy. This is achieved through the definition of the Relaxed Topological
Derivative (RTD) and by proposing the resolution of the optimality criteria as a closed-form
fixed-point problem. On top of that, the discrete properties of the characteristic function as a
design variable are preserved throughout the approach.

The most relevant conclusions drawn from the development of this doctoral thesis are listed
below.

� The adopted technique is essentially founded on a bi-material domain derived from the use
of the ersatz material method, where the solid material is replaced by a weaker material
(and vice-versa) instead of a void material. Consistently, based on this concept, a Re-
laxed Topological Derivative (RTD) with respect to the topology variable (characteristic
function) can be defined as an approximation of the mathematically more complex exact
Topological Derivative used in other methods. This definition leads to a simpler and faster
way to compute the sensitivities while still providing numerical results of the same quality.

� The optimality condition in terms of the discrimination function is provided from the
relaxed topological derivative (RTD) of the objective function and the volume constraint
to calculate the corresponding sensitivities. This leads to the optimal topology as a solution
to a closed-form algebraic non-linear equation, in which the volume constraint is imposed
through the Lagrange multiplier. This parameter is then computed from a simple bisection
algorithm, referred to as cutting&bisection algorithm. From this simple methodology, it
is possible to impose the volume for the proposed problems in an exact and fast way.

� Adopting a pseudo-time advancing (volume-driven) strategy can be used to find the Pareto
Frontier between the objective function and the volume constraint, thus returning a set of
optimal solutions for intermediate volumes and providing the global minimum (minima)
solution to the Pareto Frontier, at no extra computational cost. Despite the existence of
other volume-enforcing methodologies, this one has shown promising results.

� The proposed technique has proven to be a versatile one in terms of applications and pos-
sible objective functions. Up to date, the strategy has been implemented and extended to
structural problems (including minimum mean compliance and compliant mechanism) and
thermal problems (maximum diffusivity and thermal cloaking problems), exploiting the re-
laxed topological derivative (RTD) to determine the sensitivity and a closed-form-solution
time-advancing strategy. In addition, the proposed technique has been successfully applied
to acoustic problems focused on resonance frequency fitting and bandgap maximization at
the micro-scale [99].
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� As a consequence of these features and in particular from the discrete property of the design
variable, the proposed approach provides smooth black-and-white topology designs with
sharp material boundaries. In those elements of the boundary, the characteristic function
has been ”relaxed” to capture the discontinuous stress field via a three-field mixed formu-
lation (σ − ε− u) in combination with the discrimination function, resulting in a density
material interpolation similar to that found in SIMP techniques for this small number of
elements. Mesh-size dependency and checkerboards effects are effectively mitigated via
the Laplacian smoothing technique, ensuring also minimum material filament size control.
As a result, other additional post-process filtering algorithms (e.g. Density filtering, Heav-
iside projections, morphological filters, among others) are not necessary, thus leading to a
reduction in computational cost and mathematical complexity.

� The comparison with other techniques has confirmed that the proposed technique is at
the same performance level (within an error margin) in terms of the objective function,
computational cost, and robustness as some of the most relevant topological optimization
techniques such as the SIMP method, and in most cases it outperforms the BESO and LS
methods. On top of that, it has been proven that the pseudo-time incremental strategy
does not represent any disadvantage compared to other techniques that impose a constant
volume throughout the optimization, but rather it provides a full set of solutions with
intermediate volumes.

In conclusion, the approach proposed throughout this study can be used as a starting point
to optimize structures and engineering materials in different fields and achieve the envisaged
targeted properties, while using an alternative technique to more established topology optimiza-
tion methods. New strengths and features, as well as possible modifications to cover a larger
number of examples, can be outlined by applying it to other problems.

4.2 Future research lines

The development and implementation of the proposed topology optimization technique can
potentially provide the basis for future research lines in the field. Some relevant research topics
are discussed below:

� Extension to other applications or physical problems. The proposed approach has been
successfully applied in structural and thermal problems, as described in this dissertation.
However, there are other interesting objective functions or even physical problems, e.g. in
the electromagnetic field to develop and design new metamaterials, in which this method
could be applied to with no major problems.

� Implementation of other constitutive equations. Up to this point, only linear materials
have been employed in topology optimizations assuming small deformations. However,
non-linear materials could be studied to analyze its effect when incorporated into the
approach. In this case, new incremental strategies should be considered.

� Multi-material optimizations. Although two-material topology optimization can provide
excellent results, it may also be one of the most important limitations in some situations.
In contrast, multi-material topology optimization might lead to improved solutions by
allowing for a wider range of possible applications.

� Multi-scale concurrent topology optimization. A concurrent topology optimization of multi-
scales structures could be implemented to optimize both the macro-scale (as illustrated
throughout this work) and the micro-scale at the same time. This strategy allows a
double improvement in the objective function, by obtaining the optimal macro topology
and the optimal micro-structure (e.g. optimal design and orientation) at each point of the
macro-domain. Owing to the increase in the number of scales, the computational cost is
exponentially increased. Hence, the proposed technique could be a suitable alternative to
tackle these multi-scale problems, due to the satisfactory results in terms of computational
cost.
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4.3 Research dissemination

The dissemination of this work has been accomplished through the following scientific publica-
tions:

[1] J. Oliver, D. Yago, J. Cante, and O. Lloberas-Valls, “Variational approach to relaxed topolog-
ical optimization: Closed form solutions for structural problems in a sequential pseudo-time
framework,” Computer Methods in Applied Mechanics and Engineering, vol. 355, pp. 779–
819, Oct. 2019. doi: 10.1016/j.cma.2019.06.038

[2] D. Yago, J. Cante, O. Lloberas-Valls, and J. Oliver, “Topology optimization of thermal prob-
lems in a nonsmooth variational setting: Closed-form optimality criteria,” Computational
Mechanics, vol. 66, no. 2, pp. 259–286, Jun. 2020. doi: 10.1007/s00466-020-01850-0

[3] D. Yago, J. Cante, O. Lloberas-Valls, and J. Oliver, “Topology optimization using the un-
smooth variational topology optimization (UNVARTOP) method: An educational imple-
mentation in MATLAB,” Structural and Multidisciplinary Optimization, vol. 63, pp. 955–
981, Nov. 2020. doi: 10.1007/s00158-020-02722-0

[4] D. Yago, J. Cante, O. Lloberas-Valls, and J. Oliver, “Topology optimization methods for
3D structural problems: A comparative study,” Archives of Computational Methods in En-
gineering, Aug. 2021. doi: 10.1007/s11831-021-09626-2

In particular, the online publication of an educational Matlab code in a public GitHub
repository https://github.com/DanielYago/UNVARTOP (Paper C [136]) provides students and
those new to the field (or to the proposed approach) with the theoretical basis for topology
optimization and a better understanding in how this new topology optimization approach works.
Specifically, the topology optimization code corresponds to the 2D structural implementation of
the proposed technique for educational purposes to demonstrate its capabilities and effectiveness
to tackle a large set of different problems subject to a volume constraint. Additionally, it can
be easily extended to thermal problems or 3D problems.

As a long-term objective of this dissemination, it is expected that the availability of a set
of publications and an open-source code will encourage researchers to conduct future research
using the proposed technique in different fields, increasing the visibility of the technique among
the topology optimization community.

In addition to the publications and the educational code, the work has been presented in the
following conferences:

[1] D. Roca, D. Yago, J. C. Cante, O. Lloberas-Valls, and J. Oliver, “Computational multiscale
design of engineering metamaterials: Application to acoustic insulation panels,” in 6th Eu-
ropean Conference on Computational Mechanics (Solids, Structures and Coupled Problems)
/ 7th European Computational Fluid Dynamics Conference, Glasgow, Scotland, UK, Jun.
2018

[2] J. Oliver, D. Yago, J. Cante, and O. Lloberas-Valls, “Variational approach to topological
optimization problems: Closed-form solutions in a pseudo-time framework,” in COMPLAS
2019 - XV International Conference on Computational Plasticity: Fundamentals and Appli-
cations, Barcelona, Spain, Sep. 2019

[3] D. Roca, D. Yago, J. Cante, O. Lloberas-Valls, and J. Oliver, “Computational procedure for
optimal design of acoustic metamaterials,” in COMPLAS 2019 - XV International Confer-
ence on Computational Plasticity: Fundamentals and Applications, Barcelona, Spain, Sep.
2019

[4] D. Yago, J. Cante, O. Lloberas-Valls, and J. Oliver, “Topology optimization of thermal prob-
lems: The closed-form solution method,” in COMPLAS 2019 - XV International Conference
on Computational Plasticity: Fundamentals and Applications, Barcelona, Spain, Sep. 2019

[5] D. Yago, J. Cante, O. Lloberas-Valls, and J. Oliver, “Nonsmooth variational approach
to topology optimization (vartop),” in 14th World Congress on Computational Mechanics
(WCCM XIV), 8th European Congress on Computational Methods in Applied Sciences and
Engineering (ECCOMAS 2020), Paris, France, Jan. 2021
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A.1 Abstract

The work explores a specific scenario for structural computational optimization based on the
following elements: (a) a relaxed optimization setting considering the ersatz (bi-material) approx-
imation, (b) a treatment based on a non-smoothed characteristic function field as a topological
design variable, (c) the consistent derivation of a relaxed topological derivative whose determi-
nation is simple, general and efficient, (d) formulation of the overall increasing cost function
topological sensitivity as a suitable optimality criterion, and (e) consideration of a pseudo-time
framework for the problem solution, ruled by the problem constraint evolution.

In this setting, it is shown that the optimization problem can be analytically solved in a
variational framework, leading to, nonlinear, closed-form algebraic solutions for the character-
istic function, which are then solved, in every time-step, via fixed point methods based on a
pseudo-energy cutting algorithm combined with the exact fulfillment of the constraint, at every
iteration of the non-linear algorithm, via a bisection method. The issue of the ill-posedness
(mesh dependency) of the topological solution, is then easily solved via a Laplacian smoothing
of that pseudo-energy.

In the aforementioned context, a number of (3D) topological structural optimization bench-
marks are solved, and the solutions obtained with the explored closed-form solution method, are
analyzed, and compared, with their solution through an alternative level set method. Although
the obtained results, in terms of the cost function and topology designs, are very similar in
both methods, the associated computational cost is about five times smaller in the closed-form
solution method this possibly being one of its advantages. Some comments, about the possi-
ble application of the method to other topological optimization problems, as well as envisaged
modifications of the explored method to improve its performance close the work.

Keywords: Topological optimization, Variational approach, Closed-form solutions, Pseudo-
time sequential analysis, Structural topological optimization

A.2 Motivation

Computational mechanics tools for solving topological optimization problems raise a large num-
ber of challenges, both from the mathematical and computational points of view. The problem
is originally formulated in the context of a design domain, Ω ⊂ R3, in which a solid domain,
Ω+ ⊂ Ω, whose topology is going to be designed, is embedded. Then, the voids domain is defined
as Ω− = Ω\Ω+, and a cost function (typically the structural compliance or a related structural
measure) is aimed at being optimized (minimized) in terms of some design variables, defining
the material distribution (topology) in Ω, and subject to some constraints1. This setting poses

1Typically, but not necessarily, the volume occupied by the solid.
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a number of difficulties, among which we will mention the following:

(a) Discrete character of the design variables. The distribution of the material at every point,
x ∈ Ω, is defined in terms of the characteristic function, χ : Ω→ {0, 1} ; χ(x) = 1 ∀x ∈ Ω+

(material) and χ(x) = 0 ∀(x) ∈ Ω− (voids). Therefore, the design variables χ(x) map into
the discrete image set {0, 1} and the optimization problem is highly non smooth.

(b) Number of design variables. The design variable χ(x) is valued at all points x ∈ Ω.
Therefore, unlike in standard discrete optimization problems [9], there are, in principle,
an infinite number of design variables, χ(x) ∀x ∈ Ω, to be determined.

(c) The unknown characteristic function, χ(x), is non-Lipschitz and non-differentiable. This
translates into the fact that optimality conditions, based on standard differentiation of the
cost functional, are not, in principle, applicable.

Along the last decades, a large number of approaches to computational topological opti-
mization have been proposed. With no aim of exhaustiveness, two large families of methods
to overcome those challenges have been proposed (see, for instance, [18, 40, 45] for exhaustive
reviews on topological optimization methods):

(I) Regularize the characteristic function. This is the choice of the most popular, and success-
ful, of the current approaches: the Solid Isotropic Material with Penalization (SIMP) [8],
in which the discrete characteristic function, χ, is replaced by a regularized (continuous)
function, (density-like function), ρ : Ω → [0, 1]. The regularization domain, Ωreg ⊂ Ω,
(the set of points of Ω where ρ(x) ∈ (0, 1)) is not necessarily small, and it requires to
be covered by a, relatively large, number of discretization domains (finite elements or
Voxels). The approach succeeds in breaking the challenge of continuity, and standard
finite-dimensional optimization procedures2 can be applied to the resulting optimization
problem, now formulated in terms of a finite (but large) number of design variables3, which
are, then, supplemented by additional constraints imposing 0 ≤ ρ(xi) ≤ 1. The success of
the method brings also some drawbacks, typically:

• Intrinsic to the existence of the regularization domain, Ωreg ⊂ Ω, is the appearance
of gray zones (zones with diffuse material/voids coexistence, 0 < ρ < 1) [10, 8],
where the kind of material provided by the optimization is unclear. This requires to,
subsequently, resort to filtering techniques to eliminate them.

• The mesh-dependence [43] or lack of mesh-size objectivity of the results. Again these
requires resorting to filtering techniques [54].

• The appearance of checkerboards when using finite element discretizations. This type
of problems is identified as a numerical instability (not fulfillment of the Ladyzhenskaya–
Babuska–Brezzi stability conditions) and it should be solved by resorting to specific
finite elements in modeling the problem [26].

(II) Change the design variable. The so called level-set methods for topological optimiza-
tion [17], overcome the difficulties inherent to the discrete character of the characteristic
function, χ(x), by replacing it by a different, smoother, function (the level-set function
ϕ ∈ H1(Ω) : Ω→ R) related to each other through χ(x) = H (ϕ(x)), where H : R→ {0, 1}
stands for the Heaviside function. The values of ϕ(xi) at the sampling points are the
new design variables. The optimization problem is no longer solved through standard
optimization methods, but by means of the solution of a Hamilton-Jacobi (pseudo-time
evolutionary) equation [36, 50]. This family of methods have proven to be very robust in
solving different types of topological optimization methods, albeit they suffer, also, from
some drawbacks, e.g.:

2Typically based on efficient optimization techniques, like the Method for Moving Asymptotes (MMA).
3The value of ρ(xi) at the sampling points xi ∈ Ω.
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• They also require regularization techniques, for instance Tikhonov-regularization
based methods [53], to obtain a well posed (mesh-size objective) optimization prob-
lem.

• Their robustness, and rate of convergence, relies on the size of the pseudo time incre-
ment adopted, in turn depending on heuristic considerations. In general this trans-
lates into a high number of iterations and, thus, into a high computational cost. In
some cases, these methods use initially the signed distance to the solid boundaries
as level set function, and they may require re-initialization techniques during the
analysis [54].

• A fundamental issue in this method is the selection of an appropriated sensitivity of
the cost function to changes on the design variable (the level-set function) which was
initially related to the shape derivative concept [3]. More recently, connections with
the topological derivative concept were introduced (see for instance [3, 11, 53]).

The use of an appropriate sensitivity of the cost function to topological changes in
the design domain, in front of the introduction of holes in the solid material, plays a
fundamental role in the performance of this family of methods [30]. Indeed, derivation
of analytical expressions for the topological derivative, in linear elastic problems,
becomes crucial, and much work has been done in this sense ([33, 34, 23, 22, 5]).
In these cases, the topological sensitivity is mathematically derived in terms of the
perturbation of the cost function, after material removal (introduction of a hole) in
a certain point of Ω, ruled by the elastic state problem in the perturbed solid. This
analytical derivation, which specifically depends on the type of optimization problem
and the considered elastic material (isotropic, orthotropic, anisotropic etc.), has to
be previously derived via specific, and sometimes heavy, analytical methods, i.e. limit
and asymptotic analysis to a null size of the hole. This could be also understood as
a specific burden of the method.

On the light of the, so far, depicted situation, this work aims at exploring the impact and
consequences of an alternative option for computational topological optimization: facing, as
much as possible, the topological optimization problem in its original setting, i.e. considering
the following scenario:

• A non-smoothed characteristic function, χ : Ω→ {β, 1} ; β ∈ (0, 1), as design variable.

• An infinite-dimensional design space, considering the values of the characteristic function
χ(x) at all points of Ω, as design variables of the optimization problem.

• A relaxed optimization setting, which facilitates the obtainment of the topological deriva-
tive, not requiring a complex mathematical derivation.

• Deriving the corresponding closed-form solutions, for such a non-smooth optimization
problem, in a number of structural problems4.

Then, an algorithmic setting for solving the obtained (highly non-linear) closed-form solu-
tions is devised, consisting of:

(1) A relaxed, bi-material, topological optimization, setting. The original embedded-solid set-
ting, where a hard material (solid) domain Ω+ is embedded into the design space, Ω, is
relaxed to a bi-material (hard-phase + soft-phase, M+/M−) setting. This relaxed scenario
is commonly found in current topological optimization approaches and it is, sometimes ref-
erenced as ersatz material approximation [2, 16]. Its main advantage is that it makes the
optimization problem simpler than the alternatives, e.g. the immersed boundary methods
[1, 41, 32]. In this way, at all points of the design domain Ω, there exists (some type

4As precursors of solutions, in the chosen context, for broader families of topological optimization problems.
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of) material, and the classical concept of topological perturbation, initially understood as
solid material removal or addition, is replaced by that of material switching or material
exchange (M+(x) ↔ M−(x)). A number of, non-trivial, consequences derive from this,
apparently minor, modification: (a) the standard (solid + voids) setting is asymptotically
approximated by assigning to the soft material, M−, very weak elastic properties (charac-
terized by the classical contrast factor α→ 0), and (b) the sensitivity of the cost function
to the topological perturbation at a given point x ∈ Ω, now understood as a local material
exchange at the point.

(2) A consistent relaxed topological derivative (RTD). The aforementioned relaxed bi-material
setting is used, not only for solving the static elastic problem, but also for the purposes
of derivation of the topological sensitivity, this providing additional consistence to the
approach. Derivation of this consistent topological sensitivity can be done, in a non-smooth
variational setting, and computed, independently of the considered elastic material family,
as a directional derivative of the cost functional. This derivation of RTD is extremely
simple in comparison with the exact topological derivative classically used in the literature.

(3) Sequential pseudo-time framework. In this framework, a pseudo-time parametrization is
introduced. Solutions of the topological optimization problem are obtained for increasing
values of the restriction (i.e. the soft-phase volume |Ω−|), that plays the role of a pseudo-
time. In this context, the time evolution of the topology of the optimal solution (and the
associate cost function values) is obtained at no additional computational cost. In this way
the optimization process provides information, not only on the optimal topology at every
pseudo-time-step and, thus, at the corresponding soft-phase volume level, but also on the
evolution of the minima for a chosen set of times (volumes). In some cases this is a very
useful information for the designer, who obtains, in a single run, additional information
about, for instance, the minimum of the minima in the computed designs.

(4) Exact fulfillment of the restriction at every iteration of the algorithm. This concept is
borrowed from numerical techniques frequently used in non-linear analysis of structures:
the so-called load control, or arc-length methods [15]. This substantially contributes to the
robustness, and to the computational cost diminution, in the resolution of the resulting
non-linear problem.

(5) Regularization of the obtained closed-form topological solutions via Laplacian smoothing
techniques. In order to prevent the aforementioned ill-posedness of the problem, leading
to the mesh-size dependence, a Laplace-type smoothing is done, which removes from the
solution the small (noisy) wavelengths below a predefined threshold. Distinctly from other
approaches, this regularization is not done by introducing an additional contribution to the
cost function [53], but by smoothing the closed-form solution obtained from the original
optimization problem. Additionally, this allows: a) controlling the minimum attainable
width/section of the filaments of the solid material in the obtained solutions topology
and, b) obtaining 21

2D (extruded to the third dimension) topological designs.

In next sections the theoretical and algorithmic aspects of the considered formulation are, first,
presented in detail and, then, assessed by application to a set of representative examples. Com-
parisons of the obtained results, with those obtained with level-set (Hamilton-Jacobi type) tech-
niques using the derived relaxed topological derivative, are done in order to check the performance
of the analyzed approach, both in terms of the cost function values, and also in terms of the
required computational cost.
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A.3 Problem set up

A.3.1 Relaxed characteristic function

Let us consider the design domain, Ω ⊂ Rn ; n ∈ {2, 3}, and the distribution over this domain
of two different material phases: a) hard-phase (M+) and b) soft-phase (M−), the type of phase
at every point, x ∈ Ω, being defined by the characteristic function χ as:

χ : Ω→ {β, 1} :=

{
χ(x) = 1 if material phase at x is M+

χ(x) = β if material phase at x is M−
(a)

0 < β < 1⇒ (1− β) > 0 (b)

(1)

In a second step we shall consider a relaxed version of the characteristic function, denoted as χψ,
in terms of the, here termed, discrimination function ψ ∈ H1(Ω) which is assumed single-valued
and defined as (see figure A.2)

χψ(x) = Hβ(ψ(x)) (2)

where Hβ(·) stands for a relaxed Heaviside function5, defined as{
Hβ(ψ) = 1 for ψ > 0

Hβ(ψ) = β for ψ < 0
(3)

Therefore, function ψ(x) defines, through its value, two possible values of χψ, i.e.{
χψ(x) = Hβ(ψ(x)) = 1 for ψ(x) > 0

χψ(x) = Hβ(ψ(x)) = β for ψ(x) < 0
(4)

and discriminates points x ∈ Ω belonging either to the hard-phase domain, Ω+, or to the soft-
phase domain Ω−:{

Ω+(χψ) := {x ∈ Ω ; ψ(x) > 0} ⇒ χψ(x) = 1 (a)

Ω−(χψ) := {x ∈ Ω ; ψ(x) < 0} ⇒ χψ(x) = β (b)
(5)

Equations (5) define the topology of Ω.

∂uΩ
∂σΩ

F
Ω

FΓ

Ω+ ( χ𝜓(x) = 1 )

Ω- ( χ𝜓(x) = β )

𝔐+

𝔐-

x

y

x

y

Figure A.1: β-relaxed setting: bi-material design domain.

Remark 1 Notice that, since only two different phases are considered, Ω+ ∪ Ω− = Ω, the de-
scription of the topology in equation (5) can be rephrased only in terms of the positive counterpart
of the discrimination function, ψ(x), i.e.{

Ω+(χψ) := {x ∈ Ω ; ψ(x) > 0} ⇔ χψ(x) = 1 (a)

Ω−(χψ) := {x ∈ Ω ; x /∈ Ω+} ⇔ χψ(x) = β (b)
(6)

5Which recovers to the classical Heaviside function as β → 0.
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or, alternatively, in terms of the negative counterpart of ψ(x) i.e.{
Ω−(χψ) := {x ∈ Ω ; ψ(x) < 0} ⇒ χψ(x) = β (a)

Ω+(χψ) := {x ∈ Ω ; x /∈ Ω−} ⇒ χψ(x) = 1 (b)
(7)

From equations (6) or (7) the following equalities can be stated:

|Ω| = |Ω+(χψ)|+ |Ω−(χψ)| (a)

|Ω+(χψ)| =
∫
Ω

χψ(x)− β
1− β

dΩ (b)

|Ω−(χψ)| =
∫
Ω

1− χψ(x)

1− β
dΩ (c)

(8)

where |Ω|, |Ω+| and |Ω−| stand, respectively, for the measure (surface/volume) of the design
domain, Ω, the hard-phase domain, Ω+, and the soft-phase domain, Ω−.

χψ(x) 
1

0.5

0

-0.5

-1

ΩΩ+Ω+ Ω+

β

Ω+

ψ(x)

x

Figure A.2: Discrimination function, ψ and the corresponding relaxed characteristic function,
χψ.

A.3.2 Relaxed, bi-material, linear elastic problem

Let us now consider a bi-material elastic solid occupying the whole domain Ω. Then, the
material distribution in Ω can be defined in terms of the relaxed characteristic function6, χ(x),
in equations (1) to (5). The corresponding elastic problem reads

∇ · σχ(x) + b(x) = 0 ;


σχ(x) ≡ σ(uχ(x)) = χmC︸ ︷︷ ︸

Cχ(x)

: ε(uχ)

ε(uχ) ≡ (∇⊗ uχ(x))sym
∀x ∈ Ω (a)

σχ(x) · n = t∗(x) ∀x ∈ ∂σΩ (b)

uχ(x) = 0 ∀x ∈ ∂uΩ (c)

(9)

where uχ(x) is the displacement vector field, parametrized by the current topology, σχ(x) stands
for the second order stress tensor field, b(x), stands for the density of the body forces, t∗(x)
stands for the boundary tractions and ε(uχ) is the (infinitesimal) strain tensor. In equation
(9)-(a), C is the, fourth order, elastic constitutive tensor of the hard-phase (assumed constant),
and the exponent m is typically taken m > 1. In addition, ∂uΩ ⊂ ∂Ω and ∂σΩ ⊂ ∂Ω, (where
∂uΩ ∩ ∂σΩ = ∅ and ∂uΩ ∪ ∂σΩ = ∂Ω) are, respectively, those parts of the boundary, ∂Ω, where

6From now on, subscript (·)ψ will be omitted, unless it is strictly necessary.
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displacements, uχ, and tractions, t = σχ ·n or forces, are, prescribed (see figure A.1). In addition
χ(x) is recalled, from equations (1) as:

χ(x) =

{
1 ∀x ∈ Ω+

β ∀x ∈ Ω−
(10)

where 0 < β < 1 will be, from now on, termed the relaxation factor. Notice that, according
to equations (9)-(a) and (10) the elastic constitutive tensor, Cχ(x) can be specified for all the
domain points as

Cχ(x) ≡ χm(x)C =

{
C ∀x ∈ Ω+(χ)

βmC = αC ≈ 0 ∀x ∈ Ω−(χ)
(a)

α = βm ∈ (0, 1) ; β = α
1
m ∈ (0, 1) (b)

∂Cχ
∂χ

= mχm−1C =

{
mC ∀x ∈ Ω+(χ)

mβ(m−1)C = mα
m−1
m C ∀x ∈ Ω−(χ)

(c)

(11)

where the factor α and the exponent m will be, respectively, termed the contrast stiffness factor
and the contrast stiffness exponent. For the standard isotropic case the elasticity tensor can be
written [35]C = λ̄1⊗ 1 + 2µI =

νE

(1 + ν) (1− 2ν)
1 +

E

(1 + ν)
I

Cijkl = λ̄δijδkl + µ [δikδjl + δilδjk] ; i, j, k, l ∈ {1, 2, 3}
(12)

where λ̄ and µ are the Lamé coefficients and E and ν stand, respectively, for the Young modulus
and the Poisson ratio. In addition, 1 and I are, respectively, the second order unit tensor and
the fourth order (symmetric) unit tensor. The problem in equations (9) can be alternatively
written in a variational form as

Relaxed Bi-material Elastic Problem

Given: χ(x), b(x), t∗(x), (a)

Vη :=
{
η ∈ H(1)(Ω) ; η = 0 on ∂uΩ

}
(b)

Find: u(χ,x) ≡ uχ(x), uχ ∈ Vη (c)

Fulfilling: aχ(uχ,w) = l(w) ∀w ∈ Vη (d)
aχ(uχ,w) ≡

∫
Ω
ε(uχ) : Cχ : ε(w) dΩ ; ε (η) = (∇⊗ η)sym

l(w) =

∫
Ω
b ·w dΩ +

∫
∂σΩ

t∗ ·w dΓ
(e)

(13)

where, aχ(uχ,w) is a symmetric bilinear form (aχ(uχ,w) = aχ(w,uχ)).

Remark 2 Notice that, unlike in the strong form of the relaxed elastic problem, in equations
(9), no derivative of the, spatially discontinuous, constitutive tensor Cχ appears in the varia-
tional form of problem in equations (13). The problem description in these equations will be the
one considered, from now on, and termed the (relaxed) state problem (or equation). With the
boundary conditions appropriately precluding the rigid body motions, it has a unique solution.

Remark 3 Additionally, it is assumed that, as the relaxation factor β → 0 (and, thus, α→ 0),
the relaxed elastic problem, in equations (9) to (13), asymptotically converges, to the solution of
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the single material (M+ ≡ solid and M− ≡ voids) elastic problem defined as:

Single-material Elastic Problem

Given: Ω,Ω+,b(x), t∗(x), (a)

Vη :=
{
η ∈ H(1)(Ω+) ; η = 0 on ∂uΩ ∩ ∂Ω+

}
(b)

Find: u(x) ∈ Vη (c)

Fulfilling: a(u,w) = l(w) ∀w ∈ Vη (d)
a(u,w) ≡

∫
Ω+

ε(u) : C : ε(w) dΩ ; ε (η) = (∇⊗ η(x))sym

l(w) =

∫
Ω+

b ·w dΩ +

∫
∂σΩ+

t∗ ·w dΓ
(e)

(14)

i.e. the linear elastic solution of the (non-relaxed or embedded) solid/voids problem.

The fact that the relaxed bi-material version (in equations (13)) is considered here as the target
state problem for the subsequent developments, is emphasized.

A.3.3 Finite element discretization

So far, no mention has been made of the numerical method used to solve the elastic state problem
in equation (13). If the finite element method is chosen, the state-equation (13)-(d) yields7, after
discretization,

Kχdχ = f ; Kχ =

∫
Ω
BT(x) Dχ(x) B(x)dΩ ; Dχ(x) = (χ(x))mD (a)

σχ(x) = Dχεχ(x) ; εχ(x) = B(x)dχ ; uχ(x) = Nu(x)dχ (b)

(15)

where Kχ stands for the stiffness matrix, f for the external forces vector and dχ is the nodal
displacement vector. In addition, σχ(x) and εχ(x) stand, respectively, for the stress and strain
vectors, B(x) is the strain matrix, D is the matrix version of the hard-phase constitutive tensor
C, and Nu(x) is the, displacement, interpolation (shape-function) matrix.

A.3.4 Relaxed Topological Derivative. Definition.

Let us consider the function space of solutions, Vuχ , of the relaxed state problem in equation
(13) for all possible topologies χ(x), i.e.{

Vχ := {χ : Ω→ {β, 1} }
Vuχ := {uχ / uχ : Ω→ Rn, n ∈ {2, 3} ; χ ∈ Vχ ; aχ(uχ,w) = l(w) ∀w ∈ Vη}

(16)

and the function space, VΩ, of L2-integrable mappings G (χ(x),uχ(x),x), in R, and the corre-
sponding functional J (χ) i.e.

VΩ :=
{
G / G : Vχ × Vuχ × Ω→ R

}
J (χ) ≡ Jχ : VΩ → R ; Jχ =

∫
Ω
G
(
χ,uχ(x),x

)︸ ︷︷ ︸
F (χ,x)

dΩ =

∫
Ω
F (χ,x) dΩ (17)

Let us now consider a specific point, x̂ ∈ Ω, and a sequence of balls8, Ωϵ(x̂) of radius ϵ,
(the perturbation domain), surrounding x̂, i.e. x̂ ∈ Ωϵ ⊂ Ω, where ϵ ∈ R+ and ϵ → 0 is a
regularization parameter (see figure A.3). Let us finally consider the space of perturbations, due

7In the following, matrix (Voigt’s) notation is used for discrete finite element formulations.
8Ωϵ(x) is a circle (in 2D) or a sphere in (3D).
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(a)

(b)

Ω+ Ω+\Ωϵ(x̂)

x̂x̂

Δχ(x̂) = 1-β

Δχ(x̂) = - (1-β)

ϵ

x̂

Ωϵ(x̂)

Figure A.3: Topological derivative settings: (a) Relaxed Topological Derivative (RTD), (b) Exact
Topological Derivative (TD).

to material phase exchange only at points of the domain Ωϵ(x̂),

∆V x̂,ϵ :=
{
ηx̂,ϵ ; ηx̂,ϵ(x) = ∆χ(x) ∀x ∈ Ωϵ(x̂) ; ηx̂,ϵ(x) = 0 ∀x ∈ Ω\Ωϵ(x̂)

}
(18)

where ∆χ(x) stands for the increment in the value of χ(x) due to exchange of the type of
material phase at point x. In view of equation (5), the value ∆χ(x), is:

∆χ(x) =

{
−(1− β) < 0 for x ∈ Ω+

1− β > 0 for x ∈ Ω−
(19)

Let us now consider the following asymptotic expansion of the functional J (χ) in equation
(17), in terms of the perturbation ηx̂,ϵ ∈ ∆V x̂,ϵ

J (χ+ ηx̂,ϵ) = J (χ) +
δJ (χ)

δχ
(x̂) µ[Ωϵ(x̂)] + o(µ[Ωϵ(x̂)]) (20)

where, µ[Ωϵ(x̂)] is an appropriate measure9 of the perturbation domain Ωϵ(x̂), fulfilling the
following conditions

1)µ[Ωϵ(x̂)] > 0 (a)

2) lim
ϵ→0

µ[Ωϵ(x̂)] = 0 (b)

3) makes
δJ (χ)

δχ
(x̂) nonzero valued and bounded (c)

(21)

Specific mathematical aspects of the previous derivations are out of the scope of this work
and left to be proven in specialized contexts. From equation (20), and conditions in equation
(21), we define the Relaxed Topological Derivative (RTD) of the functional J (χ) at point x̂ as

δJ (χ)

δχ
(x̂) = lim

ϵ→0

1

µ[Ωϵ(x̂)]

[
J (χ+ ηx̂,ϵ)− J (χ)

]
(22)

9For practical purposes, it will be the volume or the surface (depending on the case) of the perturbation domain
µ[Ωϵ(x̂)].
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In view of the previous derivations the RTD can be conceptually defined as

Definition 1 (RTD) The (relaxed) topological derivative (RTD) of functional J (χ), at point
x̂ ∈ Ω, is a finite measure of the sensitivity of J (χ) to the change of topology at that point, in the
α-relaxed setting described in sections A.3.1 and A.3.2. It is computed as the limit, as α → 0;
β → 0, of the change of J (χ), when the material phase type is exchanged (χ ↔ χ+ ∆χ(x̂)) at
the neighborhood, Ωϵ(x̂) per unit of the perturbation measure, µ[Ωϵ(x̂)].

Notice in the previous derivations the similarity of the procedure for obtainment of the topo-
logical derivative, here acronymized as (RTD), in the relaxed bi-material setting in equations
(22), and that in the embedded/single-material setting: the exact Topological Derivative (TD)
[12, 47, 33, 34]. The fundamental difference is that, in the second case the TD is considered
in the context of a a single (solid) phase, occupying the domain Ω+ ⊂ Ω, the corresponding
functional being J (Ω+) =

∫
Ω+(·)(x) dΩ. This functional is perturbed by removing the material

in an infinitesimal neighborhood, Ωϵ(x̂), around point x̂, so that the perturbed solid domain
becomes Ω+\Ωϵ(x̂) (see figure A.3).

Then the topological derivative is defined as:

DT (x̂) := lim
ϵ→0

∫
Ω+\Ωϵ(x̂)(·)(x) dΩ−

∫
Ω+ (·)(x) dΩ

µ[Ωϵ(x̂)]
(23)

Unlike in the RTD derivation, in the TD case the integration domains, Ω+\Ωϵ and Ω+, in
equation (23) are not the same, and it is not possible to establish a homeomorphism between both
domains [33]. This motivates a subsequent analytical procedure that involves some additional,
and problem dependent, limit and asymptotic analyzes [22].

Along this work, it will be assumed that the RTD is a convenient approximation of the TD,
requesting much simpler calculations, and it will be checked it provides a sufficient approximation
of the cost sensitivity to lead to accurate solutions for a number of engineering problems.

A.3.5 Examples of relaxed variational topological derivatives

In the following sections, some results for relaxed topological derivatives, used in this work, are
presented.

Relaxed topological derivative of an integral over the design domain

For the functional, Jχ , defined as in equation (17), the asymptotic expansion in the direction
of the perturbation ηx̂,ϵ reads

J (χ+ ηx̂,ϵ) =

∫
Ω
F (χ+ ηx̂,ϵ,x) dΩ =

∫
Ω

(
F (χ,x) +

∂F (χ,x)

∂χ
ηx̂,ϵ + o(ηx̂,ϵ)

)
dΩ =

=J (χ) +

∫
Ω

∂F (χ,x)

∂χ
ηx̂,ϵ dΩ + o(µ[Ωϵ(x̂)]) =

=J (χ) +

∫
Ω

(
∂G (χ,uχ(x),x)

∂χ
+
∂G (χ,uχ(x),x)

∂uχ
· ∂uχ
∂χ

)
dΩ + o(µ[Ωϵ(x̂)])

(24)

where, when necessary, the displacement derivatives ∂uχ/∂χ are obtained from the relaxed
elastic problem (the state equation) in equations (13), either directly by χ-differentiation of
its solution, or indirectly, by using the adjoint-problem method [12]. Then, the topological
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derivative of the functional Jχ is obtained by replacing equation (24) into equation (22), as

δJ (χ)

δχ
(x̂) =

δ

δχ

[∫
Ω
F (χ,x) dΩ

]
(x̂) = lim

ϵ→0

1

µ[Ωϵ(x̂)]

[
J (χ+ ηx̂,ϵ)− J (χ)

]
=

= lim
ϵ→0

1

µ[Ωϵ(x̂)]

(∫
Ω

∂F (χ,x)

∂χ
ηx̂,ϵ dΩ + o(µ[Ωϵ(x̂)])

)
=

= lim
ϵ→0

1

µ[Ωϵ(x̂)]

∫
Ωϵ(x̂)

∂F (χ,x)

∂χ
∆χ(x̂) dΩ =

= lim
ϵ→0

|Ωϵ(x̂)|
µ[Ωϵ(x̂)]

[
∂F (χ(x),x)

∂χ
∆χ(x)

]
x=x̂

(25)

where equations (22) and (24), and the definition of the perturbation ηx̂,ϵ in equation (18), have
been taken into account. In order to fulfill condition in equation (21)-(c), a suitable choice for
µ[Ωϵ(x̂)] is

µ[Ωϵ(x̂)] = |Ωϵ(x̂)| = 4

3
πϵ3 (26)

this yielding, in terms of the descriptions F (·) and G(·) in equation (17)

δJ (χ)

δχ
(x̂) =

δ

δχ

[∫
Ω
F (χ,x) dΩ

]
(x̂) =

[
∂F (χ,x)

∂χ

]
x=x̂

∆χ(x̂) =

=

[
∂G (χ,uχ,x)

∂χ
+
∂G(χ,uχ,x)

∂uχ
· ∂uχ
∂χ

]
x=x̂

∆χ(x̂)

(27)

Remark 4 Notice that the linear character of the integration and differentiation operations,
involved in the determination of the relaxed variational topological derivative in equations (25)
to (27), confers to the RTD the same linear character, i.e.

δ (J (χ) + λK(χ))

δχ
(x̂) =

δJ (χ)

δχ
(x̂) + λ

δK(χ)

δχ
(x̂) ; J (χ),K(χ) ∈ VΩ ; λ ∈ R (28)

Relaxed topological derivative of a material phase volume

Let us consider the functional defining the volume of phase M+ (see figure A.4)

Ω-

Γ
x

y

∂Ω ∂Ω+ ∂Ω-

Ω+ 𝔐+ 𝔐-

Figure A.4: Design domain Ω: material-phase domains (Ω+ and Ω−), material-phase boundaries
(∂Ω+ and ∂Ω−), and phase interfaces (Γ).

J (χ) ≡ |Ω+(χ)| =
∫
Ω+(χ)

dΩ ; J (χ) ∈ VΩ (29)
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and the identity

lim
ϵ→0
J (χ+ ηx̂,ϵ) = lim

ϵ→0
|Ω+(χ+ ηx̂,ϵ)| = lim

ϵ→0

(
|Ω+(χ)|+ sgn(∆χ(x̂))|Ωϵ(x̂)|

)
(30)

where sgn(∆χ(x̂)) = −1 ∀x̂ ∈ Ω+ and sgn(∆χ(x̂)) = 1 ∀x̂ ∈ Ω− (see equation (19)).
The corresponding topological derivative, at point x̂ ∈ Ω, can be now computed from equa-

tions (22) and (30) as

δJ (χ)

δχ
(x̂) = lim

ϵ→0

1

µ[Ωϵ(x̂)]

[
J (χ+ ηx̂,ϵ)− J (χ)

]
= lim

ϵ→0

|Ω+(χ+ ηx̂,ϵ)| − |Ω+(χ)|
µ[Ωϵ(x̂)]

=

= lim
ϵ→0

|Ω+(χ)|+ sgn(∆χ(x̂))|Ωϵ(x̂)| − |Ω+(χ)|
µ[Ωϵ(x̂)]

=

=sgn(∆χ(x̂)) lim
ϵ→0

| Ωϵ(x̂)|
µ[Ωϵ(x̂)]

= sgn(∆χ(x̂))

(31)

where the choice for µ[Ωϵ(x̂)], to fulfill the condition in equation (21)-(c), is

µ[Ωϵ(x̂)] = | Ωϵ(x̂)| = 4

3
πϵ3 (32)

In summary

δ|Ω+(χ)|
δχ

(x̂) = sgn(∆χ(x̂)) =

{
− 1 ∀x̂ ∈ Ω+

+ 1 ∀x̂ ∈ Ω−
(33)

For the RTD of the soft-phase M− case we consider the identity

|Ω+(χ)|+ |Ω−(χ)| = |Ω| (34)

which yields

δ|Ω−(χ)|
δχ

(x̂) = −δ|Ω
+(χ)|
δχ

(x̂) = −sgn(∆χ(x̂)) =

{
+ 1 ∀x̂ ∈ Ω+

− 1 ∀x̂ ∈ Ω−
(35)

An alternative procedure to obtain the RTD of the functional in equation (29), consists of
rephrasing it, considering equation (10), and applying the result in equation (27) (see also Table
A.1), i.e.

|Ω+(χ)| =
∫
Ω+

dΩ =

∫
Ω

χ− β
1− β︸ ︷︷ ︸
F (χ)

dΩ

F (χ) ≡ χ− β
1− β

⇒ ∂F (χ)

∂χ
=

1

1− β
δ|Ω+(χ)|

δχ
(x̂) =

[
∂F (χ)

∂χ

]
x=x̂

∆χ(x̂) =
1

1− β
(1− β)(sgn(∆χ(x̂)))︸ ︷︷ ︸

∆χ(x̂)

= sgn(∆χ(x̂))

(36)

which, as expected, coincides with the result in equation (33).

Relaxed topological derivative of a phase perimeter

We now consider the functional corresponding to the perimeter of the hard-phase, P+(χ), defined
as (see figure A.4)

J (χ) = P+(χ) =

∫
∂Ω+(χ)

dΓ = |∂Ω+(χ)| (37)
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and the identity

lim
ϵ→0
J (χ+ ηx̂,ϵ) = lim

ϵ→0
|∂Ω+(χ+ ηx̂,ϵ)| = lim

ϵ→0

(
|∂Ω+(χ)|+ |∂Ωϵ(x̂)|

)
(38)

The corresponding topological derivative, at point x̂ ∈ Ω, can be now computed from equations
(22) and (38) as:

δJ (χ)

δχ
(x̂) = lim

ϵ→0

1

µ[Ωϵ(x̂)]

[
J (χ+ ηx̂,ϵ)− J (χ)

]
= lim

ϵ→0

|∂Ω+(χ+ ηx̂,ϵ)| − |∂Ω+(χ)|
µ[Ωϵ(x̂)]

=

= lim
ϵ→0

|∂Ω+(χ)|+ |∂Ωϵ(x̂)| − |∂Ω+(χ)|
µ[Ωϵ(x̂)]

= lim
ϵ→0

|∂Ωϵ(x̂)|
µ[Ωϵ(x̂)]

= 1

(39)

where the choice for µ[Ωϵ(x̂)], in equation (21)-(c), is

µ[Ωϵ(x̂)] = |∂Ωϵ(x̂)| = 4πϵ2 (40)

From the previous derivation it is evident that the same result would be found for the perimeter
of the soft-phase domain P−(χ). Therefore, in summary,

P+(χ) := |∂Ω+(χ)| ⇒ δP+(χ)

δχ
(x̂) = 1

P−(χ) := |∂Ω−(χ)| ⇒ δP−(χ)

δχ
(x̂) = 1

(41)

Remark 5 (Interface measure) A measure frequently considered in the topological optimiza-
tion literature [19] is the measure of the phases interface Γ(χ) (see figure A.4), which does not
correspond to any of the phase perimeters, P+ and P−, in equation (41), but to the measure,
|Γ(χ)|, of the geometric interface, Γ := (∂Ω+ ∪ ∂Ω−), shared by both phases (thus, excluding the
boundary ∂Ω, see figure A.4).

The RTD of Γ(χ) can be readily obtained from the following identity

|∂Ω+(χ)|︸ ︷︷ ︸
P+(χ)

+ |∂Ω−(χ)|︸ ︷︷ ︸
P−(χ)

= 2|Γ(χ)|+ |∂Ω| (42)

and the RTD of equation (42) yields

δ|Γ(χ)|
δχ

(x̂) =
1

2

(
δP+(χ)

δχ
(x̂) +

δP−(χ)

δχ
(x̂)

)
= 1 (43)

where equations (41) have been taken into account.

In Table A.1, examples of commonly used RTD derivatives are summarized.

A.4 Application to volume constrained topological optimization
problems

Let us consider the following topological optimization problem in the design domain Ω

Find: χ(x) = Hβ(ψ (x)) ; χ : Ω→ {β, 1} ; ψ ∈ H1(Ω)

Fulfilling:

χ∗ = argmin
χ

J (χ) ≡
∫
Ω
F (χ,x) dΩ (a)

Subject to :

C(χ) ≡ |Ω+(χ)| − V̄ = |Ω| − |Ω−(χ)| − V̄ = 0 (b)

(44)

where, in equation (44)-(b), V̄ is the target volume for the material hard-phase (M+) and the
equality |Ω+(χ)| = |Ω| − |Ω−(χ)| has been used.
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Table A.1: Relaxed topological derivative examples. ∆χ(x̂) = −(1 − β) ∀ x̂ ∈ Ω+, ∆χ(x̂) =
(1− β) ∀ x̂ ∈ Ω−.

Functional Jχ RTD (δJχ/δχ) (x̂) Perturbation measure
µ[Ωϵ(x̂)]∫

Ω F (χ,x) dΩ

[
∂F (χ(x),x)

∂χ

]
x≡x̂

∆χ(x̂) |Ωϵ(x̂)|

|Ω+(χ)| :=
∫
Ω+(χ) dΩ sgn(∆χ(x̂)) |Ωϵ(x̂)|

|Ω−(χ)| :=
∫
Ω−(χ) dΩ sgn(∆χ(x̂)) |Ωϵ(x̂)|

P+(χ) :=
∫
∂Ω+(χ) dΓ 1 |∂Ωϵ(x̂)|

P−(χ) :=
∫
∂Ω−(χ) dΓ 1 |∂Ωϵ(x̂)|

Γ(χ) :=
∫
(∂Ω+∩∂Ω−)(χ) dΓ 1 |∂Ωϵ(x̂)|

A.4.1 Penalized functional for non-smooth optimization problems. Optimal-
ity criterion

In order to face the difficulty to impose the minimization, accounting for the constraint in
equation (44)-(b) in non-differentiable function spaces, we will resort to a sequence of penalized
problems (see [9]), by means of the parameter 1

k , penalizing the values of χ that violate the
constraint C(χ) = 0. Therefore, we start from the following penalized problem, in terms of the
extended functional, J ext,

Find: χk(x) = Hβ(ψk (x)) : Ω→ {β, 1} ; ψk ∈ H1(Ω)

Fulfilling:

χ∗k = argmin
χk

J ext (χk) ≡ J (χk) +
1

2k
(C(χk))2

Subject to :

C(χk) ≡ |Ω+|(χk)− V̄ = 0

(a)

χ∗ = lim
k→0

χ∗k (b)

(45)

In order to solve the problem in equation (45) we impose the following optimality criterion

δJ ext(χk)
δχk

(x) =
δJ (χk)

δχ
(x) +

C(χk)

k

δC(χk)
δχk

(x) =

=

(
∂F (χk,x)

∂χk
∆χ(x) +

C(χk)

k
sgn(∆χ(x))

)
> 0 ; ∀x ∈ Ω

(46)

where the topological derivation rules in equations (27) and (29) have been applied.

Remark 6 (Overall-increasing cost function sensitivity) Condition in equation (46) arises
from the following argument (inspired by the one in [7]): by definition, the RTD,

(
δJ ext(χk)/δχk(x)

)
,

measures the sensitivity to topological changes of the functional J ext(χk) in front of local phase
exchanges, ∆χ(x) at point x, per unit of measure of the perturbed domain (see definition 1).
Therefore, denoting Ω̂ the subset of Ω where these exchanges take place, i.e.

Ω̂ ⊂ Ω → Ω̂ := {x ∈ Ω ; ∆χk(x) = ∆χ ̸= 0}
Ω\Ω̂ ⊂ Ω → Ω\Ω̂ := {x ∈ Ω ; ∆χk(x) = 0}

(47)

such that

∆χk(x) =

{
0→ no phase exchange at point x

∆χ ̸= 0→ actual phase exchange at point x
(48)
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If condition in equation (46) is fulfilled everywhere, for a given topology, χk(x), and for all
possible phase changes of that topology (∆χk(x); ∀x ∈ Ω̂; ∀Ω̂ ⊂ Ω) then, the increment of the
functional ∆J ext(χk) for material phase exchange at any finite subset Ω̂(χk) ⊂ Ω is:

∆J ext (χk) =

∫
Ω̂(χk)

δJ ext (χk,∆χ)

δχk
(x)︸ ︷︷ ︸

> 0

dΩ > 0 ∀Ω̂(χk) ⊂ Ω
(49)

this indicating that χk is a local minimizer of J ext(χk). This proves that equation (46) is a
sufficient condition for minimization of the problem in equation (45).

A.4.2 Closed-form solution

Replacing equation (19) into equation (46) yields:

∂F (χk,x)

∂χk
∆χ(x) +

C(χk)

k
sgn(∆χ(x)) =

=


−(1− β)

∂F (χk,x)

∂χk
− C(χk)

k
> 0 for x ∈ Ω+(χk)

(1− β)
∂F (χk,x)

∂χk
+
C(χk)

k
> 0 for x ∈ Ω−(χk)

(50)

Comparing equation (50) with equations (5) and (6), and since (1−β) > 0 (see equation (1)-(a)),
we can identify the closed-form solution of the penalized problem through

ψk(x) := −(1− β)
∂F (χk,x)

∂χk
− C(χk)

k

χ∗k(x) := Hβ [ψk(x)]

(51)

where equation (2), has been considered. Finally, taking to the limit equation (51), as indicated
in equation (45)-(b), yields

χ∗(x) = lim
k→0

χ∗k(x) (52)

The drawback of the penalty method, considered so far, is that, for getting accurate and robust
solutions in equations (52) the penalty parameter, k, has to be taken very close to the limit
(k → 0). This issue can be circumvented by rephrasing equations (45) and (46) through definition
of a new variable λ (see [9]),


λ := lim

k→0

C(χk)
k

(
=

0

0

)
(a)

lim
k→0
C(χk) = 0 (b)

(53)

where the new unknown, λ : Ω→ R, arising from the (undetermined) equation (53)-(a) is solved
by imposing, in strong form, the original restriction, C(χ) = 0 in equation (53)-(b). Taking

the limit k → 0 in equations (45) to (52), and replacing lim
k→0

C(χk)
k

by λ, yields the following

closed-form solution.
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Box I: Volume constrained topological optimization problem. Closed form
solution.

Problem:χ
∗ = argmin

χ
J (χ) = argmin

χ

∫
Ω
F (χ,x) dΩ

s.t. C(χ) ≡ |Ω+(χ)| − V̄ = 0

(a)

Lagrangian: L(χ, λ) = J (χ) + λC(χ) (b)

Optimality criterion:
δL(χ, λ)

δχ
(x) =

∂F (χ,x)

∂χ
∆χ(x) + λ sgn(∆χ(x)) > 0 ∀x ∈ Ω

C(χ) = 0

(c)

Closed-form solution:

ψχ(x, λ) := −(1− β)
∂F (χ,x)

∂χ
− λ > 0 for x ∈ Ω+

⇒


ψχ(x, λ) := −(1− β)

∂F (χ,x)

∂χ
− λ{

χ(x, λ) = Hβ [ψχ(x, λ)]→ χλ(x) (d-1)

C(χλ, λ) = 0 (d-2)

}
→ λ∗ → χ∗(x) =: χλ∗(x)

(d)

Topology:
Ω+(χ) := {x ∈ Ω ; ψχ(x, λ) > 0}
Ω−(χ) := {x ∈ Ω ; x /∈ Ω+}
Γ(χ) := {x ∈ Ω ; ψχ(x, λ) = 0}

(54)

Equation (54)-(d-1) provides, at any point x ∈ Ω and for a given value of λ, a closed-
form (fixed-point type) scalar equation10, whose solution is χλ(x). When this is set for all
points x ∈ Ω, the spatial description of a topology can be parametrized in terms of the current
value of λ, i.e.: χλ ≡ χ(x, λ). Substitution into the constraint equation (54)-(d-2) yields a
scalar equation supplying the solutions λ∗, and χ∗(x) = χλ∗(x), and the solution of the original
problem in equations (44)-(a) and (54)-(a), is retrieved.

A.5 Regularization

It is well known that the topological optimization problem may be ill-posed [43, 8]. For instance,
in case of the restriction in equation (45)-(b), in terms of the material hard-phase (M+) volume,
|Ω+(χ)|, i.e.

C(χ) ≡ |Ω+(χ)| − V̄ = 0 (55)

the infimum of the problem corresponds to a topology made of infinite number of inclusions of
the soft-phase (M−), of infinitesimal size each, embedded into a matrix of hard-phase (M+).
Since, for solving the problem numerically, one uses meshes with cells (voxels or finite elements)
of typical size, h, this determines the minimum inclusion size that can be captured by the
mesh. Therefore, a local minimum is achieved with the inclusion’s size in terms of h. However,
when finer meshes are used (h→ 0) finer topologies (with smaller inclusion’s size) are obtained,
providing different and unbounded lower minima of the cost function J (χ). No convergence is
achieved in this process in terms of h (lack of mesh size objectivity).

10Of the type y = G(y), in the argument y ≡ χ.
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Although this issue does not appear for some other type of restrictions (like perimeter re-
strictions [4, 19]), this fact sets serious limits to the type of applications in the topological
derivative optimization based methods, unless some remedy to the ill-posed-problem/mesh-size-
unobjectivity issue is introduced. In the literature some of them can be found, typically based
on introducing some modifications on the original cost function J that regularize the problem
(like the Tikhonov regularization, [53]), by using Fourier series-based regularizations [51], or by
a combination of topological and shape derivatives [11, 3].

A.5.1 Regularization. Laplacian smoothing

Here we resort to a very simple and efficient regularization procedure, based on a Laplacian
smoothing of the discrimination function ψ(x, λ), derived in equation (54)-(d). This function,
which in principle might be discontinuous due to the characteristic function χ ∈ {β, 1}, is here
regularized through the solution of a Laplace-type smoothing equation, that returns a smooth
field ψτ (x, λ) to be inserted in equation (54)-(d):

ψ(x, λ)← ψτ (x, λ) (56)

the smooth field ψτ (x) being the solution of

{
ψτ (x, λ)− ϵ2∆xψτ (x, λ) = ψ(x, λ) ∀x ∈ Ω

∇xψτ (x, λ) · n = 0 ∀x ∈ ∂Ω
(57)

where, ∆x(x, ·) and ∇x(x, ·) stand for the Laplacian and gradient operators, respectively, n is
the outwards normal to the boundary, ∂Ω, of the design domain. Therefore, the closed-form
solution of the problem in equation (45) reads:

χ(x)→ solution of

{
χ(x, λ) = Hβ [ψτ (x)]

C(χ(x, λ)) = 0
∀x ∈ Ω (58)

where ψτ (x) is the solution of equation (57), which can be solved in the context of any spatial
numerical discretization method. In a finite element context, it yields:


ψτ (x) = N(x){ψ̂τ} ; ψ̂τ = G̃−1f ; G̃ = M̃ + ϵ2K̃ (a)

M̃ =

∫
Ω
NT(x)N(x) ; K̃ =

∫
Ω
∇N(x)T∇N(x) dΩ ; f(ψ) =

∫
Ω
NT(x)ψ(x) dΩ (b)

(59)

where N(x) stands for the standard interpolation matrix and ψ̂τ is the vector of nodal values
of the field ψτ (x). Notice that matrix G̃τ , in equation (59)-(a), needs to be built, and inverted,
only once for ever, and that it can be used as many times as the Laplacian smoothing is required
in the optimization problem. This translates into a low computational cost of the procedure.
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Figure A.5: Noisy modes removal and minimum phase-filament-thickness, via Laplacian smooth-
ing of the discrimination function ψ(x). (a) Before smoothing and (b) After smoothing.

The regularization parameter, ϵ ≥ 0, in equations (56) to (59), is indirectly defined through
the mesh/voxel size, h, and the non-dimensional parameter, τ , i.e.

ϵ = τh ; τ ∈ R+ (60)

where, for every mesh, τ , describes the number of elements that typically cover the filtering
measure ϵ. The Laplacian smoothing procedure in equations (57) and (59) is frequently used
in digital image processing [49, 37] to remove the short wavelength spectral components (noisy
components) of the original field ψ(x), in such a way that the smoothed field, ψτ (x), does not
exhibit oscillation wavelengths shorter than ϵ. Therefore, the value of ϵ, approximately defines a
lower bound for the minimum hard-phase filaments width (separating soft-phase inclusions) that
appear in the optimized topology emerging from equations (57) (see figure A.5). Consequently,
in equation (60), τ defines, for a given uniform-size mesh, the number of elements covering
the width of the thinnest hard-phase filaments [24].This strategy breaks down the mesh-size
dependency of the obtained topologies and the aforementioned ill-condition paradigm. Now, the
resulting soft-phase (inclusions/voids) cannot be closer to each other than the distance defined
by ϵ, disregard the size and number of the finite elements covering this width. In some way this is
equivalent to establishing a perimeter constraint11 in the optimization problem to remove those
shortcomings [25]. From another point of view, the need for a regularization can be related to
manufacturing constraints, related to manufacturing issues [31], ϵ defining the minimum hard-
phase M+ filament width that the manufacturing technology can produce.

11Actually, perimeter constraint in topology optimization is a deep question whose discussion can be found in [6].
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A.6 Pseudo-time sequential approach for volume constrained
optimization problem

Introduction of a pseudo-time, t, as an additional increasing scalar parameter in the problem,
allows connecting the strategy of resolution of the topological optimization problem, with some
well known algorithmic time-advancing techniques in computational mechanics. For instance,
control methods in non-linear solid mechanics problems (i.e. displacement control, arc-length
methods, in which one additional algebraic equation (equivalent to the restriction in equation
(44)-(b)) is used to limit/control the evolution of the problem unknowns12, in order to increase
the robustness of the resolution process [15].

In this context, the pseudo-time parameter t ∈ [0, T ] is introduced in the constraint, which
is now rewritten as:

C(χ, t) ≡ |Ω
+(χ)|
|Ω|

− V̄

|Ω|
=
|Ω| − |Ω−(χ)|

|Ω|
− V̄

|Ω|︸︷︷︸
1− t

= t− |Ω
−(χ)|
|Ω|

; t ∈ [0, 1]
(61)

so that all variables become parametrized in terms of t, and the original problem in equation
(44) now reads:

Find: ψ : Ω× [0, T ]→ R ; ψ(·, t) ∈ H(1)(Ω) and

χ : Ω× [0, 1]→ {β, 1} ; χ(x, t) = Hβ(ψ (x, t)) (a)

Fulfilling:

χ∗t = argmin
χ

Jt (χ) ≡
∫
Ω
F (χ,x, t) dΩ (b)

Subject to :

C(χ, t) ≡ t− |Ω
−(χ)|
|Ω|

= 0 (c)

(62)

A.7 Algorithmic resolution

The time-discretized version of the closed-form problem and solution in equations (62) can be
now written as:

Given:


T := {t0 = 0, t1, t2, ....., T ≤ 1} (time discretization)

χ(x, tn) ≡ χn(x) (topology at time tn)

and [tn, tn+1] (time interval)
Find: χn+1 : Ω→ {β, 1}, and λ(tn+1) ≡ λn+1 ∈ R
Fulfilling:

ψτ (x, λn+1) := solution of


ψτ (x, λn+1)− ϵ2∆ψτ (x, λn+1) = ψ(x, λn+1) ∀x ∈ Ω

∇ψτ (x, λn+1) · n = 0 ∀x ∈ ∂Ω

ψ(x, λn+1) := −
(

(1− β)
∂F (χn+1,x)

∂χ
+ λn+1

) (a)

χn+1(x) = Hβ [ψτ (χn+1,x, λn+1)] (b)

C(χn+1, tn+1) ≡ tn+1 −
|Ω−(χn+1)|
|Ω|

= 0 (c)

(63)

Equations (63) define a discrete time-advancing problem providing the solution (χn+1(x), λn+1),
at pseudo-time tn+1, in terms of results at previous times (see figure A.6). Equations (63)-(a) are

12The time interval [0, T ] is subdivided into a number of time-steps, each one defining an independent optimization
problem, with a sufficiently small length, ∆t, so as to ensure that the solution of the problem, at the beginning
of the time step, is close enough to the solution at its end; this helping the convergence of the solving iterative
process.
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associated to determination of the topology, χn+1, whereas solution of equation (63)-(c) provides
the value of the Lagrange multiplier λn+1. Therefore, they can be numerically solved by means
of an iterative algorithm at every time step. At time step [tn, tn+1] the iterative problem to be
solved is defined by the coupled system of equations involving as unknowns the topological field,
χn+1(x), and the (spatially constant) Lagrange multiplier, λn+1.

2

1
0 0.7

1.5

0.1 0.2 0.3 0.4 0.5 0.6

𝒥
𝜒

2.5
𝒥𝜒 vs. pseudo-time

t

Figure A.6: Pseudo-time evolutionary analysis. Typical evolution of the cost function and
topology vs. time.

A.7.1 Iterative solving strategy

The problem to be solved, at the representative iteration (i + 1) of the considered time step
[tn, tn+1], can be then sketched as:



Given χ
(i)
n+1 : Ω→ {β, 1}

Solve

χ
(i+1)
n+1 = F

(
χ
(i)
n+1, λn+1

)
∀x ∈ Ω (topology problem) (a)

λn+1 = G
(
χ
(i+1)
n+1 , λn+1

)
(restriction problem) (b)

Until
∣∣∣∣∣∣χ(i+1)

n+1 − χ
(i)
n+1

∣∣∣∣∣∣
L2(Ω)

=

[∫
Ω

(
χ
(i+1)
n+1 (x)− χ(i)

n+1(x)
)2

dΩ

] 1
2

≤ Tolerχ

(64)

Notice that the topology problem, in equation (64)-(a), sketching equations (63)-(a) involves

as unknown the space field, χ
(i+1)
n+1 (x), which is iteratively updated, in terms of its value at the

previous iteration, χ
(i)
n+1(x), until convergence is achieved according to the tolerance Tolerχ. On

the contrary, the restriction problem in equation (64)-(b), corresponding to equation (63)-(c),
which involves the scalar unknown λn+1, is exactly enforced at every iteration (i + 1) of the
time step. This goal is achieved via a specific method for resolution of scalar equations e.g.: a
bisection algorithm. Details on the procedure are given in next sections.
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Topology problem: cutting algorithm

The problem reads as follows

Given χ(i)(x) (topology at the end of iteration ”i”)

Solve
χ(i+1)(x)



ξτ (χ(i),x) := solution of


ξτ (χ(i),x)− ϵ2∆ξτ (χ(i),x) = ξ(χ(i),x) ∀x ∈ Ω

∇ξτ (χ(i),x) · n = 0 ∀x ∈ ∂Ω

ξ(χ(i),x) := −(1− β)
∂F
(
χ(i),x

)
∂χ(i)

(a)

ψτ (χ(i),x, λ) = ξτ (χ(i),x)− λ (b)

χ(i+1)(x) = Hβ
[
ψτ (χ(i),x, λ)

]
(c)

Until ||χ(i+1) − χ(i)|| ≤ Tolerχ

(65)

where the Laplacian smoothing of variable ξτ (χ(i),x), in equation (65)-(a), (from now on
termed the spatial energy distribution), provides equivalent results13 to the smoothing of variable
ψτ (x, λn+1) in equation (63)-(a).

Remark 7 In view of equation (65)-(c), iteration i+ 1 can be regarded as performing a spatial
cut, at level λ, of the spatial energy distribution, ξτ (χi(x),x), to obtain the corresponding λ-
contour (line/surface), Γ(i+1), defining the topological boundaries (see figure A.7) i.e.[

Γ(χ(i), λ)
](i+1)

:=
{
x ∈ Ω ; ξτ

(
χ(i)(x),x

)
= λ

}
(66)

Therefore, equation (66) proves that, for the optimal topology solution corresponding to any
of the sequential problems in equations (63), the material phase boundaries are, iso-energetic,
λ-contours of the smoothed spatial energy distribution ξτ (x)14.

From the result in equation (66), the hard-phase (matrix) domain, |Ω+|(λ), and the soft-phase
(inclusions) domain, |Ω−|(λ), are finally obtained as (accordingly with equation (6))(

Ω+(χ(i), λ)
)(i+1)

:=
{
x ∈ Ω ; ξτ

(
χ(i)(x),x

)
> λ

}
(

Ω−(χ(i), λ)
)(i+1)

:=
{
x ∈ Ω ; x /∈

(
Ω+
)(i+1)

} (67)

and, finally, from equations (65), the updated characteristic function

χ(i+1)(x) = Hβ
[
ξτ

(
χ(i)(x),x

)
− λ

]
(68)

can be calculated (see figure A.2). Calculations in equations (65) to (68) are repeated until
convergence is achieved (||χ(i+1) − χ(i)||L2(Ω) ≤ Tolerχ).

A.7.2 Lagrange multiplier resolution: bisection algorithm

The algorithm consists in determining, for the (i-th) iteration characteristic function, χ(i)(x)
and the corresponding spatial energy distribution, ξτ (χ(i),x), the cutting level, λ, in equation
(66), that fulfills the volume constraint (62)-(c), i.e.

ϕ (λ) ≡ C(χ(i+1), λ, t) ≡ t− |Ω
−(χ(i+1), λ)|
|Ω|

= 0 (69)

The bisection algorithm is based on the following stages:

13Since the spatially constant variable λ is not affected by the smoothing procedure.
14This concept is also retrieved in the context of regularized methods (SIMP) for the regularized domain Ωreg, see
[8].
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Figure A.7: Isoenergy (λ iso-level) contours of the spatial energy distribution ξ: (a) contour-lines
of ξ; (b)-(c)-(d) ξ iso-levels for different values of λ.

1) Explore the appropriate range of λ ∈ R and find in a sequence {0, λ(1), . . . , λ(j), λ(j+1)} a

bracket {λ(j+1)
+ , λ

(j)
− }, for the sign change of function ϕ(λj), in equation (69):

ϕ
(
λ
(j+1)
+

)
≡ t− |Ω

−(χ, λ(j+1))|
|Ω|

; ϕ
(
λ
(j)
−

)
≡ t− |Ω

−(χ, λ(j))|
|Ω|

ϕ
(
λ
(j+1)
+

)
> 0 ; ϕ

(
λ
(j)
−

)
< 0

(70)

2) When the bracket is found, decrease the bracket’s size by iteration and interpolation (regula
falsi method) [39] until∥∥∥λ(j+1)

+ − λ(j)−
∥∥∥ ≤ Tolerλ ⇒ λ← λ

(j+1)
+ (71)

or, equivalently,∣∣∣ϕ(λ(j+1)
+

)∣∣∣ ≤ TolerC (72)

Once the value of λ is determined, the topology domains (Ω+)
(i+1)

and (Ω−)
(i+1)

are computed,
according to equations (67) and the new characteristic function, χ(i+1), is obtained according to
equation (68).

Remark 8 A specific feature of the proposed algorithm is that, unlike in alternative options
(i.e. augmented Lagrangian methods), the restriction C(χ), in equation (63)-(c) is not fulfilled
only at the end (convergence) of the iterative process. Instead, that constraint is exactly fulfilled
(up to a small tolerance, TolerC) at every iteration ”i” of the algorithm. This provides, in
comparison with some alternative procedures15, additional control on the evolution of topologies
along iterations, which translates into global algorithmic robustness.

15Like augmented Lagrangian methods, where λ is iteratively updated until convergence to the exact final value.
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Algorithm initialization

As commented above, a relevant issue for convergence of the topology problem algorithm in
equation (65), is the fact that the value of the unknown field at the beginning of the current

time interval, χ
(0)
n+1(x), has to be close enough to the final one (converged) at the end of the

time step (χ
(converged)
n+1 (x)).

In the pseudo-time sequential approach chosen here (see sections A.6 and A.7), this could
be conceptually achieved by choosing a sufficiently small time-step length, ∆t = tn+1 − tn,
which places the iterative values into the suitable range of convergence. However, the ∆t-
proportional distance, between consecutive solutions, requires that the algorithm initiates (i.e. at
time t = 0 ≡ t0), at a solution of the problem: i.e. fulfilling the equations of the algorithm16.

t0 = 0→


λt0 = 0 (a)

C(χt0) =
|Ω+(χt0)|
|Ω|

= 1⇒ |Ω+(χt0)| = |Ω| ⇒ χt0(x) = 1 ∀x ∈ Ω (b)

ξt0(x)− λt0 > 0 ∀x ∈ Ω⇒ min
x∈Ω

ξt0(x) ≥ λt0 = 0 (c)

(73)

where equations (73)-(a) and (73)-(b) state the initial conditions in terms of λ = 0, and a full
hard-phase M+ distribution for the initial design (Ω+(χt0) = Ω ; Ω−(χt0) = {∅}). However,
under these initial conditions, equation (73)-(c) is not automatically fulfilled in some problems:
typically those in which the initial energy, ξt0 , is not intrinsically positive definite (i.e. ∃x ∈
Ω; ξ(x) < 0). In these cases, convergence in the first time interval is not achievable (or robustly
achievable) disregard the considered time-step size17 ∆t. A remedy for this problem, is to
perform a constant shift18, of value ∆shift, of both unknown fields: ξ(χ(x)) (only at the Ω+

domain) and λ i.e.

∆shift = min
x∈Ω

ξt0(x)→


ξ̂
(i)
tn (x) = ξ

(i)
tn (x)−∆shift ∀x ∈ (Ω+)(i) (a)

ξ̂
(i)
tn (x) = ξtn(x) ∀x ∈ (Ω−)(i) (b)

λ̂
(i)
tn = λ

(i)
tn −∆shift (c)

∀i ∀tn (74)

In addition, a normalization of the resulting energy field, ξ(x(i)), is done, in terms of a positive
factor, ∆norm > 0 (again constant for all iterations and time steps), in order to keep its value
inside convenient ranges, i.e.

∆norm = |max
x∈Ω

ξt0(x)−min
x∈Ω

ξt0(x)| →



ξ̂
(i)
tn (x) =

ξ
(i)
tn (x)−∆shift

∆norm
∀x ∈ (Ω+)(i) (a)

ξ̂
(i)
tn (x) =

ξtn(x)

∆norm
∀x ∈ (Ω−)(i) (b)

λ̂
(i)
tn =

λ
(i)
tn −∆shift

∆norm
(c)

∀i ∀tn (75)

Therefore, the topology is updated, according to the cutting algorithm in section A.7.1, in

terms of the values of the corrected fields, ξ̂
(i)
τ,tn (x) − λ̂(i)tn , at the domain, Ω+, instead of the

original ones, ξ
(i)
τ,tn (x)− λ(i)tn , (see equations (65) to (67)):

(
Ω+
tn

)(i+1)
:=
{
x ∈ Ω ; ψtn := ξ̂

(i)
τ,tn (x)− λ̂(i)tn > 0

}
(a)(

Ω−tn
)(i+1)

:=
{
x ∈ Ω ; x /∈

[
Ω+
tn

](i+1)
}

(b)
(76)

16Here it is assumed that the algorithm is initiated at a full hard-phase M+ design (Ω+
t0

= Ω).
17Even for ∆t = 0.
18Constant for all time-steps and iterations of the optimization algorithm.
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where ξ̂
(i)
τ,tn (x) is the result of applying the Laplacian smoothing, in equations (65)-(a), to the

normalized energy ξ̂
(i)
tn (x) in equations (75).

Remark 9 Notice that the shifted and normalized fields, ξ̂
(i)
tn (x) and λ̂

(i)
tn , in equation (75) fulfill

the following properties:

a) By construction, at the initial time t0, min
x∈Ω

ξ̂t0(x) = 0. Therefore, if Ω+
t0
≡ Ω, equations

(73) are fulfilled for ξt0 ≡ ξ̂t0 and λt0 ≡ λ̂t0 = 0.

b) Since the shift, ∆shift, is applied to both fields, ξ
(i)
tn (x) and λ

(i)
tn , their difference, ψ

(i)
tn ≡

ξ
(i)
tn (x)−λ(i)tn , and the corresponding topology, χ

(i)
tn = Hβ(ψ

(i)
tn ), is not affected by that shift.

Also the normalization in equation (75) does not affect neither the sign of ψ
(i)
tn nor the

topology.

c) The Laplacian smoothing, ξ̂
(i)
tn ← ξ̂

(i)
τ,tn, is neither affected by the initialization operations19.

d) In consequence, if the discrimination function ψ
(i)
tn , in equation (76)-(a), is applied in

terms of the shifted and normalized entities, ξ̂
(i)
τ,tn (x) and λ̂

(i)
tn at Ω+ (see equation (76)),

the topology, at convergence, is not affected. However, the robustness of the iterative
process is remarkably increased.

A.7.3 Finite element implementation. Numerical aspects.

In the examples presented in section A.10, the design space, Ω, has been discretized in uniform
structured meshes (labeled Mi, i = 1, 2..) made of regular hexahedra, i.e. elements, e, occupying
the domain Ω(e) ⊂ Ω, with typical size h(e). These finite element meshes have been used both for
solving the state bi-material elastic problem, in equation (9), and for obtaining the geometrical
data (typically the volume of the soft-phase Ω−) necessary for the cutting and bisection algorithm
in sections A.7.1 and A.7.2. In general, the integration (Gauss) points of regular elements have
been used as sampling points, xi, to evaluate the necessary data i.e. characteristic function χ(xi),
discrimination function ψ(χ,xi), etc.

Topology properties determination. Modified marching cubes strategy

Determination of the volumes, Ω+ or Ω−, in the cutting algorithm (equation (67), see also figure
A.7) has been performed via the classic strategy of marching cubes [28]. In appendix A.A,
additional details on the method are provided.

Bi-material elements. Three field mixed displacement-strain-stress formulation

A specific issue arises in the treatment of the finite element formulation of bi-material elements,
i.e. those elements containing both the hard-phase, M+, and soft-phase, M−. They are iden-
tified during the marching cubes strategy and the subset of bi-material elements Ω(+,−) ⊂ Ω
is determined, as well as the portions Ω(e,+) ⊂ Ω(e) and Ω(e,−) ⊂ Ω(e) (Ω(e,+) ∪ Ω(e,−) = Ω(e))
containing hard and soft material phases in every element (e).

Ω(e,+) := {x ∈ Ω(e) ; x ∈ Ω+}
Ω(e,−) := {x ∈ Ω(e) ; x ∈ Ω−}

Ω(+,−) :=
{
∪e=neleme=1

(
Ω(e,+) ∪ Ω(e,−)

)} (77)

Details on the derivation of this formulation are given in Appendix A.B.

19Except for the error associated to the (assumed small) parameter ϵ in the smoothing procedure (see equations
(65)).
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A.8 Structural compliance problems

Let us now specify the equations for the minimal compliance topological optimization in a linear
elastic problem, e.g.:

χ(x, t) = argmin
χ

J (uχ(x, t)) = argmin
χ

l(uχ(x, t)) (a)

subject to: C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1] (b)

(78)

The problem above, belongs to the class of problems considered in equation (62) with

J (uχ) = l(uχ) =

∫
Ω
b · uχ dΩ +

∫
∂σΩ

t∗ · uχ dΓ = aχ(uχ,uχ) =

=

∫
Ω
ε(uχ) : Cχ : ε(uχ) dΩ =

∫
Ω

2Uχ dΩ

(79)

where equations (13)-(d)-(e) have been considered for w ≡ u, and Uχ can be identified as the
actual elastic energy density (Uχ = 1

2ε : Cχ : ε). Comparing equations (79) and (44) we can
identify

F (χ,x) ≡ ε (uχ(x)) : Cχ : ε (uχ(x)) = 2Uχ(x) (80)

The corresponding finite element discretization counterpart of the problem in equation (78)
reads

χ(x, t) = argmin
χ

J (h)(dχ(t)) = argmin
χ

fTdχ(t) (a)

subject to: C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1] (b)

(81)

where h stands for the typical size of the finite element mesh, and the term fTdχ(t), in equation
(81)-(a) corresponds to the structural compliance value.

A.8.1 Cost function topological sensitivity

The adjoint equation method [12] for sensitivity analysis is mimicked here for the case of RTD.
The goal is to compute the variational topological derivative (RTD) of the cost-function20,
J (h)(dχ), in equation (81)-(a), without explicitly computing the sensitivity of the nodal displace-
ment field (∂dχ/∂χ). The sensitivity of J (h)(χ) can be, then, obtained through the following
steps:

1. Rephrase the cost function accounting for the state equation (15)-(a)

J (h)(χ) = fTdχ = fTdχ −wT (Kχdχ − f)︸ ︷︷ ︸
= 0

(82)

where w is a vector to be chosen.

2. Compute the RTD of the equation (82)

δJ (h)(χ)

δχ
(x̂) = (fT −wTKχ)

δdχ
δχ

(x̂)−wT δKχ

δχ
(x̂)dχ (83)

3. Choose w ≡ dχ and replace it into equation (83)

δJ (h)(χ)

δχ
(x̂) = (fT − dT

χKχ)︸ ︷︷ ︸
= 0

δdχ
δχ

(x̂)− dT
χ

δKχ

δχ
(x̂)dχ = −

[
dT
χ

δKχ

δχ
(x)dχ

]
x≡x̂

(84)

20Omitting time dependencies.
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where equations (15) and the symmetry of Kχ (Kχ = KT
χ ) have been considered, yielding the

final result

δJ (h)(χ)

δχ
(x̂) = −dT

χB
T(x̂)︸ ︷︷ ︸

εTχ (x̂)

∂Dχ
∂χ

(x̂)B(x̂)dχ︸ ︷︷ ︸
εχ(x̂)

∆χ(x̂) = −
[
εTχ (x)

∂Dχ
∂χ

εχ(x)

]
x≡x̂

∆χ(x̂) =

= −
[
mχm−1εTχ (x)Dεχ(x)

]
x≡x̂ ∆χ(x̂)

(85)

where the result, in matrix form, in equation (11) has been considered. The result in equation
(85) can be then written as

δ
(
fTdχ

)
δχ

=
δJ (h)(uχ)

δχ
(x̂) = −

[
mχm−1εT(dχ)D : ε(dχ)

]
x=x̂

∆χ(x̂) =

= −2m (χ(x̂))m−1 U(x̂)∆χ(x̂)

(a)

U(x̂) =
1

2

(
εT(dχ)Dε(dχ)

)
(x̂) (b)

(86)

where Uχ(x̂) is the nominal elastic energy density21. The result in equation (86) is close to the
one obtained for the sensitivity in the (regularized/smoothed) method SIMP [8], except for the
material exchange term ∆χ(x̂) (see equation (19)).

Now the original compliance functional J (h), in equation (81)-(a) can be extended to account
for the restriction in equation (81)-(b). Following the methodology in section A.4, and accounting
for the RTD results in Table (A.1) one arrives to

Box II: Topological optimization for mean compliance problems

Problem:χ
∗ = argmin

χ
J (h)(χ) := fTdχ

s.t. C(χ) ≡ |Ω+(χ)| − V̄ = 0
(a)

Lagrangian: L(χ, λ) = J (h)(χ) + λC(χ) (b)

Optimality criterion:
δL(χ, λ)

δχ
(x) = −2mχm−1(x)U(x)∆χ(x) + λ sgn(∆χ(x)) > 0 ∀x ∈ Ω

C(χ) = 0

(c)

Closed-form solution:
ψχ(x, λ) := 2m(1− β)χm−1(x)U(x)− λ ; U(x̂) =

1

2

(
εT(dχ)Dε(dχ)

)
(x̂) ≥ 0{

χ(x, λ) = Hβ [ψχ(x, λ)]→ χλ(x) (d-1)

C(χλ, λ) = 0 (d-2)

}
→ λ∗ → χ∗(x) =: χλ∗(x)

(d)

Topology:
Ω+(χ) := {x ∈ Ω ; ψχ(x, λ) > 0}
Ω−(χ) := {x ∈ Ω ; x /∈ Ω+}
Γ(χ) := {x ∈ Ω ; ψχ(x, λ) = 0}

(87)

21Notice the difference of the nominal elastic energy density U(x̂) =
1

2

(
εT(dχ)Dε(dχ)

)
(x̂) (in terms of D), in

equation (86)-(b), and the actual elastic energy density, U(x̂) = 1

2

(
εT(dχ)Dχε(dχ)

)
(x̂) (in terms of Dχ = χmD).
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A.9 Compliant mechanisms

We consider now the optimal design of the compliant mechanism sketched in figure A.8. The
goal is to design the topology of a gripper, so as to maximize the compressive displacement of a
spring placed at port (out), with stiffness Kout (standing for the stiffness of the gripped object),
under the action of a force acting on port (in), f , also applied by means of spring of stiffness
Kin (see figure A.8) [44, 29, 21]. Therefore the structural system is constituted by the gripper
and the two springs (at ports in and out). In the context of a finite element discretization, like
in section A.3.3, the problem is expressed asmin

χ
J (h)(dχ) = −dT

χ1vert (a)

subject to : C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1] (b)

(88)

where, in equation (88)-(a), 1vert stands for that nodal vector force corresponding to uniform
vertical components (in the spring stretching sense) acting on the gripper jaws22.

(b)

f

Ω

∂σΩ

∂uΩ

Kin Kout

(c)

Ω
∂uΩ

Kin Kout
∂σΩ

1vert

f

dχ

Ω

∂uΩ

∂σΩ

∂uΩ

(a)

x

y

x

y

x

y

Figure A.8: Compliant mechanism: (a) problem setting, (b) system (1) (half domain), (c) system
(2) (half domain).

The original elastic system (1) is supplemented with an auxiliary elastic system (2), subject
only to the forces 1vert (see figure A.8). Both of them are ruled by the elastic problem in

equations (15), with the same stiffness matrix Kχ and different actions, with solutions d
(1)
χ and

d
(2)
χ , respectively, i.e.:{

K d(1)
χ = f ; dχ = d(1)

χ (a)

K d(2)
χ = 1vert (b)

(89)

22Therefore, its components are zero everywhere excepting at the gripper jaws nodes.
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Standard algebraic manipulations allow replacing the cost function in equation (88)-(a) by

J (h)(uχ) ≡ −
∫
Ω
ε
(
d(1)
χ

)
: Cχ : ε

(
d(2)
χ

)
dΩ = −

∫
Ω

2Uχ(x) dΩ (90)

where, again, Uχ is defined as a pseudo elastic energy of the combined system.
Uχ(x) =

1

2
εT
(
d(1)
χ (x)

)
Dχε

(
d(2)
χ (x)

)
≡ 1

2

(
ε(1)χ (x)

)T
Dχε(2)χ (x)

ε
(
d(1)
χ (x)

)
≡ ε(1)χ (x) = B(x)d(1)

χ ; ε
(
d(2)
χ (x)

)
≡ ε(2)χ (x) = B(x)d(2)

χ

(91)

A.9.1 Topological sensitivity

The sensitivity of J (h)(χ) is then obtained through the following steps

1. Rephrase the cost function accounting for the state equation (89)-(a) (adjoint equation
method)

J (h)(χ) = −1Tvertdχ = −1Tvertd(1)
χ = −1Tvertd(1)

χ + wT
(
Kχd

(1)
χ − f

)
︸ ︷︷ ︸

= 0

(92)

where w is a vector to be chosen.

2. Compute the RTD of the equation (92)

δJ (h)(χ)

δχ
(x̂) =− (1Tvert −wTKχ)

δd
(1)
χ

δχ
(x̂) + wT δKχ

δχ
(x̂)d(1)

χ
(93)

3. Choose w ≡ d
(2)
χ and replace it into equation (93)

δJ (h)(χ)

δχ
(x̂) =−

(
1Tvert −

(
d(2)
χ

)T
Kχ

)
︸ ︷︷ ︸

= 0

δd
(1)
χ

δχ
(x̂) +

(
d(2)
χ

)T δKχ

δχ
(x̂)d(1)

χ =

=
(
d(1)
χ

)T δKχ

δχ
(x̂)d(2)

χ

(94)

where equation (89)-(b) and the symmetry of K (K = KT) have been considered, yielding the
final result

δ
(
−1Tvertdχ

)
δχ

(x̂) =
δJ (h)(χ)

δχ
(x̂) =

(
d(1)
χ

)T
BT(x̂)︸ ︷︷ ︸(

ε
(1)
χ

)T
(x̂)

δDχ
δχ

(x̂)B(x̂)d(2)
χ︸ ︷︷ ︸

ε
(2)
χ (x̂)

=

[(
ε(1)χ

)T δDχ
δχ

ε(2)χ

]
x≡x̂

=

=

[
mχm−1

(
ε(1)χ

)T
Dε(2)χ

]
x≡x̂

∆χ(x̂) = 2m (χ(x̂))m−1 U(x̂)∆χ(x̂)

(95)

where equations (15)-(b) (Dχ = χmD) has been considered. From equation (95) the nominal
pseudo elastic strain energy density of the combined system, U(x)23, is defined as

U(x̂) :=
1

2

(
ε(1)χ (x̂)

)T
D ε(2)χ (x̂) (96)

A.9.2 Closed-form solution

Following the methodology in section A.4, and accounting for the RTD results in table A.1, one
arrives to

23Notice that, unlike in equation (86)-(b), for the mean structural compliance problem, now U(x̂) may be positive
or negative. This makes a substantial difference in the sign of the RTD in equation (95).
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Box III: Topological optimization of compliant mechanisms

Problem:min
χ
J (h)(χ) = −dT

χ1vert (a-1)

s.t. C(χ) ≡ |Ω+(χ)| − V̄ = 0 (a-2)
(a)

Lagrangian: L(χ, λ) = J (h)(χ) + λC(χ) (b)

Optimality criterion:
δL(χ, λ)

δχ
(x) = 2mχm−1(x)U(x)∆χ(x) + λ sign(∆χ(x)) ∀x ∈ Ω

C(χ) = 0

(c)

Closed-form solution:
ψχ(x, λ) := −(1− β)2mχm−1(x)U(x)− λ ; U(x) :=

1

2

(
ε(1)χ (x)

)T
D ε(2)χ (x){

χ(x, λ) = Hβ [ψχ(x, λ)]→ χλ(x) (d-1)

C(χλ, λ) = 0 (d-2)

}
→ λ∗ → χ∗(x) =: χλ∗(x)

(d)

Topology:
Ω+(χ) := {x ∈ Ω ; ψχ(x, λ) > 0}
Ω−(χ) := {x ∈ Ω ; x /∈ Ω+}
Γ(χ) := {x ∈ Ω ; ψχ(x, λ) = 0}

(97)

A.10 Representative numerical simulations

In the following a set of 3D numerical simulations are presented, in order to display the per-
formance of the proposed approach. Unless it is differently indicated, the following material
properties for the isotropic elastic material are considered:

Young modulus E = 210GPa ; Poisson ratio ν = 0.3 ; Stiffness contrast factor α = 1.0 · 10−6

Stiffness contrast exponent m = 5 (see eq. (11))⇒ Relaxation factor β = α
1
m = 6.3 · 10−2

(98)

The following additional algorithmic data used for running the proposed algorithm is

Tolerance error for topology Tolχ = 10−1

Tolerance error for Lagrange multiplier Tolλ = 10−1

Tolerance error for bisection TolC = 10−5
(99)

A.10.1 Mean compliance optimization. Cantilever beam.

The 3D design domain, in figure A.9, is used. A first mesh, M1, (made of 432000 bi-linear
hexahedral finite elements), displayed in figure A.9-(b), is used to mesh one-half of the design
domain Ω (see figure A.9-(a)). The mean compliance design of the structure is done for the
distributed loading forces at the right, lower, boundary of the design domain (see figure A.9-
(d)).
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Figure A.9: Minimum compliance cantilever beam: (a) Meshed domain, (b) Detailed mesh M1,
(c) Detailed mesh M2, (d) Symmetrized design domain Ω.
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Figure A.10: Cantilever beam. Mean structural compliance optimization for Mesh M1: 432.000
elements and τ = 1 (ϵ = τ · h = 1.67 · 10−2) (a) Cost function and topology evolution, (b)

Topology for t = |Ω−|
|Ω| = 0.92, |Ω

+|
|Ω| = 0.08, (c–d) In-step convergence of the cost function for

steps 1 to 10. Vertical stripes correspond to steps, and crosses inside them correspond to step-
iterations.

In figure A.10-(a), the pseudo-time, (t = |Ω−|
|Ω| ), evolution of the analysis is shown, both

in terms of the cost-function and the topology. In figure A.10-(b), the final design, when the
hard-phase (solid material) equals 8% of the initial one (100%), is depicted. Figures A.10-(c)
and A.10-(d) illustrate the convergence rate of the cost function, Jχ, for the first ten steps. As
it can be observed, the objective function tends to a local optimal value in a few iterations for
each step.
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(a) Mesh M1: 432.000 elements ( τ = 1; ϵ = 1.67·10-2) (b) Mesh M1: Topology for t=0.92

(c) Mesh M2: 3.456.000 elements ( τ = 2; ϵ = 1.67·10-2) (d) Mesh M2: Topology for t=0.92

(e) Mesh M2: 3.456.000 elements ( τ = 1; ϵ = 8.33·10-3) (f) Mesh M2: Topology for t=0.92
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Figure A.11: Cantilever beam. Mesh-size objectivity results (ϵ = τ · h). (a) to (d): results for
meshes M1 and M2 and the same regularization parameter (ϵ = 1.67 · 10−2), (c) to (f): results
for the same mesh, M2, and different regularization values (ϵ = 1.67 · 10−2 and ϵ = 8.33 · 10−3).

Mesh size objectivity

The effects of the regularization parameter, ϵ, in the Laplacian smoothing equations (56) to (60),
are examined, now for two different meshes in the design domain Ω. Mesh M1 (120x60x30=216.000
elements, with size h(1)), and mesh M2 (obtained by doubling the number of elements in ev-
ery direction {x, y, z}, this leading to a total of 1.728.000 elements ⇒ h(2) = h(1)/2, see figure
A.9-(c)).

Mesh size objectivity is assessed in figures A.11-(a)-(b)-(c)-(d), when the value of the regu-
larization parameter ϵ = 1.67 ·10−2 is kept constant for the original, M1, and direction-doubled,
M2, meshes, giving rise to very similar cost-function and topological design evolution. If, instead,
no action is taken to keep this parameter constant in mesh M2 (ϵ(2) = 8.33 ·10−3 = 1/2ϵ(1), thus
keeping τ=constant in equation ϵ(i) = τ h(i)), the results, in figures A.11-(e)-(f), substantially
change with respect to the ones in the figure above, and they become strongly dependent on the
finite element mesh size h(i).
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2-1/2D extruded design

Following the steps in [53] (where a Tikhonov-like regularization was used) we show here that,
changing the tensor order of the Laplacian smoothing regularization parameter ϵ, from scalar to

orthotropic second order tensor or, equivalently, the parameter τ =
ϵ

h
in equations (56) to (60),

one can obtain 2-1/2D extruded designs in a selected direction.

For instance, let us replace the scalar value ϵ, in these equations, by an orthotropic second
order tensor, ϵ, defined through,

ϵ :=

ϵx 0 0
0 ϵy 0
0 0 ϵz

 =

1 0 0
0 1 0
0 0 η

 τh =

τx 0 0
0 τx 0
0 0 τz


︸ ︷︷ ︸

τ

h = τh ; η ≫ 1 (100)

where the second order tensor ϵ = τh (τz = ητ ≫ τx = τy) is an orthotropic tensor defining the
minimum filament width size (see section A.5.1) in the directions {x, y, z}. The value η ≫ 1 sets
the length of the minimum solid filament width in the z-direction (=filtered wavelength in the
z-direction) much larger than in the other two orthogonal directions, this resulting in z-extruded
designs (see figure A.12). This action was performed in the mean compliance optimization of
the cantilever beam, in section A.10.1, with the only modification of considering the orthotropic
character of the filtering tensor ϵ in equation (100). The corresponding results are shown in
figure A.12.

x

y

z x

y

z

(a) (b)

Figure A.12: Cantilever beam. Comparison of full 3D and 2 1/2D (extruded) optimal topologies
for t=0.85 and mesh M1. (a) full 3D optimal topology (τ = 1; ϵ = 1.67 · 10−2) ; (b) Extruded
optimal topology (τ = 1; ϵx = ϵy = 1.67 · 10−2; ϵz = 1.67 · 103).

A.10.2 Mean compliance optimization. 3D bridge design

The problem of minimum compliance design of a bridge is tackled here. The design domain, Ω,
is depicted in figure A.13. For symmetry reasons, only one fourth of the domain is discretized
in a structured mesh of 240x204x40, which leads to 1.084.800 hexahedra (see figure A.13-(a)).
A uniform load on the bridge deck, ∂σΩ, is prescribed, as well as, the position for the eventual
support at boundary, ∂uΩ.
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Figure A.13: Minimum compliance bridge design: (a) Meshed domain, (b) Detailed mesh, (c)
Symmetrized design domain Ω.

(a) Cost function and topology evolution

(b) Detailed view of the optimization process evolution

Figure A.14: Bridge. Mean structural compliance optimization. τ = 0.316 (ϵ = τ · h =
7.9 · 10−3).
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Then, the pseudo-time evolving optimization process, starting from a design at t = 0 made

of hard-phase material over all Ω, evolves along the increasing pseudo time t = |Ω−|
|Ω| . In figure

A.14, the cost function and the topology evolution are shown. Finally, in figure A.15 the final
topology, for |Ω+| = 0.06|Ω|, is displayed in detail. Amazingly, subtle structural design details,
for the structural family of arch bridges, well known by structural designers, are captured by
the numerically obtained optimized solution.

x
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z

Figure A.15: Bridge. Mean structural compliance optimization. Topology for t=0.94 (|Ω+| =
6%|Ω|).

A.10.3 Compliant mechanisms optimization.

The computational design of compliant mechanisms is another example of structural optimiza-
tion problem for which the approach considered in this work is evaluated. The RTD and closed
form solution derived in section A.9 (see equation (97) and figure A.8) is applied here to the
design of a compliant 3D gripper.
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Figure A.16: Compliant mechanism (gripper). (a) Design domain Ω, (b) detailed mesh, (c)
symmetrized design domain.

The problem is inspired in that in [53] using a Tikhonov-regularized level set method, and
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the mechanical properties considered here are24,

Young modulus E = 210GPa ; Poisson ratio ν = 0.31 ; Stiffness contrast factor α = 1.0 · 10−2

Stiffness contrast exponent m = 3 (see equation (11))

Kin = 3.19 · 1014
N

m3
; Eout = 10GPa ; νout = 0 ; fin = 3.2 · 1013

N

m2
; fout = 3.2 · 1010

N

m2

(101)

Due to symmetry considerations only one fourth of the design domain, Ω, is meshed with a
structured hexahedra with 160x80x40, which leads to 506.880 elements (see figure A.16).

In figure A.17, the state problem (system (1)) and the adjoint state problem (system (2))
are also presented.

∂uΩ

∂σΩ

∂uΩ
∂σΩ
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Figure A.17: Compliant mechanism (gripper): (a) system (1) (1/4th-domain), (b) system (2)
(1/4th-domain)).

In figure A.18-(a), results concerning the cost-function (opening displacement of the gripper
jaws is minimized, therefore the closing motion is maximized) are presented, as well as the
topology evolution. It is worth noting here that, unlike in the mean structural compliance case,
the cost function is not monotonously increasing, and a minimum of the minima compliant

design can be identified for t = |Ω−|
|Ω| ≈ 0.48. In addition, one can identify a sudden change of the

topology, around t = 0.3, translating into a change of trend of the cost function to, subsequently,
fall into a new local minimum.

Also notice that the chosen value for τ (τ = 0.5) corresponds to ϵ = 1
2h, i.e. one half of the

element size, in order to allow the formation of hinges (thin solid-phase filaments) typical of this
problem in some stages of the optimization process (see figure A.18-(b)-(c)-(d)).

A.10.4 Computational assessment. Variational closed-form solution vs. level-
set method

To assess the performance of the variational closed-form approach used in this work, in this
section we compare the results for the cantilever beam, obtained in section A.10.1 with the
so far described setting, with those using a level-set method driven by the relaxed topological
derivative (RTD) in equation (87)-(c). Details on the level-set numerical algorithm and its
properties are given in Appendix A.C.

In order to have a fair comparison, in both methods (variational closed-form solution and
level set method) the same sequence of time steps, ti, has been imposed along the pseudo-time
interval [0, T ] ≡ [0, 1], i.e. 22 exponentially spaced time steps from t = 0 to t = 0.92 as indicated
in equation (62). The pseudo-time, t, evolution is, then, defined according to the following

24At the output port, the existence of a gripped material mass has been considered. Therefore, it has been equipped
with elastic material properties, softer than the design solid material.
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(a) Cost function, 𝒥𝜒, vs. pseudo-time

(b) t=0.48 (c) t=0.70 (d) t=0.80 (e) t=0.90
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Figure A.18: 3D-Gripper optimization: (a) cost function evolution, (b) to (e) optimal topologies
at different pseudo-times. (τ = 0.5; ϵ = τ · h = 3.125 · 10−7). Notice, in figures (b) to (d)
the appearance of hinges, in terms of thin short-bars, to provide additional compliance to the
design.

exponential law

ti = t0 +
T − t0
1− eK

(
1− eK(i/n)

)
; i ∈ {0, 1, . . . , n} (102)

where n = 40 denotes the number of steps required to reach the time tn = T = 1, and the
constant K is set to obtain the desired exponential function (K = −4.5).

Then, both algorithms are run until convergence in terms of the topology (with the same
tolerance Tolχ = 10−1). Their relative computational cost, is evaluated in terms of the number
of iterations required to converge for each of the methods25.

In figure A.19-(a), the cost function evolution is displayed, showing a very similar quantitative
performance of both methods. As for the computational cost (number of required iterations)
the variational closed-form solution is about 5 times (in average) cheaper to obtain than in the
level-set method (see figure A.19-(b)). The fact that the volume restriction is enforced at every
iteration, in the variational closed from method, plays, in opinion of the authors, a relevant role
in this cost reduction. On the other hand, the number of requested iterations tends to be almost
constant, along time intervals, in the variational closed-form solution, whereas, in the level-set
method it exhibits a large increase in the required number of iterations for high values of the
pseudo-time (i.e. small volumes of the solid-phase |Ω+|).

Similar trends, to those specifically emphasized here, has been observed in other optimization
problems solved using both methods. In summary, lower computational cost, in front of level-set

25In fact, the solution of the state (equilibrium) problem dominates the computational cost in both methods.
Therefore, the computational cost is closely proportional to the number of required iterations to converge.

Daniel Yago 88 Article A. Formulation. Structural Opt.



Ph.D. Thesis A new comp. approach to top. opt. in solid mechanics problems

(a) Variational closed-form solution method vs. level-set method: cost-function evolution

(b) Variational closed-form method vs. level-set method: computational cost

Figure A.19: Cantilever beam. Variational closed-form solution vs. level set method for ε =
τ · h = 1.67 · 10−2.

methods, while providing similar quantitative results, seems to be an argument in favor of the
approach in the present work.

A.11 Concluding remarks

Along this work a variational approach to relaxed topological optimization has been explored,
and assessed through its application to a number of structural problems. The conclusions to be
highlighted by the authors, about this work, are the following:

• Though the relaxed character of the optimization setting is not specific of the present
approach, the formulation of a relaxed topological derivative (RTD), clarifies the issue of
using a topological sensitivity consistent with the relaxed setting in which the optimization
is performed. This is in contrast with the frequent use, in relaxed optimization settings, of
the exact topological derivative (TD), derived in an immersed setting at the cost of heavy,
and problem dependent, mathematical derivations. Although, from the mathematical
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point of view, it could be argued that the TD represents the exact sensitivity with respect to
singular domain perturbations whereas the RTD is just an approximation of it, the results
obtained using the later, for practical applications as the ones in this work, are manifestly
similar to those obtained with the TD. In consequence, the RTD can be considered a
powerful and, at the same time very simple tool, for topological optimization in engineering
applications.

• The difficulties inherent to the discrete (discontinuous) character of the design variable (the
characteristic function χ(x)), and the resulting non-smoothness of the cost function, have
traditionally suggested detouring the formulation from the original variational scenario; ei-
ther by resorting to regularization of the characteristic function (like in SIMP) or by totally
abandoning the variational formulation when facing the impossibility to obtain the station-
arity conditions based on differentiation of that cost function (like in level-set methods).
Surprisingly enough, the difficulties arising from that non-smooth character of the prob-
lem can be easily overcome. Indeed, the analysis of the sensitivity of the cost function, in
front of topology perturbations, via the aforementioned expressions of the RTD, yields an
inequality-type optimality criterion: the overall-increasing cost function sensitivity. Amaz-
ingly, the emerging inequality, in terms of the, here termed, discrimination function ψ(x),
leads straightforwardly to closed-form solutions of the topological optimization problem in
the form of simple algebraic non-linear equations. These equations, involving the charac-
teristic function, χ(x), can be solved, in turn, via simple non-linear algorithms. This is
a very specific result of the proposed approach, which suggests possible extensions of the
technique to further methods and applications. In the cases studied here, typically the
mean structural compliance and compliant mechanisms problems, the resulting optimality
solutions are interpreted as fixed-point equations, to be solved by combination of a cutting
algorithm, of energy-like surfaces, and the exact imposition of the volume restriction (via
bisection methods).

• Since the presented approach is not regularized in terms of the characteristic function, the
obtained topological designs are completely black and white designs, and there is no need
of subsequent filtering techniques to eliminate gray-scales.

• Besides, the characteristic function, χ(x), is never regularized, even for the treatment of
bi-material elements. Instead, three-field mixed formulations (σ−ε−u) [55] in hexahedral
finite elements, detailed in appendix A.B, are used for accurately capturing the discontin-
uous stress field in those bi-material elements. Albeit, the LBB stability condition is not
fulfilled in those elements, numerical instabilities do not appear, thus not leading to the
classical checkerboards, due to their isolate position, in a mesh of regular elements, which
avoids propagation of the possible instability modes. Also the marching cubes strategy,
with the specific variant of marching tetrahedra method (see appendix A.A) has provided
the expected robustness and accuracy in the determination of volumes and surfaces on the
finite element mesh.

• An evolving pseudo-time framework can be naturally inserted in the considered setting.
Albeit this is not an exclusive feature of the proposed approach, and it can be used, for
instance, in combination with the level set methods, it is worth mentioning some of the
benefits provided by this framework, i.e. the fact that a number of intermediate optimal
designs for a set of values of the volume restriction are obtained ”for free” and, in some
problems, like compliant mechanisms design, information of the minimum of the minima
designs in the explored range can be obtained.

• The approach considered here has proven to provide results, in the considered structural
examples, very similar to the ones obtained with other methods, the main difference being
that the computational cost is smaller (about five times in a benchmark test checked in
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the work) when compared with the level-set method, using the same code, the same RTD
and the same computational setting.

• The explored approach allows envisaging new computational strategies for topological op-
timization, which could overcome some of the classical drawbacks of relaxed optimization
settings, e.g. the necessity of using high dense meshes in the design domain involving mil-
lions of elements and the application to new topological design problems (e.g. multiscale
topological design [27, 20, 38, 14], immersed boundary methods combined with XFEM
techniques [42], convected methods [52], etc.). This is an issue to be explored in a subse-
quent research.
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A.A Modified marching cubes strategy

Different strategies can be found in the literature to extract the zero-level surface, Γ := {x ∈
Ω(e) ; ψ(x) = 0}, from a scalar field, ψ(x). Among them, the marching cubes (MC) approach,
see [28], has been the most popular technique used for volume visualization. However, the
classical MC-method implementation requires the analysis of 15 different cases in every cubic
cell, and the corresponding rotations and symmetries. In spite of this, it does not guarantee the
topology correctness of the isosurface of a trilinear function.

For this reason, a modified algorithm, which takes into account 33 topologically different
configurations to correctly treat topological ambiguities, both on the faces and inside the cell,
was subsequently developed in [13]. Nevertheless, this algorithm is heavy to code and difficult
to verify its faultlessness.

In this work, an alternative marching tetrahedra method (MT) has been implemented, which
overcomes the aforementioned obstacles while avoiding ambiguities. The proposed strategy is
based on an adaptive cube tessellation, see [48], which ensures topologically correct isosurfaces
in case of ambiguities. Furthermore, this tessellation preserves the symmetries in the domain.
The method is briefly sketched next.

The cubic cell is divided into six pyramids, a central extra-node, xC , is added to the cell
and the value ψC ≡ ψ(xC) is computed by interpolation from the regular nodes. In turn, each
pyramid is split into four tetrahedra, including an extra-node, xFi, on each face, and the value
ψFi ≡ ψ(xFi) is computed, by interpolation, from its value at the vertices, see figure A.A.20.
Therefore, seven extra values must be computed based on the trilinear approximation (green
and red dots in figure A.A.21-(b)).

Then, each tetrahedron is treated as usually in marching tetrahedra, where triangular sur-
faces and tetrahedral volumes are computed. This procedure readily allows the geometrical
computation of the perimeter and volume of the cell.
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Figure A.A.20: Marching cubes method: tessellation process.
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Figure A.A.21: Marching cubes method: nodal values interpolation.

A.B Mixed finite element formulation for bi-material finite ele-
ments

Let us consider the subset of bi-material elements Ω(+,−) ⊂ Ω as well as the portions Ω(e,+) ⊂ Ω(e)

and Ω(e,−) ⊂ Ω(e) (Ω(e,+) ∪ Ω(e,−) = Ω(e)) containing hard and soft material phases, in every
element e. This subset of elements is treated considering a specific discontinuous elemental
material approach based on a three field mixed stress-strain-displacement (σχ − εχ − dχ) finite

element formulation [55]. The elemental stresses, σ
(e)
χ (x), strains, ε

(e)
χ (x), and displacements,

u
(e)
χ (x), are independently interpolated inside the element e. For the case of hexahedral elements,

we will consider element-wise constant stresses and strains. Therefore, following the notation in
equation (15), they read


u(e)
χ (x) = [N(e)

u (x)]d(e)
χ ; [N(e)

u (x)] = [N
(e)
1 (x), ...,N

(e)
8 (x)] ; d(e)

χ = [d
(e)
1 , ...,d

(e)
8 ]T (a)

ε(e)χ (x) = ε(e) = constant ∀x ∈ Ω(e) (b)

σ(e)
χ (x) = σ(e) = constant ∀x ∈ Ω(e) (c)

(103)
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where N
(e)
u (x) is the elemental displacement bilinear interpolation matrix, and d

(e)
χ the corre-

sponding nodal vectors. The nodal displacement interpolation matrices N
(e)
i (x) i ∈ {1, ..., 8}

have a standard nodal support, and the nodal displacements d
(e)
i i ∈ {1, ..., 8} correspond to

the displacements at the element nodes. As for the strain and stress interpolation, due to their
element-wise discontinuous character, they can be associated to one fictitious internal element
node in the center of every element Ω(e), with coordinates xC , (see figure A.B.22), where the
(constant) elemental strain vector, ε(e), is defined. The elemental strain, ε(e), is, then, deter-
mined via the following additional variational equation (uncoupled for every element in Ω(+,−))



Given

V(e)ε :=
{
η(e)
ε ∈ R6

}
; V(e)σ :=

{
η(e)
σ ∈ R6

}
Find: ε(e) ∈ V(e)ε and σ(e) ∈ V(e)σ

Fulfilling:∫
Ω(e)

(
η(e)
ε

)T (
ε(e) − ϵ(e)χ (x)

)
dΩ =

(
η(e)
ε

)T ∫
Ω(e)

(
ε(e) − ϵ(e)χ (x)

)
dΩ = 0 ∀η(e)

ε ∈ V(e)ε∫
Ω(e)

(
η(e)
σ

)T (
σ(e) − D(e)(x)ε(e)

)
dΩ =

(
η(e)
σ

)T ∫
Ω(e)

(
σ(e) − D(e)(x)ε(e)

)
dΩ = 0 ∀η(e)

σ ∈ V(e)σ

ϵ(e)χ (x) = B(e)(x)d(e)
χ

(104)

where B(x)(e) and D(e)(x) stand, respectively, for the elemental deformation matrix and the
elastic constitutive matrix in equation (15). Equation (104) can be solved for ε(e) and σ(e)

yielding
ε(e) =

1

|Ω(e)|

∫
Ω(e)

ϵ(e)χ (x) dΩ =

∫
Ω(e)

B(e)(x)d(e)
χ dΩ =

∫
Ω(e)

B(e)(x) dΩ︸ ︷︷ ︸
B(e)(x)

d(e)
χ = B(e)(x) d(e)

χ (a)

B(e)(x) ≃ B(e)(xC) (b)

(105)

where (·) stands for the mean value of (·)(x) in Ω(e), and equation (105)-(b) stems from the
bi-linear character of the element. Now, considering the stress problem in equation (104), and
solving for σ(e) yields

σ(e) =
1

|Ω(e)|

∫
Ω(e)

D(x)ε(e) dΩ =
1

|Ω(e)|

∫
Ω(e)

D(x) dΩ︸ ︷︷ ︸
D(x)

ε(e) = D(x) ε(e) (a)

D(x) =
|Ω(e,+)|
|Ω(e)|

D+
χ +
|Ω(e,−)|
|Ω(e)|

D−χ =

(
|Ω(e,+)|
|Ω(e)|

+ α
|Ω(e,−)|
|Ω(e)|

)
D (b)

(106)

where the values of the elastic constitutive tensor in Ω+ (D+
χ ) and in Ω− (D−χ ) in equations (11)

and (15) have been considered.

A.C A level set algorithm for relaxed bi-material topological
optimization

A.C.1 Level set algorithm

Let us consider the topological optimization problem in equation (54)-(a) for the design domain
Ω, and the hard-material phase, Ω+

t and soft-material phase, Ω−t , corresponding to a pseudo-
time, t, in turn associated to an iteration procedure. The interface between the two phases is
denoted by Γt, and n denotes the unit normal to Γt pointing to Ω+ (see figure A.C.23).
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Figure A.B.22: Mixed finite element representation: (a) Hexahedra element with 8 integration
points (b) Mixed element with 1 pseudo-integration point.

Ωt
+

Ωt
-

n Ω

Γt={ϕt(x)=0}

ϕt(x)=const.

x

y

Figure A.C.23: Level-set problem definition. The zero level-set (ϕt(x) = 0) defines, at time t,
the position of the material phase interface, Γt, in the design domain, Ω, and, therefore, the
phase domains Ω+

t and Ω−t .

Let ϕt ∈ Vϕ be the level set function, considered as the actual unknown of the problem,
through which the characteristic function, χt(x), is defined (see equations (1) to (3)). Let us
also consider ϕt(x) defined through a time-evolving (Hamilton-Jacobi) equation [3] i.e.

Vϕ ∈ H1(Ω) := {ϕ : Ω× [0, T ]→ R}
ϕ̇t(x, λ) ≡ ϕ̇(x, λt) = −k 1

∆χt(x)

δL(χt, λt)

δχt
(x) ; k > 0 ; −1 ≤ ϕt ≤ 1 ; ∀x ∈ Ω (a)

Lt(ϕ, λ) ≡ L(χ(ϕt), λt) = J (χ(ϕt)) + λtC(χ(ϕt)) (b)

χt(x) = Hβ(ϕt(x)) (c)

(107)

where the relaxed topological derivative of the Lagrange functional Lt(ϕ, λ) in equation (107) is
given by (see equations (97)-(a)-(b)-(c))

δLt(χ, λ)

δχ
(x) = 2mχm−1t (x)U t(x)∆χt(x) + λt sign(∆χt(x)) ∀x ∈ Ω (a)

U t(x) :=
1

2

(
ε(1)χ (x, t)

)T
D ε(2)χ (x, t) (b)

(108)

The Lagrange multiplier, λt, is determined via the augmented Lagrange method (see reference
[46]) i.e

λt ← λt + ρ C(χ(ϕt)) (a)

C(χ(ϕt)) ≡ t−
|Ω−(χ(ϕt))|
|Ω|

(b)
(109)
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where ρ ∈ R+ is a suitable penalty value.
The discrete time-evolution form of equations (107)-(a) and (109)-(a) is obtained after time

integration, giving rise to the following iterative update, from iteration i to i+ 1, accounting for
equation (107)-(c),ϕ

(i+1)(x) = ϕ(i)(x)− k 1

∆χ(i)(x)

δL(χ(i), λ(i))

δχ(i)
(x)⇒ χ(i+1) = Hβ(ϕ(i+1)(x)) ∀x ∈ Ω

λ(i+1) = λ(i) + ρ C(χ(ϕ(i)))

(110)

The iterative update in equation (110) is stopped when the steady state solution of the problem
is achieved, determined in terms of some given tolerances on the variation of the unknowns
χ(ϕ(x)) and λ, i.e.

||χ(i+1) − χ(i)||L2(Ω) ≤ Tolerχ

|λ(i+1) − λ(i)| ≤ Tolerλ
(111)

The corresponding characteristic function, χ(i + 1)(x) is then determined through equation
(110).

Descending character of the algorithm

The algorithm in equations (107) to (110) leads to a continuous descent, along pseudo-time or
iterations, of the Lagrange functional to be minimized. This warranties that, when a steady
state is reached, the solution is a local minimum of the problem. The proof is readily achieved
through the following sequence of propositions. Let us consider the time-evolutionary problem
in equation (107)

Vϕ := {ϕ / ϕ : Ω× [0, T ]→ R}ϕ̇t(x) = −k 1

∆χ(x)

δL(χ, λ)

δχ
(x) ; k ∈ R+ ; −1 ≤ ϕt ≤ 1 (a)

Lt(ϕ, λ) ≡ L(χ(ϕt), λ) = J (χ(ϕt)) + λC(χ(ϕt)) (b)

(112)

Lemma 1 Given the functional

L(χ) =

∫
Ω
G(u(x),x) dΩ ≡

∫
Ω
F (χ,x) dΩ (113)

and considering the function derivative of L(χ) as a, parameter-χ-dependent, integral, the fol-
lowing equality is fulfilled

∂L(χ)

∂χ
=

∫
Ω

1

∆χ(x)

δL(χ)

δχ
(x) dΩ (114)

Proof 1 The function derivative of L(χ), in equation (113), with respect to χ reads

∂L(χ)

∂χ
=

∫
Ω

∂F (χ,x)

∂χ
dΩ (115)

and, equation (27) (replacing J by L), yields
[
∂F (χ,x)

∂χ

]
x=x̂

∆χ(x̂) =
δ

δχ

[∫
Ω
F (χ,x) dΩ

]
(x̂) ∀x̂ ∈ Ω⇒ (a)

⇒ ∂F (χ, x̂)

∂χ
=

1

∆χ(x̂)

δL(χ)

δχ
(x̂) ∀x̂ ∈ Ω (b)

(116)

Substitution of the result in equation (116)-(b) into equation (115) yields the proposition in
equation (114).
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Lemma 2

∂χ(ϕt(x))

∂ϕt
≡ ∂χ(ϕt)

∂ϕt
(x) = (1− β)||∇ϕt(x)||−1δΓt(x) (117)

where δΓt(x) stands for the line/surface Dirac’s-delta function, shifted to Γt (see figure A.C.23)
thus fulfilling∫

Ω
δΓt(x)φ(x) dΩ =

∫
Γt

φ(x) dΓ (118)

for any sufficiently regular φ(x).

Proof 2

χ(ϕt(x)) = Hβ(ϕt(x))⇒


∇χ(ϕt(x)) = ∇Hβ(ϕt(x)) = (1− β)δΓt(x)⊗ n(x) ; n(x) =

∇ϕt(x)

||∇ϕt(x)||

∇χ(ϕt(x)) =
∂χ(ϕt(x))

∂ϕt
∇ϕt(x) =

∂χ(ϕt(x))

∂ϕt
||∇ϕt(x)|| ⊗ n(x)

⇒ ∂χ(ϕt(x))

∂ϕt
||∇ϕt(x)|| = (1− β)δΓt(x)⇒ ∂χ(ϕt(x))

∂ϕt
= (1− β)||∇ϕt(x)||−1δΓt(x)

(119)

Theorem 1 Time evolution of the Lagrangian functional Lt(ϕ, λ) ≡ L(χ(ϕt), λ), in equation
(112), is always negative i.e. L̇(χ(ϕt), λ) < 0.

Proof 3 Time differentiation of L(ϕt, λ), in equation (112)-(b), yields

∂L (χ(ϕ(x, t)), λ)

∂t
≡ L̇(χ(ϕt(x)), λ) =

∫
Ω

∂ (J (χ(ϕt)) + λC(χ(ϕt)))

∂χ

∂χ(ϕt)

∂ϕt
ϕ̇t(x) dΩ =

=

∫
Ω

(1− β)||∇ϕt(x)||−1δΓt(x)
∂(J (χ(ϕt)) + λC(χ(ϕt)))

∂χ
ϕ̇t(x) dΩ =

=

∫
Ω

(1− β)||∇ϕt(x)||−1 1

∆χ(x)

δL(χ(ϕt), λ)

δχ
(x)δΓt(x)ϕ̇t(x) dΩ =

=

∫
Γt

(1− β)||∇ϕt(x)||−1 1

∆χ(x)

δL(χ(ϕt), λ)

δχ
(x)ϕ̇t(x) dΓ

(120)

where results in equations (114), (117) and (118) have been used. Replacement of equation (112)
into equation (120) yields

L̇(χ(ϕt), λ) =

∫
Γt

(1− β)||∇ϕt(x)||−1 1

∆χ(x)

δL(χ(ϕt), λ)

δχ
(x) ϕ̇t(x) dΓ

ϕ̇t(x) = −k 1

∆χ(x)

δL(χ, λ)

δχ
(x) ; k ∈ R+

⇒ L̇(χ(ϕt), λ) = −k
∫
Γt

(1− β)||∇ϕt(x)||−1︸ ︷︷ ︸
> 0

(
1

∆χ(x)

δL(χ(ϕt), λ)

δχ
(x)

)2

︸ ︷︷ ︸
> 0

dΓ < 0 ∀t

(121)

Corollary 1.1 Therefore, at the stationarity of the characteristic function (χ̇(ϕt(x)) = 0 ∀x ∈
Ω) the achieved, topology χ(x, t), defines a (local) minimum of Lt(ϕ, λ) ≡ L(χ(ϕt), λ) in equation
(112).
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[7] S. Amstutz and H. Andrä, “A new algorithm for topology optimization using a level-
set method,” Journal of Computational Physics, vol. 216, no. 2, pp. 573–588, 2006. doi:
10.1016/j.jcp.2005.12.015.

[8] M. P. Bendsoe and O. Sigmund, Topology optimization. Springer Berlin Heidelberg,
Dec. 1, 2003, 388 pp., isbn: 3540429921.

[9] D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas, Constrained Optimization and
Lagrange Multiplier Methods (Optimization and neural computation series). Athena Sci-
entific, 1996, isbn: 1-886529-04-3.

[10] B. Bourdin, “Filters in topology optimization,” International Journal for Numerical
Methods in Engineering, vol. 50, no. 9, pp. 2143–2158, 2001. doi: 10.1002/nme.116.

[11] M. Burger, B. Hackl, and W. Ring, “Incorporating topological derivatives into level set
methods,” Journal of Computational Physics, vol. 194, no. 1, pp. 344–362, 2004. doi:
10.1016/j.jcp.2003.09.033.
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B.1 Abstract

This paper extends the nonsmooth Relaxed Variational Approach (RVA) to topology optimiza-
tion, proposed by the authors in a preceding work, to the solution of thermal optimization
problems. First, the RVA topology optimization method is briefly discussed and, then, it is
applied to a set of representative problems in which the thermal compliance, the deviation of
the heat flux from a given field and the average temperature are minimized. For each optimiza-
tion problem, the relaxed topological derivative (RTD) and the corresponding adjoint equations
are presented. This set of expressions are then discretized in the context of the finite element
method (FEM) and used in the optimization algorithm to update the characteristic function.

Finally, some representative (3D) thermal topology optimization examples are presented to
asses the performance of the proposed method and the Relaxed Variational Approach solutions
are compared with the ones obtained with the level set method in terms of the cost function,
the topology design and the computational cost.

keywords: Thermal Topology Optimization, Relaxed Variational Approach, Relaxed Topo-
logical Derivative, Closed-form optimality criteria, Pseudo-time sequential analysis

B.2 Introduction

B.2.1 Motivation and background

During the last decades, a variety of topology optimization methods have been proposed in the
literature. With no aim of being exhaustive, we could classify them into (i) homogenization
methods, (ii) density based optimization (SIMP) methods, (iii) level set approaches, and (iv)
evolutionary methods, among others. For further information the reader is addressed to reviews
in [7, 22, 23, 6]. Albeit these techniques were initially focused on structural problems, along
time several of them have been extended to other problems, thus including thermal problems
and a number of different applications in this field, e.g.:

(a) Thermal compliance minimization: focused on maximizing thermal diffusion in steady-
state problems. Bendsøe and Sigmund [3] implemented the SIMP method for thermal
optimization problem as an extension of structural optimization. This same problem was
also addressed with ESO-based methods by Li et al. [15]. Subsequently, Ha and Cho
[12] suggested a level set method for the minimization of the thermal compliance via
a Hamilton-Jacobi equation. Later, Zhuang et al. [30] implemented the aforementioned
problem using a topological derivative method. Alternatively, Gersborg-Hansen et al.
[10], for the Finite Volume Method (FVM) together with a SIMP method, Gao et al.
[9], for the ESO method, and Giusti et al. [11], for the topological derivative method,
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have developed the corresponding algorithms to include design-dependent effects of heat
sources.1 Furthermore, Iga et al. [13] and Yamada et al. [26] included the heat convection
effects in the design for maximizing thermal diffusivity using a homogenization design
method and the modified phase-field method reported in [27], respectively.

(b) Maximum/average temperature minimization: looking for designs that reduce the tem-
perature of thermal devices, while increasing their durability. With this goal in mind,
researchers have proposed different objective functions to minimize either the average tem-
perature or the maximum temperature in the design domain. Zhang and Liu [28] reported
that the p−norm of the temperature field in the design domain, approximates reasonably
well the maximum temperature for a large enough p. Marck et al. [17] proposed the min-
imization of the average temperature and its variance, via a SIMP method, by creating
the Pareto front of the multi-objective thermal problem, thus leading to a reduction in the
achieved temperature while avoiding temperature peaks. On the other side, Burger et al.
[4] minimized the average internal temperature in the whole design domain, by dissipating
the generated heat through the introduction of distributed heat sources within the design
domain. For the transient case, the minimization of the maximum temperature throughout
the entire operating period was analyzed by Wu et al. [25] via the SIMP method.

(c) Multiple heat actions optimization: which can be regarded as multi-objective problems
where the cost function corresponds to the weighted sum of individual cost functions for
each of the heat actions. In this context Li et al. [15, 14] optimized some printed circuit
boards (PCB) with the ESO method subjected to multiple heat source, by considering
a functional proportional to the heat flux. Years later, Zhuang et al. [30] proposed the
optimization of some thermally conductive structures via a level set method by optimizing
the weighted average of the quadratic temperature gradient.

(d) Multi-material thermal optimization: thermal topology optimization has been also carried
out taking into account three or more different materials. Zhuang et al. [31] proposed
a multi-material topology optimization for the heat conduction problem via a level set
method. Later, Zhuang and Xiong [29] used the SIMP method to optimize transient heat
conduction problems.

(e) Heat flux manipulation optimization problems: a precursor work on the field is the one by
Narayana and Sato [19], where multilayered optimized designs for thermal problems were
presented. Later, Dede et al. [5] proposed a homogenization-based method which opti-
mizes the orientation of a micro-structure by modifying the effective conductivity tensor
at each point. Following this line, Peralta et al. [21] suggested a homogenization-based
optimization, where the error in guiding the heat flux in given path is minimized, and
successfully accomplished the optimization of a thermal concentrator. Finally, Fachinotti
et al. [8] extended the idea to black-and-white designs via a SIMP optimization.

This work focuses on applying the Relaxed Variational Approach (RVA) to topology opti-
mization, proposed by the authors in a previous work [20], to thermal problems. The distinctive
feature of RVA is that it keeps the original nonsmooth character of the characteristic function,
the design variable, describing the material topology (χ : Ω→ {0, 1}) but, in spite of this, a vari-
ational analysis can be conducted and, then, closed-form solutions of the problem (equivalent
to the Euler equations in smooth variational problems) can be readily obtained. The approach
relies on the use of a specific topological sensitivity, the Relaxed Topological Derivative (RTD),
as an efficient and simple approximation to the geometrical (or exact) topological derivative
(TD), which is consistently derived in the considered relaxed optimization setting.2 Then, a
robust and efficient Cutting&Bisection algorithm is proposed for solving the obtained algebraic,
non-linear, solutions in a sequential pseudo-time framework.

The goal here is, thus, to explore the possible extension of the benefits of the RVA, reported
in [20] for structural problems, to the realm of thermal problems, typically:

1The magnitude of the heat source changes according to the material of the point.
2based on a bi-material (soft/hard) approximation, or ersatz approach.
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� Avoid checkerboard patterns and mesh-dependency in the optimized solution.
� Display black-and-white solutions, instead of blurry black-gray-and-white solutions, for the

material distribution, without resorting to a posteriori filtering techniques.
� Achieve precise local optima, in a reduced number of iterations of the non-linear solution

algorithm, thus leading to relevant diminutions of the associated computational cost.
� Involve general and easy-to-derive sensitivities of the cost function in the resulting opti-

mization algorithm.
� Allow the control of the minimum width of the material filaments in the optimized lay-

out, thus incorporating manufacturing constraints in the designs and precluding classical
element/cell-size-dependence in the obtained solutions, thus removing the well-known ill-
posedness of the problem.

For this purpose three representative thermal optimization problems are explored in this
work a) maximization of thermal diffusion, without boundary dependent properties, in steady-
state thermal scenarios, b) thermal cloaking based on minimization of the deviation of the heat
flux with respect to a target one and c) thermal cloaking based on minimizing the average
temperature on a surface around the cloaked object.

The remaining of this paper is structured as follows: in Section B.3, the considered Relaxed
Variational Approach (RVA) to topology optimization is summarized in order to, both, supply
to the reader the indispensable information and providing the work with the necessary com-
pleteness. Then, in Section B.4, a detailed specification of the RVA for thermal optimization
problems is presented. Subsequently, a general optimization algorithm is described in Section
B.5. The resulting formulation is then assessed, by its application to a set of thermal problems,
first in terms of their formulation, in Section B.6 and, then, in terms of their numerical appli-
cation to specific 3D problems in Section B.7. Finally, Section B.8 concludes with some final
remarks.

B.3 Relaxed Variational Approach (RVA) to topology optimiza-
tion: a summary

B.3.1 Topology domain representation

Let the analysis domain3, Ω, denote a fixed smooth open domain of Rn (n = 2 or 3), whose
boundary ∂Ω is also smooth, composed in turn by two smooth open subdomains, Ω+,Ω− ⊂ Ω,
with Ω

+ ∪ Ω
−

= Ω and Ω+ ∩ Ω− = ∅.4 The first subdomain, Ω+, stands for the hard material
domain, made of a hard (high-conductive) material (M+), while subdomain, Ω−, denoted as
the soft material domain, is occupied by a soft (low-conductive) material (M−). These two
subdomains are surrounded by their respective boundaries, ∂Ω+ and ∂Ω−, with ∂Ω+∩∂Ω− = Γ
(see Figure B.1).

The standard nonsmooth characteristic function, χ(x) : Ω → {0, 1}, defining the topology
of the analysis domain,5 is then defined as{

Ω+ := {x ∈ Ω / χ(x) = 1}
Ω− := {x ∈ Ω / χ(x) = 0}

. (1)

Alternatively, the topology can be implicitly defined through a smooth function (termed

3Albeit the name design domain is commonly used in topology optimization for Ω, in this work distinction is made
of the analysis domain, the whole domain considered in the analysis, and the design domain, the subset of Ω
where the topology is going to be optimized (therefore changed from an initial layout). The reason is that, in
some of the considered problems, a certain part of Ω is endowed with a fixed, predetermined, topology thus not
being properly part of the design domain.

4(·) denotes the closure of the open domain (·).
5The characteristic function, χ, is considered as the design variable in the topology optimization problem.
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Ω
∂Ω

∂Ω+

∂Ω–

Ω+

Γ

Ω–

Figure B.1: Representation of the analysis domain, Ω, comprising two disjoint sub-domains Ω+

and Ω−. The external boundary of Ω, ∂Ω, is represented by a black dashed line, while the
sub-domains boundaries, ∂Ω+ and ∂Ω−, are, respectively, depicted by long green and short red
dashed lines. Finally, the common sub-domains border, Γ, is represented by a blue dotted line.

discrimination function in Oliver et al. [20]) ψ(x) : Ω→ R, ψ ∈ H1(Ω), defined as{
ψ(x) > 0⇐⇒ x ∈ Ω+

ψ(x) < 0⇐⇒ x ∈ Ω−
. (2)

Then, the two aforementioned subdomains are implicitly defined through ψ(x) (see Figure B.2)
as {

Ω+ := {x ∈ Ω / ψ(x) > 0}
Ω− := {x ∈ Ω / ψ(x) < 0}

, (3)

and the characteristic function, χψ(x) : Ω→ {0, 1}, defining the topology of the analysis domain,
can be then expressed as

χψ(x) = H(ψ(x)) , (4)

where H(·) stands for the Heaviside function evaluated at (·).6

0

0.33

0.66

1

ψ
(x

)

-0.33

(χ = 1)
(χ = β)

Ω

Ω–

Ω+

Figure B.2: Topology representation in terms of the discrimination function, ψ(x).

According to equations (3) and (4), the bi-valued characteristic function, χ(x), takes the
value 1 when the discrimination function is positive (ψ(x) > 0), i.e. when x ∈ Ω+, and the
value 0 when ψ(x) < 0, i.e. when x ∈ Ω−. This bi-valued (black-and-white) (black=1, white=0)

6Henceforth, the subindex ψ of the characteristic function, χψ, will be omitted.
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character of χ, is a fundamental feature of the RVA, and it is always held along the mathematical
derivations keeping the nonsmooth character of the design variable. However, the image-set
{1, 0} is modified to {1, β}, by introducing the, here termed, relaxed Heaviside function

Hβ(x) =

{
1 for x > 0

β for x < 0
x ∈ R ; β << 1 . (5)

Remark 1 In single-material topology optimization, the value χ(x) is commonly used to define
the material property value E, at point x, in terms of the reference material property value E,
through E(x) = χ(x)mE; with m > 1. Then, χ = 1 in Ω+ naturally defines a solid material
with properties E = χmE = E, whereas the value χ = 0 in Ω−, made of no-material (voids),
defines null material properties E(x) = χ(x)mE = 0 in that domain. In the present relaxed
variational approach, instead, the shift of the low limit of χ to β (0 < β << 1), in equation (5),
relaxes that setting to a bi-material approach, with Ω containing two different solid materials:
1) a hard material, in Ω+, with regular solid properties E = χmE = E, and 2) a soft material, in
Ω−, with very low material properties E = χmE = βmE, which are scaled to values close to zero
by the factor χ = β << 1.7 This qualifies the RVA as a relaxed or ersatz/bi-material approach.
This fact will be retrieved later on in this work (see, for instance, equations (14) and (15)).

The topology optimization goal is, then, to minimize a functional or cost function J (χ)
subjected to one or more constraints and governed by the state equation, i.e.

min
χ∈Uad

J (χ) ≡
∫
Ω
j(χ,x) dΩ (a)

subject to:

C(χ) ≡
∫
Ω
c(χ,x) dΩ = 0 (b)

governed by:

state equation (c)

(6)

where Uad stands for the set of admissible solutions for χ. Furthermore, C(χ) represents the
constraint functional, which, in all the examples in this paper, will be the volume constraint,8

and the state equation will correspond to the energy balance in the domain Ω, which will be
described later in this paper (see equation (13)). Functionals (6)-(a-b) are assumed to pertain
to the following family

F(χ) : L2(Ω)→ R ; F(χ) ≡
∫
Ω
f(χ,x) dΩ , (7)

the kernel f(·, ·) being sufficiently smooth, for differentiation purposes.

B.3.2 Relaxed Topological Derivative (RTD)

The RVA defines the Relaxed Topological Derivative (RTD), as the sensitivity of the functional
in equation (7). The RTD is derived as the change of the functional in terms of χ(x̂), as the
material at point x̂ is exchanged, per unit of the measure of a perturbed domain around x̂. It
can be computed in terms of the classical Fréchet derivative, ∂(·)

∂χ (x̂), of the integral kernel, i.e.

δF(χ)

δχ
(x̂) =

[
∂f(χ,x)

∂χ

]
x=x̂

∆χ(x̂) , (8)

7Thus, the single-material and the bi-material formulations converge asymptotically as β → 0.
8The present Cutting&Bisection algorithm is only intended for single constrained topology optimization problems.
Furthermore, along this paper, only equality, pseudo-time evolving volume constraints are considered.
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where ∆χ(x̂) is termed the exchange function and stands for the signed variation of χ(x̂), due
to that material exchange, i.e.

∆χ(x̂) =

{
−(1− β) < 0 for x̂ ∈ Ω+

(1− β) > 0 for x̂ ∈ Ω−
. (9)

Details on the derivations can be found in Oliver et al. [20].

B.3.3 Closed-form algebraic solutions

After some algebraic operations, the optimality condition for the constrained topology optimiza-
tion problem can be written as

δL(χ, λ)

δχ
(x) =

δJ (χ)

δχ
(x) + λ

δC(χ)

δχ
(x) =

=

(
∂j (χ,x)

∂χ
∆χ(x) + λ sgn(∆χ(x))

)
> 0 ∀x ∈ Ω , (10)

where λ stands for a Lagrange multiplier enforcing restriction C(χ) = 0, and L stands for the La-
grangian function of the optimization problem (see Oliver et al. [20] for additional information).
Then, a closed-form solution for the topology in equation (4) can be computed as{

ψ(x) := ξ(χ,x)− λ
χ(x) = Hβ(ψ(x))

in Ω , (11)

where ξ(χ,x) is termed the pseudo-energy9 and it shall be specifically derived for each considered
problem. Equations (11) constitute a closed-form-algebraic (non-linear fixed-point equation)
solution of the problem, which are solved, for χ(x) and λ, via the Cutting&Bisection algorithm
proposed in [20]. The resulting global algorithm is sketched in Box I, where the constraint
equation is expressed in terms of the pseudo-time t ∈ [0, T ], in the context of a time advancing
strategy. Notice that the parameter T stands for the pseudo-time corresponding to the final
volume of the proposed topology optimization (pseudo-time dependent) procedure and must be
set by the user.

Remark 2 The discrimination function ψ(x) in equation (11) is subsequently smoothed through
a Laplacian smoothing, whose parameter ϵ determines the minimum filament width of the result-
ing topology, thus removing the possible mesh dependency of the results and the ill-posedness
of the problem. The reader is addressed to reference [20] for further details.

Box I: Topology optimization: closed-form solution method

Problem10:

χ∗ = argmin
χ∈Uad

J (he)(χ)

s.t. C(χ) ≡ t−
|Ω−(χψ)|
|Ω|

= 0; t ∈ [0, T ]

state equation

(a)

Lagrangian:

L(χ, λ) = J (he)(χ) + λC(χ) (b)

Optimality criterion:

9The pseudo-energy, ξ(x, χ), has normally dimensions of energy.
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δL(χ, λ)

δχ
(x) = (ξ(x, χ)− λ)

C(χ) = 0

(c)

Shifting and normalization11:
ξ̂(x) =

ξ(x)−∆shift

∆norm
∀x ∈ Ω+

ξ̂(x) =
ξ(x)

∆norm
∀x ∈ Ω−

(d)

Closed-form solution:
ψχ(x, λ) := ξ̂(x, χ)− λ
χ(x, λ) = Hβ [ψχ(x, λ)]

C(χ(x, λ)) = 0

(e)

Topology:
Ω+(χ) := {x ∈ Ω / ψχ(x, λ) > 0}
Ω−(χ) := {x ∈ Ω / ψχ(x, λ) < 0}
Γ(χ) := {x ∈ Ω / ψχ(x, λ) = 0}

(12)

B.4 Formulation of the state problem

In the context of the relaxed (bi-material) approach referred to in Remark 1, both the unknowns
(temperatures) and data of the optimization problem (material properties) depend on the topol-
ogy layout, that is, on the characteristic function, χ. Then, let Ω be the analysis domain, whose
boundary ∂Ω is made of three mutually disjoint subsets, ∂Ω = ∂θΩ ∪ ∂qΩ ∪ ∂hΩ, as depicted in
Figure B.3, with ∂θΩ of nonzero Lebesgue measure. Boundaries ∂θΩ, ∂qΩ and ∂hΩ are, respec-
tively, those subsets of ∂Ω, where temperature, θ(x), heat fluxes, q(x) = q(x) ·n and convective
heat fluxes, h (θ(x)− θamb(x)) = q(x) · n, are prescribed.

n

S

∂qΩ

Ω+

∂hΩ

∂θΩ

q̅
q̅h

θ‾

θamb‾

r

n

S

∂qΩ

Ω

∂hΩ

∂θΩ

q̅
q̅h

θ‾

θamb‾

r

(a) (b)

Ω–

Figure B.3: Thermal problem sketch: (a) fixed analysis domain Ω with boundary conditions (in
which the temperature θ(x), the normal heat flux q(x) or the convective heat flux qh(x) can be
prescribed at ∂θΩ, ∂qΩ and ∂hΩ, respectively) and (b) Hard and soft material domains, Ω+ and
Ω−, respectively, with the same boundary conditions.

The steady-state thermal problem, for the temperature distribution θ(x, χ), states the heat

10From now on, superscript (·)(he) refers to results obtained from approximations via finite element calculations of
typical mesh-size he.

11Shifting and normalization operations in terms of ∆shift and ∆norm (standing, respectively, for the minimum
value and the range of ξ at t = 0) are introduced for the purposes of providing algorithmic time consistency to
the problem at t = 0. It can be proven that those operations do not alter the problem solution.
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energy balance in the analysis domain, Ω, and it can be formulated as



Find θ(x, χ), such that
−∇ · q(x, χ) + r(x, χ) = 0 in Ω

q(x, χ) · n = q(x) on ∂qΩ

θ(x, χ) = θ(x) on ∂θΩ

q(x, χ) · n = h (θ(x, χ)− θamb(x)) on ∂hΩ

,
(13)

where q(x, χ) stands for the heat flux, r(x, χ) is the heat source function and q(x) stands for
the prescribed heat flux on the boundaries of Ω. Additionally, h denotes the heat transfer
coefficient, θamb(x) corresponds to the ambient temperature imposed at ∂hΩ and n defines the
unit outwards normal.

The conductive material is governed by the Fourier’s law, i.e. q(x, χ) = −κ(x, χ) ·∇θχ(x),
where κ stands for the symmetric second order thermal conductivity tensor and ∇θχ(x) is the
thermal gradient tensor.12 Both, the conductivity, κ(x, χ), and the heat source, r(x, χ), are
postulated, in terms of the characteristic function, χ, (see Remark 1) as follows:

{
κχ(x) = χmκκ (x)κ(x) ; mκ > 1

rχ(x) = χmr
r

(x)r(x) ; mr ≥ 1

(14)

(15)

with 
χκ(x) = Hβκ(χ) :=

{
1 if x ∈ Ω+

βκ if x ∈ Ω−

χr(x) = Hβr(χ) :=

{
1 if x ∈ Ω+

βr if x ∈ Ω−
,

(16)

(17)

where χκ and χr stand for the relaxed characteristic functions for the thermal conductivity, κ,
and the heat source, r, respectively. Associated to the relaxation factor, β, of every property, we

define the contrast factor, α, through β(·) = α
1/m(·)
(·) =⇒ α(·) = β

m(·)
(·) . Different values of m(·) may

be required for the topology optimization procedure, depending on the material interpolation.

Alternatively, the thermal problem stated in equation (13) can be written in variational form
as 

Find the temperature field θχ ∈ U(Ω) such that

a(w, θχ) = l(w) ∀w ∈ V(Ω)

where

a(w, θχ) =

∫
Ω
∇w(x) ·κχ(x) ·∇θχ(x) dΩ +

∫
∂hΩ

h w(x)θχ(x) dΓ ,

l(w) = −
∫
∂qΩ

w(x)q(x) dΓ +

∫
∂hΩ

h w(x)θamb(x) dΓ +

∫
Ω
w(x)rχ(x) dΩ ,

(18)

(19)

(20)

where the set of admissible temperature fields is U(Ω) :=
{
θ(x) / θ ∈ H1(Ω), θ = θ on ∂θΩ

}
, and

the space of admissible virtual temperature fields is given by V(Ω) :=
{
w(x) / w ∈ H1(Ω), w = 0

on ∂θΩ}. Equations (18) to (20) are discretized via the Finite Element Method as shown in
Appendix B.A.

12κ = κI for isotropic conductive materials.
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B.5 Optimization algorithm

The algorithm to obtain the optimal characteristic function distribution, χ(x),13 is based on the
Cutting&Bisection technique, shown in Algorithm 3, in the context of the pseudo-time-advancing
strategy. The strategy, described in Oliver et al. [20], is sketched in Algorithm 2. The number
of time-steps of this methodology is related to the robustness and computational cost of the
problem: the more time-steps, the more robust the solution is, although the computational cost
of the optimization is higher. Then, it is up to the user to impose a feasible time evolution based
on his/her own experience.

Algorithm 2: Optimization algorithm
Data: Given the mesh, state equation, boundary conditions and objective function
Result: Find χn for T := {t0, t1, . . . , tn, . . . , T}
begin

Initialization of the design variables;
for n← 1 to nsteps do

Initialization of step n;
i← 0;
while Topology and Lagrange multiplier tolerances are not satisfied do

Solve the equilibrium equation using FEM;
Compute the relaxed topological sensitivity (RTD) using the adjoint method;
Modify the sensitivity (Shifting and normalization);
Regularize the sensitivity by a Laplacian smoothing;
Compute the Lagrangian multiplier using a bisection algorithm (algorithm 3);
Update the discrimination function;
Update the characteristic function;
i← i+ 1;

end
χn ← current characteristic function;

end

end

For practical purposes, the Laplacian regularization is applied to the pseudo-energy density,
ξ (sensitivity), instead of the discrimination function, ψ = ξ − λ , since the regularization does
not affect the (constant) Lagrange multiplier λ. In this way, it is required only once for each
iteration of the algorithm 2 (outer loop), instead of at every iteration of the Cutting&Bisection
algorithm 3 (inner loop). This minor modification translates into a significant reduction in the
computational cost of the bisection algorithm.

ξ χ
(x
)

(a) (b) (c)

ξ χ
(x
)

ξ χ
(x
)

Figure B.4: Cutting and bisection iterative algorithm. Visual representation for different λ: (a)
cutting plane at λ1 = 0.15, (b) Cutting plane at λ2 = 0.35 and (c) Cutting plane at λ3 = 0.50.

As it can be observed, the ratio of soft domain, |Ω
−|
|Ω| , increases with the Lagrange multiplier.

Therefore, |Ω−(λ1)| < |Ω−(λ2)| < |Ω−(λ3)|.

In addition, the procedure to compute the Lagrange multiplier, imposing the constraint
equation of (12)-(a), is illustrated in Figure B.4. A modified Marching Cubes method, detailed
in Oliver et al. [20], is used to numerically compute the 0-level iso-surface of the discrimination

13The solution χ, resulting from the optimization process, must lie in the subset of admissible solutions, Uad,
corresponding to the tackled single-material (state) thermal problem (i.e. for β → 0). Then, the subset is defined
as Uad = {χ / Ω+(χ) ⊂ Ω, ∂θΩ ∩ ∂Ω+(χ) ̸= ∅, ∂qΩ ⊂ ∂Ω+(χ), ∂hΩ ⊂ ∂Ω+(χ)}.
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function, ψ. Through this technique, the element hard-phase volume can be obtained, along
with the constraint value, C.
Algorithm 3: Cutting&Bisection iterative algorithm

Data: Given the mesh, the regularized energy density ξτ (x, χ) and the pseudo-time tn
Result: Find λn such that the constraint equation is fulfilled
begin

j ← 0;
while Volume constraint is not satisfied do

Update the Lagrangian multiplier;
Compute the corresponding discrimination function;
Compute the corresponding characteristic function;
Compute the corresponding volume constraint;
j ← j + 1;

end

end

B.6 Topology optimization problems

B.6.1 Thermal compliance problem

Let us now consider the maximal thermal diffusivity (minimal thermal compliance) topology op-
timization problem. This goal can be achieved by minimizing the negative of the total potential
energy, i.e.:

min
χ∈Uad

J (θχ(x, t)) ≡ −
(

1

2
aχ(θχ, θχ)− l(θχ)

)
≡ 1

2
l(θχ(x, t)) (a)

subject to:

C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1] (b)

governed by:

a(w, θχ) = l(w) ∀w ∈ V(Ω) , ∀θχ ∈ U(Ω) (c)

. (21)

This problem belongs to the class of problems considered in equation (6) with

J (θχ) ≡ 1

2
l(θχ) =

1

2

(∫
Ω
rθχ dΩ−

∫
∂qΩ

qθχ dΓ−
∫
∂hΩ

hθambθχ dΓ
)

=
1

2
aχ(θχ, θχ) ≡

≡ 1

2

(∫
Ω
∇θχ ·κχ ·∇θχ dΩ−

∫
∂hΩ

hθχθχ dΓ
)

=

∫
Ω
Uχ dΩ−

∫
∂hΩ

hθχθχ dΓ

(22)

where equations (19) and (20) have been considered for w ≡ θχ, and Uχ can be identified as the
actual thermal energy density (Uχ = 1

2∇θχ ·κχ ·∇θχ). Comparing equations (22) and (6), we
can identify

j(χ,x) ≡ 1

2
∇θχ ·κχ(x) ·∇θχ = Uχ(x) . (23)

The corresponding finite element discretization counterpart of the problem in equation (21)
reads 

min
χ∈Uad

J (he)(θχ(t)) ≡ 1

2
fTθ̂χ(t) (a)

subject to:

C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1] (b)

governed by:

Kχθ̂χ = f (c)

, (24)
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where he stands for the typical size of the finite element mesh, and fTθ̂χ(t) denotes the thermal
compliance. Bear in mind that the discretization of the state equation for the thermal problem
(73) has been also considered in the previous minimization problem.

Topological sensitivity of the cost function

The adjoint method [16] for sensitivity analysis is used in this paper to compute the relaxed topo-
logical derivative (RTD) of the cost-function, J (he)(θχ), in equation (24)-(a), without explicitly
computing the sensitivity of the nodal temperature field (∂θχ/∂χ).

Let J (he)
(χ) be the extended cost function of J (he)(χ) defined as

J (he)
(χ) =

1

2
fTθ̂χ − ŵT

(
Kχθ̂χ − f

)
, (25)

where ŵ stands for the solution of the adjoint state problem. Then, the sensitivity of the cost
function results, after using the RTD, in the following

δJ (he)
(χ)

δχ
(x̂) =

(
1

2
fT − ŵTKχ

)
δθ̂χ
δχ

(x̂)

+

(
1

2

δfTχ
δχ

(x̂)θ̂χ − ŵT δKχ

δχ
(x̂)θ̂χ + ŵT δfχ

δχ
(x̂)

)
.

(26)

After some algebraic manipulation, accounting for the adjoint state equation, one arrives to

δJ (he)
(χ)

δχ
(x̂) =

[
δfTχ
δχ

(x)θ̂χ −
1

2
θ̂T
χ

δKχ

δχ
(x)θ̂χ

]
x=x̂

. (27)

Finally, equation (27) is discretized using the FEM expressions of equations (78)-(81), as
detailed in Appendix B.B, as

δJ (he)
(θχ)

δχ
(x̂) = mr (χr(x̂))mr−1 Ur(x̂)∆χr(x̂)−mκ (χκ(x̂))mκ−1 U(x̂)∆χκ(x̂) , (28)

where U(x̂) is the nominal heat conduction energy density and Ur(x̂) is the nominal heat source
energy density, which are respectively written asU(x̂) =

1

2
(∇θχ ·κ ·∇θχ) (x̂) (a)

Ur(x̂) = (rθχ) (x̂) (b)
. (29)

Closed-form solution

In Box II, the pseudo-energy density, ξ(x, χ), to be considered for the closed-form solution in
Box I, is presented.

Box II: Topology optimization of thermal compliance problems

Problem:
χ∗ = argmin

χ∈Uad

J (he)(χ) :=
1

2
fTθ̂χ

s.t. C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1]

Kχθ̂χ = f

(a)
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Energy density:

ξ(x̂, χ) = γ1(x̂, χ)U(x̂)− γ2(x̂, χ)Ur(x̂) (b)

where
U(x̂) =

1

2
(∇θχ ·κ ·∇θχ) (x̂) ≥ 0;

Ur(x̂) = (rθχ) (x̂)

γ1 = 2mκ (χκ(x̂))mκ−1 (1− βκ)

γ2 = mr (χr(x̂))mr−1 (1− βr)

(30)

B.6.2 Thermal cloaking in terms of heat flux

We now consider an object whose thermal properties may differ from the properties of the
surrounding material Ω. Then, the main objective is to thermally cloak the object, colored in
black (see Figure B.5), from being detected by an external thermal detecting device, measuring
the deviation between the constant heat flux, theoretically observed on the 3D homogeneous
domain Ω, and the actual flux in the non-homogeneous domain containing the cloaked object.
Under the assumption that there is no body that alters the flux, the heat flux entering across
the left face of Ω should be constant and equal to that exiting across the right face. In addition,
the unperturbed domain presents a known homogeneous heat flux field. Thus, the goal of this
topology optimization problem is to find the optimal topology of the surrounding cloaking device,
Ωdev, displayed in dark gray, that mitigates the perturbation of the object in the heat flux field
so as to resemble the original homogeneous heat-flux.

∂θΩ∂θΩ Ω

∂qΩ

∂qΩ

q̅=0

q̅=0

(a)

θh
‾ θc

‾

∂θΩ∂θΩ Ω

∂qΩ

∂qΩ

q̅=0

q̅=0

(b)

Ωc

θh
‾ θc

‾

Ωdev
κ(θh-θc)‾ ‾
Δxq̅ =

∂θΩ∂θΩ Ω

(c)

Ωc

θh
‾ θc

‾

Ωdev

f (2)(x) = C1(χ,x,θχ(1))κχ(x)B(x)

x

y

x

y

x

y

System (I) System (II)

Object

Figure B.5: Thermal cloaking problem: (a) homogeneous problem setting where a constant
uniform heat flux over all the domain Ω is observed, (b) topology optimization domain with
boundary conditions of system (I), and (c) topology optimization domain with boundary con-
ditions of system (II). The objective is to minimize the perturbation of an object placed in the
center of the domain Ω. For that reason, it is surrounded by a cloaking device, in dark gray,
which must be optimized.

The problem setting is illustrated in Figure B.5, in which the constant given heat flux is
prescribed via the equivalent Dirichlet conditions on both vertical sides, i.e. the temperature
is prescribed to a high value, θh, and a low value, θc, at the left and right sides, respectively
(see Figure B.5-(a)). Adiabatic conditions are assumed on the other two boundaries. Figure
B.5-(b) depicts the setting and boundary conditions when the object to be hidden is placed
inside the analysis domain, Ω. The corresponding topology optimization problem is written as
the minimization of the deviation (measured through a L2-norm) between the constant heat flux
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and the actual heat flux in domain Ωc ≡ Ω \ Ωdev, which reads as

min
χ∈Uad

J (θχ(x, t))= ∥qχ(x, θχ)− q(x)∥L2(Ωc)
=

(∫
Ωc

|qχ(x, θχ)− q(x)|2 dΩ

) 1
2

(a)

subject to :

C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1] (b)

governed by:

a(w, θχ) = l(w) ∀w ∈ V(Ω) , ∀θχ ∈ U(Ω) (c)

(31)

where, in equation (31)-(a), qχ(x, θχ) stands for the heat flux vector, which depends on the
topology, whereas q(x) corresponds to the prescribed (original) heat flux at the same point.

This problem belongs to the class of problems with the functional considered in equation
(7), which can be generalized as

Fχ ≡
(∫

Ω
f(χ,x) dΩ

)p
(32)

where p > 0 stands for an exponential factor. Then, the relaxed topological derivative (RTD)
proposed in equation (8) can be rewritten as

δF(χ)

δχ
(x̂) = p F(χ)p−1

[
∂f(χ,x)

∂χ

]
x=x̂

∆χ(x̂) . (33)

Therefore, the functional (31)-(a) is related to (32) by

J (θχ) ≡
(∫

Ωc

|qχ(x, θχ)− q(x)|2 dΩ

) 1
2

=

=

(∫
Ω

1Ωc(x) |−κχ(x) ·∇θχ(x)− q(x)|2 dΩ

) 1
2

(34)

with p = 1/2. Comparing equations (34), (32) and (6) we can readily identify

j(χ,x) ≡ 1Ωc(x) |qχ(x, θχ)− q(x)|2 ∀x ∈ Ω , (35)

with 1Ωc(x) : Ω→ {0, 1} being the indicator function of the subdomain Ωc ⊂ Ω, which is equal
to 1 for any point contained in Ωc, and 0 for any point outside the subdomain Ωc.

Let us now discretize the cost function, J (θχ(t)), using the FEM expressions defined in
Appendix B.A, which yields to

min
χ∈Uad

J (he)(θχ(t)) ≡
(∫

Ω
1Ωc(x)

∣∣∣−κχ(x)B(x)θ̂(1)
χ − q(x)

∣∣∣2 dΩ

) 1
2

, (36)

where the constraint equation and the state equation are identical to those shown in equation
(31)-(b-c).

Topological sensitivity of the cost function

Mimicking the procedure described in Section B.6.1, we include the discretized version of the
state equation (31)-(c) into the discretized cost function (36), in order to express the extended

cost function, J (he)
(χ), as

J (he)
(χ) =

(∫
Ω

1Ωc(x)
∣∣∣−κχ(x)B(x)θ̂(1)

χ − q(x)
∣∣∣2 dΩ

) 1
2

− ŵT
(
Kχθ̂

(1)
χ − f (1)

)
, (37)
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where ŵ is the solution of the adjoint state problem. Once the extended cost function is defined,
we proceed to derive it using the Relaxed Topological Derivative as

δJ (he)
(χ)

δχ
(x̂) =−

(
ŵTKχ + C1κχ∇

) δθ̂(1)
χ

δχ
(x̂)−C1

δκχ(χ)

δχ
(x̂)∇θ(1)χ (x̂)

− ŵT δKχ

δχ
(x̂)θ̂(1)

χ + ŵT δf
(1)
χ

δχ
(x̂)

(38)

where C1

(
χ, x̂, θ

(1)
χ

)
is

C1

(
χ, x̂, θ(1)χ

)
=

1Ωc(x̂)
(
qχ

(
x̂, θ

(1)
χ

)
− q(x̂)

)T
J (he)(χ)

. (39)

We must now solve the adjoint state problem of equation (38) for ŵ = θ̂
(2)
χ . Thus, in contrast

to the first optimization problem, that has been shown in Section B.6.1, the original thermal
system (I) has to be supplemented with an auxiliary thermal system (II) (see Figure B.5). Both
systems are governed by the thermal problem (equation (73)) with the same stiffness matrix Kχ

but different actions and solutions θ̂
(1)

χ and θ̂
(2)

χ , respectively, defined asKχ θ̂
(1)

χ = f (1) (system I)

Kχ θ̂
(2)

χ = f (2) (system II)
(40)

where

f (2)T = −
∫
Ω
NT (x)

δJ (he)(θ
(1)
χ )

δθχ
(x) dΩ = −

∫
Ω
NT(x)C1

(
χ,x, θ(1)χ

)
κχ(x)B(x) dΩ . (41)

By simplifying the first term of equation (38), and after some algebraic manipulations, de-
tailed in Appendix B.C, the relaxed topological sensitivity of the cost function can be expressed
as a sum of energy densities, i.e.

δJ (he)
(χ)

δχ
(x̂) = + 2γ1(x̂, χ)U1−2(x̂)− γ2(x̂, χ)Ur(x̂) + γ1(x̂, χ)Uq(x̂) , (42)

where U1−2(x̂), Ur(x̂) and Uq(x̂) are, respectively, the nominal heat conduction energy density,
the nominal heat source energy density and the nominal heat flux energy density, which are given
by 

U1−2(x̂) =
1

2

(
∇θ(1)χ ·κ ·∇θ(2)χ

)
(x̂) (a)

Ur(x̂) =
(
rθ(2)χ

)
(x̂) (b)

Uq(x̂) =
(
C1 ·κ ·∇θ(1)χ

)
(x̂) (c)

(43)

and {
γ1(x̂, χ) = (1− βκ)mκ (χκ(x̂))mκ−1

γ2(x̂, χ) = (1− βr)mr (χr(x̂))mr−1
. (44)

Closed-form solution

The problem-dependent energy density, ξ(x̂, χ), of the original functional J (he) (equation (36))
is illustrated in Box III, analogously to Box II.
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Box III: Topology optimization of heat flux cloaking

Problem:
χ∗ = argmin

χ∈Uad

J (he)(χ) =

(∫
Ω

1Ωc(x)
∣∣∣−κχ(x)B(x)θ̂(1)

χ − q(x)
∣∣∣2 dΩ

) 1
2

s.t. C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1]

Kχθ̂
(i)
χ = f (i) ; i = {1, 2}

(a)

Energy density:

ξ(x̂, χ) = γ1(x̂, χ)
(
2U1−2(x̂) + Uq(x̂)

)
− γ2(x̂, χ) Ur(x̂) (b)

where

U1−2(x̂) =
1

2

(
∇θ(1)χ ·κ ·∇θ(2)χ

)
(x̂);

Ur(x̂) =
(
rθ(2)χ

)
(x̂);

Uq(x̂) =

1Ωc(x̂)
(
qχ

(
θ
(1)
χ

)
− q

)
·κ ·∇θ

(1)
χ

J (he)
(
χ, θ

(1)
χ

)
 (x̂)

γ1(x̂, χ) = (1− βκ)mκ (χκ(x̂))mκ−1

γ2(x̂, χ) = (1− βr)mr (χr(x̂))mr−1

(45)

B.6.3 Thermal cloaking in terms of temperature average and variance

Let us now consider a hot object whose temperature is higher than the environment temperature,
θamb. The goal is to cloak the object for an external thermal detecting device, located at some
distance from it (like a thermal camera). The cloaked object might be then easily detected if the
temperature along a virtual plane, between the object and the observer, changes significantly
with respect to the ambient temperature. Thus, the goal is to find the optimal layout of a
surrounding cloaking device, which minimizes the perturbation of the temperature on this plane.

The setting of the problem is sketched in Figure B.6, in which Ω represents the region of
concern, the small black region, placed at the center, represents the object to be cloaked, and the
surrounding ellipsoid, colored in gray, corresponds to the cloaking device, Ωdev. In addition, the
vertical left edge, referred as the cloaking port, ∂cΩ, illustrates the plane where the temperatures
are measured by the observer. The temperature of the object is prescribed at a high temperature
θ > θamb on its surface, ∂θΩ, and natural convective boundary conditions are applied on the left
and right edges, ∂hΩ. On the other two faces, adiabatic conditions are considered.

The optimal topology will be achieved with a multi-objective optimization via two cost func-
tionals. The first functional addresses the minimization of the average temperature on the
cloaking port, ∂cΩ, while the second is responsible of minimizing the variance of the tempera-
ture on the same face, ensuring an homogeneous temperature on the left edge. The topological
optimization problem, evaluated via a weighted sum of the functionals, is expressed as

min
χ∈Uad

J (θχ) = ωJav(θχ) + (1− ω)Jvr(θχ) (a)

subject to :

C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0; t ∈ [0, 1] (b)

governed by :

a(w, θχ) = l(w) ∀w ∈ V(Ω) , ∀θχ ∈ U(Ω) (c)

(46)

where Jav(θχ) corresponds to the objective function of the average temperature minimization,
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Ω

∂cΩ

Ωdev

∂hΩ
∂hΩ

Ω

∂qΩ

∂qΩ

q̅=0

q̅=0

θ‾

θamb‾ θamb‾

x

y

x

y

(a) (b)

∂θΩ
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Figure B.6: Average and variance temperature minimization: (a) representation of the subdo-
mains surrounding the object to be cloaked (the cloaking device, Ωdev, is displayed in dark gray,
while the left edge, where the average value and the variance of the temperature are minimized,
is denoted by ∂cΩ) and (b) problem setting with boundary conditions. The domain, Ω, cor-
responds to the control volume in which optimization will be carried out, which includes the
object prescribed at a high temperature, θ. The left and right sides are subject to convective
boundary conditions, while adiabatic conditions are assumed on top and bottom sides of the
domain.

while Jvr(θχ) corresponds to the objective function of the temperature variance minimization.
The coefficient ω represents the weight between these two objective functions. Therefore, we are
simultaneously optimizing, for a given weighting coefficient ω, both functionals and achieving an
optimal trade-off from these objective functions. If this weight is changed, a different optimal
solution will be obtained. Thus, given a set of weight values, the optimal solutions of each
optimization problem define the classical Pareto front [2].

According to Marler and Arora [18], a convenient transformation of the original objective
functions is through its ranges. This normalization is given as follows

J̃i(χ) =
Ji(χ)− J ◦i
Jmaxi − J ◦i

for i = {av,vr} (47)

where J̃i(χ) represents the transformed objective function, J ◦i denotes the utopia point14 and
Jmaxi corresponds to the maximum objective function value.15 This normalization yields non-
dimensional objective functions values between zero and one. We have chosen to normalize the
functionals with respect to the minimum value when minimizing only each objective functional
Ji(χ) (Utopia point) and the maximum value obtained from the minimization of the other
functional Ji(χ∗j ). Therefore, two extra optimization problems must be done for ω = 1 and
ω = 0. From the first problem, J ◦av and Jmaxvr are obtained, and from the second, Jmaxav and
J ◦vr.

According to this scalarization approach, the transformed optimization problem is written

14The utopia point J ◦
i defined as J ◦

i = minχ Ji(χ) ∀χ ∈ Uad is an unattainable optimal point and it may be
prohibitively expensive to compute. In these cases, an approximation is used.

15The maximum objective function value corresponds either to the maximum value that minimizes the other ob-
jective functions, Jmax

i = maxj Ji(χ∗
j ) j ̸= i, or the absolute maximum of Ji(χ).

Article B. Thermal Optimization 117 Daniel Yago



A new comp. approach to top. opt. in solid mechanics problems Ph.D. Thesis

as follows

min
χ∈Uad

J̃ (θχ) = ω
Jav(θχ)− J ◦av
Jmaxav − J ◦av

+ (1− ω)
Jvr(θχ)− J ◦vr
Jmaxvr − J ◦vr

(a)

subject to :

C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0; t ∈ [0, 1] (b)

governed by :

a(w, θχ) = l(w) ∀w ∈ V(Ω) , ∀θχ ∈ U(Ω) (c)

(48)

Thanks to the use of a multi-objective scheme, the topological sensitivity of both terms may
be computed independently, as it will be shown below.

Average temperature minimization

Let us now focus on the first objective function which deals with the minimization of the average
temperature over the cloaking port, ∂cΩ, by designing the cloaking device (drawn in gray in
Figure B.7). The corresponding optimization problem, subjected to the same constraint equation
and ruled by the thermal state equation of equation (46), is given as

min
χ∈Uad

Jav(θχ) = C2

∫
∂cΩ

θχ(x) dΓ = C2

∫
∂Ω

1∂cΩ(x) θχ(x) dΓ , (49)

where the integrated temperature is normalized with the corresponding Lebesgue measure, C2 =(∫
∂cΩ

dΓ
)−1

, and 1∂cΩ(x) stands for the the indicator function on the subset ∂cΩ, to enforce

the minimization over the whole boundary.

(a)

∂hΩ∂hΩ Ω

∂qΩ

∂qΩ

q̅=0

q̅=0

∂cΩ

θ‾

Ωdev

θamb θamb‾

∂hΩ

∂hΩ
Ω

∂cΩ(b)

(c)

θ‾

Ω

∂cΩ

g

θ‾

Ωdev

Ωdev

θamb θamb‾

x

y

x

y

x

y

∂θΩ

∂θΩ

∂θΩ

Figure B.7: Average temperature minimization: (a) problem setting, (b) system (I) (half-
domain), and (c) system (II), where g := f (2) (half-domain). The optimal design of the cloaking
device, in gray, must achieve a reduction in the average temperature of the left surface, ∂cΩ.

Discretizing the topology optimization problem (49) via the finite element method, we finally
obtain

min
χ∈Uad

J (he)
av (θχ) = C2

∫
∂Ω

1∂cΩ(x)N(x)θ̂(1)
χ dΓ = C21

T
∂cΩθ̂

(1)
χ , (50)

whose extended functional is then derived according to Section B.3.2 in order to compute the
topological sensitivity of the cost function. Following the same steps as in Section B.6.1, and
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applying the adjoint method with ŵ = −C2θ̂
(2)
χ to avoid computing the temperature derivative

with respect to the design variable, one finds that problem (50) also requires the resolution of
an auxiliary state equation (system (II)) in addition to the original state equation (system (I)),
which read asKχ θ̂

(1)

χ = f (1) (system I)

Kχ θ̂
(2)

χ = f (2) (system II)
(51)

where

f (2) = −1∂cΩ = −
∫
∂Ω

NT(x)1∂cΩ(x) dΓ . (52)

Introducing the solution of the two state equations, θ̂
(1)

χ and θ̂
(2)

χ , into the corresponding
relaxed topological derivative of the cost function, and after some algebraic manipulations,
detailed in Appendix B.D, one obtains the expression of the pseudo-energy density, expressed
as

ξav(x̂, χ) = γ1(x̂, χ) U1−2(x̂) + γ2(x̂, χ) Ur−2(x̂) , (53)

where U1−2(x̂) and Ur−2(x̂) correspond respectively to the nominal heat conduction energy
density and the nominal heat source energy density, and γ1(x̂, χ) and γ2(x̂, χ) are respectively
the coefficient of these energy densities, which depend on the characteristic function and the
properties of the material. In summary

U1−2(x̂) =
1

2

(
∇θ(2)χ ·κ ·∇θ(1)χ

)
(x̂) (a)

Ur−2(x̂) =
(
rθ(2)χ

)
(x̂) (b)

γ1(x̂, χ) = −2C2(1− βκ)mκ (χκ(x̂))mκ−1 (c)

γ2(x̂, χ) = C2(1− βr)mr (χr(x̂))mr−1 (d)

. (54)

Temperature variance minimization

The second objective function deals with the minimization of the temperature variance over
the cloaking port, ∂cΩ, so the main goal is to design a cloaking device that homogenizes the
temperature on a desired surface. This optimization problem is written as follows

min
χ∈Uad

Jvr(θχ) =C3

∫
∂cΩ

(θχ(x)− Jav(θχ))2 dΓ =

=C3

∫
∂Ω

1∂cΩ(x) (θχ(x)− Jav(θχ))2 dΓ ,

(55)

where the coefficient C3 is equal to the inverse of the measure of the surface, i.e. C3 =
(∫

∂cΩ
dΓ
)−1

,

and, as commented before, the temperature variance is only minimized on a part of the boundary
of the domain described by the indicator function of the surface ∂cΩ, 1∂cΩ(x).

Applying the FEM discretization (70) to expression (55), we finally reach to

min
χ∈Uad

J (he)
vr (θχ) = C3

∫
∂Ω

1∂cΩ(x)
(
N(x)θ̂(1)

χ −N(x)IJ (he)
av

(
θ(1)χ

))2
dΓ =

= C3

(
θ̂(1)
χ − IJ (he)

av

(
θ(1)χ

))T
M∂cΩ

(
θ̂(1)
χ − IJ (he)

av

(
θ(1)χ

)) (56)

with

M∂cΩ =

∫
∂Ω

NT(x)1∂cΩ(x)N(x) dΓ , (57)

Article B. Thermal Optimization 119 Daniel Yago



A new comp. approach to top. opt. in solid mechanics problems Ph.D. Thesis

where I represents an all-ones vector with the same length as θ̂
(1)
χ . Equation (56) is subject to

the volume constraint in equation (46)-(b) and governed by the thermal state equation (46)-
(c). Now, mimicking the procedure followed for the first functional of equation (46)-(a) in
Section B.6.3, we proceed to compute the RTD of the expression (56) via the adjoint method

with ŵ = −C3θ̂
(3)
χ , and introducing the RTD of the average temperature J (he)

av

(
θ
(1)
χ

)
with the

corresponding adjoint state problem, equation (51)-(system (II)).

Finally, one can obtain three state equations, being the first two equations mutual to both
optimizations problems. Thus, the original thermal system (I) is supplemented with two aux-
iliary thermal system: (II) and (III) (where g in Figure B.7 corresponds to f (2) for the first
auxiliary system, while it is equal to f (3) for the second auxiliary system), which are described
by

Kχθ̂
(i)
χ = f (i) ; i = {1, 2, 3} (58)

with

f (3) = −2MT
∂cΩTχ

(
θ(1)χ

)
= −2

∫
∂cΩ

NT1∂cΩ(x)
(
θ(1)χ (x)− J (he)

av

(
θ(1)χ

))
dΓ , (59)

where Tχ
(
θ
(1)
χ

)
corresponds to θ̂

(1)
χ − IJ (he)

av

(
θ
(1)
χ

)
.

After replacing the solutions of both auxiliary systems, θ̂
(2)

χ and θ̂
(3)

χ , into the RTD of

J (he)
vr (θχ) and simplifying the consequent terms, the corresponding spatial energy density, ξ(x̂, χ),

can be written as

ξvr(x̂, χ) =γ3U1−2(x̂) + γ4Ur−2(x̂) + γ5U1−3(x̂) + γ6Ur−3(x̂) (60)

where U i−j(x̂) is the nominal heat conduction energy density for i-th and j-th temperature fields
(i, j = {1, 2, 3}) and Ur−k(x̂) corresponds to the nominal heat source energy density for the k-th
temperature field (k = {1, 2, 3}), which are respectively written as

U1−2(x̂) =
1

2

(
∇θ(2)χ ·κ ·∇θ(1)χ

)
(x̂)

Ur−2(x̂) =
(
rθ(2)χ

)
(x̂)

U1−3(x̂) =
1

2

(
∇θ(3)χ ·κ ·∇θ(1)χ

)
(x̂)

Ur−3(x̂) =
(
rθ(3)χ

)
(x̂)

, (61)

and γi for i = {3, 4, 5, 6} are the corresponding coefficients, defined as
γ3(x̂, χ) = 4C3C2(1− βκ)mκ (χκ(x̂))mκ−1A (a)

γ4(x̂, χ) = −C3C2(1− βr)mr (χr(x̂))mr−1A (b)

γ5(x̂, χ) = −2C3(1− βκ)mκ (χκ(x̂))mκ−1 (c)

γ6(x̂, χ) = C3(1− βr)mr (χr(x̂))mr−1 (d)

, (62)

where

A =
(
Tχ
(
θ(1)χ

))T
M∂cΩI . (63)

For additional details, the reader is addressed to Appendix B.E where intermediate steps are
presented.
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Temperature multi-objective minimization

Topological sensitivity of the cost function Taking into account the expressions obtained
in Sections B.6.3 and B.6.3, we can define the energy distribution of the original problem (equa-
tion (46)) as a linear combination of equations (53) and (60), yielding to

ξ(x̂, χ) = ω ξav(x̂, χ) + (1− ω) ξvr(x̂, χ) , (65)

where the parameter ω adjusts the weight of each objective function (or sensitivity). As previ-
ously mentioned, the sensitivity corresponds to the weighted sum of the sensitivities of the two
problems.

Since each term of the original multi-objective problem (46) has been normalized with its
range (equation (47)), the sensitivity of the scalarized multi-objective problem (48)-(a) includes
some extra terms with respect to equation (65) to account for it, i.e. the sensitivity is expressed
as

ξ̃(x̂, χ) = ω C4 ξav(x̂, χ) + (1− ω)C5 ξvr(x̂, χ) , (66)

Box IV: Topology optimization for average and variance temperature mini-
mization

Problem:
χ∗ = argmin

χ∈Uad

J̃ (he)(χ) = ωJ̃ (he)
av (χ) + (1− ω)J̃ (he)

vr (χ)

s.t. C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1]

Kχθ̂
(i)
χ = f (i) ; i = {1, 2, 3}

(a)

Energy density:

ξ(x̂, χ) =ωC4

[
γ1 U1−2(x̂) + γ2 Ur−2(x̂)

]
+ (1− ω)C5

[
γ3 U1−2(x̂) + γ4 Ur−2(x̂) + γ5 U1−3(x̂) + γ6 Ur−3(x̂)

] (b)

where

U1−2(x̂) =
1

2

(
∇θ(2)χ ·κ ·∇θ(1)χ

)
(x̂);

U1−3(x̂) =
1

2

(
∇θ(3)χ ·κ ·∇θ(1)χ

)
(x̂)

Ur−2(x̂) =
(
rθ(2)χ

)
(x̂);

Ur−3(x̂) =
(
rθ(3)χ

)
(x̂)

γ1(x̂, χ) = −2C2(1− βκ)mκ (χκ(x̂))mκ−1 ;

γ2(x̂, χ) = +C2(1− βr)mr (χr(x̂))mr−1

γ3(x̂, χ) = +4C3C2(1− βκ)mκ (χκ(x̂))mκ−1A
γ4(x̂, χ) = −C3C2(1− βr)mr (χr(x̂))mr−1A
γ5(x̂, χ) = −2C3(1− βκ)mκ (χκ(x̂))mκ−1

γ6(x̂, χ) = +C3(1− βr)mr (χr(x̂))mr−1

A =
(
Tχ
(
θ(1)χ

))T
M∂cΩI;

(64)
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where
C4 =

1

Jmaxav − J ◦av
C5 =

1

Jmaxvr − J ◦vr

. (67)

As explained before, each topology optimization problem requires auxiliary thermal systems.
We must solve two and three thermal systems for the average temperature minimization and
the temperature variance minimization, respectively. However, the auxiliary thermal system
of the first minimization problem (50) is included into the second minimization problem (56).
Therefore, only the following 3 thermal systems must be solved,

Kχ θ̂
(1)

χ = f (1) (a)

Kχ θ̂
(2)

χ = f (2) = −1∂cΩ (b)

Kχ θ̂
(3)

χ = f (3) = −2MT
∂cΩ

(
θ̂(1)
χ − IJ (he)

av

(
θ(1)χ

))
(c)

. (68)

Closed-form solution The energy distribution, ξ(x̂, χ), of this topology optimization problem
is stated in Box IV. This function combines the energy distributions presented in equations (53)
and (60).

B.7 Representative numerical simulations

In this section, a number of 3D numerical examples to assess the performance of the pro-
posed methodology are presented. Unless otherwise specified, all simulations are done using
an isotropic thermal material with a normalized conductivity κ = 1W/(Km) and a null heat
source (r = 0W/m3). When needed, the heat transfer coefficient is set to h = 1W/(Km2) and
the ambient temperature is fixed to θamb = 283.15K. The material contrast factor and the
corresponding exponent are set to α = 10−3 and m = 516, respectively. The used relaxation
factor is β = 2.51 · 10−1. Tolχ = 10−1, Tolλ = 10−1 and TolC = 10−3 are the used tolerances.
In all cases, eight-node hexahedral (Q1) finite elements are used in the solution of the thermal
state equation.

B.7.1 Thermal compliance minimization. 3D thermal conductor.

This example refers to the minimization of the thermal compliance, as explained in Section
B.6.1, in a thermal component, e.g. heat pipes for a CPU heat sink, in a cubic domain subject
to specific Dirichlet conditions. The aim is to display the potential of the present methodology
for obtaining the optimal topology for heat conduction in a complex analysis domain.

The analysis domain, illustrated in Figure B.8, is a cube, 1x1x1 m, with a rectangular hole
all the way across it, with dimensions 0.1x0.5x1 m, located in the center and oriented in the z
direction. A small prismatic volume, 0.1x0.2x0.2 m, is set in the center of the domain as part of
the initial domain. The radii of the left and right circular areas, highlighted in Figure B.8-(c),
are Rh = 0.075 m and Rc = 0.05 m, respectively. The domain is discretized with a structured
mesh of 120x120x120 hexahedral elements (mesh size he = 8.3·10−3 m), which leads to 1.648.512
hexahedra (see Figure B.8-(b)).

It is assumed that the four areas, colored in red and located on the left surface, with a
prescribed temperature of θh = 293 K are connected with four CPU’s IHS. The other nine
areas, at temperature θc = 278 K, colored in blue, and located on the right face, are coupled to
the cooling system (heat sink). Adiabatic boundary conditions are assumed on the other faces.

16The exponential parameters mi are set on the basis of the authors’ experience.
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Figure B.8: Thermal heat conductor: (a) Setup of the analysis domain, (b) Detailed mesh based
on hexahedral finite elements and (c) Boundary conditions of the problem. The temperature is
prescribed to θh at the four circular regions on the left face (colored in red) while it is set to θc
at the nine circular regions on the right face (colored in blue). The other surfaces are assumed
to be adiabatic.
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Figure B.9: Thermal heat conductor. Thermal compliance minimization: (a) Cost function and

topology evolution, (b) Topology for t = |Ω−(χ)|
|Ω| = 0.75.

For the Laplacian smoothing (see Appendix B.A), a value of τ = 1 is used, resulting in a
parameter ε = 8.3 · 10−3 m. The time interval of interest [0, 0.95] is discretized in 19 equally
spaced steps.

In Figure B.9-(a), the evolution of the cost-function, Jχ, and some representative optimal

topologies are illustrated in terms of the pseudo-time, (t = |Ω−(χ)|
|Ω| ). As it could be expected,

while the soft material increases, the cost function decreases. In Figure B.9-(b), an intermediate
optimal design, when the hard material is the 25% of the total analysis domain, is presented.
The topologies in Figure B.9-(a) show how the hot regions are connected with the cold ones,
minimizing the thermal compliance. In the limit case of imposing very little conductive material
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(high values of t), the obtained optimal topology connects the hot and cold faces with only four
(thin) heat pipes (see also Online Resource 1).

Let us now modify this numerical example in order to consider a not null heat source (r ̸= 0)
inside the design domain, Ω. Then, a heat source of r = 1kW/m3 is considered in the small
prismatic volume, located at the center of the domain (see Figure B.8), which cannot be removed
from the hard material domain. The contrast factor for the heat source is set to α = 1e − 3,
and the exponent is set to m = 1. Both the boundary conditions and the mesh dicretization are
kept unchanged with respect to the definition of the example. In addition, the same value of τ
is used for the Laplacian smoothing. Nevertheless, the time interval of interest [0, 0.85], in this
case, is discretized in 17 equally spaced steps.

Mimicking Figure B.9, Figure B.10-(a) illustrates the evolution of the cost-function through-
out the topology optimization in terms of the pseudo-time, t, along with some optimal topologies.
The optimal topology for t = 0.8 is displayed in Figure B.10-(b). Due to the incorporation of the
heat source in the central prismatic volume, a major change in the optimal topologies between
the two presented situations is observed. In the last situation, the volume, in which the heat
source is added, is also connected to the cold regions on the right side of the domain in order to
dissipate as much heat as possible. In addition, the connection between hot and cold regions,
observed in Figure B.9 for high values of t, gets removed in favor of a better connection to the
heat source.

(a) (b)

x

y

z

Figure B.10: Thermal heat conductor. Thermal compliance minimization including heat source:

(a) Cost function and topology evolution, (b) Topology for t = |Ω−(χ)|
|Ω| = 0.8.

B.7.2 Thermal cloaking optimization

Thermal cloaking via heat flux manipulation. 3D heat flux cloaking device.

The optimization of a 3D thermal cloaking device, surrounding the object to be cloaked, is now
addressed. The goal is to design the optimal topology of the cloaking device by means of the
manipulation of the heat flux around it, as detailed in Section B.6.2. This problem, inspired in
the pioneering work by Fachinotti et al. [8], can be considered a 3D extension of this work, with
the heat flux prescribed to a given constant value. For the solution of the problem, a square
prismatic domain Ω, with dimensions 0.09x0.18x0.09 (in meters), is defined and discretized with
a structured mesh of 100x200x100 hexahedral elements (Figure B.11). The non-dimensional
regularization parameter τ is equal to 0.1 and the pseudo-time interval [0, 0.08] is discretized in
8 steps.
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Figure B.11: Heat flux cloaking device: (a) Analysis domain, with boundary conditions and
dimensions, (b) Detailed mesh and (c) Dimensional details. The cloaked object in green, placed
at the center of the domain, is surrounded by the cloaking device, Ωdev, in orange, whose design
is optimized. The temperature on the left surface is set to θh, while the right one is set to θc.

Domain, Ω, is partitioned in three distinct regions, as illustrated in Figure B.11: 1) the
cloaked object is an ellipsoid, colored in green, located at the center of the analysis domain
(the principal axes of the ellipsoid are d1 = 0.02m and d2 = d3 = 0.0128m, the main axis
being oriented 45◦ with respect to the x and y axes); b) a sphere of diameter d = 0.065m,
shaded in orange, corresponding to the cloaking device to be designed (design domain, Ωdev),
and c) the remaining part of the analysis domain, colored in gray in Figure B.11-(c). Regions
1 and 3 correspond to domain Ωc ≡ Ω \ Ωdev, and the optimization goal is to keep the original
homogeneous heat flux constant and unaffected by the cloaking device in these regions.

The conductivity in Ωc and Ωdev is κ = 0.57 W/(mK) and κ = 403W/(mK), respectively.
In order to obtain a conductivity of κ = 0.22W/(mK) in the soft phase of region 2, a contrast
factor of α = 5.459 · 10−4 is considered, equivalently, m = 5 and β = 0.886 are also considered.

The temperatures on the left and right surfaces of the domain are prescribed to θh = 321.85K
and θc = 283.15K, respectively. The other surfaces are assumed to be adiabatic. Under
these boundary conditions and assuming an homogeneous isotropic thermal material of κ =
0.57W/(mK) for the whole domain, the homogeneous temperature gradient in the x-direction
results in a constant horizontally heat flux q = [245.1, 0, 0] W/m2, which corresponds to the
target heat flux in Ωc.

In Figure B.12-(a), the evolution of the cost function, including some representative optimal
topologies, is presented. A detail of the optimal layout for t = 8% is illustrated in Figure B.12-
(b). In Figures B.13-(a-d), the topology design evolution of the cloaking device is plotted for
different intermediate time steps 17(see also Online Resource 2). Figures B.13-(e-h) represent the
isotherms and the optimal topology layout of both material phases, obtained at the slice parallel
to the x-y plane, and centered along z-axis. As it can be observed in the figure, isotherms tend to
reach an homogeneous temperature gradient configuration18 as t increases (and, thus, more low-
conductivity material is used in the cloaked domain). Also it can be observed that the optimal
design of the cloaking device, and the way it works, are, by no means, obvious. The incoming
horizontal heat flux is modified, by the combination of the low and high conductive materials

17removing an octant of the total domain as well as the hard material for a better visualization of the topology.
18The isotherms for the homogeneous case are vertical, equally spaced, isolines from θh to θc.
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in Ωdev, into two different structures: a low-conductive shell and a low-conductive toroid-like
domain. The thickness of the shell structure increases along time, and strongly modifies the heat
flux near the left and right faces of the cloaking device Ωdev, as it can be observed in Figures
B.13-(f) and B.13-(g). The toroid surrounds the cloaked object and controls the heat flux inside
it, see Figure B.13-(b).

(a) (b)
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y

z

Figure B.12: Heat flux cloaking device: (a) Cost function and topology evolution, and (b)

Topology for t = |Ω−|
|Ω| = 0.08.
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Figure B.13: Heat flux cloaking device: figures (a)-(d): 3D view of intermediate topologies, in
terms of the soft (low conductive) material counterpart, at steps 0, 1, 5 and 8, respectively.
Figures (e)-(h): evolution of the isotherms and layout of the cloaking device at the middle x-
y plane, for the same representative steps. (Color legend: blue→soft material, orange→hard
material and green→cloaked object).
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Thermal cloaking via average and variance temperature minimization. 3D thermal
cloaking device.

Now, a thermal cloaking device is again designed but, this time, aiming at minimizing the
average and variance temperature, on a virtual plane at the surface of the analysis domain, in
which the values and distribution of temperature are measured by an external device (a thermal
camera, for instance). The cloaking device, in Ωdev, should mitigate the distortion produced on
the virtual plane by the (hot) cloaked object. The setup of the problem is displayed in Figure
B.14. The dimensions of the prismatic domain, Ω, are the same than in the previous example,
but a slightly finer finite element mesh is used (150x300x150 linear hexahedral elements). Taking
advantage of the symmetries, only a quarter of the domain is discretized.
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∂cΩ
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Figure B.14: Thermal cloaking device: (a) Analysis domain with its dimensions, (b) Detail of
the mesh, (c) Details of dimensions and (d) Boundary conditions. The cloaked object, in green,
prescribed to a high temperature θ is surrounded by the cloaking device, in orange, which must
distribute the heat to minimize the average and the variance of the temperature on the left face,
∂cΩ.

The domain is again partitioned in three different regions, see Figure B.14-(c). The innermost
region is a sphere of radius R = 0.01m (the hot object to be cloaked, colored in green), which
is completely surrounded by region 2, an ellipsoid shaded in orange (the cloaking device, Ωdev),
of dimensions dx = dz = 0.035m and dy = 0.14m (see Figure B.14). The remaining volume of
Ω defines region 3. The material properties of each region are the same as the ones described in
Section B.7.2. The conductivity of regions 1 and 3 is set to κ = 0.57 W/(mK), while it is set to
κ = 403W/(mK) for the hard material in Ωdev. The contrast factor in Ωdev is α = 5.459 · 10−4.
The temperature of the cloaked object is set to θ = 313K. Left and right surfaces are subjected
to a convective flux described by h = 1W/(Km2) and θamb = 283K. The other surfaces are
assumed to be adiabatic (see Figure B.14-(d)). The regularization parameter is τ = 0.1, and
the time interval [0, 0.05] is split into 10 equally spaced pseudo-time steps.

Following the scheme detailed in Section B.6.3, the optimization problem (46) has to be
solved three times (for ω = 0, ω = 1, and ω = 0.5, respectively). From the results of the first
two optimizations, the values of J ◦av = 308.6K, Jmaxvr = 7.4 · 10−2K2, Jmaxav = 310.4K and
J ◦vr = 9 · 10−3K2, have been determined. In this specific case, the results of the second problem
are not required, since the maximum average temperature is obtained in the first iteration and
the utopia point of the variance can be approximated as J ◦vr = 0K2. Finally, completing the
objective function (48) with the previous parameters, the third optimization problem is solved
for ω = 0.5.
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Figure B.15: Thermal cloaking device: (a) Cost function and topology evolution, and (b) Topol-

ogy for t = |Ω−|
|Ω| = 0.05.
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Figure B.16: Thermal cloaking device: figures (a)-(e): 3D view of intermediate configurations,
illustrated by the soft and hard materials of the cloaking device, for steps 0, 3, 6, 8 and 10.
Figures (f)-(j): Evolution of the temperature field of the left y-z plane, for the same repre-
sentative pseudo-time steps. (Color legend: blue→soft material, orange→hard material and
green→sphere).

The cost function evolution and intermediate topologies are displayed in Figures B.15 and
B.16. In Figures B.16-(a) to B.16-(e), the design evolution of the cloaking device shows how
the hard material (colored in orange), which initially completely fills the design domain, is
progressively replaced by an insulating material (the low-conductive, soft, material colored in
blue), see also Online Resource 3. The final optimal layout of the cloaking device, presented in
Figure B.15-(b), where half of the domain has been removed for the sake of clarity, resembles
a sort of ”spine”, linked with the rest of the domain at its right side while the links at the left
side are scarce and limited to the top and bottom of the ”spine”. Therefore, the internal heat
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generated by the cloaked object is, on one hand, transmitted to the top and bottom regions
of the left surface (∂cΩ) and, on the other, to the complete right surface where the heat is
dissipated by natural convection. The distribution of temperatures obtained on the left surface,
see Figures B.16-(f) to B.16-(j), confirms that as the hard (high-conductive) material tends
to vanish, the temperature resulting in an uniform temperature distribution approaching the
ambient temperature, θamb. This ”a posteriori” analysis, explains the role of that, by no means
obvious, resulting thermal cloaking analysis.

B.7.3 Computational assessment. Variational closed-form solution vs. level
set method

This section, is devoted to analyze the computational performance of the nonsmooth relaxed
variational approach to topology optimization, based on the Relaxed Topological Derivative
(RTD), used in this work for thermal problems, with respect to a level set method driven by the
same Relaxed Topological Derivative. To illustrate the comparison, the example described in
Section B.7.1 is analyzed with both methods. The comparisons are established in terms of the
cost function values and the relative computational cost, which, in turn, is evaluated in terms
of the number of iterations that each method requires to converge with the same tolerances
(Tolχ = 10−1 and TolC = 10−3).19 For a fair comparison, the time interval [0, 0.9] and the
number of steps, 18, are used for both methods.

The level set function, ϕ(x), in the level set method, is updated through a time-evolving
(Hamilton-Jacobi) equation [1], while the volume constraint is satisfied by means of a Lagrangian
multiplier updating scheme20 [24]. The time evolution process continues until both the topology,
defined via the characteristic function, and volume tolerances are satisfied. Therefore, the level
set function is iteratively updated as follows (see [20] for more details)

ϕ(i+1)(x) = ϕ(i)(x)− ∆t

∆χ(i)(x)

δL(χ(i), λ(i))

δχ(i)
(x) (a)

χ(i+1) = Hβ
(
ϕ(i+1)(x)

)
(b)

λ(i+1) = λ(i) + ρ C(χ(ϕ(i))) (c)

, (69)

where
δL(χ(i), λ(i))

δχ(i)
(x) corresponds to the relaxed topological derivative (RTD) of the La-

grangian and ρ ∈ R+ is a suitable penalty value.

We emphasize that the parameter ∆t, in equation (69)-(a), has a remarkable effect in the
convergence rate of this method. For very small values, the method will require many iterations
until convergence is achieved while, for large values of ∆t, results oscillate or even diverge. This
parameter has to be tuned for every problem to find the optimal (convergent and large enough)
value of ∆t. After this, a value of ∆t = 1 · 10−1 has been established for the considered problem
as the optimal one for the comparison purposes. The penalty is set to ρ = 5 · 10−2.

The results of the comparison, as for the cost function is concerned, are depicted in Figure
B.17. The cost function evolution, displayed in Figure B.17-(a), shows close results for both
methods, although the result for some steps may be slightly different. However, significant
improvements, in terms of the total computational cost, are obtained using the closed-form
solutions of the proposed approach, with respect to level set method. This is represented in
Figure B.17-(b), where the accumulative number of iterations is illustrated. From these results,
it can be concluded that the nonsmooth variational approach, is more than an order of magnitude

19The comparison is done in terms of the number of iterations, instead of the computational time, as the compu-
tational cost per iteration is almost equivalent for the two approaches. Additionally, the number of iterations
remains independent of the platform.

20The Cutting&Bisection algorithm in Section B.5 is then replaced by the standard Augmented Lagrangian update,
see equation (69)-(c). At convergence, the volume constraint is fulfilled at he prescribed tolerance.
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(up to 15 times) faster than the level set method, while obtaining similar results in terms of
optimal topologies and cost function. Moreover, the computational cost (number of required
iterations) seems to be uniform along the steps for the nonsmooth closed-form solution approach.

Closed-form solution method

Level set method

(a)

(b)

Closed-form solution method

Level set method

Figure B.17: Thermal heat conductor. Non-smooth variational closed-form method vs level set
method: (a) Cost-function evolution, and (b) Computational cost in terms of the number of
iterations.

B.8 Concluding remarks

In this paper, the nonsmooth variational approach to relaxed topology optimization, proposed
in Oliver et al. [20] for structural problems, has been extended and applied to solve thermal
topology optimization problems involving the analysis of 3D heat conducting components and
thermal cloaking devices. From this work the following conclusions cab be displayed:

• The RVA technique can be readily extended from structural problems to thermal ones.
One, evident, reason for this is that, in spite that the physics, and technical applications
in both sets of problems are very different, the mathematical settings in which they are
inserted are similar. However, problems like thermal cloaking, tackled in this work, which
have not a clear counterpart in structural analysis, have been successfully solved here.
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• The Cutting&Bisection technique used to solve the resulting, fixed point algebraic closed-
form, equations has been tested here beyond the original structural scenario, in which
they were overall positive or negative. Here, the technique has proven to efficiently work
both for constant-sign energy densities (Section B.6.1) but, also, in sign-changing cases
(Sections B.6.2 and B.6.3). This dissipates one of the unknowns pending on this subject.
The success of this algorithm strongly relies on the unique-valued character of the energy
functions, ξ, as it happens in all considered problems of this work.

• As in the structural problems case, the obtainment of the closed-form optimality criteria
solutions only requires the formulation of the cost function, the corresponding energy
density, and a pseudo-time (volume-driven) advancing scheme. The Relaxed Topological
Derivative, as sensitivity for the optimization problem, can be systematically and simply
derived via the classical adjoint method, as proven in the presented applications.

• The presented numerical examples confirm that the proposed approach provides smooth
black-and-white topology designs, also for thermal optimization problems. Mesh-size de-
pendency and checkerboards effects are effectively removed by the the minimum material
filament size control via the Laplacian smoothing technique, so that post-process filtering
algorithms are not necessary.

• In Sections B.7.2 and B.7.2 the approach proves amenable to achieve complex non-trivial
topology layouts, far from being intuitive, and even impossible to obtain without suitable
numerical computational methods.

• In alignment with what was reported in [20] for structural optimization, the computa-
tional cost of the considered method for thermal optimization problems turns out to be
much smaller (more than 15 times for the test considered here) when compared with an,
equivalent, level set method (Hamilton-Jacobi update scheme based on the same Relaxed
Topology Derivative).

In summary, the considered topological optimization methodology, based on

1) Optimizing the distribution of the nonsmooth characteristic function in a variational set-
ting,

2) Resorting the easy-to-derive Relaxed Topological Derivative as sensitivity, and

3) Obtaining closed-form optimality criteria, to be numerically solved using a robust Cut-
ting&Bisection algorithm, in a pseudo-time advancing scheme.

When applied to complex thermal problems, the proposed methodology exhibits the same
encouraging features than in structural problems. Its extension to other families of topology
optimization problems is an ongoing research that will be presented in future works.
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B.A Finite element discretization

The finite element method (FEM) is used to discretize and solve the state-equation (18) and the
required adjoint problems. The temperature field in Ω is approximated via C0 shape functions
as follows21:

θχ(x) ≡ Nθ(x)θ̂χ (70)

where Nθ(x) is the, temperature, shape-function matrix and θ̂χ corresponds to the nodal tem-
perature vector. Equivalently, the gradient of θχ(x) is expressed as

∇θχ(x) ≡ B(x)θ̂χ (71)

where B(x) denotes the gradient matrix. Then, introducing expressions (70) and (71) into the
Fourier’s law, the heat flux, qχ(x), can be written as

qχ(x) ≡ −κχ(x) B(x)θ̂χ . (72)

Finally, the state equation (18), once the previous expressions are replaced, yields to

Kχθ̂χ = f (73)

with 
Kχ =

∫
Ω
BT(x) κχ(x) B(x) dΩ−

∫
∂hΩ

Nθ
T(x)hNθ(x) dΓ

f =

∫
Ω
Nθ

T(x)rχ(x) dΩ−
∫
∂qΩ

Nθ
T(x)q(x) dΓ−

∫
∂hΩ

Nθ
T(x)hθamb(x) dΓ

, (74)

where Kχ and f stand for the stiffness matrix and the external forces vector, respectively.22

A Laplacian smoothing is used to smooth the topology, control the filament size and avoid
checkerboard patterns. The smooth discrimination function, ψτ , corresponds to the solution of{

ψτ (x)− ϵ2∆xψτ (x) = ψ(x) in Ω

∇xψτ (x) · n = 0 on ∂Ω
, (75)

where, ∆x(x, ·) and ∇x(x, ·) stand for the Laplacian and gradient operators, respectively, and
n is the outwards normal to the boundary of the analysis domain, ∂Ω. The FE discretization
of equation (75), considering ψτ (x) = N(x)ψ̂τ , leads to the following system

ψ̂τ = G̃−1f(ψ) (76)

with 
G̃ = M̃ + ϵ2K̃ →


M̃ =

∫
Ω
NT(x)N(x) dΩ;

K̃ =

∫
Ω
∇NT(x)∇N(x) dΩ;

(a)

f(ψ) =

∫
Ω
NT(x)ψ(x) dΩ (b)

(77)

where N(x) stands for the standard interpolation matrix and ψ̂τ is the vector of nodal values of
the field ψτ (x).

21Voigt’s vector/matrix notation is used in what follows.
22From now on, the sub-index θ of Nθ shall be omitted.
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B.B Thermal compliance minimization: cost function derivative

The topological sensitivity of the thermal compliance optimization problem (equation (24)) is
computed in detail in this section via the adjoint method and the Relaxed Topological Derivative
(RTD). Let first rephrase the objective function, J (he)(χ), to incorporate the state equation (73)

J (he)
(χ) =

1

2
fTθ̂χ − ŵT

(
Kχθ̂χ − f

)
︸ ︷︷ ︸

= 0

, (78)

where ŵ corresponds to the solution of the adjoint state problem, as aforementioned. Computing
the RTD of equation (78) and reordering terms, one arrives to

δJ (he)
(χ)

δχ
(x̂) =

(
1

2
fT − ŵTKχ

)
δθ̂χ
δχ

(x̂)

+

(
1

2

δfTχ
δχ

(x̂)θ̂χ − ŵT δKχ

δχ
(x̂)θ̂χ + ŵT δfχ

δχ
(x̂)

)
.

(79)

Substituting ŵ ≡ 1

2
θ̂χ in equation (79), and considering the state equation (73), the expres-

sion can be simplified to

δJ (he)
(χ)

δχ
(x̂) =

1

2
(fT − θ̂T

χKχ)︸ ︷︷ ︸
= 0

δθ̂χ
δχ

(x̂) +

(
δfTχ
δχ

(x̂)θ̂χ −
1

2
θ̂T
χ

δKχ

δχ
(x̂)θ̂χ

)
=

=

[
δfTχ
δχ

(x)θ̂χ −
1

2
θ̂T
χ

δKχ

δχ
(x)θ̂χ

]
x=x̂

.

(80)

Then, considering equations (14)-(17) and replacing the corresponding terms into equation
(80), the Relaxed Topological Derivative of equation (78) can be expressed as

δJ (he)
(χ)

δχ
(x̂) =

∂rχ
∂χ

(x̂)N(x̂)θ̂χ∆χr(x̂)− 1

2
θ̂T
χB

T(x̂)
∂κχ

∂χ
(x̂)B(x̂)θ̂χ∆χκ(x̂) =

=

[
∂rχ
∂χ

N(x)θ̂χ

]
x=x̂

∆χr(x̂)−
[

1

2
∇θTχ (x)

∂κχ

∂χ
∇θχ(x)

]
x=x̂

∆χκ(x̂) =

=
[
mrχ

mr−1(x)r(x)N(x)θ̂χ

]
x=x̂

∆χr(x̂)

−
[

1

2
mκχ

mκ−1(x)∇θTχ (x)κ(x)∇θχ(x)

]
x=x̂

∆χκ(x̂) ,

(81)

which is then written in terms of energy densities, to recover equation (28), as

δJ (he)
(θχ)

δχ
(x̂) =mr (χr(x̂))mr−1 Ur(x̂)∆χr(x̂)−mκ (χκ(x̂))mκ−1 U(x̂)∆χκ(x̂) , (82)

where U(x̂) is the nominal heat conduction energy density and Ur(x̂) is the nominal heat source
energy density, as described in equation (29).

B.C Thermal cloaking via heat flux manipulation: cost function
derivative

This section describes step-by-step the topological sensitivity computation of the thermal cloak-
ing optimization problem (34), mimicking the procedure explained in Appendix B.B. Let us
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then define the extended cost function, J (he)
(χ), i.e.

J (he)
(χ) =

(∫
Ω

1Ωc(x)
∣∣∣qχ (x, θ(1)χ )− q(x)

∣∣∣2 dΩ︸ ︷︷ ︸
E
(
χ,θ

(1)
χ

)

) 1
2

− ŵT
(
Kχθ̂

(1)
χ − f (1)

)
︸ ︷︷ ︸

= 0

,
(83)

which is subsequently derived through the RTD, yielding to

δJ (he)
(χ)

δχ
(x̂) =

1

2

1

J (he)(χ)

δE(χ)

δχ
(x̂)− ŵT δKχ

δχ
(x̂)θ̂(1)

χ

− ŵTKχ
δθ̂

(1)
χ

δχ
(x̂) + ŵT δf

(1)
χ

δχ
(x̂)

(84)

where
δE(χ)

δχ
(x̂) =

[
2 1Ωc(x)

(
qχ(x, θ(1)χ )− q(x)

)T δqχ(χ)

δχ
(x)

]
x=x̂

,

δqχ(χ)

δχ
(x̂) = −δκχ(χ)

δχ
(x̂)∇θ(1)χ (x̂)−κχ∇

δθ
(1)
χ

δχ
(x̂) .

(85)

Introducing expressions (85) into equation (84), and manipulating the terms, we obtain

δJ (he)
(χ)

δχ
(x̂) =

(
−ŵTKχ −C1

(
χ, x̂, θ(1)χ

)
κχ∇

)
︸ ︷︷ ︸

= 0

δθ̂
(1)
χ

δχ
(x̂)

−C1

(
χ, x̂, θ(1)χ

) δκχ(χ)

δχ
(x̂)∇θ(1)χ (x̂)

− ŵT δKχ

δχ
(x̂)θ̂(1)

χ + ŵT δf
(1)
χ

δχ
(x̂) ,

(86)

with

C1

(
χ, x̂, θ(1)χ

)
=

1Ωc(x̂)
(
qχ

(
x̂, θ

(1)
χ

)
− q(x̂)

)T
J (he)(χ)

. (87)

Now, the adjoint problem of equation (86) is solved for ŵ ≡ θ̂
(2)
χ , leading to

δJ (he)
(χ)

δχ
(x̂) =−C1

(
χ, x̂, θ(1)χ

) δκχ(χ)

δχ
(x̂)∇θ(1)χ (x̂)

−
(
θ̂(2)
χ

)T δKχ

δχ
(x̂)θ̂(1)

χ +
(
θ̂(2)
χ

)T δf (1)χ

δχ
(x̂) .

(88)

After applying the RTD to the corresponding terms, equation (88) reads as

δJ (he)
(χ)

δχ
(x̂) =

[(
θ̂(2)
χ

)T
NT(x)

∂rχ
∂χ

(x)

]
x=x̂

∆χr(x̂)

−
[(

θ̂(1)
χ

)T
BT(x)

∂κχ

∂χ
(x)B(x)θ̂(2)

χ

]
x=x̂

∆χκ(x̂)

−
[
C1

(
χ,x, θ(1)χ

) ∂κχ

∂χ
(x)B(x)θ̂(1)

χ

]
x=x̂

∆χκ(x̂) . (89)
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Subsequently, relations (14) and (15) are considered in equation (89), which yields to

δJ (he)
(χ)

δχ
(x̂) =

[
mrχ

mr−1
(
θ̂(2)
χ

)T
NT(x)r(x)

]
x=x̂

∆χr(x̂)

−
[
mκχ

mκ−1
(
∇θ(1)χ

)T
(x)κ(x)∇θ(2)χ (x)

]
x=x̂

∆χκ(x̂)

−
[
mκχ

mκ−1C1

(
χ,x, θ(1)χ

)
κ(x)B(x)θ̂(1)

χ

]
x=x̂
∆χκ(x̂) . (90)

Finally, equation (90) can be reformulated, in terms of pseudo-energies, as

δJ (he)
(χ)

δχ
(x̂) =mr (χr(x̂))mr−1 Ur(x̂)∆χr(x̂)

− 2mκ (χκ(x̂))mκ−1 U1−2(x̂)∆χκ(x̂)

−mκ (χκ(x̂))mκ−1 Uq(x̂)∆χκ(x̂) ,

(91)

where U1−2(x̂) is the nominal heat conduction energy density, Ur(x̂) is the nominal heat source
energy density and Uq(x̂) corresponds to the nominal heat flux energy density, as defined in
equation (43).

B.D Average temperature minimization: cost function deriva-
tive

Let us now proceed with the computation of the topological sensitivity of the average tem-

perature minimization problem (50). As before, let J (he)
av (χ) be the extended cost function,

considering the state equation through the Lagrange multiplier vector, ŵ, defined as

J (he)
av (χ) = C21

T
∂cΩθ̂

(1)
χ − ŵT

(
Kχθ̂

(1)
χ − f (1)

)
︸ ︷︷ ︸

= 0

, (92)

where C2 =
(∫

∂cΩ
dΓ
)−1

.

Applying the RTD to equation (92) and reordering its terms, one obtains

δJ (he)
av (χ)

δχ
(x̂) =

(
−ŵTKχ + C21

T
∂cΩ

) δθ̂(1)
χ

δχ
(x̂)− ŵT δKχ

δχ
(x̂)θ̂(1)

χ + ŵT δf
(1)
χ

δχ
(x̂) , (93)

which is then simplified by choosing ŵ ≡ −C2θ̂
(2)
χ , yielding to

δJ (he)
av (χ)

δχ
(x̂) =C2

((
θ̂(2)
χ

)T
Kχ + 1T∂cΩ

)
︸ ︷︷ ︸

= 0

δθ̂
(1)
χ

δχ
(x̂) + C2

(
θ̂(2)
χ

)T δKχ

δχ
(x̂)θ̂(1)

χ

− C2

(
θ̂(2)
χ

)T δf (1)χ

δχ
(x̂) =

=C2

((
θ̂(2)
χ

)T δKχ

δχ
(x̂)θ̂(1)

χ −
(
θ̂(2)
χ

)T δf (1)χ

δχ
(x̂)

)
.

(94)

Equation (94) is finally discretized using the expressions in Section B.A, which then reads
as

δJ (he)
av (χ)

δχ
(x̂) =C2

(
θ̂(2)
χ

)T
BT(x̂)

∂κχ

∂χ
(x̂)B(x̂)θ̂(1)

χ ∆χκ(x̂)
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− C2

(
θ̂(2)
χ

)T
NT(x̂)

∂rχ
∂χ

(x̂)∆χr(x̂) =

=C2

[
mκχ

mκ−1(x)
(
θ̂(2)
χ

)T
BT(x)κ(x)B(x)θ̂(1)

χ

]
x=x̂

∆χκ(x̂)

− C2

[
mrχ

mr−1(x)
(
θ̂(2)
χ

)T
NT(x)r(x)

]
x=x̂

∆χr(x̂) . (95)

The Relaxed Topological Derivative of the cost function (50) can be finally expressed in
terms of energy densities as

δJ (he)
av (χ)

δχ
(x̂) =2C2mκ (χκ(x̂))mκ−1 U1−2(x̂)∆χκ(x̂)

− C2mr (χr(x̂))mr−1 Ur−2(x̂)∆χr(x̂) ,

(96)

where U1−2(x̂) and Ur−2(x̂) are, respectively, the nominal heat conduction energy density and
the nominal heat source energy density, both defined in equation (54).

B.E Temperature variance minimization: cost function deriva-
tion

Let us now address the corresponding RTD computation of the cost function for the minimization
of the temperature variance (equation (56)), starting by defining the extended cost function as

J (he)
vr (χ) =C3

(
Tχ
(
θ(1)χ

))T
M∂cΩTχ

(
θ(1)χ

)
− ŵT

(
Kχθ̂

(1)
χ − f (1)

)
︸ ︷︷ ︸

= 0

,
(97)

where Tχ
(
θ
(1)
χ

)
and M∂cΩ are respectively defined as

Tχ
(
θ(1)χ

)
= θ̂(1)

χ − IJ (he)
av

(
θ(1)χ

)
,

M∂cΩ =

∫
∂Ω

NT(x)1∂cΩ(x)N(x) dΓ .

Applying the RTD to equation (97) and rearranging the expression, one arrives to

δJ (he)
vr (χ)

δχ
(x̂) =

= 0︷ ︸︸ ︷(
−ŵTKχ + 2C3

(
Tχ
(
θ(1)χ

))T
M∂cΩ

)
δθ̂

(1)
χ

δχ
(x̂)

− 2C3

(
Tχ
(
θ(1)χ

))T
M∂cΩI

δJ (he)
av (χ)

δχ
(x̂)

− ŵT δKχ

δχ
(x̂)θ̂(1)

χ + ŵT δf
(1)
χ

δχ
(x̂) .

(98)

Then, the adjoint state equation can be readily identified from equation (98) and solved for

ŵ ≡ −C3θ̂
(3)
χ , resulting in

δJ (he)
vr (χ)

δχ
(x̂) =− 2C3

(
Tχ
(
θ(1)χ

))T
M∂cΩI

δJ (he)
av (χ)

δχ
(x̂)

+ C3

(
θ̂(3)
χ

)T δKχ

δχ
(x̂)θ̂(1)

χ − C3

(
θ̂(3)
χ

)T δf (1)χ

δχ
(x̂) ,

(99)
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which can be, after inserting the RTD of J (he)
av (χ) (94), expressed as

δJ (he)
vr (χ)

δχ
(x̂) =−2C3

(
Tχ
(
θ(1)χ

))T
M∂cΩI

(
C2

(
θ̂(2)
χ

)T δKχ

δχ
(x̂)θ̂(1)

χ − C2

(
θ̂(2)
χ

)T δf (1)χ

δχ
(x̂)

)

+ C3

(
θ̂(3)
χ

)T δKχ

δχ
(x̂)θ̂(1)

χ − C3

(
θ̂(3)
χ

)T δf (1)χ

δχ
(x̂) .

(100)

Replacing the RTD of the stiffness matrix and the force vector into equation (100), one
arrives to

δJ (he)
vr (χ)

δχ
(x̂) =− 2C3A

(
θ(1)χ

)(
C2

(
θ̂(2)
χ

)T
BT(x̂)

∂κχ

∂χ
(x̂)B(x̂)θ̂(1)

χ ∆χκ(x̂)

− C2

(
θ̂(2)
χ

)T
NT(x̂)

∂rχ
∂χ

(x̂)∆χr(x̂)

)

+ C3

(
θ̂(3)
χ

)T
BT(x̂)

∂κχ

∂χ
(x̂)B(x̂)θ̂(1)

χ ∆χκ(x̂)

− C3

(
θ̂(3)
χ

)T
NT(x̂)

∂rχ
∂χ

(x̂)∆χr(x̂) ,

(101)

where A
(
θ
(1)
χ

)
is equal to

(
Tχ
(
θ
(1)
χ

))T
M∂cΩI. Now we introduce the definition of the conduc-

tivity and the heat source with respect to the topology (equations (14) and (15)) into expression
(101), yielding to

δJ (he)
vr (χ)

δχ
(x̂) =− 2C3A

(
θ(1)χ

)(
C2

[
mκχ

mκ−1
(
θ̂(2)
χ

)T
BT(x)κ(x)B(x)θ̂(1)

χ

]
x=x̂

∆χκ(x̂)

− C2

[
mrχ

mr−1
(
θ̂(2)
χ

)T
NT(x)r(x)

]
x=x̂

∆χr(x̂)

)

+ C3

[
mκχ

mκ−1
(
θ̂(3)
χ

)T
BT(x)κ(x)B(x)θ̂(1)

χ

]
x=x̂

∆χκ(x̂)

− C3

[
mrχ

mr−1
(
θ̂(3)
χ

)T
NT(x)r(x)

]
x=x̂

∆χr(x̂) .

(102)

Finally, the sensitivity
δJ (he)

vr (χ)

δχ
at point x̂ can be written as a sum of actual energies,

which yields to

δJ (he)
vr (χ)

δχ
(x̂) =− 4C3C2mκ (χκ(x̂))mκ−1A

(
θ(1)χ

)
U1−2(x̂)∆χκ(x̂)

+ C3C2mr (χr(x̂))mr−1A
(
θ(1)χ

)
Ur−2(x̂)∆χr(x̂)

+ 2C3mκ (χκ(x̂))mκ−1 U1−3(x̂)∆χκ(x̂)

− C3mr (χr(x̂))mr−1 Ur−3(x̂)∆χr(x̂) ,

(103)

where U i−j(x̂) is the nominal heat conduction energy density for i-th and j-th temperature fields
(i, j = {1, 2, 3}) and Ur−k(x̂) corresponds to the nominal heat source energy density for the k-th
temperature field (k = {1, 2, 3}).
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C.1 Abstract

This paper presents an efficient and comprehensive MATLAB code to solve two-dimensional
structural topology optimization problems, including minimum mean compliance, compliant
mechanism synthesis and multi-load compliance problems. The Unsmooth Variational Topology
Optimization (UNVARTOP) method, developed by Oliver et al. [22], is used in the topology
optimization code, based on the finite element method (FEM), to compute the sensitivity and
update the topology. The paper also includes instructions to improve the bisection algorithm,
modify the computation of the Lagrangian multiplier by using an Augmented Lagrangian to
impose the constraint, implement heat conduction problems and extend the code to three-
dimensional topology optimization problems. The code, intended for students and newcomers
in topology optimization, is included as an appendix (Appendix C.A) and it can be downloaded
from https://github.com/DanielYago/UNVARTOP together with supplementary material.

Keywords: Structural Topology optimization, Relaxed Topological Derivative, Compliance,
Compliant Mechanism, Education, MATLAB code

C.2 Introduction

The dissemination of the Matlab code, included in this paper, is intended for education purposes,
in order to provide students and those new to the field with the theoretical basis for topology
optimization of structural problems as well as to familiarize a wider audience with the new
technique. This article is inspired by similar ones (e.g. [27] and [5]) which presented a Matlab
implementation and possible extensions of other topology optimization approaches for structural
problems.

A wide variety of topology optimization approaches and the corresponding Matlab implemen-
tations can be found in the literature, including the Solid Isotropic Material with Penalization
(SIMP) method ([6, 7] and [27]), the Bidirectional Evolutionary Structural Optimization (BESO)
method ([39, 42] and [45]), the Level-set method using a shape derivative ([2, 3, 34] and [10,
35]), the parameterized Level-set method using Radial basis functions ([37, 36] and [38]), the
Topology Derivative method ([29, 21] and [30]) and the Phase-field approaches ([31, 34, 41] and
[24]), among others. Along years, researchers have adapted or combined some features of these
techniques to propose alternative approaches. Nevertheless, some limitations remain in any of
them.

The Unsmooth Variational Topology Optimization approach, first developed by Oliver et al.
[22], appears to be an alternative to other well-established approaches due to the mathematical
simplicity and robustness of the present method. So far, the UNVARTOP approach has been
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applied in a wide range of linear applications, including static structural [22] and steady-state
thermal applications [40], considering the volume constraint as a single constraint equation, with
promising results, essentially in terms of computational cost.

The domain, in the present approach, is implicitly represented through a 0-level-set function
[23], using the so-called discrimination function ψ, to define a discrete characteristic function,
χ, at each point of the domain, x. This variable, used as design variable, is related to the
discrimination function with the Heaviside function by χ(x) = H(ψ(x)), defining, thus, a black-
and-white design, i.e. a binary configuration with two domains: a void and a material domain.
This definition is in contrast to that used by density-based methods, such as SIMP method, where
the relative density, ρe, in each element is used as design variable see Bendsøe and Sigmund [7].
In addition, this change in the design variable, typically from Level-set methods, allows smooth
representation of the topology (void and material domains) and the corresponding boundary
using the 0-level iso-surface of the discrimination function.

The black-and-white design is relaxed via the ersatz material approach to a bi-material
setting, where the void material is replaced with a soft material, as proposed by Allaire et
al. [1]. Despite this relaxation, the discrete nature of the characteristic function is maintained.
However, this is not true for density-based methods1, which have to be relaxed via a power-
law interpolation function to intermediate values (i.e. between void and solid), leading thus to
the SIMP method, in order to avoid the ill-conditioning of the topology optimization problem
obtaining then blurry interfaces with semi-dense elements, as stated in Sigmund and Petersson
[28].

The aim of a topology optimization must be defined by means of a cost function, which will
be minimized. For each specific cost function, a sensitivity evaluating the variation of it to topo-
logical perturbations must be derived. This derivation may be mathematically challenging for
some topology optimization approaches. For example, the Topology Derivative method requires
heavy analytical derivation methods, dependent on the type of the topology optimization prob-
lem and the considered material in the optimization [14, 21]. However, in the current method, a
consistent relaxed topological derivative is formulated within the ersatz material approach, and
evaluated as a directional derivative of the cost function. Additionally, it can be interpreted
as an approximation of the exact topological derivative, used in Topology Derivative method,
resulting in a simpler and less time-consuming derivation.

Apart from the problem setting and the cost function, the procedure of updating the design
variable is a crucial feature of each approach. Most of the topology optimization methods, that
use a level-set function to define the topology layout at each iteration, update the design variable
via a Hamilton-Jacobi equation using an appropriate velocity at boundaries (in terms of the
precomputed sensitivity) [2, 34]. Despite using an equivalent level-set function (discrimination
function), the topology is not updated neither via a Hamilton-Jacobi [36, 3, 41] nor a Reaction-
Diffusion [24] equations, but it is updated via the solution of a fixed-point, non-linear, closed-
form algebraic system. The fulfillment of the volume constraint is ensured within the closed-form
solution by means of a Lagrange multiplier, similar to the one used with Optimality Criteria
(OC) in SIMP methods, computed through an efficient bisection algorithm.

Almost every technique require some kind of filtering in order to avoid or at least mitigate
the inherent ill-posedness of the topology optimization problem [28]. Through this filtering, the
lack of mesh-independency is overcome. Density-based methods resort to density or sensitivity
filtering, extensively used in density-based approaches. Nevertheless, alternative filters have
been formulated in the last two decades. For instance, projection methods [15] or a Helmholtz
filter [16] are also used for this purpose. This last filter, so called the Laplacian regularization [25,
33] is applied to the discrimination function to control the filament width. A similar approach
is used by Yamada et al. [41] to control the complexity of the optimal design.

Finally, the last key feature is related with the volume constraint and how the requested

1The density-based methods appear also in literature as Variable Density Methods and they should be understood
as synonyms throughout the text.
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volume percentage is achieved. An incremental time-advancing scheme is adopted in the present
methodology for the volume percentage, as a control parameter, obtaining, then, intermediate
converged, optimal topologies. The optimization procedure starts from a domain fully filled with
stiff material. Then, the topology optimization for a given small volume percentage is performed,
obtaining a converged, optimal topology. Subsequently, the volume percentage (pseudo-time in
the algorithm) is increased and the new optimal topology is found. This procedure is repeated
until the desired volume fraction is achieved, similar to the Pareto frontier-optimal tracing ap-
proach proposed by Suresh [30]. Although this implementation is not unique of the current
approach, it differs from SIMP and Level-set based methods, since they directly seek the op-
timal topology for the requested volume fraction. Similar iterative schemes can be found in
ESO/BESO approaches, where the volume fraction is incremented at each iteration until the
final volume is achieved. However, optimal conditions are not fulfilled at these intermediate
volumes.

Thanks to this set of features, the methodology proposed in this manuscript presents a lower
computational cost, around 5 times, when it is compared with other methods, e.g. a Level-set
method with the RTD, while obtaining very similar results, as reported in Oliver et al. [22]
and Yago et al. [40]. In addition, intermediate converged optimal topologies are obtained for
different volume values at no additional computational cost, allowing further decisions once the
topology optimization optimization has finalized.

The remainder of the paper is organized as follows. The unsmooth variational topology opti-
mization approach is briefly described in section C.3 along with the particularities for minimum
mean compliance, multi-load compliance and compliant mechanisms problems. In section C.4,
the code implementation of the present methodology, provided in Appendix C.A, is discussed
in detail. Several numerical examples are addressed in section C.5 to show the potential in the
three optimization problems. Additionally, in section C.6, possible extensions and enhancements
of the code are discussed. Finally, section C.7 concludes with some final remarks.

C.3 Problem formulation

C.3.1 Unsmooth variational topology optimization

Let us define a fixed rectangular design domain, Ω ⊂ R2, composed by two smooth subdomains,
Ω+ and Ω−, as depicted in Figure C.1. These two domains, made respectively of solid and void
materials, are defined via the nonsmooth characteristic function, χ(x) : Ω→ {0, 1}, as{

Ω+ := {x ∈ Ω / χ(x) = 1}
Ω− := {x ∈ Ω / χ(x) = 0}

. (1)

The topology layout can also be implicitly represented by the smooth discrimination func-
tion, ψ(x) : Ω→ R, ψ ∈ H1(Ω), (see Figure C.2) defined as{

Ω+ := {x ∈ Ω / ψ(x) > 0}
Ω− := {x ∈ Ω / ψ(x) < 0}

. (2)

In addition, the characteristic function, χψ(x) : Ω → {0, 1}, can be expressed in terms of the
discrimination function by

χψ(x) = H(ψ(x)) , (3)

where H(·) stands for the Heaviside function evaluated at (·). The characteristic function, used
as the design variable, is now relaxed to χψ(x) : Ω→ {β, 1}, where the void material is replaced
with a soft material with low stiffness (ersatz material approach), with β being the relaxation
factor.
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–

+

Figure C.1: Representation of the fixed design domain Ω.

The topology optimization goal is to minimize a cost function J (χ) subjected to one con-
straint, typically the volume, and governed by the state equations. The classic mathematical
formulation of the corresponding topology optimization problem can be expressed as

min
χ∈Uad

J (χ) ≡
∫
Ω
j(χ,x) dΩ (a)

subject to:

C(χ) ≡
∫
Ω
c(χ,x) dΩ = 0 (b)

governed by:

Equilibrium equation (c)

, (4)

where Uad stands for the set of admissible solutions for χ and C(χ) represents the constraint
functional (e.g. the volume constraint).

+

–

(  = 1)

(  = )

Figure C.2: Topology representation in terms of the discrimination function, ψ.

Following Oliver et al. [22], the Relaxed Topological Derivative (RTD), specific characteristic
of the proposed approach, evaluated as

δJ (χ)

δχ
(x̂) =

[
∂j(χ,x)

∂χ

]
x=x̂

∆χ(x̂) , (5)

measures the sensitivity of the functional (4)-a, in terms of the classical Fréchet derivative ∂(·)
∂χ (x̂)

of the integral kernel, when a material exchange is made at point x̂. The term ∆χ(x̂), denoted
as the exchange function, corresponds to the signed variation of χ(x̂), due to that material
exchange, i.e.

∆χ(x̂) =

{
−(1− β) < 0 for x̂ ∈ Ω+

(1− β) > 0 for x̂ ∈ Ω−
. (6)
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Notice that the RTD of equation (5) will depend on each specific cost function, as detailed in
sections C.3.5 to C.3.7. Mimicking equation (5), the RTD of the volume constraint ((4)-b) is
computed as

δC(χ, t)
δχ

(x̂) =

[
∂c(χ,x)

∂χ

]
x=x̂

∆χ(x̂) =
1

|Ω|
sgn(∆χ(x̂)) , (7)

where C(χ, t) := t− |Ω
−|(χ)
|Ω| = 0 and |Ω−|(χ) =

∫
Ω

1−χ
1−β dΩ. Additionally, the sgn(·) corresponds

to the sign function of (·), while the term t ∈ [0, T ] corresponds to the pseudo-time parameter,
given by the user, used in the pseudo-time-advancing strategy. Notice that the parameter T
stands for the pseudo-time corresponding to the final volume.

The Lagrangian function of the optimization problem (4) can be commonly expressed as

L(χ) = J (χ) + λC(χ, t) , (8)

where the constraint equation, C, multiplied with a Lagrange multiplier, λ, is added to the
original cost function J . The value of λ is such that the volume constraint is fulfilled.

Finally, applying the RTD to equation (8) and considering equations (5) and (7), the opti-
mality condition of the original topology optimization problem can be written as

δL(χ, λ)

δχ
(x̂) =

(
∂j (χ, x̂)

∂χ
∆χ(x̂) + λ sgn(∆χ(x̂))

)
=

= ψ(x̂, χ) = ξ(x̂, χ)− λ ∀x̂ ∈ Ω , (9)

where ψ(x̂, χ) corresponds to the discrimination function and ξ(x̂, χ) is termed the pseudo-
energy and must be computed for each optimization problem, thus obtaining a similar updating
expression to other topology optimization techniques2. Compared to other techniques, the
pseudo-energy is first shifted3 and normalized, yielding to the modified energy density defined
as

ξ̂(x̂) =
ξ(x̂)− χ(x̂)∆shift

∆norm
, (10)

where ∆shift and ∆norm correspond to the shifting and normalization parameters defined at the
first iteration as min(ξ0, 0) and max(range(ξ0),max(ξ0)), respectively. The resultant ψ, after
replacing equation (10) into (9), is subsequently smoothed through a Laplacian regularization,
in contrast to other distance-based filters used in methods such as SIMP or ESO, in order to
mitigate mesh-dependency along with controlling the minimum filament’s size. The smooth
discrimination function, ψτ , corresponds to the solution of{

ψτ − (τhe)
2∆xψτ = ψ in Ω

∇xψτ · n = 0 on ∂Ω
, (11)

where, ∆x(x, ·) and ∇x(x, ·) are respectively the Laplacian and gradient operators, and n is the
outwards normal to the boundary of the design domain, ∂Ω. τ and he stand for the dimensionless
regularization parameter and the typical size of the finite element mesh, respectively.

The topology layout, χ, is updated by means of the Cutting&Bisection algorithm4, in which
the value of λ, which enforces volume constraint (equation (4)-b), is computed. Then, a closed-

2Note that, since |Ω| is constant, it can be included in the Lagrange multiplier, λ, in the second term of the
equation (9).

3The shifting is applied in order to obtain positive pseudo-energy, ξ, in Ω at t = 0, thus, ensuring a converged
topology for this time-step.

4The present Cutting&Bisection algorithm has been so far applied to single constrained topology optimization
problems subject to equality, pseudo-time evolving volume constraints. Further development is required to extend
it to other constraints.
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form solution of the topology optimization problem (4) can be written as
ψ(x̂) := ξ̂(x̂, χ)− λ
χ(x̂) = H(ψτ (x̂))

C(χ(λ), t) = 0

in Ω , (12)

where ψτ (x̂) corresponds to the solution of equation (11) that must be applied at each iteration.
Equation (12) constitutes a fundamental feature of the UNVARTOP method, as aforementioned
in section C.2. Nonetheless, the Laplacian regularization only affects the modified energy density,
ξ̂(x̂, χ), since the term λ is constant, thus leading equation (12) to

ψτ (x̂) := ξ̂τ (x̂, χ)− λ
χ(x̂) = H(ψτ (x̂))

C(χ(λ), t) = 0

in Ω , (13)

where ξ̂τ is the solution of equation (11) for the modified energy density. Due to this modification,
the computational cost of the bisection algorithm is significantly reduced.

For more details on the formulation, the reader is referred to Oliver et al. [22] and Yago et
al. [40], where in-depth discussions are made on each subject.

C.3.2 State problem

The governing variational problem for linear elasticity, in terms of the displacement field (uχ)
and the virtual displacement field (w), can be written as



Find the displacement field uχ ∈ U(Ω) such that

a(w,uχ) = l(w) ∀w ∈ V(Ω)

where

a(w,uχ) =

∫
Ω
∇Sw(x) : Cχ(x) : ∇Suχ(x) dΩ ,

l(w) =

∫
∂σΩ

w(x) · σ(x) dΓ +

∫
Ω
w(x) · bχ(x) dΩ ,

(14)

(15)

(16)

where Cχ and bχ correspond to the fourth order elastic constitutive tensor and the volumetric
force, respectively. In addition, σ(x) stands for the boundary tractions applied on ∂σΩ ⊂ ∂Ω,
while the term ∇S(·) corresponds to the symmetrical gradient of (·). Finally, the set of admissible
displacement fields, U(Ω), is defined as U(Ω) :=

{
u(x) / u ∈ H1(Ω), u = u on ∂uΩ

}
, while the

space of admissible virtual displacement fields is given by V(Ω) :=
{
w(x) / w ∈ H1(Ω), w = 0

on ∂uΩ}.
As in any other topology optimization approach, the constitutive tensor5, Cχ, and the vol-

umetric force, bχ, depend on the topology. Thus, they are mathematically defined in terms of
the characteristic function as follows{

Cχ(x) = χmkk (x)C(x) ; mk > 1

bχ(x) = χmb
b

(x)b(x) ; mb > 1

(17)

(18)

where m(·) stands for the exponential factor of property (·). The lower limit of the relaxed

characteristic function, χβ, is defined through the contrast factor, α(·), and m(·) by β(·) = α
1/m(·)
(·) .

Both C and b denote the corresponding nominal property of the stiff material.

5The constitutive tensor is governed by Hooke’s law, i.e. σ = Cε, with ε being the strain tensor (ε = ∇Suχ(x)).
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Assuming plane-stress condition, the constitutive tensor C is given by

CPstress =
E

1− ν2

 1 ν 0
ν 1 0

0 0
1− ν

2

 , (19)

with E representing the Young’s modulus of the stiff material and ν, the Poisson’s ratio of the
isotropic material.

C.3.3 Finite element discretization

The state equation (14) is now discretized using the standard finite element method [44, 26].
The displacement field and its gradient are approximated as follows

uχ(x) ≡ Nu(x)ûχ (20)

∇Suχ(x) ≡ B(x)ûχ (21)

where Nu(x) and B(x) stand for the displacement, shape function matrix and the strain-
displacement matrix, respectively, and ûχ corresponds to the nodal displacement vector.

Introducing equations (17)-(18) and (20)-(21) into equations (14)-(16), the resultant state
equation reads

Kχûχ = f (22)

with 
Kχ =

∫
Ω
BT(x) Cχ(x) B(x) dΩ

f =

∫
∂σΩ

Nu
T(x)σ(x) dΓ +

∫
Ω
Nu

T(x)bχ(x) dΩ
, (23)

where Kχ and f stand for the stiffness matrix and the external forces vector, respectively. The
element stiffness matrix and the volumetric term of the force vector are numerically integrated
inside each element, Ωe, employing several quadrature points. Subsequently, these terms are
assembled to obtain the global stiffness matrix and force vector.

C.3.4 Algorithm

The flowchart of the algorithm used to obtain the optimal topology layouts in terms of the
characteristic function, χ, is illustrated in Figure C.3.

The algorithm is based on a two-steps procedure: 1) data initialization and FE analysis
pre-processing, e.g. mesh generation, creation of figures, computation of element FE matrices,
assembly of Laplacian regularization matrix, along others, and 2) a topology optimization loop
over time-steps. For each step, the state equation (22) is solved to obtain the displacement
vector, and the corresponding sensitivities are computed (equations (5) and (7)), obtaining then
the pseudo-energy, ξ, dependent on each topology optimization problem defined in subsequent
sections, and the corresponding modified energy density, ξ̂ (equation (10)). The cost function is
then computed via equation (4)-a using the previously computed displacement vector. Then, the
Laplacian regularization is applied to ξ̂ (equation (11)) while the Lagrange multiplier is obtained
by means of a bisection algorithm (equation (13)), thus obtaining the new optimal topology (in
terms of the discrimination function ψ and the corresponding characteristic function χ). If
tolerances are fulfilled6, the topology is considered as converged and then the pseudo-time, t, is
increased. Otherwise, an iteration is carried out with the new topology.

6The L2-norm of the characteristic function and the L∞-norm of the Lagrange multiplier are checked.
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Start Topology optimization

Preprocessing and data initialization (t = t0) [2-58]

Increase pseudo-time (tn+1 = tn + ∆tn+1) [60]

Solve equilibrium equations (FEM)
and compute sensitivity [66-79]

Compute cost function [69]

Apply Laplacian regularization [80-86]

Compute Lagrangian multiplier [88]

Update topology (ψ and χ) [88]

Convergence?
[65,90,94]

Optimal topology layout [100-103]

Last time-
step? [59]

Post-processing [109] and Exit

yes

yes

no

no

Figure C.3: The flowchart for the unsmooth variational topology optimization algorithm with
the corresponding code lines in brackets.

C.3.5 Mean compliance

The main goal of the minimum mean compliance problems is to seek the optimal topology layout,
in terms of the characteristic function, χ, that maximizes the global stiffness of the structure
given specific boundary conditions. That is, the external work produced by applied forces is
minimized. The objective function is written as

J (uχ) ≡ l(uχ) ≡ aχ(uχ,uχ) ≡ 2

∫
Ω

1

2
∇Suχ : Cχ : ∇Suχ dΩ = 2

∫
Ω
Uχ dΩ , (24)

where Uχ can be identified as the actual strain energy density (Uχ = 1
2∇

Suχ : Cχ : ∇Suχ), and
aχ(uχ,uχ) and l(uχ) are the bilinear forms of the elastic problem (14) for w = uχ.

Considering equations (22) and (24), the corresponding finite element discretization coun-
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terpart of problem (4) reads

min
χ∈Uad

J (he)(uχ(t)) ≡ fTûχ(t) (a)

subject to:

C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1] (b)

governed by:

Kχûχ = f (c)

, (25)

where fTûχ denotes the structural compliance.

According to Oliver et al. [22], the relaxed topological derivative with respect to χ(x), using
the adjoint method7, is defined as

δJ (he)
(χ)

δχ
(x̂) =

[
2
δfTχ
δχ

(x)ûχ − ûT
χ

δKχ

δχ
(x)ûχ

]
x=x̂

. (26)

Assuming that no volumetric forces are applied on the domain and substituting the definition
of the relaxed topological derivative of each term (5), equation (26) can be expressed as

δJ (he)
(uχ)

δχ
(x̂) = −2mk (χk(x̂))mk−1 U(x̂)∆χk(x̂) , (27)

where the nominal energy density, U(x̂), is given by

U(x̂) =
1

2

(
∇Suχ : C : ∇Suχ

)
(x̂) ≥ 0 . (28)

Finally, comparing equation (27) with equation (9), the pseudo-energy, ξ(x̂, χ), of topology
problem (25) reads

ξ(x̂, χ) = 2mk (χk(x̂))mk−1 U(x̂)(1− β(x̂)) , (29)

which must be then modified as detailed in equation (10). Discretizing the terms in equation
(29), and after some mathematical manipulations, it can be numerically computed as

ξ(x̂, χ) = γ1û(x̂)T
[
B(x̂)TCB(x̂)

]
û(x̂) , (30)

with γ1 = 2mk (χk(x̂))mk−1 (1− β(x̂)).

C.3.6 Multi-load mean compliance

Multi-load compliance problems are considered a specific case of minimum compliance problems
(see section C.3.5), in which a set of elastic problems with different loading conditions are solved
independently. The objective function (24) is replaced with the weighted average sum of all the
cases, i.e.

J (uχ) ≡
nl∑
i=1

l
(
u(i)
χ

)
≡

nl∑
i=1

∫
Ω
∇Su(i)

χ : Cχ : ∇Su(i)
χ dΩ =

nl∑
i=1

2

∫
Ω
U (i)
χ dΩ , (31)

7The adjoint method is used to avoid explicitly compute the sensitivities of the displacements. The minimum mean
compliance problem is self-adjoint.
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where nl stands for the number of loading states and U (i)
χ corresponds to the actual energy density

of the i-th loading state. Then, according to this new definition, equation (25) is rewritten as

min
χ∈Uad

J (he)(uχ(t)) ≡
nl∑
i=1

f (i)Tû(i)
χ (t) (a)

subject to:

C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1] (b)

governed by:

Kχû
(i)
χ = f (i) ∀i ∈ [1, nl] (c)

. (32)

Equations (26) to (29) are consequently modified to account multiple loading cases, leading
to

ξ(x̂, χ) = γ1

nl∑
i=1

û(i)(x̂)T
[
B(x̂)TCB(x̂)

]
û(i)(x̂) . (33)

Bear in mind that the optimal topology layout will considerably differ from the single mini-
mum compliance problem with all the loads applied at the same time. Multi-load optimization
problems are employed to find a trade-off between optimal topologies for each loading state.

C.3.7 Compliant mechanisms

Compliant mechanisms are flexible structures that transfer an action (force or displacement) at
the input port to the output port, obtaining a desired force or displacement at that port. The
objective function, J , can be expressed in terms of the displacement at the output port, when
maximum displacement is sought, as

J (uχ) ≡ 1Tûχ , (34)

where 1 represents a dummy constant force vector applied only on the output port at the desired
direction. Additional springs, denoted by Kin and Kout, must be considered in the input and
output ports, respectively.

In the context of finite element discretization, like in equation (25), the topology optimization
problem (4) can be expressed as

min
χ∈Uad

J (he)(uχ(t)) ≡ −1Tûχ(t) (a)

subject to:

C(χ, t) := t− |Ω
−|(χ)

|Ω|
= 0 ; t ∈ [0, 1] (b)

governed by:

Kχûχ = f (c)

, (35)

where the cost function (34) has been defined as a minimization problem by changing its sign.
Contrary to the problem of minimal compliance (section C.3.5), the compliant mechanism

problem is not self-adjoint. Thus, an auxiliary state problem must be solved in addition to the
original state problem (22). Both systems present the same stiffness matrix Kχ but different

actions and solutions û
(1)
χ and û

(2)
χ , respectively, defined as{

Kχ û(1)
χ = f (1) (system I)

Kχ û(2)
χ = 1 (system II)

(36)
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Following Oliver et al. [22], the relaxed topological derivative of the optimization problem
(35), once the adjoint state equation (36) has been substituted in, can be expressed as

δJ (he)
(χ)

δχ
(x̂) =

[
û(2) T
χ

δKχ

δχ
(x)û(1)

χ − û(2) T
χ

δf
(1)
χ

δχ
(x)

]
x=x̂

. (37)

As proceeded in section C.3.5, equation (37) can be simplified and expressed in terms of a
pseudo-energy density, yielding to

δJ (he)
(uχ)

δχ
(x̂) = 2mk (χk(x̂))mk−1 U1−2(x̂)∆χk(x̂) , (38)

when volumetric forces are neglected. The corresponding nominal pseudo-energy density can be
determined as

U1−2(x̂) =
1

2

(
∇Su(2)

χ : C : ∇Su(1)
χ

)
(x̂) . (39)

Finally, mimicking equation (30), the pseudo-energy, ξ(x̂, χ), can be obtained as

ξ(x̂, χ) = −γ1û(2)(x̂)T
[
B(x̂)TCB(x̂)

]
û(1)(x̂) . (40)

C.4 MATLAB implementation

The user can run the code from the Matlab prompt with the following Matlab call

UNVARTOP_2D_compliance (nelx ,nely ,nsteps ,Vol0 ,Vol ,k,tau)

where nelx and nely stand for the number of quadrilateral elements in the horizontal and vertical
directions, respectively.8 The following four parameters define the time evolution of the opti-
mization procedure, being nsteps the number of increments to get from the initial void volume
(Vol0) to the final void volume (Vol), and parameter k defines the curvature of the exponen-
tial function, in case this type of time-advancing sequence is preferred. For an equally-spaced
pseudo-time advance, set k to 0. The remaining input variable, tau, rules the minimum filament’s
width of the optimal design. Other variables related with the topology optimization algorithm
and the numerical example (geometry and boundary conditions) are defined inside the function
(see Appendix C.A), and can be modified if needed.

For instance, the code can be called with the input line

UNVARTOP_2D_compliance (100 ,50 ,10 ,0 ,0.5 ,0 ,0.5)

8The design domains are assumed to be rectangular domains discretized with quadrilateral unit square finite
elements.

F

u

x
y

Figure C.4: Cantilever beam: topology optimization domain and boundary conditions.
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Figure C.5: Cantilever beam: topology optimization results.

for the default example, which corresponds to a cantilever beam with a vertical load applied
on the bottom-right corner of Ω, and the displacements are prescribed on the left side of it,
as illustrated in Figure C.4. The algorithm generates two output figures, the first one displays
the optimal topology for each iteration, and the second one shows the evolution of the cost
function Jχ and the void volume, |Ω−| along the time-steps, as depicted in Figure C.5. At the
end, a graphical user interface (GUI) with topology evolution, animated in Online Resource 1,
is shown.

Relevant details of the Matlab code are explained in the following subsections for the min-
imum mean compliance problem (section C.3.5), referring to the code in Appendix C.A, along
with the required modifications to solve the topology optimization problems defined in sections
C.3.6 and C.3.7.

C.4.1 Parameter definition: lines 2-4

Table C.1 shows the list of variables and fields required by the program and used along it,
excluding the variables already defined in the previous section. These parameters can be grouped
in three blocks: all the parameters of the first block are related to the physical problem and the
finite element used in the FEM analysis, the next three parameters conform the second block,
which define the threshold iterations of the algorithm, and the last one defines a structure of
optional parameters to choose which graphics are displayed and which solver is used to solve
the Laplacian regularization.

C.4.2 Geometry definition: lines 5-9

The design domain, as aforementioned, is assumed to be rectangular and discretized with square
elements. The FE mesh is defined via the coordinates and connectivities arrays, named coord and
connect in the code. A coarse example mesh of the default example, see Figure C.4, is illustrated
in Figure C.6, consisting of 15 nodes and 8 elements, numbered in column-wise (top to bottom)
from left to right. The position of each node is defined respect to Cartesian coordinate system
with origin at the left-bottom corner.

The coord matrix is generated using Matlab’s meshgrid function and then, the obtained X,Y

matrices are reshaped into the coordinates matrix, which dimensions are [n x n_dim], i.e.

coord =

[
0 0 0 1 1 . . . 4 4 4
2 1 0 2 1 . . . 2 1 0

]T
. (41)

The connectivity matrix, connect, is constructed following the same procedure for computing
the degree of freedom connectivity matrix, edofMat, described by Andreassen et al. [5]. First,
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Table C.1: List of fields used in the code.

Variable Value Definition

n_dim 2 number of dimensions of the problem
n_unkn 2 number of unknown per node

n_nodes 4
number of nodes per element (e.g. 4 nodes for the
quadrilateral element)

n_gauss {1, 4} total number of quadrature points of the quadrilat-
eral element

n (nelx+1)*(nely+1) total number of nodes
h_e 1 element’s size
alpha0 1e-3 Prescribed value of ψ for active/passive nodes
iter_max_step 20 maximum number of in-step iterations
iter_min_step 4 minimum number of in-step iterations
iter_max 500 maximum number of iterations

opt.Plot_top_iso {true, false} Boolean variable to plot the topology along itera-
tions

opt.Plot_vol_step {true, false} Boolean variable to plot the evolution of the volume
along iterations

opt.EdgeColor
{’none’, RGB-
color} RGB color of the sides of the quadrilateral elements

opt.Solver_Lap
{’direct’, ’itera-
tive’} method to solve the Laplacian regularization

matrix nodenrs is created with node IDs in a (nely+1)x(nelx+1) matrix in line 7, mimicking the
numbering in Figure C.6. Next, the left-bottom node ID of each element is stored in nodeVec

vector, by using matrix nodenrs. For the given example, this variables are defined as follows:

nodenrs =

 1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

 → nodeVec = [2, 3, 5, 6, 8, 9, 11, 12]T . (42)

Finally, thanks to the repetitive structure of the grid, the connectivity table, connect, can be
constructed using only nodeVec and numbering within an element in anticlockwise order starting

x

y

F

Figure C.6: Cantilever beam: mesh discretization.
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from the left-bottom node, which reads as

connect =


2 5 4 1
3 6 5 2
...

...
...

...
11 14 13 10
12 15 14 11

 . (43)

C.4.3 Load and boundary definition: lines 10-17

Lines 11-17 define the boundary conditions for the displacement and force field. First, the force
vector, F, and the displacement vector, U, are initialized in lines 11 and 12, respectively. Next,
line 13 assigns the imposed force to the force vector, which corresponds to a downwards force
applied at the bottom right corner, as illustrated in Figure C.4, with a small value to limit
the maximum displacement of the structure. The next line defines the prescribed degrees of
freedom, and stores them in fixed_dofs.

Parameters active_node and passive_node of line 15 are used to force some nodes to be included
in the stiff (Ω+) and soft (Ω−) material domains, respectively. It is done via the modification of
the discrimination function, psi, as in line 54 for the initialization of the discrimination function
or in the bisection algorithm (line 149), by imposing the value alpha0 or -alpha0.

Finally, the list with free degrees of freedom is generated and stored in free_dofs (line 16),
and the displacement of fixed_dofs are prescribed to the corresponding value, e.g. 0.

C.4.4 Material definition: lines 18-19

The material used for the analysis is defined in terms of the Young’s modulus E0, of the stiff
phase (material domain) and the Poisson’s ratio nu, ν (see section C.3.2). In addition, and as
a specific parameter of the algorithm, the coefficient m is defined and prescribed to m=5 for the
minimum mean compliance problem. This coefficient in conjunction with the contrast factor,
alpha, is used to compute the corresponding relaxation factor, beta. Notice that a noticeably
small contrast factor can be imposed for compliance problem.

C.4.5 Animation preparation: lines 20-23

Lines 21-23 initialize the vectors psi_vec, chi_vec and U_vec to 0, which correspond respectively
to the discrimination function, the characteristic function and the displacement vector. This
vectors are used to store the corresponding variables at the convergence of each time-step (line
103), and are later called by the Topology_ evolution GUI.

C.4.6 Finite element analysis preprocessing: lines 24-40

As already mentioned, the regularity in the mesh is highly exploited when computing the global
stiffness matrix, K, to reduce the computational time inside the optimization loop. For that rea-
son, only two element stiffness matrices are required, one for the mixed elements9 and another for
the other elements. The first one, is computed with a central quadrature point posgp1, while the
second one requires at least 4 quadrature points to be correctly integrated, posgp4. The weights
of each point are stored in W1 and W4, respectively. This information is computed by evoking
gauss_points function (lines 111-114) with the total number of point inside the quadrilateral
element, as will be later explained.

Next, the nominal constitutive tensor DE for E0 and nu, assuming plane-stress (equation
(19)), is computed in line 27, by calling D_matrix_stress function. The element stiffness matrix,

9The elements bisected by the zero-level of the discrimination function are sub-integrated with a single quadrature
point according a three-field (ε-σ-û) mixed element. Further details can be found in [22].
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evaluated as

Ke =

∫
Ωe

BT C B dΩ =

ngauss∑
i=1

wi|Ji|BT
i Ci Bi , (44)

is computed in lines 28-34 for solid and void elements, KE. The equivalent nominal matrix,
for bisected elements, KE_cut is computed in lines 35-37. The strain-displacement matrix B,
defined in lines 119-124 (B_matrix), is evaluated in each gauss point along with the corresponding
determinant of the Jacobian. Moreover, the product BTCB for the i-th gauss point is stored
in KE_i and K_cut, respectively.

Finally, the connectivity table of DOFs, edofMat, is generated in line 38 using built-in kron

and repmat functions. Each row represents the degrees of freedom of a different element, e.g.

edofMat =


3 4 9 10 7 8 1 2
5 6 11 12 9 10 3 4
...

...
...

...
...

...
...

...
21 22 27 28 25 26 19 20
23 24 29 30 27 28 21 22

 . (45)

This matrix is now used to compute the indices iK and jK used to generate the global stiffness
matrix as a sparse matrix from the triplets iK, jK and sK, as will be explained later.

Gauss points, Shape function and Cartesian derivatives: lines 110-125

The bilinear quadrilateral element is used in the FE analysis, which consists of four nodes. Its
numerical implementation can be found in the literature [44, 26].

This element is correctly integrated when 4 quadrature points are employed. The position
and weights are computed in gauss_points function (lines 111-114), where the gauss quadrature
points in one direction (parent dimension) are extended to two dimensions, using Matlab’s
meshgrid function. posgp defines the position [ξ, η] in the parent square element, where each
column represent a different point. The weight values are stored in W as a row vector.

The shape matrix, N, (size n_nodes x n_gauss) is computed in lines 116-117 inside N_matrix

function, as explained in [44, 26].
Last, the shape derivatives (size n_dim x n_nodes), the Jacobian matrix J (size n_dim x

n_dim) and the Cartesian derivatives (size n_dim x n_nodes) are obtained in B_matrix for a given
gauss_points (lines 119-124), assuming a square unit element. Finally, the strain-displacement
matrix B for the case of interest is computed (size 3 x n_nodes*n_unkn).

Element Stiffness matrix: lines 125-135

The constitutive tensor of each element depends on the material properties, which are common to
all the elements, and the characteristic function. Due to this regularity, the nominal constitutive
tensor, C, is computed only once for the stiff material properties, in lines 126 and 127, and the
corresponding stiffness matrix is later multiplied by the term χmβ , which depends on each element.
The relaxed characteristic function is calculated in lines 129-131, inside interp_property function,
as follows

coeff =

{
(χ+ (1− χ)β)m for stiffness

m (χ+ (1− χ)β)m−1 (1− β) for sensitivity

with χ ∈ [0, 1].
The global stiffness matrix is assembled at each iteration inside the optimization loop using

Matlab’s sparse function to addition the components with same i-th (iK) and j-th (jK) degree
of freedom, calling assembly_stiff_mat. Its definition is written in lines 133-135, where the third
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component (sK) for the sparse function is computed. Each column of the sK matrix corresponds
to the stiffness matrix of element e. It is worth emphasizing that the bisected elements must be
multiplied by KE_cut.

C.4.7 Laplacian regularization preparation: lines 41-52

Mimicking the preprocessing procedure of the global stiffness matrix (see section C.4.6), the lhs
matrix of equation (11) can be computed just once (lines 42-48), since it does not depend on
the topology but on the mesh, which is regular. Thus, the terms ∇NT∇N and NTN, which
correspond to KE_Lap and ME_Lap defined in lines 42 and 43, are analytically computed and defined
as

KELap =

∫
Ω
BT B dΩ→ KELap =

1

6


4 −1 −2 −1
−1 4 −1 −2
−2 −1 4 −1
−1 −2 −1 4



MELap =

∫
Ω
NT N dΩ→MELap =

1

36


4 −2 −1 −2
2 4 2 1
1 2 4 2
2 1 2 4

 .
Next, combining both matrices and the regularization parameter τ , the lhs matrix is generated

and saved in KE_Lap (line 44). Lines 45 to 47 define the triplets i_KF, j_KF and s_KF, which are
then used to obtain the sparse matrix K_Lap in line 48.

Depending on opt.solver_Lap, the Laplacian regularization will be solved using a direct or an
iterative method. This procedure can be sped up by computing the Cholesky factorization of the
lhs (chol(K_Lap,’lower’)) if the direct method is chosen, or computing the incomplete Cholesky
factorization (ichol(K_Lap,opts), with opts = struct(’type’,’ict’,’droptol’,1e-3,’diagcomp’,0.1))
in case an iterative algorithm is desired. It will be later used as a preconditioner.

The rhs must be computed at each iteration, since it depends on the discrimination function,
psi, as detailed in section C.4.8. Nevertheless, the resolution procedure of equation (11) can be
prepared by computing both the shape matrix, N_T, of size n_nodes x n_gauss 10, and the indexes of
the element nodes i_xi (reshaping the connectivity matrix into a column vector). The assembly
is carried out in lines 83 and 85 evoking accumarray function.

C.4.8 Main program: lines 53-107

The main optimization procedure starts by initializing the topology via the discrimination func-
tion to alpha0, constant to all the nodes, except for those listed in passive_node. Next, the char-
acteristic function is obtained via compute_volume function. Line 57 is used to initialize several
vectors, which will accumulate the convergence variables (cost function, volume and lambda),
and other essential variables. The initial topology is displayed in the next line by means of
plot_isosurface.

The optimization starts in line 59, where the loop over time-steps is defined. As explained
in section C.3.4, the reference pseudo-time is iteratively increased following a linear or expo-
nential expression, which definition is written through lines 186-188, and for each time-step the
optimization loop is repeated until convergence is achieved. The optimization loop (lines 65-99)
consists of five parts: finite element analysis, sensitivity computation, Laplacian regularization,
topology update and convergence check.

Finally, at each iteration, the topology is plotted (line 92), the intermediate results are
printed in display (line 96) and the iteration counters are increased (line 97).

10The matrix is transposed with respect to the common one.
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Finite element code: lines 66-69

The global stiffness matrix, K, is assembled inside assembly _stiff_mat function using the sparse

function, where sK is computed considering the corresponding relaxed characteristic function for
each element. Next, in line 68, the equilibrium equation (22) is solved using a direct method.
The displacements are stored in U. Next, the cost function, J, normalized with the one of the
first iteration (J_ref), can be obtained at the current topology layout.

Sensitivity computation: lines 70-79

According to equation (9), the energy density is defined as the partial derivative of the cost
objective’s kernel multiplied by the exchange function, ∆χ. The energy density is computed in
two parts, in the first one (lines 72 to 75) the sensitivity of non-bisected elements is obtained for
the 4 quadrature points, while the sensitivity for the mixed elements is calculated in the second
part (lines 76 to 78).

The element sensitivity, as detailed in section C.3.5 for the minimum compliance problem, is
computed as mχm−1β uT

eKe,iue (1−β) for the e-th element and the i-th gauss point (see equation
(30)). However, for the bisected elements, the element stiffness matrix Ke,i is replaced by K_cut,
and the resultant value is copied to the four gauss points.

At the first iteration, the parameters xi_shift and xi_norm are defined as

xi_shift = min(0,min(Energy (:)))

xi_norm = max([ range(Energy (:));Energy (:)])

and will be used to obtain the modified energy density, ξ̂(x), described in equation (10).

Laplacian regularization: lines 80-86

As aforementioned, instead of applying the Laplacian regularization (11) to the resultant dis-
crimination function, at each iteration of the bisection algorithm and since it does not affect
constant fields such as λ, the Laplacian regularization is only implemented for ξ̂. The corre-
sponding system is defined as{

ξτ − (τhe)
2∆xξτ = ξ̂ in Ω

∇xξτ · n = 0 on ∂Ω
, (46)

where ξ̂ and ξτ stand for the modified unfiltered energy density and the smooth energy density,
respectively. As commented in section C.3.1, the lhs has been precomputed (see section C.4.7)
and the rhs is now computed based on the modified energy density (field on gauss points). FE
discretization of the rhs leads to

rhs =

∫
Ω
NTξ̂(x) dΩ , (47)

which can be rewritten in matrix form, defined in line 81, as

81 xi_int = N_T*(Energy -xi_shift*chi)/xi_norm;

The nodal contribution of this integral is later constructed by means of the built-in accumarray

Matlab function.
The system of linear equations (46), as mentioned, can be solved using the Cholesky fac-

torization and a direct solver (line 83) or an iterative solver (e.g. minres solver) applying the
incomplete Cholesky factorization as the preconditioner of the system, as described in section
C.4.7.

It is worth to mention that for low number of elements, as it is the case of this paper since
it is for academic purposes, the Laplacian regularization may generate boundary waves for thin
filaments, as displayed in some figures. This undesirable effect should vanish if finer meshes are
used.
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Update of χ and ψ: line 88

The topology layout, satisfying the constraint equation, is obtained by means of a bisection
algorithm (solution of equation (13)) called in line 88. The find_volume functions computes the
Lagrange multiplier λ (lambda), the new discrimination function ψ (psi) and the corresponding
characteristic function χ (chi).

Bisection algorithm: lines 137-152 The bisection algorithm consists of a search for a
suitable bracket, and the subsequent root finding. The left and right extremes of the interval
are easily defined by the minimum and maximum value of the energy density field, and stored
as l1 and l2, respectively. The corresponding constraint values are saved as c1 and c2. Lines
139-141 tests the last λ as a trial extreme of the interval, by means of compute_volume_lambda, to
reduce the number of iterations. The bisection loop is written in lines 142 to 146, where the root
of the constraint equation is estimated as the midpoint of the bracketing interval (line 143).

At each iteration of the bisection, given a density function xi and a trial lambda, the dis-
crimination function is obtained at line 149. The active and passive nodes are considered by
modifying the psi function, as aforementioned. The void volume ratio vol and the characteris-
tic function chi are obtained from compute_volume in line 150. Next, the constraint equation is
evaluated in line 151, and the extremes of the interval are updated accordingly. This procedure
is repeated until the void volume is within 10−4 of the reference time.

Volume computation: lines 153-161 The computation of the volume is done by means
of an integration with 36 quadrature points. This methodology differs for simplicity of the
implementation from the one used in Oliver et al. [22], where a modified marching squares was
employed.

The position and weights of the 36 quadrature points are assigned as defined in [26]. First,
line 158 determines which elements are bisected by the internal boundary through the nodal
value of the discrimination function. In case they all have the same sign, the boundary will not
cross throughout the element. Then, the element nodal ψ, psi_n, is evaluated in the quadrature
points for the bisected elements and saved as psi_x. The characteristic function is obtained as
the dot product of W and phi_x>0. Finally, the void volume ratio is computed in line 161.

Convergence check: lines 90 and 94

Lines 90 and 94 compute the convergence tolerances of the algorithm, along with the constraint
tolerance Tol_constr. The convergence is checked inside the while condition at line 65, and it
only converges when the number of in-step iterations (iter_step) is in between iter_min_step and
iter_max_step, and the three following conditions are satisfied: the L2-norm of the characteristic
function is less than 0.1, the relative difference of the Lagrange multiplier with respect the
previous one is less than 0.1, and the volume magnitude is within 10−4 of the desired pseudo-
time, t_ref.

The optimization terminates if the maximum number of iterations, iter_max, or the maximum
number of in-step iterations are achieved, showing a warning message in command window.

C.4.9 Iso-surface plot: lines 92 (162-172)

The plot_isosurface function shows the optimal topology via the discrimination function psi

in a black-and-white design, as seen in Figure C.5 (top view). The behavior of this function
depends on the iteration, i.e. the first time it is called, a figure is generated and its handle saved
as fig_handle. In addition, the topology is represented using built-in patch function, the handle
of which is stored as obj_handle, by means of the coordinates matrix, connectivity matrix and
the nodal discrimination function. However, only psi field is updated in the other iterations
using set(obj_handle,’FaceVertexCData’,psi);.
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Figure C.7: GUI’s design.

C.4.10 Cost function and volume vs. step plot: line 102 (173-184)

The definition of plot_volume_iter function is similar to that of plot_isosurface function. At
iteration 1, it creates the figure, and two axes using subplot function. The cost function evolution
is illustrated in the top subplot, while the volume evolution is displayed at the bottom. At other
iterations, the lines are updated using set function, with the updated J_vec and vol_vec vectors,
respectively.

C.4.11 Topology evolution GUI: lines 108-109

Once the Topology Optimization problem has been solved, the results can be graphically post-
processed by means of a graphical user interface (GUI), where the topology and displacement
fields are displayed for the set of time-steps. It is created by the following function call:

Topology_evolution(coord ,connect ,[Vol0 ,vol_vec],psi_vec ,chi_vec ,U_vec);

where vol_vec corresponds to the set of pseudo-time values for which the topology has been opti-
mized. Then, psi_vec and chi_vec correspond respectively to the discrimination function (nodal
scalar field) and the characteristic function (element scalar field), each column corresponding
to a different time-step. Similarly, U_vec correspond to the displacement field, where each col-
umn and layer of the array represent a different loading condition and a different time-step,
respectively.

The interface allows to select the field to display (psi, chi or the norm of the displacement
for any load condition) and the style of the representation (surface only, wireframe only and
surface plus wireframe). The user can also choose the scale factor and the displacement field to
deform the mesh as it can be observed in Figure C.7.
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Figure C.8: Multi-load beam: topology optimization domain and boundary conditions.
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The set of push-buttons on the top-left area controls the animation of the topology along
the pseudo-time, the time between time-steps can be modified in the dt text edit field. The
last button corresponds to a toggle-button, which animates indefinitely the topology until it
is clicked. Depending on the chosen loop style option, the topology is animated along the
time-steps (Volume) or along the scale factor for a given time-step (Scale linear and Scale sine).

The possibility to mirror/symmetrize the topology is the last relevant feature of this figure.
A set of checkboxes allow to symmetrize the mesh and its properties on any of the sides of the
domain.

C.4.12 Multi-load mean compliance: code modification

According to section C.3.6, the program can be easily adapted to optimize multi-load problems,
as shown in Figure C.8. Then, the cost function as well as the sensitivity are evaluated as
weighted averages of each individual optimization problem.

First, the loads and boundary conditions are changed to include the second loading state11,
defined in the second column of F:

11 F = sparse(n_unkn*n,2);

12 U = zeros(n_unkn*n,2);

13-1 F(n_unkn*find(coord (:,2)==nely & coord (:,1)==nelx) ,1) = 0.01* nelx;

13-2 F(n_unkn*find(coord (:,2)==0 & coord (:,1)==nelx) ,2) = -0.01* nelx;

Furthermore, an additional column is added to U_vec by replacing line 23 with

23 U_vec = zeros(n_unkn*size(coord ,1),size(U,2),nsteps +1);

Figure C.9: Multi-load beam: optimal topology layout.

Next, the sensitivity computation must be adapted to include multiple loading states, via a
for loop. Then, lines 73-75 are substituted with

73-1 for i_load =1: size(F,2)

73-2 u_e = reshape(U(edofMat(id ,:) ’,i_load),n_nodes*n_unkn ,[]); w_e = u_e;

74 for i=1: n_gauss; Energy(i,id) = Energy(i,id) + sum(w_e .*( KE_i(:,:,i)*u_e)

,1); end

75 end; Energy(:,id) = int_chi .* Energy(:,id);

and equivalently, lines 77 and 78 are replaced by

77-1 for i_load =1: size(F,2)

77-2 u_e = reshape(U(edofMat(id ,:) ’,i_load),n_nodes*n_unkn ,[]); w_e = u_e;

78-1 Energy(:,id) = Energy(:,id) + repmat(sum(w_e .*( K_cut*u_e) ,1),n_gauss ,1);

78-2 end; Energy(:,id) = int_chi .* Energy(:,id);

This example can be simulated by the following line

11More than one additional loading state can be considered.
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UNVARTOP_2D_multiload (50 ,50 ,11 ,0 ,0.55 ,0 ,0.5)

The resultant optimal topology, at tref = 0.55, is displayed in Figure C.9, while the topology
evolution is shown in Online Resource 2. It can be observed in Figure C.10 how much the
topology differs from the single loading condition, when the two loads of Figure C.8 are applied
at the same time.

Figure C.10: Multi-load beam: optimal topology layout when loads are applied at the same
time.

C.4.13 Compliant mechanisms: code modification

Mimicking the previous section, the base code in Appendix C.A also requires some modifications
in order to optimize compliant mechanisms, as depicted in Figure C.11. A second loading state
must be solved to compute the adjoint state w, which is later used in the sensitivity computation.
This second state is loaded with a dummy constant load applied in the output nodes in the same
direction as the desired displacement. Then, the loads and boundary conditions are modified to

11 F = sparse(n_unkn*n,2);

12 U = zeros(n_unkn*n,2);

13-1 F(n_unkn*find(coord (:,2) >=0.9* nely & coord (:,1) ==0) -1,1) = 0.0001* nelx;

13-2 F(n_unkn*find(coord (:,2) >=0.9* nely & coord (:,1)==nelx) -1,2) = -0.0001* nelx;

14-1 fixed_dofs = [reshape(n_unkn*find(coord (:,2)==nely) ,1,[]) ,...

14-2 reshape(n_unkn*find(coord (:,1)==0 & coord (:,2) <=0.1* nely)+(-n_unkn +1:0)

,1,[])];

15-1 active_node = find(coord (:,2) >0.9* nely&(coord (:,1) <0.05* nelx|coord (:,1)

>0.95* nelx));

15-2 passive_node = [];

Notice that the force is applied along a segment, and not only in a single node. Furthermore,
only half of the design is computed thanks to the symmetry of the design and some nodes
surrounding the input and output ports are forced to remain as stiff material.

The properties of the material (line 19) should be also changed to m=3 and alpha=1e-2. This
adjustment increases convergence.

To ensure fast convergence, external springs must be included in the input and output ports
at the same degrees of freedom as the applied forces. These degrees are obtained by means of
the following lines:

id_in = find(F(:,1)); id_in = sub2ind(n_unkn *(nely +1)*(nelx +1)*[1 1],id_in

,id_in);

id_out = find(F(:,2)); id_out = sub2ind(n_unkn *(nely +1)*(nelx +1) *[1 1],

id_out ,id_out);

which must be inserted between lines 17 and 18. These two lists are used inside assembly_stiff_mat

, thus its call has to be replaced by
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Figure C.11: Inverter (compliant mechanism): topology optimization domain and boundary
conditions.

67 [K] = assmebly_stiff_mat (chi ,KE ,KE_cut ,beta ,m,iK ,jK ,n_unkn ,nelx ,nely ,

id_in ,id_out);

as well as its definition at line 133

133 function [K] = assmebly_stiff_mat (chi ,KE,KE_cut ,beta ,m,iK ,jK ,n_unkn ,nelx ,

nely ,id_in ,id_out)

The external springs, using id_in and id_out, are added to the global stiffness matrix after
line 135:

K(id_in) = K(id_in) + 0.002;

K(id_out) = K(id_out) + 0.002;

The prescribed value for the springs must be adjusted for each individual example.

The cost function must be also replaced by the corresponding work at the output port, since
the cost function is defined as the maximization of the output displacement. It is implemented
by the following line:

69 if iter == 1; U_vec (:,:,1)=U; J_ref = -abs(F(:,2) ’*U(:,1)); end; J = F

(:,2) ’*U(:,1)/J_ref;

As in section C.4.12, U_vec must be substituted by

23 U_vec = zeros(n_unkn*size(coord ,1) ,2,nsteps +1);

Finally, the displacements of the adjoint system, used in the calculation of the sensitivity,
must be replaced by the corresponding displacements of the second system. Thus, these lines
are now defined as

73-1 u_e = reshape(U(edofMat(id ,:) ’,1),n_nodes*n_unkn ,[]);

73-2 w_e = -reshape(U(edofMat(id ,:) ’,2),n_nodes*n_unkn ,[]);

and

Figure C.12: Inverter (compliant mechanism): optimal topology layout.
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77-1 u_e = reshape(U(edofMat(id ,:) ’,1),n_nodes*n_unkn ,[]);

77-2 w_e = -reshape(U(edofMat(id ,:) ’,2),n_nodes*n_unkn ,[]);

The optimal topology, for the given boundary conditions, illustrated in Figure C.12 can be
performed with

UNVARTOP_2D_complmechanism (100,50,10,0,0.8, -2 ,0.5)

The resultant compliant mechanism is animated in Online Resource 3.

C.5 Numerical examples

The following numerical examples exhibit the potential of the unsmooth variational topology
optimization technique in 2D problems. Unless otherwise stated, the parameters and material
properties are left as the default examples, for each of the three optimization problems described
in this work. The design domain, the function call and the boundary conditions for each example
are defined in Table C.2.

Domain Matlab’s call Boundary conditions

Fx
y

UNVARTOP_2D_compliance

(100, 50, 12, 0,

0.65, 0, 0.5)

F(n_unkn*find(coord (:,2)==round (0.5*

nely) & coord (:,1)==nelx) ,1) =

-0.01* nelx;

fixed_dofs = reshape(n_unkn*find(coord

(:,1) ==0)+(-n_unkn +1:0) ,1,[]);

active_node = []; passive_node = [];

F

x
y

UNVARTOP_2D_compliance

(150, 50, 10, 0,

0.6, 0, 1)

F(n_unkn*find(coord (:,2)==nely & coord

(:,1) ==0) ,1) = -0.01* nelx;

fixed_dofs = [reshape(n_unkn*find(coord

(:,1) ==0) -1,1,[]) ,...

reshape(n_unkn*find(coord (:,1)==

nelx & coord (:,2) ==0) ,1,[])];

active_node = []; passive_node = [];

x
y

F

UNVARTOP_2D_compliance

(100, 100, 12,

0.36, 0.75, 0,

0.5)

F(n_unkn*find(coord (:,2)==round (0.2*

nely) & coord (:,1)==nelx) ,1) =

-0.01* nelx;

fixed_dofs = reshape(n_unkn*find(coord

(:,1) <=0.4* nelx & coord (:,2)==nely)

+(-n_unkn +1:0) ,1,[]);

active_node = [];

passive_node = find(coord (:,1)>ceil(

nelx *0.4) & coord (:,2)>ceil(nely

*0.4));

x
y

F
UNVARTOP_2D_compliance

(240, 200, 32, 0,

0.775, 0, 0.5)

F(n_unkn*find(coord (:,2)==floor(nely

*1.6/5)) ,1) = -0.01* nelx;

fixed_dofs = [reshape(n_unkn*find(coord

(:,1) ==0) -1,1,[]) ,...

shape(n_unkn*find(coord (:,1) >=5.75/6*

nelx & coord (:,2) ==0)+(-n_unkn +1:0)

,1,[]) ,...

shape(n_unkn*find(coord (:,1)==nelx &

coord (:,2)== floor(nely *1.5/5))

,1,[])];

active_node = find(coord (:,2) >=nely

*1.5/5 & coord (:,2) <=nely *1.6/5);

passive_node = [];
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Domain Matlab’s call Boundary conditions

x
y

F
1 F

2

UNVARTOP_2D_

complmechanism

(150, 75, 14, 0,

0.85, -2, 0.5)

F(n_unkn*find(coord (:,2) >=0.9* nely &

coord (:,1) ==0) -1,1) = 0.0001* nelx;

F(n_unkn*find(coord (:,2)==round (0.9*

nely) & coord (:,1) >=0.9* nelx) ,2) =

0.0001* nelx;

fixed_dofs = [reshape(n_unkn*find(coord

(:,2)==nely) ,1,[]), reshape(n_unkn*

find(coord (:,1)==0 & coord (:,2)

<=0.1* nely)+(-n_unkn +1:0) ,1,[])];

active_node = [find(coord (:,2) >0.9* nely

&coord (:,1) <0.05* nelx); find(coord

(:,2) >0.9* nely&coord (:,2) <=0.95*

nely&coord (:,1) >=0.9* nelx)];

passive_node = [find(coord (:,1) >0.8*

nelx & coord (:,1) <0.9* nelx & coord

(:,2) >0.8* nely); find(coord (:,1)

>=0.9* nelx & coord (:,2) >0.95* nely)

];

x
y

F
1

F
2

UNVARTOP_2D_multiload

(200, 100, 24, 0,

0.6, 0, 0.5)

F(n_unkn*find(coord (:,2)==0 & coord

(:,1)==round(nelx /2)) -1,1) = -0.01*

nelx;

F(n_unkn*find(coord (:,2)==0 & coord

(:,1)==round(nelx /2)) ,1) = -2*0.01*

nelx;

F(n_unkn*find(coord (:,2)==0 & coord

(:,1)==round(nelx /2)) -1,2) = 0.01*

nelx;

F(n_unkn*find(coord (:,2)==0 & coord

(:,1)==round(nelx /2)) ,2) = -2*0.01*

nelx;

fixed_dofs = reshape(n_unkn*find((coord

(:,1)==0 & coord (:,2) ==0) | (coord

(:,1)==nelx & coord (:,2) ==0))+(-

n_unkn +1:0) ,1,[]);

active_node = []; passive_node = [];

C.5.1 Cantilever beam

A variation of the initial examples is now performed. In this case, the load is not applied
at the bottom-right corner but in the middle of the right side of the domain, as depicted in
the first row of Table C.2. Dirichlet conditions are not modified, i.e. the displacements are
prescribed on the left boundary of the domain. The optimal topology layout, for the last time-
step, is illustrated in Figure C.13, with the values from Table C.2. That is, the interval of
interest [0, 0.65] is discretized with 12 equally spaced steps and the regularization parameter
is prescribed to τ = 0.5. In addition, the topology evolution, shown in the animation (Online
Resource 4), is displayed in Figure C.14 for time-steps 2, 4, 7, and 10. Similar results obtained
with other optimization techniques can be found in [30, 8, 43, 11].

C.5.2 Messerschmitt-Bölkow-Blohm (MBB) beam

Half of the MBB-beam, with an aspect ratio of 3:1, is optimized in the second example. Symme-
try is assumed on the left side of the domain and the vertical displacement at the bottom-right
corner is constrained, as observed in Table C.2, and only a point-wise load is applied at the
top-left corner. The last requested tref = 0.6 is achieved in 10 time steps. Figure C.15 depicts
the resulting optimal topology layout using the provided code, adapted with the corresponding
boundary conditions (see second row of Table C.2). Additionally, Online Resource 5 displays
the animation of optimal topologies for the given time-steps. The results are comparable to
those presented by [27, 5, 32, 43, 11], among others.
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Figure C.13: Cantilever beam (load applied at the middle): optimal topology layout.

(a) (b)

(c) (d)

Figure C.14: Cantilever beam: topology evolution. (a) optimal topology at tref = 0.11, (b)
optimal topology at tref = 0.22, (c) optimal topology at tref = 0.38 and (d) optimal topology
at tref = 0.54.

Figure C.15: MBB beam: optimal topology layout.

C.5.3 L-Shaped structure

The L-Shaped structure, shown in Table C.2, represents a simplified version of a hook. The
domain has a prescribed void zone in the top right area, defined by xi ≥ 0.4 and yi ≥ 0.4. All
the nodes contained in this area are listed in passive_node. A single vertical load is applied on the
right side of the domain at y = 0.2.12 The nodes on the top-left boundary (y = 1 and x < 0.4)
are fixed. The optimal configuration, shown in Figure C.16, is obtained by the inputs described
in Table C.2. As in previous examples, the topology evolution is animated in Online Resource
6. Similar optimal designs are obtained by Biyikli and To [8] and Liu and Tovar [18], for 2D
and 3D problems, respectively.

12All measures are relative to the dimensions of the domain.
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Figure C.16: L-shaped structure: optimal topology layout.

C.5.4 Bridge

The fourth numerical example in Table C.2 corresponds to a bridge, which domain is given by
12x5 rectangle. However, only half of it is optimized thanks to the central symmetry. Then, the
horizontal displacement on the left side of the domain is prescribed to 0. In addition, the domain
is supported by a small segment on the bottom-right corner of it and the vertical displacement
is prescribed at the right side of the road. A distributed vertical downside load is applied on the
road, which does not change throughout the optimization procedure (i.e. it can not be removed
since all its nodes are included in active_node list). The corresponding boundary conditions of
this problem are listed in Table C.2.

The optimal topology, at tref = 0.775, is displayed in Figure C.17, along with the corre-
sponding animation in Online Resource 7. The topology in Figure C.17 is closely similar to
that obtained by Feijoo et al. [13] and Liang and Steven [17]. Furthermore, the design can be
compared with the solution of a multi-load problem done by [19].

Figure C.17: Bridge: optimal topology layout.

C.5.5 Gripper mechanism

Let us now consider a compliant mechanism different from the one explained in section C.4.13 and
inspired by [22, 41]. The goal of this optimization is to maximize the compressive displacement at
the output port (vertical displacement at the top-right side) when an horizontal force is applied
at the input port (top-left side of the domain). The domain is supported by a small area in

Daniel Yago 166 Article C. Educational implementation

https://github.com/DanielYago/UNVARTOP/blob/master/Online_Resources/ESM_07.gif


Ph.D. Thesis A new comp. approach to top. opt. in solid mechanics problems

the bottom-left corner and symmetry is applied on the top side of Ω, as it can be observed in
Table C.2 (fifth row). A small area in the output port is set to soft material (i.e. included in
passive_node list) in order to represent the gap in the jaws of the gripper. Furthermore, some
stiff material areas are restricted in both ports, and the corresponding spring stiffness values
must be replaced by 0.01.

Figure C.18: Gripper (compliant mechanism): optimal topology layout. The central hinge is
highlighted with a gray square.

Figure C.19: Gripper (compliant mechanism): close-up view of the central hinge.

The pseudo-time is updated following an exponential expression in 14 time steps. The
given optimal topology of Figure C.18 is obtained evoking UNVARTOP_2D_compl mechanism function
with the appropriate boundary conditions. A close-up view of the central hinge is illustrated
in Figure C.19, where the flexible (thin) material, circled in red, performs as a hinge. The
compliant mechanism of Figure C.18 is animated in Online Resource 8, where the displacements
are updated following a sinus function.

C.5.6 Michell multi-load structure

The last numerical example corresponds to a multi-load mean compliance problem with two
loading states. The 2x1 rectangular domain is supported by its two bottom corners and subjected
to a pair of forces in the middle of the bottom side at an angle of 30° with respect to the vertical.
The desired pseudo-time is prescribed to 0.6, which optimal topology is illustrated in Figure C.20.
The topology animation is given in Online Resource 9.

The topology layout, as already noted, deviates from the corresponding optimal topology
when both loads are applied at the same time, as shown in Figure C.21. In this setting, the
bottom bars, which connect the supporting nodes with the central node, have been removed.
The problem definition is based on [19]. Other variations can be found in [10, 32].
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Figure C.20: Multi-load michell structure: optimal topology layout.

Figure C.21: Multi-load michell structure: optimal topology layout when loads are applied at
the same time.

C.6 Extensions

C.6.1 Bisection algorithm

The bisection algorithm of the cutting&bisection algorithm, which estimates the solution as the
midpoint of the bracketing interval (see section C.4.8), can be easily improved by introducing
either a regula falsi method [9] or a more sophisticated method, like the Anderson-Björk with
Illinois algorithm [4]. These two mathematical techniques reduce the number of iterations
required to find the root of the constraint equation ((25)-b), C.

Regula falsi

In order to compute the test lambda13 through the regula falsi approximation inside the bisection
algorithm [9], line 143 must be replaced by

143 lambda = l1 - c1*(l2-l1)/(c2-c1);

where l1 and l2 stand for the left and right λ brackets, while c1 and c2 are respectively the
corresponding constraint values. The linear interpolation with the endpoints of the bracketing
interval is used to find the value of the root, i.e. the root is approximated as the intersecting
point between the line joining the extremes and the x-axis. Next, the subinterval is updated by
checking the sign of the constraint equation at lambda, as mentioned in section C.4.8, until the
tolerance is attained.

13The Lagrange multiplier is denoted as lambda in the code.
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Anderson-Björck with Illinois algorithm

The regula falsi method usually converges faster than the the regular bisection algorithm. How-
ever, for some specific situations, it can show slower convergence. To avoid these numerical
instabilities, the Anderson-Björck algorithm with an Illinois algorithm [4] is implemented. 14

Lines 143 and 152 are changed to:

143 lambda = l1 - c1*(l2-l1)/(c2-c1);

and

152-1 if c2*Tol_constr <=0; l1=l2; c1=c2; l2=lambda; c2=Tol_constr;

152-2 else; g=1- Tol_constr/c2; g=(g-0.5) *(g>0) +0.5; l2=lambda; c1=g*c1; c2=

Tol_constr; end

With these changes, the number of iterations and the computational cost/time of the optimiza-
tion procedure is reduced.

C.6.2 Plane-strain assumption

The corresponding constitutive tensor, C, for the plane-strain assumption

CPstrain =
E

(1− ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0

0 0
1− 2ν

2

 (48)

can be easily used by replacing the definition of the constitutive tensor of the plane-stress
assumption, see section C.3.2, in lines 126-127 with the following

126 function [DE] = D_matrix_strain(E,nu) %Planestrain

127 DE = E/((1+nu)*(1 -2*nu))*[(1-nu) nu 0;nu (1-nu) 0;0 0 (1-2*nu)/2];

Line 27 must be also modified, to call the D_matrix_strain function, to

27 [DE] = D_matrix_stress(E0 ,nu);

C.6.3 Augmented Lagrangian to impose volume constraint

The constraint equation (25)-b, C, can be also imposed through an Augmented Lagrangian
method [20], which updates the lagrangian multiplier according the following definition

λi+1 = λi + ρCi , (49)

to prescribed an equality constraint. The penalty value, ρ, can be either set to a constant value
or increased along iterations, which improves convergence rate. Then, the penalty coefficient is
updated as

ρi+1 =

{
min (1.02ρi, 100ρ0) for |Ci+1 − Ci| < 10−3

ρi otherwise ,
(50)

where ρ0 corresponds to the initial penalty value and i represents the i-th iteration. The values
1.02 and 100 can be modified at the user’s discretion, and will highly depend on each specific
numerical example. In this implementation, the Lagrangian equation (8) is defined as

L = J + λC +
1

2
ρC2 . (51)

14On one hand, the Illinois method [12] seeks to eliminate the ill-condition generated by permanently retaining
one of the end-points (always set to the left bracket in the code). This issue is fixed by multiplying the retained
extreme point by g = 0.5. On the other hand, Anderson-Björck algorithm improves the regula falsi approach
by combining linear interpolation (when the left bracket should be replaced) with parabolic interpolation (when

the right bracket should be replaced). Furthermore, it includes an Illinois-scheme with g = 1− C(λ)
C(λ2)

, when g is
positive, or 0.5, otherwise.
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In order to impose the constraint with this methodology, a few changes need to be made to
the original code of Appendix C.A. First, the initialization of constraint vector and the penalty
value must be initialized by inserting

Tol_constr_vec = []; rho = rho0;

between lines 57 and 58, and the constraint must be computed before starting the optimization
loop, just below line 64:

Tol_constr = t_ref - vol;

and stored in the corresponding vector after line 95

Tol_constr_vec = [Tol_constr_vec ,abs(Tol_constr)];

The convergence criteria of line 65 must be also changed to include the constraint equation as
an extra convergence condition by introducing abs(Tol_constr)>1e-3.

Second, the bisection algorithm (lines 137-146) and its function call in the optimization loop
(line 88) must be replaced with the corresponding updating of λ and ρ (equations (49) and (50)),
defined as

function [lambda ,rho ,chi ,psi ,vol ,Tol_constr] = find_volume (iter ,xi ,connect ,

active_node ,passive_node ,t_ref ,lambda ,rho ,rho0 ,alpha0 ,Tol_constr ,

Tol_constr_vec)

lambda = lambda + rho * Tol_constr;

psi = xi - lambda; psi(passive_node) = -alpha0; psi(active_node) = alpha0;

[vol ,chi] = compute_volume (psi ,connect);

Tol_constr = -(vol -t_ref);

if iter >=3; rho = min (0.02* rho*(abs(diff(Tol_constr_vec(end -1: end))) <1e-3) +

rho ,100* rho0); end

and

88 [lambda ,rho ,chi_n ,psi ,vol ,Tol_constr] = find_volume (iter ,xi ,connect ,

active_node ,passive_node ,t_ref ,lambda ,rho ,rho0 ,alpha0 ,Tol_constr ,

Tol_constr_vec);

Last, the cost function must be computed according equation (51), which takes into account
the constraint equation. The additional terms are summed in one extra line under line 69:

J = J + nelx*nely*( lambda*Tol_constr + rho*Tol_constr ^2)/J_ref*xi_norm;

C.6.4 Thermal problem

According to Yago et al. [40], the implementation of the thermal compliance problem is rather
analogous to the structural mean compliance problem, detailed in section C.3.5. In that case,
the temperature, θ̂, is the only unknown per node (n_unkn=1) and the steady-state problem is
used as the state equation. Therefore, the cost function (24) has to be replaced by

J (θχ) ≡ 1

2
l(θχ) =

1

2
aχ(θχ, θχ) =

1

2

(∫
Ω
∇θχ ·κχ ·∇θχ dΩ

)
=

∫
Ω
Uχ dΩ , (52)

where l(θχ) and aχ(θχ, θχ) correspond to the bilinear forms of the thermal problem. Furthermore,
∇θχ and κχ represent the thermal gradient vector and the symmetric second order thermal
conductivity tensor, respectively. Unlike the elastic material behavior used in section C.3.2,
the conductive material follows Fourier’s law, i.e. the heat flux is proportional to the thermal
gradient by q(x, χ) = −κ(x, χ) ·∇θχ(x).
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The state equation (14) must be also substituted by



Find the temperature field θχ ∈ U(Ω) such that

a(w, θχ) = l(w) ∀w ∈ V(Ω)

where

a(w, θχ) =

∫
Ω
∇w(x) ·κχ(x) ·∇θχ(x) dΩ ,

l(w) = −
∫
∂qΩ

w(x)q(x) dΓ +

∫
Ω
w(x)rχ(x) dΩ ,

(53)

(54)

(55)

where U(Ω) and V(Ω) stand for the corresponding set of admissible temperature fields and the
corresponding space of admissible virtual temperature fields, respectively. r(x, χ) and q(x) cor-
respond respectively to the heat source function and the prescribed heat flux on the boundaries
of Ω.

After applying the RTD to equation (52), mimicking the procedure described in section
C.3.5, the resultant pseudo-energy, ξ(x̂), is expressed as

ξ(x̂, χ) = −mκ (χκ(x̂))mκ−1 U(x̂)∆χκ(x̂) , (56)

with

U(x̂) =
1

2

(
∇θχ ·κ ·∇θχ

)
(x̂) ≥ 0 . (57)

Several modification to the provided code, based on equation (52) to (56), are required
in order to solve thermal problems. The most relevant ones are listed next: the number of
unknowns per node must be set to 1, the gradient matrix, B, must be adjusted to be equal
to the Cartesian derivatives, the material property is now the conductivity value of the high
conductive material instead of E and ν and the constitutive tensor κ is now defined as

κ = κ

[
K11 K12

K21 K22

]
. (58)

In addition, boundary condition must be defined accordingly to the thermal problem.

C.6.5 3D extension

The topology optimization code UNVARTOP can be readily extended to solve 3D problems.
All the functions related to FE analysis must be rewritten, starting from the mesh, the shape
matrices N, the corresponding strain-displacement matrices B and the constitutive tensor C.
Therefore, element stiffness matrices should be recomputed, along with the stiffness and mass
matrices for the Laplacian regularization. It is recommended to use an iterative solver (e.g. minres
solver) to compute the displacements, as employed for the Laplacian regularization (see section
C.4.8), in order to reduce computational cost. Function compute_volume must be slightly adapted
to hexahedral elements. In addition, functions isosurface, isocaps and isonormals must be used
to represent the optimal topology.

It is important to notice that the algorithm inside the topology optimization does not require
any modification.

C.7 Conclusions

This paper has presented the 2D implementation in Matlab of the unsmooth variational topol-
ogy optimization approach, previously formulated for structural [22] and thermal [40] topology
optimization problems. The paper described and implemented the approach for educational
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purposes while demonstrating its capabilities and maintaining high computational efficiency
and readability of the code. Furthermore, the implementation preserves the finite element anal-
ysis of the domain, thus introducing students to the numerical analysis as well as the topology
optimization field.

The numerical examples performed in this work illustrate the potential and effectiveness of
the technique to tackle a large set of different problems with a volume constraint, e.g minimum
mean compliance problems (section C.3.5), multi-load mean compliance problems (section C.3.6)
and compliant mechanisms synthesis (section C.3.7). The set of numerical examples include a
variety of boundary conditions, active and passive nodes, number of time-steps, along others.
Additionally, section C.6.4 shows how to easily switch from the structural problem of minimum
mean compliance to the thermal problem, where thermal compliance is minimized. Finally,
section C.6.5 provides some guidelines for the extension of the code to the resolution of 3D
problems.

The topologies obtained for these examples are comparable to those shown by other re-
searchers using more established techniques (e.g. SIMP method or Level-set method). In addi-
tion, smooth topology configuration have been obtained in all the benchmarks with a relatively
small number of iterations. That is a feature to be highlighted against more conventional tech-
niques based on elemental densities, such as SIMP method.

In conclusion, the dissemination of this code will provide newcomers in this field a better
understanding in how this new topology optimization approach works as well as to encourage
future research of this technique for miscellaneous applications.

The Matlab code, detailed in appendix C.A, along with some variations of it, can be down-
loaded from the author’s GitHub repository https://github.com/DanielYago/UNVARTOP. Ad-
ditional online resources, such as figures and animations, are also stored in the repository.
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C.A Matlab code

1 function [iter ,J] = UNVARTOP_2D_compliance (nelx ,nely ,nsteps ,Vol0 ,Vol ,k,tau)

2 n_dim = 2; n_unkn = 2; n_nodes = 4; n_gauss = 4; n = (nelx +1)*(nely +1); h_e

= 1; alpha0 = 1e-3;

3 iter_max_step = 20; iter_min_step = 4; iter_max = 500;

4 opt = struct(’Plot_top_iso ’,1,’Plot_vol_step ’,1,’EdgeColor ’,’none’,’

solver_Lap ’,’direct ’);

5 %% Vector for assembling matrices

6 [X,Y] = meshgrid (0:nelx ,nely : -1:0); coord = [X(:),Y(:)]; clear X Y

7 nodenrs = reshape (1:n,1+nely ,1+ nelx);

8 nodeVec = reshape(nodenrs (1:end -1,1:end -1)+1,nelx*nely ,1); clear nodenrs;
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9 connect = nodeVec +[0 nely +[1 0] -1]; clear nodeVec;

10 %% Loads and boundary setting for Cantilever beam

11 F = sparse(n_unkn*n,1);

12 U = zeros(n_unkn*n,1);

13 F(n_unkn*find(coord (:,2)==0 & coord (:,1)==nelx) ,1) = -0.01* nelx;

14 fixed_dofs = reshape(n_unkn*find(coord (:,1) ==0)+(-n_unkn +1:0) ,1,[]);

15 active_node = []; passive_node = [];

16 free_dofs = setdiff (1:( n_unkn*n),fixed_dofs);

17 U(fixed_dofs ,:) = 0;

18 %% Parameter definition

19 m = 5; E0 = 1; alpha = 1e-6; beta = nthroot(alpha ,m); nu = 0.3;

20 %% Prepare animation

21 psi_vec = zeros(size(coord ,1),nsteps +1);

22 chi_vec = zeros(size(connect ,1),nsteps +1);

23 U_vec = zeros(n_unkn*size(coord ,1) ,1,nsteps +1);

24 %% Finite element analysis preparation

25 [posgp4 ,W4] = gauss_points(n_gauss);

26 [posgp1 ,W1] = gauss_points (1);

27 [DE] = D_matrix_stress(E0 ,nu);

28 KE = zeros(n_nodes*n_unkn ,n_nodes*n_unkn);

29 KE_i = zeros(n_nodes*n_unkn ,n_nodes*n_unkn ,n_gauss);

30 for i=1: n_gauss

31 [BE,Det_Jacobian] = B_matrix(posgp4(:,i),n_unkn ,n_nodes);

32 KE_i(:,:,i) = BE ’*DE*BE;

33 KE = KE + KE_i(:,:,i)*Det_Jacobian*W4(i);

34 end

35 [BE_cut ,Det_Jacobian_cut] = B_matrix(posgp1 ,n_unkn ,n_nodes);

36 K_cut = BE_cut ’*DE*BE_cut;

37 KE_cut = K_cut*Det_Jacobian_cut*W1(1);

38 edofMat = kron(connect ,n_unkn*ones(1,n_unkn)) + repmat(1-n_unkn:0,1, n_nodes)

;

39 iK = reshape(kron(edofMat ,ones(n_nodes*n_unkn ,1)) ’,(n_nodes*n_unkn)^2* nelx*

nely ,1);

40 jK = reshape(kron(edofMat ,ones(1,n_nodes*n_unkn)) ’,(n_nodes*n_unkn)^2* nelx*

nely ,1);

41 %% Laplacian filter preparation

42 KE_Lap = 1/6* [ 4 -1 -2 -1;-1 4 -1 -2;-2 -1 4 -1;-1 -2 -1 4];

43 ME_Lap = 1/36*[ 4 2 1 2; 2 4 2 1; 1 2 4 2; 2 1 2 4];

44 KE_Lap = ME_Lap + (tau*h_e).^2* KE_Lap;

45 i_KF = reshape(kron(connect ,ones(n_nodes ,1))’,n_nodes ^2* nelx*nely ,1);

46 j_KF = reshape(kron(connect ,ones(1,n_nodes))’,n_nodes ^2* nelx*nely ,1);

47 s_KF = reshape(KE_Lap (:)*ones(1,nelx*nely),n_nodes ^2* nelx*nely ,1); clear

KE_Lap ME_Lap;

48 K_Lap = sparse(i_KF ,j_KF ,s_KF);

49 if strcmp(opt.solver_Lap ,’direct ’); LF = chol(K_Lap ,’lower ’); clear K_Lap

i_KF j_KF s_KF;

50 else; LF = ichol(K_Lap , struct(’type’,’ict’,’droptol ’,1e-3,’diagcomp ’ ,0.1));

clear i_KF j_KF s_KF; end

51 i_xi = reshape(connect ’,n_nodes*nelx*nely ,1);

52 N_T = N_matrix(posgp4).*W4/4;

53 %% Loop over steps

54 psi = alpha0*ones(n,1); psi(passive_node) = -alpha0; psi(active_node) =

alpha0; psi_vec (:,1)=psi;

55 [~,chi] = compute_volume (psi ,connect); chi0_step = chi; chi_vec (:,1) = chi

’;

56 % Initialize variables

57 iter = 1; J_vec = []; vol_vec = []; lambda_vec = 0; lambda = 0; fhandle6 =

[];

58 [fhandle2 ,ohandle2] = plot_isosurface ([],[],0,psi ,coord ,connect ,1,opt);

59 for i_step = 1: nsteps

60 [t_ref] = set_reference_volume(i_step ,Vol0 ,Vol ,nsteps ,k);

61 % Main loop by steps

62 Tol_chi = 1;

63 Tol_lambda = 1;

64 iter_step = 1;
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65 while ((( Tol_chi >1e-1 || Tol_lambda >1e-1) && iter_step <iter_max_step) ||

iter_step <= iter_min_step)

66 % FE-analysis

67 [K] = assmebly_stiff_mat (chi ,KE ,KE_cut ,beta ,m,iK ,jK ,n_unkn ,nelx ,nely);

68 U(free_dofs ,:) = K(free_dofs ,free_dofs) \ (F(free_dofs ,:) - K(free_dofs ,

fixed_dofs)*U(fixed_dofs ,:));

69 if iter == 1; U_vec (:,:,1)=U; J_ref = full(abs(sum(sum(F.*U,1) ,2))); end;

J = full(sum(sum(F.*U,1) ,2))/J_ref;

70 % Calculate sensitivities

71 Energy = zeros(n_gauss ,nelx*nely);

72 id = chi ==1| chi ==0; int_chi = interp_property (m,m-1,beta ,chi(id));

73 u_e = reshape(U(edofMat(id ,:) ’,1),n_nodes*n_unkn ,[]); w_e = u_e;

74 for i=1: n_gauss; Energy(i,id) = sum(w_e .*( KE_i(:,:,i)*u_e) ,1); end

75 Energy(:,id) = int_chi .* Energy(:,id);

76 id = ~id; int_chi = interp_property (m,m-1,beta ,chi(id));

77 u_e = reshape(U(edofMat(id ,:) ’,1),n_nodes*n_unkn ,[]); w_e = u_e;

78 Energy(:,id) = repmat(int_chi .*sum(w_e .*( K_cut*u_e) ,1),n_gauss ,1);

79 if iter == 1; xi_shift = min(0,min(Energy (:))); xi_norm = max(range(Energy

(:)),max(Energy (:))); end

80 % Apply Laplacian regularization

81 xi_int = N_T*(Energy -xi_shift*chi)/xi_norm;

82 if strcmp(opt.solver_Lap ,’direct ’)

83 xi = LF ’\(LF\accumarray(i_xi ,xi_int (:) ,[n 1]));

84 else

85 [xi ,flag] = minres(K_Lap ,accumarray(i_xi ,xi_int (:) ,[n 1]) ,1e-6,500,LF ,LF

’); assert(flag == 0);

86 end

87 % Compute topology

88 [lambda ,chi_n ,psi ,vol] = find_volume (xi ,connect ,active_node ,passive_node ,

t_ref ,lambda ,alpha0);

89 lambda_vec = [lambda_vec ,lambda ];

90 Tol_lambda = (lambda_vec(iter +1)-lambda_vec(iter))/lambda_vec(iter +1);

91 % Plot topology

92 [fhandle2 ,ohandle2] = plot_isosurface(fhandle2 ,ohandle2 ,iter ,psi ,coord ,

connect ,J,opt);

93 % Update variables

94 Tol_chi = sqrt(sum((chi -chi_n).^2))/sqrt(sum(chi0_step .^2));

95 chi = chi_n;

96 fprintf(’ Step :%5i It.:%5i Obj .:%11.4f Vol .:%7.3f \n’,i_step ,iter_step ,J,

vol);

97 iter_step = iter_step +1; iter = iter +1;

98 drawnow;

99 end

100 chi0_step = chi;

101 if J<10

102 [fhandle6 ,J_vec ,vol_vec] = plot_volume_iter(fhandle6 ,i_step ,J_vec ,J,

vol_vec ,vol ,opt.Plot_vol_step ,6,’Cost function Step’,’#step’,’+-b’);

103 psi_vec(:,i_step +1)=psi; chi_vec(:,i_step +1)=chi ’; U_vec(:,:,i_step +1)=U;

104 end

105 if iter_step >= iter_max_step; warning(’VarTopOpt:Max_iter_step ’,’Maximum

number of in-step iterations achieved.’); break; end

106 if iter > iter_max; warning(’VarTopOpt:Max_iter ’,’Maximum number of

iterations achieved.’); break; end

107 end

108 %% Animation

109 Topology_evolution(coord ,connect ,[Vol0 ,vol_vec],psi_vec ,chi_vec ,U_vec);

110 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

111 function [posgp ,W] = gauss_points (n_gauss)

112 if n_gauss ==1; s = 0; w = 2; else; s = sqrt (3) /3*[-1 1]; w = [1 1]; end

113 [s,t] = meshgrid(s,s); posgp = [s(:) t(:)]’;

114 W=w’*w; W=W(:) ’;

115 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

116 function [N] = N_matrix(posgp)

117 N = 0.25*(1+[ -1 1 1 -1]’*posgp (1,:)).*(1+[ -1 -1 1 1]’* posgp (2,:));

118 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%
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119 function [BE,Det_Jacobian ,cart_deriv] = B_matrix(posgp ,n_unkn ,n_nodes)

120 dshape = 0.25*[ -1 -1;1 -1;1 1;-1 1]’.* flip (1+[-1 -1;1 -1;1 1;-1 1]’.*posgp

,1);

121 Jacobian_mat = dshape *[0 0;1 0;1 1;0 1];

122 Det_Jacobian = det(Jacobian_mat);

123 cart_deriv = Jacobian_mat\dshape;

124 BE = zeros(3,n_unkn*n_nodes); BE([1 3],1: n_unkn:end) = cart_deriv; BE([3

2],2: n_unkn:end) = cart_deriv;

125 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

126 function [DE] = D_matrix_stress(E,nu) %Planestress

127 DE = E/(1-nu^2) *[1 nu 0; nu 1 0;0 0 (1-nu)/2];

128 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

129 function [coeff] = interp_property (m,n,beta ,chi)

130 coeff = chi + (1-chi).*beta;

131 coeff = double(m==n).* coeff.^m + double(m~=n).*m*coeff.^n*(1-beta);

132 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

133 function [K] = assmebly_stiff_mat (chi ,KE,KE_cut ,beta ,m,iK ,jK ,n_unkn ,nelx ,

nely)

134 sK = interp_property(m,m,beta ,chi).*KE(:); sK(:,chi ~=1& chi ~=0) =

interp_property(m,m,beta ,chi(chi ~=1& chi ~=0)).* KE_cut (:);

135 K = sparse(iK ,jK ,sK ,n_unkn *(1+ nelx)*(1+ nely),n_unkn *(1+ nelx)*(1+ nely)); K =

(K+K’)/2; clear sK;

136 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

137 function [lambda ,chi ,psi ,vol ,Tol_constr] = find_volume (xi ,connect ,

active_node ,passive_node ,t_ref ,lambda ,alpha0)

138 l1 = min(xi); c1 = t_ref; l2 = max(xi); c2 = t_ref -1; Tol_constr = 1; iter

=1;

139 if lambda >l1 && lambda <l2

140 [chi ,psi ,vol ,l1,l2,c1 ,c2 ,Tol_constr] = compute_volume_lambda(xi ,connect ,

active_node ,passive_node ,t_ref ,lambda ,l1,l2,c1,c2,alpha0);

141 end

142 while (abs(Tol_constr)>1e-4) && iter <1000

143 lambda = 0.5*( l1+l2);

144 [chi ,psi ,vol ,l1,l2,c1 ,c2 ,Tol_constr] = compute_volume_lambda(xi ,connect ,

active_node ,passive_node ,t_ref ,lambda ,l1,l2,c1,c2,alpha0);

145 iter = iter + 1;

146 end

147 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

148 function [chi ,psi ,vol ,l1,l2,c1,c2,Tol_constr] = compute_volume_lambda(xi ,

connect ,active_node ,passive_node ,t_ref ,lambda ,l1 ,l2 ,c1 ,c2 ,alpha0)

149 psi = xi - lambda; psi(passive_node) = -alpha0; psi(active_node) = alpha0;

150 [vol ,chi] = compute_volume (psi ,connect);

151 Tol_constr = -(vol -t_ref);

152 if Tol_constr > 0, l1 = lambda; c1 = Tol_constr; else; l2 = lambda; c2 =

Tol_constr; end

153 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

154 function [volume ,chi] = compute_volume (psi ,connect)

155 P = [-1 -1;1 -1;1 1;-1 1]; dvol = 1/4;

156 s = [ -0.9324695142031521 -0.6612093864662645 -0.2386191860831969

0.2386191860831969 0.6612093864662645 0.9324695142031521]; [s,t] =

meshgrid(s,s);

157 w = [ 0.1713244923791704 0.3607615730481386 0.4679139345726910

0.4679139345726910 0.3607615730481386 0.1713244923791704]; W=w’*w; W=W(:)

’;

158 psi_n = psi(connect); chi = sum((sign(psi_n)+1) ,2) ’/8; id = chi ~=1& chi ~=0;

159 phi_x = psi_n(id ,:) *((1+P(:,1)*s(:) ’).*(1+P(:,2)*t(:) ’)/4);

160 chi(1,id) = (W*(phi_x >0) ’+ 0.5*W*( phi_x ==0) ’)*dvol;

161 volume = 1 - sum(chi) / size(connect ,1);

162 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

163 function [fig_handle ,obj_handle] = plot_isosurface(fig_handle ,obj_handle ,

iter ,psi ,coord ,connect ,J,opt)

164 if opt.Plot_top_iso

165 if iter ==0; fig_handle = figure (2); set(fig_handle ,’Name’,’Topology ’);

caxis([-1 1]); colormap(flip(gray (2)));

166 axis equal tight; xlabel(’x’); ylabel(’y’); title ([’J = ’,num2str(J)]);
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167 obj_handle = patch(’Vertices ’,coord ,’Faces’,connect ,’FaceVertexCData ’,psi ,

’EdgeColor ’,opt.EdgeColor ,’FaceColor ’,’interp ’);

168 else

169 set(0, ’CurrentFigure ’, fig_handle); set(get(gca ,’Title’),’String ’,[’J = ’

,num2str(J)]);

170 set(obj_handle ,’FaceVertexCData ’,psi);

171 end

172 end

173 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

174 function [fig_handle ,J_vec ,vol_vec] = plot_volume_iter(fig_handle ,iter ,J_vec

,J,vol_vec ,vol ,opt_plot ,fig_num ,fig_name ,xlabel_name ,linestyle)

175 J_vec = [J_vec ,J]; vol_vec = [vol_vec ,vol];

176 if opt_plot

177 if iter ==1; fig_handle = figure(fig_num); set(fig_handle ,’Name’,fig_name);

178 subplot (2,1,1); plot(J_vec ,linestyle); ylabel(’$\mathcal{J}_\chi$’,’

Interp ’,’Latex ’); xlabel(xlabel_name); grid; grid minor;

179 subplot (2,1,2); plot(vol_vec ,linestyle); ylabel(’|\ Omega^-|’);

xlabel(xlabel_name); grid; grid minor;

180 else; set(0, ’CurrentFigure ’, fig_handle);

181 subplot (2,1,1); set(findobj(gca ,’Type’,’line’),’Xdata’ ,1:numel(J_vec),’

YData’,J_vec);

182 subplot (2,1,2); set(findobj(gca ,’Type’,’line’),’Xdata’ ,1:numel(vol_vec),’

YData’,vol_vec);

183 end

184 end

185 %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%

186 function [vol] = set_reference_volume(iter ,Vol0 ,Volf ,nsteps ,k)

187 if k==0; vol=Vol0+(Volf -Vol0)/nsteps*iter;

188 else; C1=(Vol0 -Volf)/(1-exp(k)); C2=Vol0 -C1; vol=C1*exp(k*iter/nsteps)+C2;

end

Listing 1: UNVARTOP code written in Matlab

Replication of results

The Matlab codes provided in the paper, in Appendix C.A and GitHub repository, are the
same ones used for obtaining the results here presented (Section C.5). Therefore, they can be
fully used as a replication tool, to reproduce those results, as well as to be used in additional
numerical simulations.
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[4] N. Anderson and Å. Björck, “A new high order method of regula falsi type for computing
a root of an equation,” BIT, vol. 13, no. 3, pp. 253–264, Sep. 1973. doi: 10.1007/

bf01951936.

[5] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund, “Efficient
topology optimization in MATLAB using 88 lines of code,” Structural and Multidisci-
plinary Optimization, vol. 43, no. 1, pp. 1–16, Nov. 2010. doi: 10.1007/s00158-010-
0594-7.

Daniel Yago 176 Article C. Educational implementation

https://github.com/DanielYago/UNVARTOP
https://doi.org/10.1007/s002110050253
https://doi.org/10.1016/s1631-073x(02)02412-3
https://doi.org/10.1016/s1631-073x(02)02412-3
https://doi.org/10.1016/j.jcp.2003.09.032
https://doi.org/10.1007/bf01951936
https://doi.org/10.1007/bf01951936
https://doi.org/10.1007/s00158-010-0594-7
https://doi.org/10.1007/s00158-010-0594-7


Ph.D. Thesis A new comp. approach to top. opt. in solid mechanics problems

[6] M. P. Bendsøe, “Optimal shape design as a material distribution problem,” Structural
Optimization, vol. 1, no. 4, pp. 193–202, Dec. 1989. doi: 10.1007/bf01650949.

[7] M. P. Bendsøe and O. Sigmund, Topology Optimization. Springer Berlin Heidelberg, 2004.
doi: 10.1007/978-3-662-05086-6.

[8] E. Biyikli and A. C. To, “Proportional topology optimization: A new non-sensitivity
method for solving stress constrained and minimum compliance problems and its imple-
mentation in MATLAB,” PLOS ONE, vol. 10, no. 12, Y. Shi, Ed., e0145041, Dec. 2015.
doi: 10.1371/journal.pone.0145041.

[9] R. Bulirsch and J. Stoer, Introduction to Numerical Analysis. Springer New York, Dec. 1,
2010, 764 pp., isbn: 144193006X.

[10] V. J. Challis, “A discrete level-set topology optimization code written in matlab,” Struc-
tural and Multidisciplinary Optimization, vol. 41, no. 3, pp. 453–464, Sep. 2009. doi:
10.1007/s00158-009-0430-0.

[11] D. Da, L. Xia, G. Li, and X. Huang, “Evolutionary topology optimization of continuum
structures with smooth boundary representation,” Structural and Multidisciplinary Op-
timization, vol. 57, no. 6, pp. 2143–2159, Nov. 2017. doi: 10.1007/s00158-017-1846-6.

[12] M. Dowell and P. Jarratt, “A modified regula falsi method for computing the root of an
equation,” BIT, vol. 11, no. 2, pp. 168–174, Jun. 1971. doi: 10.1007/bf01934364.

[13] R. A. Feijoo, A. A. Novotny, E. Taroco, and C. Padra, “The topological-shape sensitivity
method in two-dimensional linear elasticity topology design,” Applications of Computa-
tional Mechanics in Structures and Fluids, 2005.

[14] S. M. Giusti, A. A. Novotny, and C. Padra, “Topological sensitivity analysis of inclusion in
two-dimensional linear elasticity,” Engineering Analysis with Boundary Elements, vol. 32,
no. 11, pp. 926–935, 2008. doi: 10.1016/j.enganabound.2007.12.007.

[15] J. K. Guest, J. H. Prévost, and T. Belytschko, “Achieving minimum length scale in topol-
ogy optimization using nodal design variables and projection functions,” International
Journal for Numerical Methods in Engineering, vol. 61, no. 2, pp. 238–254, 2004. doi:
10.1002/nme.1064.

[16] B. S. Lazarov and O. Sigmund, “Filters in topology optimization based on helmholtz-
type differential equations,” International Journal for Numerical Methods in Engineering,
vol. 86, no. 6, pp. 765–781, Dec. 2010. doi: 10.1002/nme.3072.

[17] Q. Q. Liang and G. P. Steven, “A performance-based optimization method for topology
design of continuum structures with mean compliance constraints,” Computer Methods
in Applied Mechanics and Engineering, vol. 191, no. 13-14, pp. 1471–1489, Jan. 2002.
doi: 10.1016/s0045-7825(01)00333-4.

[18] K. Liu and A. Tovar, “An efficient 3d topology optimization code written in matlab,”
Structural and Multidisciplinary Optimization, vol. 50, no. 6, pp. 1175–1196, 2014. doi:
10.1007/s00158-014-1107-x.

[19] C. G. Lopes, R. B. dos Santos, and A. A. Novotny, “Topological derivative-based topology
optimization of structures subject to multiple load-cases,” Latin American Journal of
Solids and Structures, vol. 12, no. 5, pp. 834–860, May 2015. doi: 10.1590/1679-

78251252.

[20] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming. Springer International
Publishing, 2016. doi: 10.1007/978-3-319-18842-3.
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CPB), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), Campus Nord UPC, Mòdul
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D.1 Abstract

The work provides an exhaustive comparison of some representative families of topology opti-
mization methods for 3D structural optimization, such as the Solid Isotropic Material with Penal-
ization (SIMP), the Level-set, the Bidirectional Evolutionary Structural Optimization (BESO),
and the Variational Topology Optimization (VARTOP) methods. The main differences and
similarities of these approaches are then highlighted from an algorithmic standpoint.

The comparison is carried out via the study of a set of numerical benchmark cases using
industrial-like fine-discretization meshes (around 1 million finite elements), and Matlab as the
common computational platform, to ensure fair comparisons. Then, the results obtained for
every benchmark case with the different methods are compared in terms of computational cost,
topology quality, achieved minimum value of the objective function, and robustness of the com-
putations (convergence in objective function and topology). Finally, some quantitative and
qualitative results are presented, from which, an attempt of qualification of the methods, in
terms of their relative performance, is done.

Keywords: Topology optimization, Topological derivative, SIMP method, SOFTBESO method,
VARTOP method, Level-set method, Comparative study, computational cost, topology quality

D.2 Introduction

In the past three decades, topology optimization has become an active research field to seek
new optimal counterintuitive designs in a wide range of problems governed by different physics,
i.e., solid mechanics [143, 125, 8, 23, 124, 31], fluid dynamics [18, 46, 51], thermal dynamics [69,
44, 138], acoustics [113, 37, 36, 72, 75, 99] and electromagnetism [61, 148, 147], among others.
Furthermore, topology optimization of coupled multiphysics problems has been addressed in
recent works, combining structural-thermal interaction [109, 107, 34], structural-fluid interaction
[142, 84, 12, 63] or even thermal-fluid interaction [3, 21, 137, 81]. As a result of this substantial
effort, the optimal design obtained from the minimization of a given topology optimization
problem can be used by engineers as a first approximation in the development of new products
in a wide range of applications.

All up-to-date approaches exhibit certain strengths and weaknesses. As a first approxi-
mation1, optimization techniques can be grouped into two main blocks: (I) methods based on
trial-and-error schemes, e.g., Genetic Algorithms or Ant Colony Algorithms [55, 2, 29, 56, 128,
76], and (II) methods relying on the gradient computation [15, 131, 93, 8, 6, 20, 126]. The main
disadvantage of the former group is their extremely high computational cost as the number of
unknowns increases. This computational cost may become prohibitive for current computational

1For further discussion about the classification, the reader is referred to [100, 40, 33, 114, 35, 87].
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systems since thousands of different layouts must be tested to find the optimal configuration.
Consequently, the algorithms included in the second set are the most widespread algorithms,
e.g., (a) topology optimization within homogenization theory [17], (b) density-based optimization
(SIMP) techniques [15, 86, 16], (c) evolutionary methodologies (ESO)2 [133, 140], (d) Level-set
approaches [7, 8, 125], (e) Topological Derivative method [115], (f) Phase field approach [20, 123,
120], and (g) Variational Topology Optimization (VARTOP) method [90, 135], among others.

Starting with the seminal paper of Bendsøe and Kikuchi [17], numerical methods for topol-
ogy optimization have been extensively developed. In particular, this article was the basis for
a stream of density-based approaches, such as the Solid Isotropic Material with Penalization
(SIMP) method [15, 86, 16], being nowadays one of the most widely used topology optimization
methods. Simple continuous element-wise design variables are used in the formulation and reso-
lution of the topology optimization problem in a fixed design domain, for which Young’s modulus
is defined as a polynomial function of the element-wise density, ρe ∈ (0, 1). The design variable
must be first penalized3 (normally a penalty exponent p ≥ 3 is used) and later regularized, thus
providing almost black-and-white solutions (with semi-dense elements) not ensuring manufac-
turability. On the other hand, a large number of regularization schemes have been suggested
to be used regarding topology optimization, including: (1) filtering, via the classical sensitiv-
ity [110, 111, 108] or density [19, 23] filters, projection techniques [49, 50], morphology-based
filters [112, 122] or Helmholtz-type filters [66, 65], among others, and (2) geometric constraint
techniques, e.g., perimeter constraint [53, 42] or gradient constraints [94]. Through these math-
ematical techniques, significant numerical instabilities [108, 64] resulting from the ill-posedness
of unconstrained topology optimization problems for continuous structures, including gray areas
(semi-dense intermediate elements), checkerboard patterns, and mesh-dependency issues are al-
leviated. Finally, the solution to the topology optimization problem is obtained via the update
of the design variable, through the classical optimality criteria (OC) method [17, 118]4, the mov-
ing asymptotes (MMA) algorithm [119] or other mathematical programming-based optimization
algorithms, among others.

Besides the SIMP method, the Evolutionary Structural Optimization (ESO) method, firstly
introduced by Xie and Steven [133, 131] although similar ideas were presented earlier [102, 83],
is also one of the most used for industrial applications. In the recent years, the ESO approach
has gained widespread popularity due its simplicity and ease of implementation in commercial
FE codes. ESO, considered as a hard-kill method5, relies on a simple heuristic criterion to
gradually remove inefficient material. The elements with low rejection criterion are gradually
removed starting from a full stiff design domain, thus evolving towards an optimum. Contrary
to SIMP, a discrete element design variable, χ ∈ {0, 1}, is used to define the topology layouts,
which are free of gray elements. This change in design variable results in convergence issues
and a high dependency on the initial configuration, thus leading to local optimal solutions [146].
Despite these numerical issues, ESO has been applied to a large range of problems, from the
well-known structural problems [134, 132, 144, 30], including non-linear problems [96, 80], to
thermal problems [68, 69, 95], and contact problems [70, 71]. In addition, the above mentioned
issues are mitigated in its later version, the Bi-directional Evolutionary Structural Optimization
(BESO) method [97, 140, 98], which extends the approach to allow for new elements to be added,
while inefficient elements are removed at the same time. The new material is added either in the
locations near to those elements with a high criterion function value [97, 98] or in those void areas

2The evolutionary approaches appear also in the literature as Sequential Element Rejection and Admission (SERA),
and henceforth they should be considered as synonyms.

3Although existing other interpolation schemes, such as the Rational Approximation of Material Properties
(RAMP) material interpolation [117] or the SINH method [22], the SIMP scheme [15, 145] is the most popu-
lar one in structural optimization due to its simplicity. However, these alternative schemes may be of interest for
topology optimization problems involving alternative physics, e.g., in dynamic problems.

4Other heuristic techniques have been proposed to tackle non-convex topology optimization problems, such as the
modified optimality criteria technique (MOC) [79].

5The removed elements are not included in the subsequent finite element analysis. Consequently, no criterion
function is computed for the void elements.
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with higher criterion function values, computed via a linear interpolation of the displacement
field [140]. However, these extrapolation techniques are not consistent with those used for the
solid elements. As any other density-based method, the sensitivity is commonly regularized via a
checkerboard suppression filter [67], a mesh-independent filter [62] or a perimeter control [141],
similar to the ones used in SIMP, in order to reduce mesh-dependencies. Nevertheless, such
hard-kill BESO methods fail to obtain convergent solutions. For that reason, in later revisions,
Huang and Xie [62] proposed a modified hard-kill BESO to enhance the time-convergence via
a stabilization algorithm, where the historical information is used, in addition to a new mesh-
independent filter and nodal sensitivities. As an alternative to hard-kill ESO/BESO methods,
soft-kill approaches retain the void elements as very soft elements, thus allowing the computation
of the criterion function within the entire domain. Zhu et al. [149] and Huang and Xie [59]
proposed independent approaches that used a penalized density variable. In particular, Huang
and Xie [59] combined the modified BESO method with SIMP material interpolation scheme,
improving the numerical stability and the potential of the methodology. An excellent overview
of some recent developments in topology optimization using ESO is provided in [60].

The last major stream is constituted by Level-set-based methods. In contrast to the previous
topology optimization approaches, the optimal layout is implicitly defined by a scalar function ϕ
(with the sign). Additionally, the structural boundary of the design Γ is represented by the zero-
level iso-contour (or iso-surface) of the level-set function (LSF) [92, 104, 91]. As a result, optimal
designs with sharp and smooth edges are obtained, thus avoiding semi-dense (gray) elements,
like those observed in density-based methods. Many formulations of Level-set-based approaches
have been proposed over the years since Haber and Bendsoe [54] suggested its applications with
topology optimization techniques, e.g., [105, 7, 125, 6]. The most important ones relying on a
level-set function are the Level-set (based on shape derivative), the Topological Derivative, and
the Phase-field methods.

Regarding the original Level-set, Osher and Santosa [93], Allaire et al. [7, 8] and Wang et al.
[125] took up the idea of using the level-set function for topology optimization and combined it
with a shape-derivative-based topology optimization framework. Therefore, only material bound-
aries are altered via shape-sensitivity analysis6 to seek the optimal design. As a consequence,
this set of techniques can not nucleate new holes in the interior of the domain. Therefore, the
resulting optimal solutions are heavily dependent on the initial layouts, which must be made
up of many small holes evenly distributed throughout the domain [8]. This initial configuration
ensures the merging and cancellation of holes via the propagation of the boundaries, while avoid-
ing local optimal solutions. To overcome this limitation, a hole nucleation algorithm [39, 103],
referenced as the bubble technique, was introduced in the topology optimization approach. This
technique allows the creation of new holes in the material domain. Instead of the density variable
used in density-based methods to define the topology design, the level-set function is used here,
with the material domain being those points where the LSF is positive. The geometry in a fixed
mesh is typically mapped to a mechanical model using either immersed boundary techniques
(e.g., via X-FEM [38]) or density-based mapping (e.g., via relaxed Heaviside functions [125])
[130]. When using the second mapping, the stiffness coefficients are expressed in terms of the
level-set function via approximated Heaviside functions, i.e., the ersatz material approximation
is used [4, 32], where the void material is replaced with a soft material. In addition, the LSF
is commonly updated using a Hamilton-Jacobi (HJ) equation [93, 125, 8]7, thus requiring the
solution of a pseudo-time PDE equation. Although this updating scheme tends to converge to
smooth topologies, it may require a huge number of iterations8, as well as the regular application
of reinitialization algorithms to a signed-distance function. These reinitializations must be ap-

6The basis of this approach lies in computing the sensitivity of the functional when a normal infinitesimal defor-
mation is applied on the boundaries of the domain [116].

7However, other updating schemes have been proposed over the years, such as the resolution of a set of ordinary
differential equations in the approaches using radial basis functions (RBFs) [129, 127] or a system of algebraic
equations using compactly supported RBFs (CSRBFs) [77, 78], among others.

8When an explicit scheme is performed, the time-step is limited by the CFL condition.
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plied each time there are significant shape-changes or after a hole nucleation process [8, 125], thus
reducing the efficiency of the approach. Nevertheless, it has been extensively used for a broad
range of design problems, including structural problems [5], vibration problems [93, 5], thermal
problems [52], among others. As an alternative to HJ equations, updating procedures based on
mathematical programming are used, e.g., using the parameters of the discretized level-set func-
tion as optimization variables (for instance radial basis functions (RBF) and spectral methods)
[129, 77]. Finally, as described for density-based approaches, the topology optimization problem
must be regularized to ensure mesh-independence and improve convergence. It can be achieved
either by a filtering procedure or a constraint equation, e.g., perimeter constraint [8, 85].

Alternatively to Level-set using the shape-derivative framework, and after the mathemati-
cal development of the topological derivatives [115, 27, 45], some researchers incorporated the
concept of the topological derivative into a shape-sensitivity-based Level-set method, thus leading
to the Topological Derivative approach [24, 6]. A similar algorithm as in classical Level-set is
performed. However, in contrast to those prior methods, this topology optimization technique
can nucleate holes in the interior of the material domain by using the topological gradient or
topological derivative. The sensitivity is defined as the variation of the objective function due
to the insertion of an infinitesimal spherical void at any point x in the design domain Ω, thus
avoiding the stagnation in local optimal solutions. Nevertheless, the topological gradient must be
analytically derived through rather complex mathematics for each of the topology optimization
problems, e.g., structural linear optimization [45, 47, 89], thermal orthotropic optimization [48,
82], microstructure topology optimization [14, 10], among others. This mathematical opera-
tor represents an extra step required to proceed with the optimization, burdening its potential
against other techniques with sensitivities easier to compute. The topological derivative was
first incorporated in conjunction with shape-derivative as a way to systematically nucleate holes
[24, 6, 28, 43], similar as in Level-set with the bubble technique. In later revisions, the topolog-
ical derivative was used exclusively to update the level-set function [27, 88]. Until then, only
stiff material could be removed from the material domain, making it impossible to add new
material. It was not until Amstutz and Andrä [11] and He et al. [57] that fully bi-directional
Topological Derivative approaches were introduced. In these techniques, the optimal layout,
expressed in terms of the LSF, is defined as a function of the topological gradient. To improve
stability, reaction and diffusive terms can be added to the classical HJ-equation, leading to the
so-called Generalized HJ-equation. The diffusive term smooths out the design and suppresses
sharp corners, avoiding the ill-posedness of the topology optimization problem.

The last group of interest is the Phase field topology optimization approach, where the theory
of phase transitions is adapted to the resolution of topology optimization problems [9, 26, 41].
The design variable corresponds to the density, as other density-based approaches, but, in this
case, a linear material interpolation is considered, without any exponent factor. In addition, an
extra term is added to the objective function that controls the interface thickness while penal-
izing intermediate values, thus solving one of the main disadvantages of SIMP-like approaches.
The optimal solutions present smooth material domains, almost black-and-white designs sep-
arated by sharp thin finite thickness interfaces. The modified functional is minimized based
on the Cahn-Hilliard equation, leading to the resolution of two coupled second-order equations
without requiring a volume constraint, i.e., the volume stays constant through the optimization
procedure. However, some researchers have solved directly the modified topology optimization
problem with the inclusion of a volume constraint [20, 126, 25, 123], resembling SIMP with an
explicit penalization in the density and a gradient regularization. The gradient regularization
results in a smoothing similar to that obtained by the inclusion of diffusive terms in the level-
set-based methods9. Connected with this concept, Yamada et al. [139] suggested a Phase field
approach based on a level-set function, used as the design variable, and a topological derivative
incorporating a fictitious interface energy. This last mathematical technique allows to control

9Alternatively, Takezawa et al. [120] used a time-dependent reaction-diffusion equation instead, called the Allen-
Cahn equation, to evolve the phase function.
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the complexity of the optimal layout. Although being applied to other problems [138, 73], it
still resorts to a Hamilton-Jacobi equation to update the topology design, which may entail high
computation resources to achieve convergence.

As an alternative to all these well-established techniques, the Variational Topology Optimiza-
tion (VARTOP)10 approach [90] combines the mathematical simplicity of SIMP-based methods,
while considering the characteristic function χ as the design variable. Thus a binary configu-
ration (black-and-white design) is obtained. The domain, and so the characteristic function, is
implicitly represented through a 0-level-set function, termed as discrimination function, as in
level-set-based methods. Nevertheless, the topology design is not updated neither via a Hamilton-
Jacobi equation nor a Reaction-Diffusion equation, but via a fixed-point, non-linear, closed-form
algebraic system resulting from the derivation of the topology optimization problem. In addition,
an approximated topological derivative, in contrast to the exact Topological Derivative methods,
is used in the formulation within an ersatz material approach, highly reducing the mathematical
complexity independent of the tackled problem. The topology optimization problem is subjected
to a volume constraint expressed in terms of a pseudo-time variable. This constraint equation
is iteratively increased until the desired volume is achieved, thus obtaining converged topologies
for intermediate volumes. By means of this procedure, referred to as time-advancing scheme, the
corresponding Pareto Frontier is obtained. For each time-step, the closed-form optimality crite-
ria has to be solved to compute both the Lagrange multiplier that fulfills the volume constraint
and the optimal characteristic function. As for the regularization, a Laplacian regularization,
similar to those used in SIMP and Phase-field approaches [20, 66, 65, 139], is applied to the
discrimination function, providing not only smoothness in the optimal design but also mesh-size
control. The technique has been already applied to linear static structural [90] and steady-state
thermal [136] applications, considering the volume constraint as a single constraint equation,
with promising results.

In the literature, there are plenty of articles that either theoretically compare several topology
optimization methods as the ones presented above [33, 40, 87, 100, 101, 114, 35], or compare the
results obtained with the topology optimization approach proposed by the corresponding authors
with those computed using a recognized topology optimization approach. However, not many
articles compare in a practical way a set of cases with a wide range of techniques under the same
convergence criteria. This is one of the most relevant aspects of this work since the results of a set
of widely used techniques are compared with each other: (1) SIMP (briefly described in Section
D.4.1), (2) BESO using a soft-kill criterion (detailed in Section D.4.2), (3) VARTOP using a
pure variational topological approach (presented in Section D.4.3), and (4) Level-set (detailed
in section D.4.4). These three well-known methods have been selected among all existing ones
due to their wide use both at the professional and research level, as well as for the convenience
of implementation and their documentation, thus facilitating their verification and assuring a
fair comparison. Following the implementations proposed by the different methods’ authors, the
studied topology optimization techniques have been implemented including as few modifications
as possible in order to match the original approaches. The modifications are detailed throughout
the document for each of the addressed methods. Although the chosen topology optimization
techniques have been applied to a wide spectrum of different applications, the comparison in
this article focuses at minimizing the static structural problem. The comparison of the results
is addressed through a set of well-known benchmark cases, whose optimal layouts are easily
recognized. Specifically, minimum mean compliance, multi-load mean compliance, and compliant
mechanism topology optimization problems are carried out.

The remainder of this paper is organized as follows. The structural static problem as well as
the three addressed topology optimization problems are defined in Section D.3, while in Section
D.4, the considered approaches are reviewed in terms of their formulation and algorithms. In
addition, specific comments are provided to address the studied topology optimization problems

10The method abbreviation UNVARTOP used in previous papers has been here rebranded as VARTOP, which
should be taken as equals.
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with each of the techniques. These techniques are compared with each other in terms of the
objective function, the quality of topology design, and the computational cost via a set of
benchmark cases detailed in Section D.5 and analyzed in Section D.6.

D.3 Theoretical aspects

D.3.1 Domain definition

Let the design domain, Ω, denote a fixed smooth open domain of Rn for n = {2, 3}, composed

by two smooth subdomains Ω+,Ω− ⊂ Ω, with Ω
+ ∪ Ω

−
= Ω and Ω+ ∩ Ω− = ∅, as displayed

in Figure D.1-(a) 11. The boundary of the design domain, termed as ∂Ω, is also composed of
the boundaries corresponding to the two subdomains ∂Ω+ and ∂Ω−, satisfying ∂Ω+∩∂Ω− = Γ.
The material domain, Ω+, consists of a stiff material with a high Young’s modulus, while the
second subdomain, Ω−, is formed by a soft material with a low Young’s modulus. The stiffness
ratio between both materials is given by the contrast factor, α≪ 1.

Ω
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Ω–

Ω–

∂Ω

∂Ω+

∂Ω–

Γ

Γ
∂Ω

∂Ω+

∂Ω–
Ω

(b)

Ω+

Ω–

Ω–

���

��ϕ��

��ϕ��

���

Figure D.1: Domain representation: (a) Representation of the design domain, Ω, comprising
two disjoint sub-domains Ω+ and Ω− and (b) Implicit representation via the level-set function
ϕ or the discrimination function ψ.

The topology layout of the design domain can be defined via a characteristic function χ(x) :
Ω→ {0, 1} as{

Ω+ := {x ∈ Ω / χ(x) = 1}
Ω− := {x ∈ Ω / χ(x) = 0}

, (1)

where χ corresponds to the Heaviside function of (ρ−ρ) in density-based approaches (SIMP), the
Heaviside function of the level-set function ϕ in Level-set-based methods, and the characteristic
function χ itself in VARTOP. Notice that the term ρ must be computed in density-based methods
so that the constraint equation is satisfied (normally the volume), thus obtaining a white-and-
black design.

In particular, for Level-set-based and VARTOP approaches, the subdomains can be defined
through a continuous function, φ(x) : Ω → R, φ ∈ H1(Ω) (a level-set function ϕ or a discrimi-
nation function ψ, respectively) such that{

Ω+ := {x ∈ Ω / φ(x) > 0}
Ω− := {x ∈ Ω / φ(x) < 0}

, (2)

as illustrated in Figure D.1-(b). The characteristic function χ can be then obtained as χ(x) =
H(φ(x)), where H(·) stands for the Heaviside function.
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D.3.2 The Topology Optimization problem. Contextual introduction

Topology optimization methods look for the optimal material distribution that minimizes a given
objective function, J , subjected to one or more constraints Ck (e.g., a volume constraint, C0 ≤ 0,
and possibly other N design variable constraints, Ck ≤ 0, k : 1 . . . N) and governed by a linear
or non-linear state equation. The material distribution is described by the density variable
ρ(x), the characteristic function χ(x) or the level-set function ψ(x), depending on the topology
approach used to carry out the optimization. To keep the definition of the topology optimization
problem as general as possible, let us define ζ(x) as the design variable at point x, which will be
considered as ρ(x), χ(x) or ϕ(x) for the density-based, VARTOP, and level-set-based methods,
respectively. Based on this concept, the classical mathematical formulation of the corresponding
topology optimization problem is given by

min
ζ∈Uad

J (u(ζ), ζ) ≡
∫
Ω
j(u(ζ), ζ,x) dΩ (a)

subject to:

C0(ζ) ≡
∫
Ω
c0(ζ,x) dΩ ≤ 0 (b− 1)

Ck(ζ) ≤ 0, k : 1 . . . N (b− 2)

governed by:

State equation (c)

, (3)

where the objective function J can be expressed as a volume integral of a local function
j(u(ζ), ζ,x) over the entire domain, and the constraint functional C0 represents the volume
constraint in terms of the design variable ζ. Additional constraint equations Ck(ζ) can be incor-
porated into the topology optimization problem to explicitly include constraints to the design
variables, particular to each approach.

The state equation gives as a solution the unknown field u(ζ) for a specific optimal design ζ
included in the admissible set of solutions, Uad. This unknown field must satisfy the boundary
conditions applied to the design domain. In particular, the linear elasticity equilibrium problem,
formulated as

Find u(ζ,x) such that
∇ · σ(ζ,x) + b(ζ,x) = 0 in Ω

σ(ζ,x) · n = tn(x) on ∂σΩ

u(ζ,x) = u(x) on ∂uΩ

, (4)

11(·) corresponds to the closure of the open domain (·).

n

S

∂σΩ

Ω+

∂uΩ
u‾

b

n

S

∂σΩ

Ω ∂uΩ
u‾

b

(a) (b)

Ω–

∂uΩ u‾

σ

∂σΩ

∂uΩ u‾

σ

∂σΩtn tn

Figure D.2: Elastic problem sketch: (a) fixed analysis domain Ω with boundary conditions (in
which the displacement u(x) or the normal traction tn(x) can be prescribed at ∂uΩ and ∂σΩ,
respectively) and (b) Stiff and soft material domains, Ω+ and Ω−, respectively, with the same
boundary conditions.
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is considered as the state equation for all the topology optimization problems addressed in
this paper. In the preceding equation, σ(ζ,x) and b(ζ,x) stand for the second-order stress
tensor field and the volumetric force, respectively, which both depend on the topology layouts.
Additionally, tn(x) and u(x) are respectively the boundary tractions applied on ∂σΩ ⊂ ∂Ω and
the displacements prescribed on ∂uΩ ⊂ ∂Ω, and n corresponds to the unit outward normal. As
for the material behavior, the elastic material is governed by the Hooke’s law, i.e., σ = Cζ : ε,
with ε being the strain tensor (ε = ∇Suζ(x)) and Cζ being the fourth-order, elastic constitutive
tensor. The constitutive tensor depends on the design variable ζ via the corresponding material
interpolation of each topology optimization approach.

As depicted in Figure D.2, the boundary ∂Ω of the analysis domain Ω is made of two
mutually disjoint subsets, ∂uΩ and ∂σΩ, where the displacements and tractions are prescribed,
respectively, as detailed in the previous equation.

Alternatively, the variational form of the linear elasticity problem (4) becomes

Find the displacement field uζ ∈ U(Ω) such that

a(w,uζ) = l(w) ∀w ∈ V(Ω)

where

a(w,uζ) =

∫
Ω
∇Sw(x) : Cζ(x) : ∇Suζ(x) dΩ ,

l(w) =

∫
∂σΩ

w(x) · tn(x) dΓ +

∫
Ω
w(x) · bζ(x) dΩ ,

(5)

(6)

(7)

with uζ and w being the displacement field and the virtual displacement field, respectively.
The linear elasticity problem (equations (5) to (7)), discretized using the standard finite

element method, reads

Kζûζ = fζ

with

Kζ =

∫
Ω
BT(x) Cζ(x) B(x) dΩ ,

fζ =

∫
∂σΩ

Nu
T(x)tn(x) dΓ +

∫
Ω
Nu

T(x)bζ(x) dΩ ,

(8)

(9)

(10)

where the stiffness matrix and the external force vector are denoted by Kζ and f , respectively.
For the sake of clarity, the dependence of the force vector on the design variable will be neglected,
considering a constant force scenario f , independent of the topology layout, with null volumetric
forces. The displacement field, uζ(x), and its gradients, ∇Suζ , are approximated as follows

uζ(x) ≡ Nu(x)ûζ (11)

∇Suζ(x) ≡ B(x)ûζ (12)

where Nu(x) and B(x) stand for the displacement, shape function matrix and the strain-
displacement matrix, respectively, and ûζ corresponds to the nodal displacement vector. Notice
that the dependence on the design variable ζ is highlighted by the subscript (·)ζ .

Minimum mean compliance

The minimum mean compliance topology optimization problem seeks the optimal topology layout
that minimizes the global stiffness of the structure, or equivalently, maximizes the external work
on the structure. The objective function J (I)(uζ , ζ), in variational form, is given by

J (I) (u(ζ), ζ) ≡ l(uζ) , (13)

and the corresponding discretized topology optimization problem can be written as
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min
ζ∈Uad

J (I) (u(ζ), ζ) ≡
∫
Ω
ûT
ζ B

T(x) Cζ(x) B(x)ûζ dΩ (a)

subject to:

C0(ζ) ≡
∫
Ω
c0(ζ,x) dΩ ≤ 0 (b− 1)

Ck(ζ) ≤ 0, k : 1 . . . N (b− 2)

governed by:

Kζûζ = f , with

Kζ =

∫
Ω
BT(x) Cζ(x) B(x) dΩ

f =

∫
∂σΩ

Nu
T(x)tn(x) dΓ

(c)

, (14)

with j(u(ζ), ζ,x) being ∇Suζ(x) : Cζ(x) : ∇Suζ(x). The mean compliance can be also defined
as fTûζ , when nodal variables are used.

Multi-load mean compliance

Multi-load compliance topology optimization problems are a subfamily of minimum mean compli-
ance problems (Section D.3.2), in which a set of elastic problems with different loading conditions
are solved independently, instead of a single one with all the external loads applied at the same
time. As a result, the topology optimization procedure aims at a trade-off between the optimal
topology layouts for each specific loading state. Hence, the objective function (3-a) is computed
as the weighted average sum of all individual compliances, i.e.,

J (II) (u(ζ), ζ) ≡
nl∑
i=1

l
(
u
(i)
ζ

)
≡

nl∑
i=1

∫
Ω
∇Su

(i)
ζ (x) : Cζ(x) : ∇Su

(i)
ζ (x) dΩ , (15)

where i and nl corresponds to the index of the i-th loading state12 and the number of loading
states, respectively. Consequently, the topology optimization problem (14) becomes

min
ζ∈Uad

J (II) (u(ζ), ζ) ≡
nl∑
i=1

∫
Ω
û
(i)T
ζ BT(x) Cζ(x) B(x)û

(i)
ζ dΩ =

nl∑
i=1

f (i)Tû
(i)
ζ (a)

subject to:

C0(ζ) ≡
∫
Ω
c0(ζ,x) dΩ ≤ 0 (b− 1)

Ck(ζ) ≤ 0, k : 1 . . . N (b− 2)

governed by:

Kζû
(i)
ζ = f (i), with

Kζ =

∫
Ω
BT(x) Cζ(x) B(x) dΩ

f (i) =

∫
∂σΩ(i)

Nu
T(x)tn

(i)(x) dΓ, i : 1 . . . nl

(c)

. (16)

Notice that nl independent linear elastic problems must be solved in order to obtain the dis-

placement field û
(i)
ζ for each of the loading states.

12The displacements uζ and the actual energy density Uζ for the i-th loading state are designated with the superscript
(·)(i).
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Compliant mechanism synthesis

Contrary to the two previous sections where the main goal was to maximize the mean stiffness
of the structure, the objective now is to design a flexible structure capable of transferring an
action (force or displacement) from the input port to the output port, obtaining a desired force
or displacement at that port. The corresponding objective function J (III) (u(ζ), ζ) can be
expressed as

J (III) (u(ζ), ζ) ≡ −l2
(
u
(1)
ζ

)
, (17)

where l2

(
u
(1)
ζ

)
corresponds to the rhs term (7) of the elastic problem (5) for w = u

(1)
ζ with the

boundary traction t
(2)
n (x) being a dummy constant force value applied only at the output port

in the desired direction.

Mimicking the procedure detailed for the other two topology optimization problems in Sec-
tions D.3.2 and D.3.2, the new mathematical problem is given by



min
ζ∈Uad

J (III) (u(ζ), ζ) ≡ −
∫
Ω
û
(1)T
ζ BT(x) Cζ(x) B(x)û

(2)
ζ dΩ = −1Tû(1)

ζ (a)

subject to:

C0(ζ) ≡
∫
Ω
c0(ζ,x) dΩ ≤ 0 (b− 1)

Ck(ζ) ≤ 0, k : 1 . . . N (b− 2)

governed by:

Kζû
(1)
ζ = f (1), with f (1) =

∫
∂σΩ(1)

Nu
T(x)tn

(1)(x) dΓ

Kζû
(2)
ζ = f (2), with f (2) = 1 =

∫
∂σΩ(2)

Nu
T(x)tn

(2)(x) dΓ

(c)

. (18)

As anticipated in expression (17), the compliant mechanism problem (18) is not self-adjoint,
so an auxiliary state problem must be solved in addition to the original state problem. The ad-
ditional system presents the same stiffness matrix Kζ but a different force vector f (2), consisting

in a dummy constant force at the output port, which solution is denoted as u
(2)
ζ . Additional

springs, denoted by Kin and Kout, must be considered in the input and output ports, respectively,
to ensure convergence.

D.3.3 General algorithm

The flowchart of the general algorithm, used to obtain the optimal topology layouts, is illustrated
in Figure D.3. Note that each technique will present variations of this optimization algorithm,
which will be specified in the corresponding sections (Sections D.4.1 to D.4.4). Nevertheless, the
methods addressed in this paper exhibit a similar updating scheme.

The main part of the algorithm consists in solving the state equation (8) to obtain the
unknown field u(ζ), and computing the corresponding sensitivities along with the objective
function value (equations (14)-a, (16)-a or (18)-a). After computing the topological derivatives
of the objective function, some type of regularization must be applied to them (e.g., sensitivity
filtering and/or temporal regularization) to improve numerical stability and ensure convergence.
The topology ζ is then updated accordingly to each approach following a optimality criterion so
that the objective function is minimized. For a given volume constraint, topology and objective
function convergence is sought, thus obtaining the optimal topology design.

Depending on the topology optimization method, a set of intermediate optimal topologies
is obtained when using time-advancing schemes, while a single optimal design is only obtained
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Figure D.3: The general flowchart for topology optimization approaches.

(the last one) for single-time-step methods (see Section D.2). For the first family of approaches,
the algorithm previously described must be repeated for each time-step until the convergence
criteria are met, thus obtaining a set of converged solutions over the Pareto Frontier of optimal
solutions between the objective function and the volume constraint.

D.4 Topology Optimization methods

In the following subsections, the specific details of each considered topology optimization method
are described, focusing on the differences among them.

D.4.1 SIMP method

As aforementioned, the SIMP approach employs element-wise density variables ρe as design
variables to describe the topology layout. Therefore, the design domain Ω is discretized into
cells or voxels13 and each element e is assigned a density ρe. Although ρe would ideally be equal to
1 for material and 0 for void, the design variable is here relaxed by allowing intermediate values
0 ≤ ρe ≤ 1. As a consequence, additional constraints (3-b-2) must be added to the original
topology optimization problem subject to the volume constraint. Furthermore, the material
interpolation of the constitutive tensor Cρ is defined as

Cρ(ρe) = C− + ρpe
(
C+ − C−

)
, ρe ∈ [0, 1] , (19)

where C+ and C− correspond to the constitutive tensor of the stiff and soft materials, respec-
tively. In addition, the parameter p stands for the penalization factor (typically p ≥ 3). For a

13Henceforth, both cells and voxels will be referred to as elements.
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constant Poisson ratio, equation (19) can be written in terms of the Young’s modulus E as

Cρ(ρe) =
(
E− + ρpe

(
E+ − E−

))
C(1) , (20)

where E+ and E− represent the Young’s modulus for the stiff and soft materials, respectively,
and C(1) corresponds to the constitutive tensor with unit Young’s modulus. Assuming that E−

can be defined proportional to the high Young’s modulus, E+, via the contrast factor α, the
resultant constitutive tensor Cρ(ρe) is defined as C+ multiplied by a coefficient, which depends
on the design variable of the element, i.e.,

Cρ(ρe) = (α+ ρpe (1− α))C+ . (21)

The global stiffness matrix Kρ is obtained via the assembly of element stiffness matrices defined
as

Ke(ρe) =

∫
Ωe

BT(x) Cρ(x) B(x) dΩ =

= (α+ ρpe (1− α))

∫
Ωe

BT(x) C+ B(x) dΩ =

= (α+ ρpe (1− α))K+
e ,

(22)

with K+
e being the element stiffness matrix considering stiff material for element e.

Taking into account these two characteristics, the topology optimization problem (3) becomes



min
ρ∈Uad

J (u(ρ),ρ) ≡
∫
Ω
j(u(ρ),ρ,x) dΩ (a)

subject to:

C0(ρ) ≡ |Ω(ρ)|
|Ω|

− f ≤ 0 (b− 1)

Ce(ρe) ≤ 0→ 0 ≤ ρe ≤ 1, e : 1 . . . Ne (b− 2)

governed by:

Kρû
(i)
ρ = f (i) (c)

, (23)

where |Ω(ρ)| and |Ω| are respectively the stiff material volume and the design domain volume,
and f is the prescribed volume fraction14.

The sensitivity of the objective function (23-a), ∂J (u(ρ),ρ)/∂ρe, is obtained via the ad-
joint technique, so that the derivative of the unknown field uρ with respect to the density ρe,
∂u(ρ)/∂ρe, is not required to be computed. Additionally, the sensitivity of the volume constraint
(23-b-1) with respect to the density of the element e is equal to |Ωe|/|Ω|. According to [16], the
sensitivity of the objective function for the three topology optimization problems addressed in
this work are given by

∂J (I) (u(ρ),ρ)

∂ρe
= −ωe(ρe) ûe(ρ)K+

e ûe(ρ)

∂J (II) (u(ρ),ρ)

∂ρe
= −ωe(ρe)

nl∑
i=1

û(i)
e (ρ)K+

e û
(i)
e (ρ)

∂J (III) (u(ρ),ρ)

∂ρe
= ωe(ρe) û(1)

e (ρ)K+
e û

(2)
e (ρ)

(24)

(25)

(26)

where ωe(ρe) = pρp−1e (1− α) and û
(i)
e (ρ) denotes the nodal displacements of element e and the

state equation (i).

14The term |(·)| denotes the Lebesgue measure of (·).
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As mentioned in Section D.2, a regularization technique must be applied to the original
topology optimization problem to ensure the existence of a solution and avoid the formation
of the so-called checkerboard patterns. Different filtering techniques modifying the element
sensitivity are studied for the comparison, including a radial sensitivity filter computed using
the convolution function (see Section D.4.1) and the filter based on Helmholtz type differential

equation (Section D.4.1). The solution to the filtering technique is denoted by (̃·) and replaces
the non-filtered sensitivity.

Considering the sensitivities of the objective function and volume constraint, the correspond-
ing topology optimization problem can be solved by means of the Optimality Criteria (OC)
method. The OC method seeks the fulfillment of the Karush-Kuhn-Tucker (KKT) conditions

∂̃J
∂ρe

+ λ
∂C0
∂ρe

= 0, e : 1 . . . Ne , (27)

where λ is the Lagrange multiplier associated with the volume constraint C0(ρ) such that the
volume constraint is met, and must be computed via a root-finding algorithm (e.g., a bisection
method). Note that the element density ρe must be in the range of 0 to 1. The optimality
conditions can be expressed as Be = 1, where

Be = − ∂̃J
∂ρe

(
λ
∂C0
∂ρe

)−1
. (28)

A heuristic updating scheme, proposed by Bendsøe and Kikuchi [17], is used to update the design
variables and achieve convergence. For minimum mean compliance, the scheme is defined as

ρ(k+1)
e =


max

(
0, ρ(k)e −m

)
if ρ(k)e Bη

e ≤ max
(

0, ρ(k)e −m
)

min
(

1, ρ(k)e +m
)

if ρ(k)e Bη
e ≥ min

(
1, ρ(k)e +m

)
ρ(k)e Bη

e otherwise

, (29)

where m is a positive move limit, η is a numerical damping coefficient and k represents the
iteration counter. These two numerical parameters are typically set 0.2 and 0.5, respectively, for
minimum mean compliance. Equation (28) is modified for compliant mechanism optimization
problems to just account for positive sensitivities as

Be = max

(
ϵ,− ∂̃J

∂ρe

)(
λ
∂C0
∂ρe

)−1
, (30)

with ϵ being a small positive value. Equivalently, the updating scheme (29) can be expressed as

ρ(k+1)
e =


max

(
0, ρ(k)e −m

)
if ρ(k)e Bη

e ≤ max
(
ϵ, ρ(k)e −m

)
min

(
1, ρ(k)e +m

)
if ρ(k)e Bη

e ≥ min
(

1, ρ(k)e +m
)

ρ(k)e Bη
e otherwise

, (31)

with m = 0.1 and η = 0.3.

In the following subsections, three variations of the SIMP approach are introduced, mainly
by changing the filter used to regularize the sensitivity (for instance, using a distance filter
computed via a convolution function and a Helmholtz-type filter) or by trying a time-advancing
strategy (with multiple steps).
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SIMP method using PDE-like filter: SIMP(I)

In this case, the sensitivities are regularized via a Helmholtz-type PDE equation with homo-
geneous Neumann boundary conditions, as detailed in [66, 13]. The regularized sensitivities

∂̃J /∂ρe correspond to the solution of{
ζ̃ −R2

min∆xζ̃ = ζ in Ω

∇xζ̃ · n = 0 on ∂Ω
, (32)

where ζ and ζ̃ are ρe ∂J /∂ρe and ρe ∂̃J /∂ρe, respectively, and ∆x(x, ·) and ∇x(x, ·) are the
Laplacian and gradient operators. The filter radius Rmin is equal to rmin/(2

√
3), with rmin

being the filter radius of distance-based filters (see subsection D.4.1).

As reported by Lazarov and Sigmund [66], this type of filtering technique provides computa-
tional advantages when regularizing the sensitivities for complex non-uniform meshes in terms
of memory storage and computational complexity when compared to classical filtering proce-
dures. Although, for structured meshes, as in the cases addressed in this paper, this performance
improvement may not be observed.

SIMP method using a time-advancing scheme: SIMP(II)

An incremental-time-advancing scheme can be implemented on top of SIMP(I). The volume
reference of the volume constraint is iteratively updated, thus obtaining a set of intermedi-
ate converged solutions. Once the convergence is achieved, the reference volume fraction f in
equation (23-(b-1)) is decreased and the topology optimization procedure is repeated for the
new volume constraint. At the first iteration of each time-step, the volume constraint must be
fulfilled, so that the Helmholtz-type PDE filter keeps the volume constant.

SIMP method using convolution filter: SIMP(III)

The filter in this approach modifies the sensitivities ∂J /∂ρe by means of a standard distance
filter as follows

∂̃J
∂ρe

=
1

max (γ, ρe)
∑

i∈Nei Hei

∑
i∈Nei

Heiρi
∂J
∂ρi

, (33)

where γ is a small positive number to avoid division by zero and Nei denotes the set of elements
i for which the center-to-center distance, dist(e, i), of element i to element e is smaller than a
filter radius rmin, defined by the user, i.e., Nei = {i ∈ Ne / dist(e, i) ≤ rmin}. The function Hei

corresponds to the weight factor function (of a linearly decaying filter kernel) given by

Hei = max (0, rmin − dist(e, i)) . (34)

This sensitivity filter can be mathematically written using a convolution product of the filter
function H(x− y) and the sensitivity of the objective function ∂J /∂ρ(x) as

∂̃J
∂ρ

(x) =
1

ρ̂(x)

(
H ∗

(
ρ
∂J
∂ρ

))
(x) =

=
1

ρ̂(x)
∫
Br H(x− y) dy

∫
Br
H(x− y)ρ(y)

∂J
∂ρ

(y) dy ,

(35)

where Br is a sphere in 3D and a circle in 2D with center at x, and radius rmin and ρ̂ is equal
to max (γ, ρe).
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D.4.2 SOFTBESO method

The original ESO and BESO methods use a discrete density variable χe = {0, 1} as design
variable in a hard-kill topology optimization procedure where elements with low rejection criterion
are removed from the topology layout. In particular, in BESO, elements can be added in specific
areas by using extrapolation techniques. However, as mentioned in Section D.2, this set of
hard-kill approaches suffers from numerical instabilities failing in some circumstances to obtain
convergent solutions. For that reason, this paper focuses on soft-kill evolutionary techniques,
and in particular, in the bi-directional evolutionary (BESO) approach proposed by Huang and
Xie [59].

In this context, the design variable, now termed as the element-wise density variable ρe =
{ρmin, 1}, is defined using the original SIMP material interpolation, thus relaxing the design
variable with a penalization factor p. Therefore, the material interpolation of the constitutive
tensor is given by

Cρ(ρe) = ρpeC+ = ρpeE
+C(1), ρe = {ρmin, 1} . (36)

Assuming that the Young’s modulus of the void material, E−, can be expressed, in terms of
α, as α times the Young’s modulus of the stiff material E+, then ρmin must be equal to

p√
α.

A similar procedure as the one defined for SIMP-based approaches is used here to compute the
element stiffness matrix, i.e.,

Ke(ρe) =

∫
Ωe

BT(x) Cρ(x) B(x) dΩ = ρpe

∫
Ωe

BT(x) C+ B(x) dΩ = ρpeK+
e , (37)

with K+
e being the element stiffness matrix considering stiff material for element e.

The corresponding topology optimization problem (3) for BESO can be written as

min
ρ∈Uad

J (u(ρ),ρ) ≡
∫
Ω
j(u(ρ),ρ,x) dΩ (a)

subject to:

C0(ρ) ≡ |Ω(ρ)|
|Ω|

− f ≤ 0 (b− 1)

Ce(ρe) ≤ 0→ ρe = {ρmin, 1}, e : 1 . . . Ne (b− 2)

governed by:

Kρû
(i)
ρ = f (i) (c)

, (38)

where the volume fraction f is decreased at each iteration until the desired final fraction f ,
following an exponential expression fk+1 = max (f, (1− ER)fk). The evolutionary volume ratio
ER ≪ 1 corresponds to the maximum volume fraction decreased at each iteration. Notice
that the convergence in topology and objective are not met until the desired final fraction f is
reached.

As detailed in Section D.4.1, the sensitivities of the objective function (38-a) ∂J /∂ρe for the
considered topology optimization problems are defined as

∂J (I) (u(ρ),ρ)

∂ρe
= −ωe(ρe) ûe(ρ)K+

e ûe(ρ) ,

∂J (II) (u(ρ),ρ)

∂ρe
= −ωe(ρe)

nl∑
i=1

û(i)
e (ρ)K+

e û
(i)
e (ρ) ,

∂J (III) (u(ρ),ρ)

∂ρe
= ωe(ρe) û(1)

e (ρ)K+
e û

(2)
e (ρ) ,

(39)

(40)

(41)

with ωe(ρe) being equal to pρp−1e .

Article D. Comparative study 195 Daniel Yago



A new comp. approach to top. opt. in solid mechanics problems Ph.D. Thesis

For the regularization procedure, a linear distance-based filter, similar as the one used in
SIMP(III), is applied to the sensitivities ∂J /∂ρe. The filtered sensitivities are obtained as

∂̃J
∂ρe

=
1∑

i∈Nei Hei

∑
i∈Nei

Hei
∂J
∂ρi

, (42)

which can also be computed using the convolution function of Hei (34) and the non-regularized
sensitivities ∂J /∂ρe. In addition to the spatial filtering (used to address the mesh-dependency
problem), a temporal filtering is also applied by averaging the sensitivity numbers with historical
information, thus improving convergence. The temporal filter can be expressed as

∂̃J
∂ρe

∣∣∣∣∣
e,k

=
1

2

 ∂̃J
∂ρe

∣∣∣∣∣
e,k

+
∂̃J
∂ρe

∣∣∣∣∣
e,k−1

 , (43)

where k corresponds to the iteration number. Notice that the temporal-filtered sensitivity used
in the optimality criteria (44) replaces the spatial-filtered sensitivity.

The optimality criterion for the topology optimization problem (38) can easily be derived if
no restriction is imposed on the design variable, i.e.,

∂̃J
∂ρe

+ λ
∂C0
∂ρe

= 0, e : 1 . . . Ne , (44)

where the Lagrange multiplier λ must be computed so that the volume constraint C0(ρ) is
fulfilled. For minimum mean compliance problem, the corresponding updating scheme can be
expressed as

ρk+1
e =

1 if
(
− ∂̃J
∂ρe

/∂C0∂ρe
− λ

)
≥ 0

ρmin if
(
− ∂̃J
∂ρe

/∂C0∂ρe
− λ

)
< 0

, (45)

although the number of elements changing from the void domain to the material domain (or
equivalently a volume fraction) is limited by a factor ARmax. Consequently, if the number of
elements changing from the void domain to the material domain is greater than the maximum
volume addition ratio, only theARmax elements from the void domain with the highest sensitivity
are added to the material domain. In the material domain, the ARmax +ER elements with the
lowest sensitivity are removed from the material domain and replaced with void material, thus
satisfying the volume constraint. This procedure ensures that not many elements are added in
a single iteration, causing the structure to loose its integrity.

For compliant mechanism synthesis [60, 58], the updating equation (45) is relaxed to

ρk+1
e =

min
(
ρ(k)e +m, 1

)
if
(
− ∂̃J
∂ρe

/∂C0∂ρe
− λ

)
≥ 0

max
(
ρ(k)e −m, ρmin

)
if
(
− ∂̃J
∂ρe

/∂C0∂ρe
− λ

)
< 0

(46)

with m = 0.1, where the design variable ρe can now take intermediate values.

D.4.3 VARTOP method

As in Level-set, the zero-level of the level-set function is used to precisely define the boundaries
of the material domain, although no updating equation is defined in terms of the discrimination
function ψ. Instead, the characteristic function χ(x) = {β, 1} is employed as the design variable,
which is computed from the discrimination function at each iteration via the Heaviside function
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Hβ(ψ(x)) 15 (see Figure D.1). As result, the material interpolation of the constitutive tensor
Cχ is given by

Cχ(x) = χm(x)C+, χ(x) ∈ [β, 1] , (47)

with β being the relaxation factor. It is important to stress that, once the domain is discretized
by finite elements, the characteristic function will take 1 or β in the majority of the domain,
whereas it will only take values ranging 1 to β in the elements bisected by the material boundary
Γ. The relaxation factor β is defined such that the Young’s modulus for the void material is α
times that of the stiff material, i.e.,

C−χ (x) = αC+ = βmC+ = βmE+C(1) for x ∈ Ω− , (48)

with β being

β =
m√
α , (49)

where m is an exponential factor defined by the user and α is the contrast factor for the Young’s
modulus. The element stiffness matrix Ke(χ(x),x) is obtained as

Ke(χ(x),x) =

∫
Ωe

BT(x) Cχ(x) B(x) dΩ =

∫
Ωe

BT(x) χm(x)C+ B(x) dΩ . (50)

The topology optimization problem (3) is now written as

min
χ∈Uad

J (u(χ), χ) ≡
∫
Ω
j(u(χ), χ,x) dΩ (a)

subject to:

C0(χ) ≡ |Ω
−|
|Ω|
− 1

|Ω|

∫
Ω

1− χ(x)

1− β
dΩ = t− |Ω

−(χ)|
|Ω|

= 0 (b− 1)

governed by:

Kχû
(i)
χ = f (i) (c)

, (51)

where the volume constraint C0(χ) has been expressed in terms of the soft material fraction in
contrast to equations (23) and (38). The term t stands for the pseudo-time variable, used as
time-advancing parameter.

The relaxed topological derivative (RTD), used as an approximation to the exact geometric
topological derivative, for a functional F(χ) : L2(Ω)→ R is defined as

δF(χ)

δχ
(x̂) =

[
∂f(u(χ), χ,x)

∂χ

]
x=x̂

∆χ(x̂), with ∆χ(x̂) =

{
−(1− β) < 0 for x̂ ∈ Ω+

(1− β) > 0 for x̂ ∈ Ω−
, (52)

where ∆χ(x̂) is termed the exchange function and stands for the signed variation of χ(x̂), due
to that material exchange. The sensitivity of the volume constraint (51-b-1) with respect to the
characteristic function is equal to sgn(∆χ(x̂))/|Ω|, where sgn(·) denotes the sign function of (·).
The optimality condition for the constrained topology optimization problem can be written as(

∂j (u(χ), χ, x̂)

∂χ
∆χ(x̂) + λ

sgn(∆χ(x̂))

|Ω|

)
> 0 ∀x̂ ∈ Ω , (53)

where λ stands for a Lagrange multiplier enforcing volume constraint C0(χ) = 0. Therefore,
the closed-form non-linear solution for the topology optimization problem (51), termed as cut-
ting&bisection algorithm, can be expressed as

ψχ(x, λ) := ξ (u(χ), χ,x)− λ/|Ω|
χ(x, λ) = Hβ [ψχ(x, λ)]

C0(χ(x, λ)) = 0

, (54)

15The image set {1, 0} of the Heaviside function is relaxed to {1, β}, this being highlighted with the subscript (·)β
in the Heaviside function symbol.
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where ξ (u(χ), χ,x) is termed the pseudo-energy and depends on the specific objective function.
The Lagrange multiplier λ is computed using an efficient bisection algorithm and its value fulfils
the volume constraint, as in the previous approaches.

For the three topology optimization problems, the pseudo-energies at point x̂ are given by

ξ(I) (u(χ), χ, x̂) = ω(x̂) û(χ, x̂)Ǩ+(x̂)û(χ, x̂) ,

ξ(II) (u(χ), χ, x̂) = ω(x̂)

nl∑
i=1

û(i)(χ, x̂)Ǩ+(x̂)û(i)(χ, x̂) ,

ξ(III) (u(χ), χ, x̂) = −ω(x̂) û(1)(χ, x̂)Ǩ+(x̂)û(2)(χ, x̂) ,

(55)

(56)

(57)

for non-bisected elements, with ω(x̂) being equal to mχm−1(x̂)(1 − β) 16 and Ǩ+ being the
integrand of the stiffness matrix at point x̂. However, the pseudo-energy must be first shifted
and normalized, according to

ξ̂ (u(χ), χ, x̂) =
ξ (u(χ), χ, x̂)− χ(x̂)∆shift

∆norm
, (58)

thus obtaining a modified energy density ξ̂ (u(χ), χ, x̂). The terms ∆shift and ∆norm correspond,
respectively, to the shifting and normalization parameters defined at the first iteration17. This
variable must be later regularized using a Laplacian regularization (similar as the one described
in Section D.4.1 for SIMP(I)). The pseudo-energy density actually used in the closed-form
solution (54) comes from the resolution of{

ξ̂τ − (τhe)
2∆xξ̂τ = ξ̂ in Ω

∇xξ̂τ · n = 0 on ∂Ω
, (59)

where, ∆x(x, ·) and ∇x(x, ·) are respectively the Laplacian and Gradient operators, and n is the
outward normal to the boundary of the design domain, ∂Ω. τ and he stand for the dimensionless
regularization parameter and the typical size of the finite element mesh, respectively.

Contrary to the common SIMP implementations (SIMP(I) and SIMP(III)) or the BESO
method, the VARTOP is formulated under a time-advancing framework, where the pseudo-time
t in equation (51-b-1) is iteratively increased, thus obtaining intermediate converged solutions,
which are local minima and provide a Pareto Frontier in terms of the volume fraction. Notice
that, at every time-step, convergence is achieved unlike the algorithm used for BESO.

D.4.4 Level-set method via a Hamilton-Jacobi equation

As previously mentioned in the introduction, Level-set methods use a level-set function (LSF) to
implicitly represent the optimal material domain via equation (2), and the material boundary via
the 0-level of the level-set function. It is important to note that originally Level-set approaches
only updated the material boundary based on a differential equation, preventing them from
creating new voids. This drawback was first overcome by inserting new voids every certain
iteration. However, Yamada et al. [139], among other researchers, suggested an approach in
which a Level-set method was used to update not only the boundary of the material domain,
but also the material domain itself, thus allowing to nucleate new voids. This specific approach
will be taken as the reference in this article in conjunction with the relaxed topological derivative
(RTD), defined in equation (52), to obtain the sensitivity function.

16For points in the boundary material, the characteristic function and the element stiffness matrix should be
replaced with the corresponding ones, as detailed in [90].

17The terms ∆shift and ∆norm are defined as min(ξ0, 0) and max(range(ξ0),max(ξ0)), respectively.
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In contrast to VARTOP, the LSF is updated via a time-dependent updating equation, typically
using a Hamilton-Jacobi equation, although other updating schemes can be used. From the level-
set function, a characteristic function χ can be defined as

χ(x, ϕ(x)) = Hβ(ϕ(x)) =

{
1 for ϕ(x) ≥ 0

β for ϕ(x) < 0
(60)

with β being the relaxation factor. Based on the preceding definition of the characteristic
function, the corresponding material interpolations (equations (47) to (50)) are defined. The
topology optimization problem (3), in terms of the level-set function, becomes

min
ϕ∈Uad

J (u(ϕ), χ(ϕ)) ≡
∫
Ω
j(u(ϕ), χ(ϕ),x) dΩ (a)

subject to:

C0(ϕ) ≡ t− |Ω
−(χ(ϕ))|
|Ω|

= 0 (b− 1)

Cn(ϕ̂n) ≤ 0→ −1 ≤ ϕ̂n ≤ 1, n : 1 . . . Nn (b− 2)

governed by:

Kϕû
(i)
ϕ = f (i) (c)

, (61)

where the nodal level-set function ϕ̂n must be bounded between −1 and 1, for convergence
reasons. From equation (61), the Lagrangian function can be expressed as

L(u(χ(ϕ)), χ(ϕ), λ) = J (u(χ(ϕ)), χ(ϕ)) +
(
λ+ 1

2s C0(χ(ϕ))
)
C0(χ(ϕ)) , (62)

when an Augmented Lagrangian method is used to fulfill the volume constraint. Therefore, the
optimality condition (53) for the characteristic function χ(x, ϕ(x)) reads

δL(u(χ(ϕ)), χ(ϕ), λ)

δχ
(x̂) =

(
∂j (u(χ(ϕ)), χ(ϕ), x̂)

∂χ
∆χ(x̂)

+ (λ+ s C0(χ(ϕ)))
sgn(∆χ(x̂))

|Ω|

)
> 0 ∀x̂ ∈ Ω ,

(63)

where λ and s stand for the Lagrange multiplier and the penalty factor of the Augmented
Lagrangian method. Notice that the same pseudo-energy functions as in VARTOP (equations
(55) to (57)) are obtained for the three topology optimization methods.

Instead of the closed-form non-linear solution described in Section D.4.3, for each time-step
the topology in this approach, ϕ, is updated via a Hamilton-Jacobi equation, i.e.,

∂ϕ

∂t
= κ

δL(u(χ(ϕ)), χ(ϕ), λ)

δχ
in Ω , (64)

where the shape derivative of the Lagrangian has been replaced with the corresponding relaxed
topological derivative (52), and κ corresponds to a coefficient of proportionality. Substituting
equation (63) to the preceding equation gives

ϕk+1 = ϕk + ∆t κ

(
∂j (u(χ(ϕk)), χ(ϕk), x̂)

∂χ
∆χ(x̂)− λk + s C0(χ(ϕk))

|Ω|

)
(65)

with

λk = λk−1 + s C0(χ(ϕk)) . (66)

The new level-set function ϕk+1 is then regularized via the Laplacian regularization (59), and the
corresponding characteristic function χϕ,k+1(x, ϕτ,k+1(x)) is computed based on the regularized
LSF, ϕτ,k+1(x), using equation (60).

As defined in equation (61), a time-advancing framework can be formulated, thus obtaining
a set of intermediate, converged optimal solutions. However, in addition to the topology and
objective function criteria, the volume constraint must be checked to ensure convergence for
every time-step, since it is no longer enforced at each iteration.
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D.5 Benchmark cases

A set of four numerical examples in 3D problems is used to compare the six different imple-
mentations with each other. The set of benchmark cases contains two minimum compliance
problems (Section D.3.2), one multi-load compliance problem (Section D.3.2) and one compliant
mechanism synthesis (Section D.3.2). In all cases and methods, eight-node hexahedral (Q1)
finite elements18 are used in the solution of the state equation (8).

This set of 3D problems has been carefully selected to be used as benchmark cases using a
variety of topology optimization techniques, which have been widely used for this purpose by
different researchers. All of them exhibit a high geometric complexity and represent a significant
challenge for the considered methods when solving the optimization problems. They are defined
in the following subsections.

D.5.1 Cantilever beam

This first numerical example refers to the minimization of the structural mean compliance of
a cantilever beam in a prismatic domain subjected to specific Dirichlet and Neumann bound-
ary conditions. The displacements are prescribed on the left face of the design domain and
a distributed vertical load is applied on the bottom-right edge of it. The analysis domain Ω,
displayed in Figure D.4, corresponds to a prism of (relative) dimensions 1x2x1, with the largest
dimension oriented in the y-axis. Thanks to the symmetry with respect to the y − z plane, half
of the domain is discretized with 50x200x100 unit cubic hexahedral elements.

This benchmark will be used to check the correctness of the implementations as well as to
have a first comparison of the results obtained with each technique in terms of the number of
iterations, objective function and topology quality. Some optimal layouts for different volume
fractions can be found in [1, 66].

Figure D.4: Cantilever beam:
topology optimization domain
with boundary conditions and
dimensions. A distributed
vertical load F is applied on
the bottom-right edge while
the displacements u are pre-
scribed to 0 on the left sur-
face of the domain. The rear
surface of the domain, in soft
gray, represents the surface of
symmetry.
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D.5.2 L-shaped structure

This second example tackles the optimization of a simplified version of a hook, as it is shown in
Figure D.5. This optimization problem, as the previous one, also corresponds to the minimiza-
tion of the mean compliance (14). The analysis domain is split into two regions: 1) the L-shaped
structure, which corresponds to the design domain Ω, and 2) a prismatic volume prescribed as
void in the top right area, defined by y ≥ 1

3 and z ≥ 1
3 . A single vertical load is applied as

illustrated in Figure D.5 at point x = 0, y = 1 and z = 1
6 and the displacements at the top side,

near the left edge, are prescribed (i.e., y ≤ 1
3 and z = 1). The design domain, with symmetry in

the y − z plane, is discretized with a structured mesh of 30x180x180 hexahedral elements.

18The design domains are assumed to be prismatic domains discretized with hexahedral unit cubic finite elements,
i.e., a regular finite element mesh. Consequently, some of the advantages of Laplacian filters over distance-based
filters may not be noticed.
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Similarly to the previous problem, this example will provide a comparison between the
approaches, but now with a more complex design domain (a rough edge domain with a point-
wise load), thus showing the performance of the methods against point loads and non-rectangular
design domains. The reader is sent to [74] for the reference optimal solution.

Figure D.5: L-shaped structure:
topology optimization domain with
boundary conditions. A point-wise
vertical force F is applied on the
right-bottom surface while the dis-
placements u are prescribed on the
top-left boundary of the design do-
main. The rear boundary corre-
sponds to the y − z symmetry sur-
face. A considerable fraction of the
domain (on the top-right side of the
domain) is prescribed to void mate-
rial.
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D.5.3 Multi-load cantilever beam

A multi-load topology optimization problem with two different loading conditions not applied at
once is optimized in this example. Both the dimensions of the prismatic domain, Ω, and the
discretization mesh are the same ones as in the first example (see Section D.5.1). However,
in this case, the displacements of all the nodes on the left side are imposed and two loading
conditions are applied on the top and bottom-right edges. In the first loading condition, a
vertical distributed downward force is applied on the bottom-right edge while in the second one,
a distributed force with the same magnitude is applied upwards on the upper-right edge, as
displayed in Figure D.6.

Through this numerical case, it is aimed at determining whether the methods are capable of
obtaining symmetric designs when two opposite forces are applied in the design domain, as well
as to compare the topology quality and computational cost of the resultant optimal topologies
with all the considered techniques.
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∂uΩ

∂σΩ
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z

F2

F1

F2

(b)

(c)

(a)

Ω
Ω

Ω

Figure D.6: Multi-load
Cantilever beam: (a)
topology optimization
domain with boundary
conditions. The displace-
ments are prescribed on
the left surface of the
domain, and a vertical dis-
tributed downward force
F1 is applied in the first
loading case (b), whereas
a vertical distributed
upward force F2, in the
second loading case (c).
The rear boundary of the
domain corresponds to the
symmetry surface.
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D.5.4 Gripper compliant mechanism

In this last numerical example, a compliant mechanism is designed where the vertical displace-
ment at the output port is maximized. The displacements are prescribed near the bottom edge
at the left side of the domain (y = 0 and z ≤ 0.2). As illustrated in Figure D.7, a positive,
horizontal distributed load is applied at the input port (y = 0 and z ≥ 1.8), while a vertical
upward dummy load is applied at the output port (z = 1.8 and y ≥ 3.6). The analysis domain
Ω, whose (relative) dimensions are 2x4x4, is discretized with a mesh of 100x200x200 hexahedral
elements. However, thanks to the two existing symmetries, only a quarter of the domain is
analyzed, thus leading to 1.000.000 finite elements. In addition, two regions near the input and
output ports are prescribed to stiff material to guarantee stiff material in those areas (∆z = 0.2).

Figure D.7: Gripper (compliant mech-
anism): (a) topology optimization do-
main with boundary conditions. The
displacements are prescribed at the
bottom part of the left surface of the
domain, and a positive, horizontal dis-
tributed load is applied at the top
of the left surface for the state equa-
tion (b), while a positive, vertical dis-
tributed dummy load is applied at the
jaws of the gripper for the additional
state equation (c). The top and rear
surfaces correspond to the x − y and
x− z symmetries, respectively.
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Additionally, surface distributed springs are included in the input and output ports (in the
same direction as the target displacement) to restrict the displacement amplitude at these areas
and simulate both the input work of the actuator and the elastic reaction work at the output
port. The corresponding numerical values for the springs are Kin = 1.5 · 10−1N/m3 and Kout =
1.5N/m3, while the distributed forces are f1 = 3.81 · 10−3N/m2 and f2 = 3.81 · 10−4N/m2,
respectively. Note that the optimal solution will heavily depend on the ratios of these parameters,
however not all parameter combinations will ensure a convergent admissible solutions. For that
reason and due to the non-semi-definite topological derivative, this last example will provide an
analysis of the performance of the different techniques with respect to the design of compliant
mechanisms, produced either with localized hinges or deformable bars (for optimal reference
solutions refer to [120, 139, 58]).

D.6 Comparison of methods

D.6.1 Comparison settings

In the following subsections, the basis of the comparison will be detailed, specifying the platform
on which Matlab will be executed, the versions for the Matlab codes of each approach as well as
the specific parameters used in each method and numerical example. In addition, it is important
to define equivalent convergence criteria for the different techniques in order to guarantee a fair
comparison in terms of the computational cost.

Computing cluster features

The benchmark cases are solved on a cluster, in which each node consists of two AMD EPYC
7451 with 24 cores (48 threads) each one at 2.9 GHz and 1 TB DDR4 RAM memory at 2666
MHz. Each example is solved using eight cores and 99 GB of RAM memory to ensure enough
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memory for each of the numerical benchmarks. In this way, a greater number of cases can be
solved at once without affecting the result of each approach. All these cases are computed using
modified codes in Matlab 2018b under Scientific Linux 7.2 (based on RedHat Enterprise 7.2).

Matlab codes

All the codes used in this paper are 3D extensions of the respective 2D codes, already published
by their respective developers, preserving the original algorithmic structure.

Firstly, SIMP-based method codes are based on the 2D implementation initially introduced
by Sigmund [106] in the 99-line program for two-dimensional topology optimization. This pro-
gram was later improved by Andreassen et al. [13], who vectorized the element loops in the
assembly and filtering strategies. The code in Matlab was later extended to three-dimensional
topology optimization problems by Liu and Tovar [74], who provided the analytical element
stiffness matrix for a cubic hexahedral element. Therefore, the SIMP method with PDE-filtering
(SIMP(I)) and SIMP method with convolution filter (SIMP(III)) take the basic scheme from
the 82-line program (using a PDE filter) and the 71-line program (with the conv2 function)
from [121], respectively, and implement the formulation for the 3D elastic problem from [74].
Both approaches use the optimality criteria (OC) method combined with a sensitivity filtering
(ft = 1) to solve the corresponding topology optimization problem. It is worth noticing that the
L∞ norm of the design variable has been replaced by a L2 norm normalized with the size of the
domain. In addition, some minor changes to the OC Matlab function have been done to correctly
consider active and passive elements. As mentioned, the SIMP method using time-advancing
scheme (SIMP(II)) employs the same scheme as the SIMP method with PDE-filtering (SIMP(I)),
but this time using a time-advancing scheme, similar as the one implemented in VARTOP [90,
135].

Secondly, a Soft-kill BESO code, implemented in Matlab, has been adapted from the one
presented by Huang and Xie [60] in chapter 4 for 2D topological stiffness optimization. This code
has been extended to three-dimensional problems mimicking the Matlab code for SIMP(III),
since they share most of the general scheme of the algorithm. Some modifications have been
done to adapt the specific updating scheme, the sensitivity filtering along with the corresponding
temporal filtering (the so-called averaging scheme in [60]). Additional minor changes must be
implemented in the sensitivity and stiffness computations, since the original SIMP material
interpolation is used instead of the one implemented in [13], with two unique discrete values:
ρ = {1, ρmin} for the minimum mean compliance problem (see Section D.4.2). In this particular
scenario, the minimum value ρmin is imposed to elements in the void domain to avoid zero
stiffness elements. Additionally, a similar L2 norm of the topology, implemented for SIMP-based
methods, is here also used to check if the topology has converged in addition to the existing one
in objective function.

Thirdly, the Matlab code for VARTOP is a 3D extension of the corresponding program for 2D
topology optimization problems provided in [135]. The element stiffness matrices, as a product
of the strain-displacement matrix with the nominal constitutive tensor, are precomputed for the
non-bisected and bisected elements, here termed mixed elements. In this way, once the type of
element has been determined, the global stiffness matrix can be quickly computed and assembled.
In addition, the pseudo-energy density is also easily computed from the matrices calculated with
the reference element. In this case, a Laplacian smoothing, applied to the pseudo-energy density
at each iteration, is precomputed at the first iteration as implemented in SIMP(I). Finally, the
Lagrange multiplier is computed using the closed-form optimality method in conjunction with
a modified marching cubes method to compute the volume, explained in Oliver et al. [90]. The
convergence criteria defined in [90] are replaced with the objective function criterion and the
topology criterion in terms of a relaxed design variable, in addition to the volume constraint.

Finally, the Level-set method using the Relaxed Topological Derivative (RTD) corresponds
to a modification of the previous code for VARTOP, where the updating scheme is changed.
Instead of the original closed-form optimality criteria, a Hamilton-Jacobi equation is used to
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update the level-set function with a given ∆t, as detailed in Oliver et al. [90]. An Augmented
Lagrangian method is used to ensure the volume constraint equation C0. The stiffness matrices
as well as the different terms required to compute the pseudo-energy density are precomputed
at the initial iteration. The same Laplacian smoothing as in VARTOP is here applied to the
level-set function at each iteration. In addition to the two existing convergence criteria, the
volume constraint must be also considered in the outer loop.

Guidelines for the comparison

The general guidelines for a fair comparison are listed below:

1. Benchmark cases: the same numerical benchmark cases and finite element meshes must
be used for every topology optimization approach. Four benchmark cases will be carried
out using dense meshes (around 1 million finite element) in order to obtain high-quality
designs.

2. Target volume fraction: the same ratio of the final material domain is imposed by the
constraint equation in each approach, which is fulfilled through different techniques. The
desired volume fraction corresponds to a small ratio of material with respect to the initial
design domain, so that a large material reduction is achieved throughout the topology
optimization. For three-dimensional problems using high dense meshes, this value will
commonly be between 80% and 95% of the design domain, Ω, depending on user require-
ments. Nevertheless, it will depend on each specific numerical example and its respective
boundary conditions as connections between the different boundary conditions areas must
be preserved. This ensures a stiff connection between the nodes in which the loads are
applied and those where the displacements are prescribed in the elastic problem.

3. Objective function normalization: since not all the methods start from a full material
configuration, an initial iteration with this material layout is computed in all Matlab
codes as a reference iteration. The objective function value at this iteration, J0, is used
to normalize the subsequent iterations in each method, thus obtaining equivalent values
for each numerical example, technique and volume fraction. However, the use of different
design variables, nodal19 versus element20 variables, produces huge discrepancies in the
actual objective function value since the stiffness of semi-dense elements is underestimated
[112]. For that reason, an additional final iteration is computed with an element black-
and-white configuration, i.e χ, ρ = {1, 10−9}, thus obtaining a fully equivalent objective
function value. Nevertheless, it is important to point out that this configuration is not
practical from a design standpoint as the smoothness of the design is lost in the projection.
The reader is addressed to Appendix D.B for further details.

4. Contrast factor: since each compared topology optimization approach defines a different
material interpolation for the constitutive tensor Cζ , it is important to ensure the same
contrast factor α, so that the same Young’s modulus is used for the soft material when
using the ersatz material approach. This parameter may strongly affect the objective
function value and the convergence of the topology optimization. A preliminary study has
revealed that topology convergence can be achieved for contrast factors up to α = 10−6,
for minimum mean compliance problems. Thus, this value will be used as contrast factor
for this type of problems.

19The characteristic function, defined through the discrimination function, is used as design variable in the Level-
set and VARTOP methods. Therefore, the material interface is precisely defined by the level-set function or
discrimination function, respectively.

20The density is defined for each element either using a continuous material interpolation for the SIMP-like ap-
proaches or a discrete solution for the Soft-kill BESO method.
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5. Convergence criteria: in order to guarantee a fair comparison, the convergence criteria of
each approach must be replaced with the same equivalent conditions:

� Volume constraint: the same tolerance TolC0 = 10−3 in the volume constraint (3-b-1)
is assumed for all the topology optimization approaches, except in Level-set. In this
approach, the tolerance is slightly relaxed to 5 ·10−3, in order to improve convergence
when using the Augmented Lagrangian method.

� Objective function criterion: a (weighted) moving mean of the relative objective
function J is evaluated along n consecutive iterations as

∆Jk =
1

n

i=k∑
i=k−n

|Ji − Ji−1|
J0

, (67)

where the parameter k denotes the k-th iteration and J0 stands for the objective
function at the initial iteration. The appropriate number of iterations n depends
on the topology optimization technique, as the number of iterations per time-step
will not be the same. Notice that, for time-advancing schemes, the n + 1 iterations
correspond to the same time-step, thus avoiding variations in the objective function
due to the change of volume constraint. For all the benchmark cases, a tolerance
TolJ = 10−3 in the objective function is prescribed.

� Topology criterion: a L2 norm between two consecutive iterations is evaluated in a
relaxed design variable ρ as

∆ρk =
1

|Ω0|1/2

(∫
Ω

(ρk − ρk−1)2 dΩ

)1/2

, (68)

where k represents the iteration number and |Ω0| stands for the material volume
at the first iteration. The design variable ρk corresponds to a relaxed characteristic
function for discrete design variables (for instance, in the VARTOP, SOFTBESO, and
Level-set methods) or to the density variable for the SIMP approaches. In Appendix
D.A, the reader can find the exact definition of this topology criterion for discrete
design variables. For this criterion, the convergence tolerance is Tolζ = 2.5 · 10−3.

For incremental time-advancing methods, such as the VARTOP, SIMP(II), and Level-set
methods, a linear variation of the tolerances in cost and topology is defined, starting from
a higher value for the first time-step (around one order of magnitude higher) to the value
established in the last time-step. Consequently, all approaches obtain the convergence
with the same criteria for the last increment (i.e., for the same stiff material fraction),
thus resulting in a fair comparison.

It is important to stress that the objective function criterion is not a reliable indicator
of convergence in compliant mechanism synthesis problems. The normalized objective
function oscillates significantly more than in minimum mean compliance problems in all
methods, thus preventing to obtain an optimal solution. This oscillation may be related
to this specific type of problem, and, in particular, to the initial value of the objective
function which may be null. As a consequence, the normalization of the objective function
can not be performed, thus invalidating this convergence criterion. For these reasons, the
objective function criterion has not been considered in the last numerical benchmark of this
paper. However, it can be used in the other three benchmark cases since a proportionality
between the objective and topology criteria is observed, both monotonously converging to
the optimal values. In addition, the normalization problem is not detected in minimum
mean compliance problems as the external work is different from 0 in any case. In case
it would also be omitted in these examples, no substantial change would be observed
with respect to the obtained results, just resulting in minimal variations in the number of
iterations to converge.
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Parameter definition

For each topology optimization method and benchmark case, a specific set of parameters must
be defined. These parameters define the material behavior (via the contrast factor or mini-
mum Young’s modulus), the volume fraction, the convergence tolerances, the exact updating
parameters for the design variable, and the the ones for the regularization technique.

Whenever possible, common values in material properties, volume fraction, and convergence
tolerances will be imposed for the different benchmark cases and topology optimization methods.
However, the specific updating parameters depend on each approach and numerical example due
to convergence issues. In particular, a consistent difference is noticed regarding the definition
of the parameters for minimum mean compliance and compliant mechanism synthesis problems,
as already commented.

Regarding the target volume fraction, a 10% volume fraction of stiff material and a con-
trast factor α = 10−6 are imposed for minimum mean compliance problems. As for compliant
mechanism synthesis problem, the volume constraint is applied for a 15% volume fraction, while
contrast factor is increased to α = 10−2. In both problems, a linear isotropic material with a
Young’s modulus E = 1 and Poisson’s ratio ν = 0.3 is used.

The updating and regularization parameters depend on each approach, and in certain cases,
on the optimization problem. The exact values of these parameters are detailed in Appendix
D.C. In general, the parameters of each method are given as follows:

� SIMP-based methods: the penalty value and the minimum radius are prescribed to
p = 3 and rmin = 3, respectively. A sensitivity filtering (ft = 1) is used for the topology
optimization, as aforementioned. The updating parameters m and η are defined accord-
ing to the optimization problem, corresponding to 0.2 and 0.5 for minimum compliance
problems, and 0.1 and 0.3, respectively, for compliant mechanism design problem.

� SOFTBESO: the same values for the penalty factor and minimum radius as those in SIMP
are used. The evolutionary ratio ER and the maximum volume addition ratio ARmax are
prescribed to 0.01 and 0.1, respectively.

� VARTOP: the number of steps nsteps, the exponential factor m and the regularization
factor τ depend on each problem. However, the same value of time-steps as SIMP(II) is
used for each benchmark case.

� Level-set: in contrast to SIMP(II) and VARTOP, the optimizations are carried out with
a single time-step. However, the same exponential factors as the ones in VARTOP are
employed, and the regularization factor τ is set to 1. In addition, the time-increment ∆t
and the penalty coefficient s of the Augmented Lagrangian method also change with the
optimization problem.

For incremental time-advancing techniques with multiple time-steps, the volume fraction of stiff
material at each step is reduced following an exponential evolution

fj = f0 +
f − f0
1− ek

(
1− ek

j
nsteps

)
, j : 1 . . . nsteps (69)

with factor k = −2.

D.6.2 Results

The results obtained from the six topology optimization approaches are now compared with
each other for every of the numerical benchmarks (see Section D.5). The comparison is carried
out in terms of the optimal topology, objective function value, and the computational cost,
discussing the relative objective function values and the relative computation costs. In addition,
an analysis of the convergence is also performed. Finally, an overall comparison of the different
methods is made according to the results.
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General discussion of results

The optimal topology layout for the required material volume is here compared for the six
different approaches from a quantitative and qualitative standpoint. In particular, the quality
of the optimal solution is discussed together with the minimum filament size of the resulting
(linear) pieces of the final design (bars), the computational cost in terms of the iterations, and
the normalized value of the objective function for the four addressed benchmark cases.

Cantilever beam The final solutions of the Cantilever beam problem for each topology op-
timization technique are displayed in Table D.1. Although the resultant topologies are quite
different, all methodologies except for SIMP(II) obtain a similar overall optimal design consist-
ing of two separated webs. However, these webs present a different internal layout and topology
complexity. The designs obtained from SIMP(I), SIMP(III), VARTOP, and Level-set illustrate
a much simpler design based on bars, while SOFTBESO produces an optimal design with a
thin web (or a high number of close bars), with almost constant thickness. On the other side,
SIMP(II) finds a different optimal layout with a single continuous central web.

The mean bar width value h, computed as the ratio between the stiff volume and the surface
area of the solution, provides feedback on the complexity of the optimal design. For low h values,
as in SOFTBESO, the optimal solution is made of a large number of thin bars, making it more
difficult to manufacture and more likely to buckle. As this number increases, the width of the
bars tends to increase, thus simplifying the complexity of the design, as in SIMP(I), VARTOP,
or Level-set. Furthermore, these topologies are less prone to buckling effects.

The topologies can be also compared in terms of the corresponding value of the objective
function. It can be noted that as the number of bars increases and/or the size of these bars
decreases (tending to a single continuous web in the limit), the value of the objective function
decreases, as it is observed in the SOFTBESO and SIMP(II) approaches. On the contrary,
Level-set and VARTOP optimize the design layout using thicker bars, thus obtaining a higher
compliance value21. Similar designs and objective function values are obtained via SIMP(I) and
SIMP(III).

Finally, the techniques can be compared in terms of the number of iterations (i.e., a com-
putational cost-measure). As detailed in Table D.1, VARTOP requires fewer iterations (116) to
achieve the optimal topology layout while not being so far from the optimal topologies obtained
by the other approaches. It is closely followed by SIMP(III) with 124 iterations, and with a
few iterations more one can find SIMP(I), SIMP(II), and SOFTBESO with 175, 231 and 272
iterations, respectively. The Level-set method takes many more iterations (1266) to converge.

L-shaped structure The obtained results for the L-shaped structure are presented in Table
D.2. As it can be noticed, the overall design of the structure is similar in all the methods. The
vertical part, at the left, is almost identical in all the solutions. The most significant differences
are found in the lower part of the structure, in which the topological complexity changes with
the method. In this case, designs with 2 or 3 webs are obtained according to the approach,
which connects the vertical part of the structure with the load application point. In particular,
all the methods present a 2 web design except for the solutions of SIMP(II), which displays an
internal central structure. Additionally, all the designs are mainly constituted by bars, being
thinner in SIMP(II) and SOFTBESO, as displayed by the mean bar width value h.

Regarding the objective function value, the values for all the solutions are around a com-
pliance value of 2.40-2.60 with respect to the initial reference compliance22. SIMP(II) achieves
the topology design with the lowest objective function value, while other approaches produce
solutions with a value closer to 2.5. SOFTBESO obtains the solution with the highest objective
function value (2.6).

21The bar width could be reduced by modifying the value of the regularization parameter, τ .
22An initial iteration with a full stiff material is computed. The passive elements/nodes are accounted for in this
initial design.
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Table D.1: Comparison of the results of topology optimization methods for the Cantilever beam.
The number of iterations, objective function values, and mean bar widths h are given for each
of the addressed approaches. The optimal topology is also illustrated in the last two columns,
via an isometric view and a side view.

Method
Total
iter.

J h Optimal solutions

SIMP(I) 175 6.4710 2.1012

SIMP(II) 231 5.9609 1.7888

SIMP(III) 124 6.7285 1.9700

SOFTBESO 272 6.4369 1.4586

VARTOP 116 6.3981 2.2783

Level-set 1266 6.9494 2.8121
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Finally, a comparison of the number of iterations shows that, again, VARTOP requires
fewer iterations than the other considered topology optimization techniques. There is not a
large difference in the number of iterations with SIMP(I) or SIMP(III) (66 and 76 versus 62
of the VARTOP), although the difference in iterations increases when compared to SIMP(II),
SOFTBESO or Level-set techniques, as observed in the previous example.

Multi-load Cantilever beam Table D.3 presents the results obtained regarding the multi-
load problem for the corresponding approaches. In contrast to the previous cases, the resultant
optimal solutions are quite different from each other. Although all six methodologies find sym-
metrical optimal solutions (with respect to the horizontal midplane of the domain), the resulting
topologies do not correspond to the symmetrical solutions obtained for the first example (see
table D.1), which could be intuitively presumed.

Most of the solutions are based on bar designs except for the SOFTBESO approach, which
consists of a continuous core. For this reason, the mean bar size h is the lowest of all techniques.
Nevertheless, the solutions obtained with VARTOP, SIMP(I), and SIMP(III) have many sim-
ilarities, being the design of these last two techniques practically the same. Furthermore, the
optimal layout achieved with SIMP(II) is made of 3 webs with thinner bars, having a similar
overall design. It is important to stress that the solutions obtained using VARTOP and Level-
set present the highest mean bar width, thus achieving the best designs from a manufacturing
standpoint and buckling resistance. However, the solution of the Level-set method corresponds
to a different local minimum than the previous ones.

The lowest objective function values are obtained by SOFTBESO and SIMP(II) even though
the designs are quite complex and can not be easily manufactured. Conversely, Level-set finds
the topology layout with the highest value. The other approaches (VARTOP, SIMP(III), and
SIMP(I)) provide sufficiently manufacturable (low complexity) solutions with intermediate val-
ues. Similar to the previous cases, methods SIMP(I), SIMP(III) and VARTOP are the ones with
the lowest computational cost, method SIMP(I) being 30% faster than the other two methods.

Gripper compliant mechanism The results of this last numerical example are summarized
in Table D.4. The optimal solutions exhibit resemblance to each other, obtaining the desired
mechanism. However, the topology layouts can be grouped into two groups: obtaining 3D-like
designs for SIMP and SOFTBESO methods, while almost 2D-extruded designs are obtained
for VARTOP and Level-set. The considered approaches can also be split into two main groups
depending on their capability to generate the mechanism either by creating localized hinges or
deformable bars. All methods except SOFTBESO achieve a design based on localized hinges,
thus significantly increasing the value of the objective function. In other words, the same force
applied at the input port results in a smaller displacement in the target direction at the output
port. For this reason, it is concluded that SOFTBESO has not fully converged to the same
local minimum under the given parameters. Regarding the mean bar width, the values for all
approaches range between 2.4 and 2.5, being equal to 2.7 for SIMP(I) as the design is based on
a smaller number of thicker bars.

Except for the SOFTBESO, the objective function values of the other approaches range
between −260 and −331, showing a larger discrepancy than in the previous benchmark cases.
On the other hand, unlike the previous benchmark cases, the best topology design is obtained
using the Level-set method, even though the layout almost resembles a 2D-extruded design.

Finally, the comparison of the number of iterations reveals that VARTOP requires much
fewer iterations than the other methods. The other topology optimization techniques require
between 200 and 300 iterations. Therefore, the considered methods can be sorted according
to the number of iterations, in increasing order, as follows: VARTOP, Level-set, SOFTBESO,
SIMP(III), SIMP(II) and SIMP(I).

After analyzing all the results, it can be stated that topologies resulting from Level-set and
VARTOP have smooth and accurate interfaces since the solution is defined via a level-set or a
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Table D.2: Comparison of the results of topology optimization methods for the L-shaped struc-
ture. The number of iterations, objective function values, and mean bar widths h are given
for each of the addressed approaches. The optimal topology is also illustrated in the last two
columns.

Method
Total
iter.

J h Optimal solutions

SIMP(I) 66 2.4823 2.1194

SIMP(II) 140 2.4229 1.7722

SIMP(III) 76 2.4882 2.1108

SOFTBESO 190 2.6171 1.5100

VARTOP 62 2.4811 2.4903

Level-set 1071 2.5163 2.4532
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Table D.3: Comparison of the results of topology optimization methods for the Multi-load
cantilever beam. The number of iterations, objective function values, and mean bar widths h
are given for each of the addressed approaches. The optimal topology is also illustrated in the
last two columns.

Method
Total
iter.

J h Optimal solutions

SIMP(I) 81 7.4271 1.8343

SIMP(II) 208 6.7774 1.4312

SIMP(III) 111 7.3156 1.8300

SOFTBESO 249 6.6406 1.3108

VARTOP 115 7.0459 2.5573

Level-set 694 8.2108 2.5669
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Table D.4: Comparison of the results of topology optimization methods for the Gripper com-
pliant mechanism. The number of iterations, objective function values, and mean bar widths h
are given for each of the addressed approaches. The optimal topology is also illustrated in the
last two columns.

Method
Total
iter.

J h Optimal solutions

SIMP(I) 325 -261.6980 2.7041

SIMP(II) 297 -305.3930 2.5020

SIMP(III) 264 -297.0620 2.4805

SOFTBESO 207 -135.7380 2.5441

VARTOP 32 -269.4409 2.4553

Level-set 176 -331.0203 2.5128
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discrimination function. Thus, low complexity topology designs are obtained. On the contrary,
SIMP-based and SOFTBESO methods produce element-wise discontinuous designs. In addition,
SIMP-based approaches require special post-processing as the design has semi-dense elements,
thus requiring an extra projection procedure to determine the density value that defines the
material interface. In this procedure, bars might be disconnected or broken up, giving as solution
non-optimal topologies. Additionally, a smoothing post-processing should be done to achieve
crisp and smooth edges from these two family of approaches.

Objective function value

In Figure D.8, the objective function values for each example and topology optimization method
are illustrated. The values are normalized with respect to SIMP(I). As aforementioned, the
objective function for each of the numerical benchmarks does not differ much from one approach
to another. The values are between a range of ±15% of the ones obtained using SIMP(I).
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Figure D.8: Objective function value for each example and topology optimization approach
normalized with the results obtained with the SIMP(I) method. Legend: (1) the Cantilever
case is represented with a solid black line, (2) the L-shaped case, with a dotted black line, (3)
the Cantilever multi-load case, with a dash-dotted line and (4) the Gripper mechanism with a
dashed line, which is interrupted for the SOFTBESO method due to lack of convergence.

As observed in the graphic, SIMP(II) achieves consistently the optimal solutions with the
lowest objective function value as a consequence of the larger number of thin straight bars (high
topology complexity), as detailed in Section D.6.2. Nevertheless, two exceptions are observed,
the first one for the multi-load cantilever problem where SOFTBESO achieves a solution with
a lower objective function, and the second one for the Gripper case and the Level-set.

It is important to emphasize that a greater variance is only observed in the Gripper due
to the fact that there is a greater difference in topology among the different approaches. Each
technique achieves a characteristic compliant design with the exception of SOFTBESO. This
approach obtains a topology layout with an objective function value that is almost two times
higher than the one obtained using SIMP(I).

CPU computation cost: iterations

The computational cost is assessed in this paper according to the number of iterations instead
of the computational time. In this way, it is possible to decouple the solution from the platform
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used to run the topology optimization technique (i.e., OS, programming language, and hardware,
among others) as well as from the solver used to solve the state problem. It has been observed
that the selection of a specific iterative solver may significantly increase the computational time
of some approaches with respect to others. Therefore, to remain as unbiased as possible, and in
the hypothetical case that all methods would use a direct solver with equivalent computational
cost per iteration, the computational cost could be evaluated with the number of iterations, thus
obtaining a fair comparison.

The comparison of the computation cost in terms of the number of iterations is shown in
Table D.5. The values of the computational cost, normalized with respect to SIMP(I), are
illustrated in Figure D.9. As can be seen, the relative computational cost depends on each
numerical example. However, it keeps a certain tendency along the considered approaches for
minimum mean compliance problems.

Regarding the Cantilever beam, VARTOP and SIMP(III) are up to 1.4 times faster than
SIMP(I), and up to 2 times faster than SIMP(II) or SOFTBESO. Level-set turns out to be 7
times more computationally expensive than SIMP(I). In addition, it is important to stress that
VARTOP is 7% faster than SIMP(III), even though it provides not only the optimal solution
but a set of solutions for different volume fractions (Pareto Frontier).

For the L-shaped structure and the multi-load cantilever beam optimizations, the relative
computation costs increase from the previous example, except in VARTOP. Its relative com-
putational cost becomes almost 1 for the L-shaped structure and even 1.4 for the multi-load
cantilever case. SIMP(I) results in the the fastest approach for this latter benchmark. The
advantage over the SOFTBESO, Level-set, and SIMP(II) methods is still present, although no
significant improvement in computational cost is obtained with respect to SIMP(III) and VAR-
TOP.

As for the compliant mechanism example, the previously observed trend does not apply any
more. In this case, VARTOP is the fastest approach by far (almost an order of magnitude faster),
followed by the Level-set and SOFTBESO approaches. Both methods require approximately
half as many iterations as SIMP(I). SIMP(III) and SIMP(II) techniques are respectively 20%
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Figure D.9: Relative computational cost in terms of the number of iterations. Each numerical
example is normalized with the number of iterations of the SIMP(I). Legend: (1) the Cantilever
case is represented with a solid black line, (2) the L-shaped case, with a dotted black line, (3)
the Cantilever multi-load case, with a dash-dotted line and (4) the Gripper mechanism with a
dashed line.
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and 10% faster than the reference method. This trend change in the computational cost may be
caused by the change in the topology optimization problem (i.e., the non self-adjoint character
of the problem).

Table D.5: Comparison of computational cost in terms of iterations of the considered topology
optimization methods.

Numerical Example SIMP(I) SIMP(II) SIMP(III) BESO VARTOP Level-set

Cantilever beam 175 231 124 272 116 1266
L-shaped structure 66 140 76 190 62 1071
Multi-load cantilever beam 81 208 111 249 115 694
Gripper 325 297 264 207 32 176

Robustness: monotonic convergence degree

The convergence robustness is analyzed through the evolution of the objective function and
volume fraction, and the criteria in topology and objective function throughout the optimization.
For each technique, the analysis of these variables determine the monotonic convergence degree
of every method. The discussion is performed only through the first two examples, since they
are representative enough to provide a complete overview of the issue of robustness.

The evolution of the objective function for the Cantilever beam is illustrated in Figure D.10.
Single-time-step methods are represented in the first column while incremental time-advancing
techniques (i.e., SIMP(II), VARTOP, and Level-set) are depicted in the second column. Each
time-step is shaded with a different color to improve its visualization. The normalized objective
function value J /J0 (solid line colored in black) is illustrated in the left y-axis, while the stiff
material fraction (dash-dotted line, colored in gray) is associated with the right y-axis.

Based on the convergence, the following features can be highlighted: (1) SIMP(I) and
SIMP(III) prescribe a constant stiff material fraction (i.e., f = 0.1) from the initial iteration, and
the objective function converges monotonically to a value close to 7.8 23, (2) in SOFTBESO, the
stiff material fraction is gradually reduced from the initial value 1 to the target value 0.1, conse-
quently, the objective function increases until the target volume is achieved, (3) in SIMP(II) and
VARTOP, the target stiff material fraction is reduced from 1 to 0.1 in 12 time-steps, thereby
the objective function is minimized at each time-step, and (4) Level-set, which even though it
can also be an incremental time-advancing method, it has a particular response since the volume
constraint is not strictly enforced on each iteration, but it oscillates ruled by an Augmented
Lagrangian method.

As illustrated in Appendix D.D, the order of convergence of the objective function is close to
1 for all the techniques. Therefore, all topology optimization methods have a linear convergence
in the objective function.

The convergence curves of the objective function and topology criteria are depicted in Figure
D.11. The objective function criterion (solid black line) is represented in the left y-axis, while
the topology criterion (gray dash-dotted line) in the right y-axis. As in Figure D.10, the previous
four different groups can be distinguished, but now in terms of the convergence criteria. Both
SIMP(II) and VARTOP show a strictly monotonous convergence within each time-step, only
noticing some small oscillations in the second last time-step where a change in topology has
taken place. As for the other methods, SIMP(I) and SIMP(III) present monotonous convergence
with small amplitude oscillations, while some important variations are noticed in SOFTBESO
once the final stiff material fraction is achieved. Finally, the convergence criterion in the Level-
set method mimics the trend detected in the objective function and volume fraction with small
amplitude oscillations. As a global comment, it can be stated that the objective function criterion

23Note that the objective function value in the graph does differ from Table D.1, since different contrast factor α
are used in the optimization and in the post-processing iteration.
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Figure D.10: Evolution histories of the values of the objective function and volume fraction
throughout the iterations of the Cantilever beam topology optimization for the six considered
methods. Single-time-step approaches are illustrated in the first column, while incremental time-
advancing techniques are depicted in the second column, each time-step being shaded with a
different color. The normalized objective function Jρ or Jχ is associated with the left y-axis and
represented with a solid black line. On the other side, the volume fraction (i.e., the stiff material

fraction) |Ω
+|
|Ω| is represented by a dash-dotted gray line in the right y-axis of each graphic.
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Figure D.11: Evolution histories of the criteria values in the objective function and in the topol-
ogy throughout iterations of the Cantilever beam topology optimization for the six considered
methods. Single-time-step approaches are illustrated in the first column, while incremental time-
advancing techniques are depicted on the second column, each time-step being shaded with a
different color. The criterion in objective function, associated with the left y-axis, is represented
with a solid black line, while the criterion in the topology is represented by a dash-dotted gray
line in the right y-axis of each graphic. In addition, the corresponding maximum tolerances
TolJ and Tolζ allowed in the last time-step (or in the entire optimization for single-time-step
methods) are also displayed in every graphic as horizontal lines with the same properties.
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corresponds to the most restrictive criterion in all topology optimization approaches, except in
the Level-set method, in which the volume constraint is the limiting one.

The convergences corresponding to the other examples have been also analyzed in detail.
The graphics do not present any significant difference with respect to those already analyzed
for the Cantilever beam. However, for completeness reasons the corresponding graphics of the
second example are depicted in Appendix D.E.

Overall performance

In this last subsection, instead of comparing the different methods in a quantitative and ana-
lytical way, a more qualitative comparison is presented according to the following aspects: (1)
Surface smoothness, (2) Topology complexity, (3) Objective function, and (4) Computational
cost.

The first aspect refers to the surface smoothness required by several manufacturing tech-
niques. In these technologies, sharp edges and noise shells (i.e., abrupt continuous changes)
must be avoided in the boundary of the optimal solution. The second criterion takes into
account the complexity of the optimal design obtained by each technique, considering other
mechanical properties not directly included in the optimization. For instance, designs based on
thick bars will have a better structural behavior in buckling or fatigue compared to designs with
a greater number of thin bars. These two aspects will also have an impact on the manufacturing
challenges, which will decrease as the design becomes smoother and less complex. The third
one considers the value of the objective function, or equivalently the efficiency of each method
of finding a better local minimum. This criterion gathers the information shown in Figure D.8
regarding the relative objective function values. The last point of comparison globally assesses
the computational cost of each method to perform the optimization. Analogous to the last as-
pect, this criterion gathers the information represented in Figure D.9 with respect to the relative
computational cost.
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Figure D.12: Qualitative comparison of the studied methods regarding the smoothness of the
design (dotted column), the topology complexity (right-inclined lines pattern), the value of the
objective function (left-inclined lines pattern) and the computational cost in terms of iterations
(column with crosshatch pattern). Each one of the areas is rated qualitatively with the levels
A, B, C, or D, being A the best qualification and D the worst one.

In Figure D.12, each one of the aspects is represented with a column bar rated between A
and D, with A being the best qualification in that section and D being the worst one. For each
approach, four bars of different colors and patterns are represented, each one corresponding to
an analyzed aspect.

Regarding the surface smoothness, VARTOP and Level-set provide designs whose surfaces
are smooth. On the contrary, all other approaches only achieve element-wise optimal designs,
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thus the boundary of the solution is defined through abrupt continuous changes. Consequently,
additional post-processing procedures are required to manufacture these solutions with smooth
boundaries. For this reason, VARTOP and Level-set are evaluated with an A, while the others
are rated with a C grade.

Concerning the topology complexity, it has been noticed in Section D.6.2 that the quality
of the solutions is reasonably high in almost all the techniques, being this slightly lower for
SIMP(II) and BESO methods. In these two techniques, the complexity of the optimal topology
increases, obtaining designs based on thinner bars (i.e. lower bar width) with lower buckling
prevention. Accordingly, this two approaches are rated with a B while the others, with an A.

In terms of the objective function, all approaches obtain a similar optimal value, although
SIMP(II) consistently obtains marginally lower values than the other techniques, as detailed in
section D.6.2. For this reason, SIMP(II) obtains an A qualification, while the other methods are
left with a B. Finally, the comparison of the computational cost, discussed in section D.6.2, is
represented in the last column. The computational cost is lower and of similar magnitude for
SIMP(I), SIMP(III) and VARTOP, followed by the SIMP(II) and BESO approaches, and finally
by Level-set. These three groups are respectively rated with an A, B, and C.

Figure D.12 can be further simplified by combining the two topology-related features in
a single criterion referred to as topology quality, and the two criteria related to the objective
function and the computational cost in a single criterion called computational efficiency. These
two criteria are equivalently represented by a bar chart in Figure D.13. From this figure, it can
be concluded that VARTOP, although not being the best approach in all considered aspects in
Figure D.12, is presented as a competitive technique to more conventional topology optimization
approaches, such as SIMP(I) and SIMP(III). On the other hand, SOFTBESO and Level-set do
not provide any significant advantages, exhibiting mostly deficiencies in topology complexity or
computational cost, respectively, for the cases studied in this paper.

D.7 Concluding remarks

This contribution presents a thorough comparison among most of the well-established topology
optimization approaches, i.e. the SIMP, Level-set, and SOFTBESO methods, and the VARTOP
approach. A set of well-known 3D numerical benchmarks in the field of structural topology
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Figure D.13: Qualitative comparison of the studied methods, combining the topology related
properties and the computational ones in a single bar. The topology quality is represented with
a light blue colored bar and a right tilted line pattern, while the computational efficiency is
represented using a dark blue bar with a left tilted line pattern. Each of the criteria is rated
qualitatively with the levels A, B+ B, C+, C, D+ or D, being A the best qualification and D the
worst one.
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optimization has been addressed to analyze their performance. The corresponding results have
been assessed in terms of the optimal topology, the robustness in convergence, the objective
function, and the computational cost.

Regarding the topology, a quality dependence has been observed among the assessed meth-
ods, being slightly lower for SIMP(II) and BESO methods. The quality and complexity of the
topologies can depend on the type of design variable: continuous vs discrete and nodal vs ele-
ment, as well as the approach to impose the volume constraint.

Regarding the design variable, the methods can be split into three groups:

� Level-set and VARTOP use nodal scalar functions to precisely describe the interface, as
well as a discrete characteristic function to define sharp white-and-black configurations.

� SOFTBESO uses an element-wise discrete functions to define the topology layout24. Al-
though obtaining white-and-black designs, the material boundary is only defined through
elements.

� SIMP-based methods use an element-wise continuous variable. Consequently, these tech-
niques can not precisely define the boundary, but instead get a blurred interface with gray
semi-dense elements. By using a projection technique, white-and-black designs can be
obtained, which interface is defined through elements.

As a consequence, SOFTBESO and SIMP techniques may not obtain the best possible optimal
solution and would require post-processing techniques to obtain smooth designs which could be
easily manufactured. However, there is no guarantee that the resultant topologies are actually
optimal layouts.

As aforementioned, the volume constraint methodology may also affect the resultant topol-
ogy. In those techniques where the volume constraint is gradually imposed using element-wise
variables (e.g. SOFTBESO and SIMP(II)), the final topologies tend to be more complex and
consist of a larger number of thin bars. As a result, these topologies have worse mechanical
behavior and are more challenging and expensive to manufacture.

In terms of the topology, it can be concluded that both a combination of nodal scalar design
variables with a gradual incremental volume constraint, and a combination of a continuous
element-wise variable with a constant volume constraint provide optimal topologies with high
quality. In the comparison, SIMP(I), SIMP(III), VARTOP, and Level-set achieve optimal designs
that are based on thicker bars (with higher mean bar size), thus improving manufacturability
with high-quality optimal designs and reducing the buckling proneness.

Concerning the robustness of each method, it has been confirmed that all the techniques have
a linear convergence in the objective function regardless of the methodology used to impose the
volume constraint. This fact supports the selection of the techniques for the comparison, and the
independence with respect to the filtering technique (i.e. spatial or Helmholtz-type filtering) and
the updating scheme of the design variable (i.e. incremental or absolute). These two differences
may have an effect on the optimal solution, but not on the order of convergence.

In regard to the objective function value, a small variation of ±15% is observed in the four
numerical benchmarks among the studied methods with the exception of two tests in the Gripper
mechanism. However, SIMP(II) achieves systematically the lowest objective function values, as
the majority of its optimal designs are based on smaller, thinner bars (i.e., high complex designs),
as mentioned before. Due to this characteristic, these designs are proclive to buckling.

For the first three examples, all studied techniques can be sorted according to a descending
number of required iterations as follows: Level-set, SOFTBESO, SIMP(II), VARTOP, SIMP(III)

and SIMP(I). However, the relative computational cost depends on each example and technique,
but the same trend is observed. It is important to emphasize that incremental time-advancing
techniques such as SIMP(II) and VARTOP obtain not only the final optimal solution but also
a set of intermediate converged solutions at almost the same computational cost (Pareto fron-
tier for the volume fraction). In this scenario, VARTOP is up to 1.5 times faster than the

24As aforementioned, a relaxed characteristic function (or density variable) is used for compliant mechanism syn-
thesis.
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corresponding SIMP(II) implementation. As for the Gripper compliant mechanism, the ten-
dency in computational cost completely changes from the previous examples, observing a very
significant reduction with VARTOP compared to SIMP(I). Contrary to the other numerical ex-
amples, SOFTBESO and Level-set also require a lower number of iterations than SIMP -based
implementations.

In conclusion, the VARTOP, SIMP(I), and SIMP(III) approaches present topology layouts
with a higher topology quality than the other methods at a lower computational cost, even
though their objective function is not minimized as much as in other approaches.

The authors are aware that, in spite of the efforts done for a fair comparison, a certain degree
of subjectivity can still remain in this kind of studies, but they also think that those studies
should be presented to the community of structural topology optimization even to be argued
and discussed with the aim of the progress of computational topology optimization.
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D.A Convergence criteria

Convergence is evaluated in terms of the volume constraint, the objective function, and the
topology design, as mentioned in Section D.6.1. In particular, the topology criterion must be
analyzed in detail, since this criterion must be standardized in all methods, each one using a
different design variable.

For density-based methods, such as SIMP, the topology criterion can be written as a L2 norm
of the element density variable ρe between two consecutive iterations as

∆ρk =
1

|Ω0|1/2

(∫
Ω

(ρk − ρk−1)2 dΩ

)1/2

=
1

|Ω0|1/2

(
Ne∑
e=1

(ρe,k − ρe,k−1)2 |Ωe|

)1/2

, (70)

where e corresponds to the element number and k to the iteration number, and |Ωe| is the
volume of element e.

However, for the other approaches, a relaxed characteristic function must be used to compute
the topology criterion. The element density variable or the corresponding element characteristic
function are regularized via a Laplacian regularization (32). Therefore, the topology criterion
is computed as

∆ρ̂k =
1

|Ω0|1/2

(∫
Ω

(Nρ̂k −Nρ̂k−1)
2 dΩ

)1/2

=

√
(ρ̂k − ρ̂k−1)

TM (ρ̂k − ρ̂k−1)

|Ω0|1/2
, (71)
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with ρ̂k being the solution to

(
M + (τh)2K

)
ρ̂k =

∫
Ω
NTφe dΩ . (72)

The element variable φe corresponds to element density variable ρe, the element characteristic
function χe,ψ or the element characteristic function χe,ϕ for the BESO, VARTOP, or Level-set
methods, respectively. The matrices N, M and K stand for the shape function matrix, the
mass matrix and the stiffness matrix, and τ corresponds to the regularization parameter of the
topology criterion. It is important to stress that the regularization parameter τ must be chosen
thoroughly so that the two topology criteria are equivalent. Based on the authors’ experience,
it has been prescribed to τ = 8.

D.B Post-processing iteration

Due to the discrepancies in the design variables (nodal vs element and continuous vs discrete)
and the existence of semi-dense elements, the objective function value J can not be directly com-
pared between topology optimization approaches. For that reason, once the optimal topology
has converged, an additional iteration must be computed using a black-and-white element-wise
design with a uniform small contrast factor α = 10−9 for all the studied methods. In this sce-
nario, the topology design is expressed via the characteristic function χe = {1, β}, as defined
in equation (1), with β depending on each method so that a constant soft Young’s modulus is
used throughout the methods, as detailed in Section D.4.

Bear in mind that a projection technique on the density or on the characteristic function
(based on its element definition) is required to obtain an optimal topology layout represented
only by elements completely contained in the stiff material domain or in the soft material domain.
In this projection technique, the volume must be kept unmodified so that the objective function
is computed with the same stiff material fraction. Depending on the topology optimization
approach, the element-wise characteristic function χe is computed as

� For VARTOP and Level-set, a Heaviside function with the actual characteristic function
χ̂e,ψ (or χ̂e,ϕ for the Level-set method) and a reference value computed via a bisection
algorithm, i.e.,

χe = Hβ (χ̂e,ψ − γ) for ∀e ∈ Ne , (73)

with β < γ < 1 being computed such that the volume constraint C0(χe) in the entire
domain is enforced (equations (51-b-1) and (61-b-1)).

� For density-based approaches (including Soft-kill BESO), a Heaviside function with the
element density variable ρe and a reference value ρ computed via a bisection algorithm,
i.e.,

χe = Hβ (ρe − ρ) for ∀e ∈ Ne , (74)

with β being 0 for SIMP methods or
p√
α for BESO.

D.C Parameter definition

In order to ensure replicability, all the relevant parameters are provided in Tables D.C.6 and
D.C.7. Table D.C.6 details the values related to the tolerances as well as the values for the
contrast factor and the volume fraction for each topology optimization. On the other hand,
Table D.C.7 provides the specific parameters for updating and regularizing the design variable.
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Table D.C.6: Global parameters and tolerances used for each benchmark case and topology
optimization method. Volume fraction, contrast factor, and objective function tolerance are
detailed for each benchmark, while tolerances in volume fraction and topology are defined for
each method.

Benchmark

Method Cantilever
L-shaped
structure

Multiload
Cantilever

Gripper

SIMP(I),

SIMP(II),
SIMP(III),
BESO

TolC0 = 10−3, Tolζ = 2.5 · 10−3, n = 3

α = 10−6, |Ω+| = 0.1|Ω|, TolJ = 10−3
α = 10−2,

|Ω+| = 0.15|Ω|,
TolJ = 100

VARTOP

TolC0 = 10−3, Tolζ = 2.5 · 10−3, n = 2

α = 10−6, |Ω+| = 0.1|Ω|, TolJ = 10−3
α = 10−2,

|Ω+| = 0.15|Ω|,
TolJ = 100

Level-set

TolC0 = 5 · 10−3, Tolζ = 2.5 · 10−3, n = 5

α = 10−6, |Ω+| = 0.1|Ω|, TolJ = 10−3
α = 10−2,

|Ω+| = 0.15|Ω|,
TolJ = 100

D.D Order of convergence

In this appendix, the order of convergence of the objective function for the different methods will
be evaluated to define an additional parameter regarding the computational robustness (Section
D.6.2). As a result, it will be possible to verify whether one method stands out from the others
in terms of the order of convergence.

The order of convergence, p, for the objective function can be computed from the sequence
of iterative values Jn/J0 (from n = 0 to n =∞) that converges to J ∗/J0, when

lim
n→∞

|en+1|
|en|p

= µ , (75)

with p > 0 and µ ̸= 0 corresponding to the order of convergence and rate of convergence.
The en+1 and en denote the errors of the objective function at n-th and (n + 1)-th iterations,
respectively, with respect to the converged one, J ∗/J0. The error at each iteration is evaluated
as

en =
Jn
J0
− J

∗

J0
, (76)

with J ∗/J0 being approximated to the normalized objective function value for the last converged
optimal solution. For incremental time-advancing techniques, the order of convergence can be
evaluated for each time-step using the corresponding converged objective function value.

The iterative sequence of the error in the objective function en is illustrated in Figure D.D.14
for the Cantilever beam benchmark case. As in Figures D.10 to D.11, single-time-step methods
are displayed in the first column while incremental time-advancing techniques are depicted in
the second column, the order of convergence being computed for an intermediate time-step. The
corresponding linear regression, used to compute the order of convergence, is represented in all
the graphics with a dashed line. The exact value for the order of convergence is displayed at
the top-left corner. As can be observed, the order of convergence for all the approaches is close
to 1, thus all the addressed methods have a linear convergence in the objective function.
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Table D.C.7: Parameters used for each benchmark case and topology optimization method.

Benchmark

Method Cantilever
L-shaped
structure

Multiload
Cantilever

Gripper

SIMP(I)
p = 3, rmin = 3, ft = 1

m = 0.2, η = 0.5
m = 0.1,
η = 0.3

SIMP(II)

p = 3, rmin = 3, ft = 1, k = −2

m = 0.2,
η = 0.5,

nsteps = 12

m = 0.2,
η = 0.5,
nsteps = 8

m = 0.2,
η = 0.5,

nsteps = 12

m = 0.1,
η = 0.3,
nsteps = 8

SIMP(III)
p = 3, rmin = 3, ft = 1

m = 0.2, η = 0.5
m = 0.1,
η = 0.3

BESO
rmin = 3, ER = 0.01, ARmax = 0.1

p = 3 p = 2, m = 0.1

VARTOP
m = 3, τ = 1,
nsteps = 12,
k = −2

m = 5, τ = 1.5,
nsteps = 8,
k = −2

m = 3, τ = 1.5,
nsteps = 12,
k = −2

m = 100,
τ = 0.5,
nsteps = 8,
k = −2

Level-set

m = 3, τ = 1,
nsteps = 1,
∆t = 0.1,
s = 10−4

m = 5, τ = 1,
nsteps = 1,
∆t = 0.1,
s = 5 · 10−7

m = 3, τ = 1,
nsteps = 1,
∆t = 0.1,
s = 10−3

m = 100,
τ = 0.5,
nsteps = 1,
∆t = 0.05,
s = 10−2

D.E Robustness of L-shaped structure

Mimicking Figures D.10 and D.11, the evolution of the objective function and the stiff material
fraction is illustrated in Figure D.E.15, while the evolution of the criteria is depicted in Figure
D.E.16.
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Figure D.D.14: Iterative sequence of the objective function errors throughout the iterations of
the Cantilever beam topology optimization for the six considered methods. Single-time-step
approaches are illustrated in the first column, while incremental time-advancing techniques are
depicted in the second column. The objective function error en is represented with a solid black
line, while the corresponding linear regression is represented with a dashed gray line. The order
of convergence is included in the top-left corner.
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Figure D.E.15: Evolution histories of the values of the objective function and volume fraction
throughout the iterations of the L-shaped structure topology optimization for the six considered
methods. Single-time-step approaches are illustrated in the first column, while incremental time-
advancing techniques are depicted in the second column, each time-step being shaded with a
different color. The normalized objective function Jρ or Jχ is associated with the left y-axis and
represented with a solid black line. On the other side, the volume fraction (i.e., the stiff material

fraction) |Ω
+|
|Ω| is represented by a dash-dotted gray line in the right y-axis of each graphic.
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Figure D.E.16: Evolution histories of the criteria values in the objective function and in the topol-
ogy throughout iterations of the L-shaped structure topology optimization for the six considered
methods. Single-time-step approaches are illustrated in the first column, while incremental time-
advancing techniques are depicted on the second column, each time-step being shaded with a
different color. The criterion in objective function, associated with the left y-axis, is represented
with a solid black line, while the criterion in the topology is represented by a dash-dotted gray
line in the right y-axis of each graphic. In addition, the corresponding maximum tolerances
TolJ and Tolζ allowed in the last time-step (or in the entire optimization for single-time-step
methods) are also displayed in every graphic as horizontal lines with the same properties.
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