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Abstract: An analysis of existing and newly derived fast-projection methods for the numerical
integration of incompressible Navier–Stokes equations is proposed. Fast-projection methods are based
on the explicit time integration of the semi-discretized Navier–Stokes equations with a Runge–Kutta
(RK) method, in which only one Pressure Poisson Equation is solved at each time step. The methods
are based on a class of interpolation formulas for the pseudo-pressure computed inside the stages of
the RK procedure to enforce the divergence-free constraint on the velocity field. The procedure is
independent of the particular multi-stage method, and numerical tests are performed on some of
the most commonly employed RK schemes. The proposed methodology includes, as special cases,
some fast-projection schemes already presented in the literature. An order-of-accuracy analysis of the
family of interpolations here presented reveals that the method generally has second-order accuracy,
though it is able to attain third-order accuracy only for specific interpolation schemes. Applications to
wall-bounded 2D (driven cavity) and 3D (turbulent channel flow) cases are presented to assess the
performances of the schemes in more realistic configurations.

Keywords: computational fluid dynamics; incompressible flows; projection methods

1. Introduction

Numerical discretization of the incompressible Navier–Stokes (NS) equations is nowadays
a common practice for the analysis of a variety of fluid-flow phenomena, encompassing both
fundamental research and industrial applications. Although computational power has steadily
grown over the last decades, the problems tackled by means of numerical simulations are becoming
increasingly more challenging, constantly pushing the computational requirements to the limit of the
available resources. A typical example is the direct simulation of turbulent flows, where the number
of degrees of freedom required to accurately describe the entire range of spatial and temporal scales
remains prohibitive for problems of engineering interest [1]. This situation warrants the continuous
quest for novel numerical tools and efficient implementations that are able to reduce the amount of
computational work needed to solve the discrete flow equations. Although some of the most popular
approaches have been well established for several decades, the design of accurate and cost-effective
numerical methods is crucial for the success of high-fidelity calculations, and is currently an active
field of research [2–4].

The constant-density NS equations constitute a set of differential–algebraic equations (DAEs),
wherein mass continuity acts as a divergence-free constraint on the velocity field [5]. A common
approach to integrate this set of DAEs in time is by means of so-called projection methods:
The momentum equation is time-advanced without satisfying the incompressibility constraint,
then a correction is applied to the provisional velocity field to project it onto a divergence-free space
without changing its rotational component [6]. A qualifying feature of the method is the coupling with
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the time-integration procedure. A popular choice for wall-bounded flows is the separate treatment
of convective and viscous terms, which are advanced in time by using different time-integration
schemes. Diffusion is usually treated implicitly using the Crank–Nicolson method, whereas convection
is advanced explicitly with an Adams–Bashforth or a Runge–Kutta (RK) method [7,8]. RK methods are
usually preferred for their flexibility, larger stability margins, and small dissipative numerical errors.
However, due to the differential–algebraic nature of the underlying equations, RK-based projection
schemes require the incompressibility constraint to be enforced at each sub-stage [5], which, in turn,
implies the solution of a (typically costly) Pressure Poisson Equation (PPE). As a consequence, the use of
multi-stage methods is often associated with a significant increase in computational cost, especially in
situations where fast Poisson solvers cannot be employed.

An early attempt to circumvent this drawback was presented by Le and Moin [9], who proposed
the enforcement of the divergence-free constraint approximately at intermediate sub-stages by using
an explicit estimate of the pressure, whereas the exact projection of the velocity field was performed
only at the final step. This procedure allowed a significant reduction in the overall computational
cost while producing divergence-free velocity fields at each time step. However, its accuracy has been
shown to be limited to the second order, independently of the order of the RK method. A generalization
of this procedure was presented by Capuano et al. [10], who considered a different estimate for the
approximate pressure inside the stages. It was shown that an ad-hoc linear interpolation formula was
able to guarantee third-order accuracy for a three-stage RK method with only one Poisson solve per
time step. The accuracy of a class of related fast-projection (FPJ) procedures has been recently analyzed
by Karam et al. [11], who proposed a general Taylor-series analysis framework to rationally reduce the
number of Poisson equations to be solved within each time step.

In this paper, we build on previous work to analyze a broad class of FPJ methods based on
a general family of linear interpolations of the pressure inside the RK stages, and we test their accuracy
on benchmarks of increasing complexity.

2. Problem Formulation

2.1. Continuous Equations and Semi-Discretization

The non-dimensional incompressible NS equations for a homogeneous Newtonian fluid read:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p
∂xi

+
1

Re
∂2ui

∂x2
j

, (2)

where ui and p are the Cartesian velocity components and the pressure—here divided by
density—respectively. In the Reynolds number, Re = VL

ν , the values chosen for the reference
velocity and length V and L depend on the flow configuration. Due to the incompressibility
hypothesis, the continuity equation reduces to the divergence-free kinematic constraint on the velocity
field (Equation (1)), with the pressure acting as a Lagrange multiplier enforcing this constraint.
Equations (1) and (2) are equipped with suitable initial and boundary conditions (on velocity).

A common practice in the context of space–time partial differential equations (PDE) is to use
a semi-discretization technique, where the equations are firstly discretized in space and then integrated
in time using a dedicated method for the resulting set of ordinary differential (or differential–algebraic)
equations. In our case, upon discretization of the space variables, the system of Equations (1) and (2)
can be written as

Mu = r1 (3)
du
dt

+ C(u)u = −Gp +
1

Re
Lu + r2, (4)
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where u is the discrete velocity vector containing the discretization of the three velocity components on
the mesh, and p is the vector of discrete pressure. Denoting with Nu and Np the number of unknowns
on the mesh for velocity and pressure, one has u ∈ RNu and p ∈ RNp . The matrices M, C, G, and L
are the discrete versions of the divergence, convective, gradient, and diffusion (block Laplacian)
operators, respectively, whereas r1 and r2 are vectors stemming from the specification of boundary
conditions for the continuity and momentum equations. For these quantities, one has M ∈ RNp×Nu ,
C ∈ RNu×Nu , G ∈ RNu×Np , L ∈ RNu×Nu , r1 ∈ RNp , and r2 ∈ RNu . In general, r2 could depend on u
(for Neumann-type boundary conditions) and, when unsteady boundary conditions are considered,
both r1 and r2 could depend on t. However, we leave these explicit dependencies out of our notation,
since they are not relevant in the current work. We also note that the analysis presented hereinafter is
not restricted to a specific spatial discretization technique as long as the semi-discrete system can be
cast as in Equations (3) and (4).

2.2. Application of Explicit Runge–Kutta Schemes

In this section, we detail how to further discretize Equations (3) and (4) in time with an explicit
(RK) method. The material in this section is based on the analysis reported in [5].

Equations (3) and (4) constitute a system of DAEs, since the continuity equation reduces to a set
of algebraic equations for the velocity components on the mesh upon discretization in space. It could
be cast as a single system of ordinary differential equations (ODEs) by differentiating Equation (3)
with respect to time and substituting it into Equation (4). However, as discussed in [5], this procedure
should be avoided in general, since differentiating the constraint changes the index of the DAE
system, and a subsequent discretization in time could give a discrete field not satisfying the constraint.
When a half-explicit RK procedure (cfr. [12]) is applied, one has the formulation

Mui = r1 (5)

ui = un + ∆t
i−1

∑
j=1

ai,j
(
Fj −Gpj

)
, (6)

with i = 1, . . . , s (s being the number of stages), plus the final step:

Mun+1 = r1 (7)

un+1 = un + ∆t
s

∑
j=1

bj
(
Fj −Gpj

)
, (8)

where Fj = −C(uj)uj +
1

Re Luj + r2. The coefficients ai,j and bj are the standard RK coefficients,
with ∑ bj = 1. We will assume that they belong to an explicit RK method, for which ai,j = 0 for i ≤ j.

A straightforward procedure to solve the system of discrete Equations (5) and (6) consists of
premultiplying Equation (6) by M and substituting it into Equation (5), which provides, at each stage
i, an equation involving the pressures pj at previous stages:

L
i−1

∑
j=1

ai,jpj =
i−1

∑
j=1

ai,jMFj, (9)

where un is assumed to satisfy Equation (3) and L = MG is a discrete Laplace operator acting on
pressure variables. Equation (9) can now be substituted into Equation (6) to eliminate the pressure,
giving the single equation for the stage i:

ui = un + ∆t
i−1

∑
j=1

ai,jPFj, (10)
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where P is the projection operator P = I−GL−1M, satisfying MP = 0. Analogous equations can
be written for the final correction step:

L
s

∑
j=1

bjpj =
s

∑
j=1

bjMFj (11)

un+1 = un + ∆t
s

∑
j=1

bjPFj. (12)

Equations (10) and (12) are in the form of a classical RK procedure, although the presence of
the matrix L−1 in the operator P indicates that the inversion of a linear system for each equation is
required, which is given by Equations (9) and (11), respectively. Note that since the RK method is
explicit, Equations (9) and (11) involve as unknown only the fields pi−1 and ps, respectively, since the
other pressure fields are known from previous stages. By substituting the known pressures, they can
be finally written as

Lpi−1 = MFi−1 i = 2 . . . s (13)

Lps = MFs. (14)

A total number of s linear systems have to be solved for each time interval, s− 1, coming from
Equation (13), and the last one coming from Equation (14). The property MP = 0 shows that the
discrete constraints of Equations (5) and (7) are satisfied at each stage and at tn+1. The variables pj
represent the discretized pressure inside the stages of the RK procedure, and are consistent with the
pressure at time instants tn + cj∆t, where ci = ∑i−1

j=1 ai,j. The accuracy of these quantities (and of the

corresponding velocity vectors uj and un+1) can be evaluated by means of the theory of half-explicit
RK methods for DAEs, and is studied in detail in [5].

The algorithm outlined above has the advantage of calculating the pressure field pj explicitly
at each stage inside the time step. However, it is quite involved, since at each stage, it depends
on all the pressure fields of the previous stages, which have to be stored and combined to be used
for the calculation of ui and un+1. A more efficient procedure, commonly used in the practical
implementation of the projection scheme with an RK method, is to directly solve Equation (9) for a
variable proportional to ∑i−1

j=1 ai,jpj, and to use this solution to correct a provisional velocity u∗i obtained
by completely neglecting the contributions of all the pressure fields. For reasons that will be made
clear in a moment, we define the new pressure-like variables φ as

φi =
1
ci

i−1

∑
j=1

ai,jpj. (15)

With these new variables, the pseudo-algorithm for a generic stage i reduces to:

• Calculate a provisional velocity u∗i by neglecting all the pressure terms in Equation (10):

u∗i = un + ∆t
i−1

∑
j=1

ai,jFj. (16)

• Solve the linear system of Equation (9), which, expressed in terms of φ, is

Lφi =
1
ci

i−1

∑
j=1

ai,jMFj =
1

ci∆t
(Mu∗i − r1) . (17)

• Correct the velocity field u∗i through the equation

ui = u∗i − ci∆tGφi. (18)
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The analogous procedure for the final correction step is based on the equations

(un+1)∗ = un + ∆t
s

∑
j=1

bjFj (19)

Lφn+1 =
s

∑
j=1

bjMFj =
1

∆t

(
M(un+1)∗ − r1

)
(20)

un+1 = (un+1)∗ − ∆tGφn+1. (21)

Note that the “true” pressure at tn+1 is not required to advance the velocity field; it can can be
calculated, if needed, by solving the additional PPE Lpn+1 = MFn+1.

The advantage of the formulation involving φ is that, at each stage, one has only one pressure-like
variable, which acts as a Lagrange multiplier for the enforcement of the algebraic constraint.
However, the question arises about the physical meaning of the pressure-like variable φ, and about its
relation with the “true” pressure p. In this respect, we follow the observation reported in [5], where the
authors note that Equation (17) can be compared to the equation for the exact pressure obtained by
taking the divergence of the momentum equation, Equation (4):

Lp = MF. (22)

Since the term 1
ci

∑i−1
j=1 ai,jFj can be seen as an approximation of the average value of F from tn

to tn + ci∆t, it is a first-order approximation of Fi. As a consequence, the pressure-like variable φ is
a first-order approximation of the pressure. A further key observation, which is relevant for our work,
is that by virtue of the midpoint rule, it is also a second-order approximation of the pressure evaluated
at t = tn + ci∆t/2, provided that the stage order of the method is at least 2. The theory presented
provides the starting point for the construction of approximate procedures that avoid the solution of
a Poisson equation at each stage inside the time step, reducing the total number of PPEs from s to 1.

2.3. Fast-Projection Methods

The idea behind FPJ methods is to modify the fractional-step procedure detailed in the previous
section in such a way to avoid the costly solution of the PPE for φj at each stage, while keeping a
relatively high order of accuracy for the velocity field. This can be achieved by using an approximation
of the local pseudo-pressure; the incompressibility constraint required by the RK method is obviously
perturbed inside the stages, but if the explicit solution of the final PPE for φn+1 is retained,
the divergence-free character of un+1 is ultimately preserved. Care must be taken to ensure that
the nominal order of accuracy of the velocity and pressure fields is retained.

The first attempt to implement an FPJ method is due to Le and Moin [9], who simply considered
the pseudo-pressure φn as frozen inside the time step from tn to tn+1. This method (hereinafter denoted
as LM) uses a rough approximation for the pressure inside the stages, resulting in a deterioration
of the accuracy of the global method, which is of the second order. As a generalization of LM,
Capuano et al. [10] considered a particular linear interpolation of φn and φn−1 to estimate the pressures
at each stage inside the time step from tn to tn+1. This interpolation was shown to provide higher-order
accuracy with respect to LM and lower absolute values of the errors. During the preparation of this
manuscript, a further FPJ method has been published [13], where a different linear interpolation of
the pseudo-pressure is used. It turns out that the interpolation analyzed by the authors fits one of the
methods considered in this paper, which allowed for independent evaluations of its performances.

To have an estimate of the pseudo-pressure φi inside the stages of the time interval (tn, tn+1),
we construct an interpolation formula that is based on the values φn and φn−1. These two values are
assumed to belong to a solution of a PPE, since the calculation of the pressure field for the correction
of the velocity at the end of the time step cannot be avoided if one wants a divergence-free velocity
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field. A straightforward approach consists of a linear interpolation that provides φn and φn−1 when
evaluated at tn and tn−1, respectively, i.e., the formula

φ(t̄) = φn + δφt̄, (23)

where t̄ = (t− tn)/∆t and δφ = φn −φn−1. Using this function to extrapolate the pseudo-pressure
inside the next time step at the stages ti = tn + ci∆t, one has the approximations

φ̃i = φn + ciδφ. (24)

This extrapolation is based on the pseudo-pressure φ, which is a first-order approximation of the
pressure. The accuracy of this procedure is hence expected to be spoiled, as in LM. In an attempt to
interpolate the true pressure p, in place of φ, Capuano et al. [10] adopted a different approach in which
the values φn and φn−1 are assumed as located at the time instants t = tn −∆t/2 and t = tn−1−∆t/2,
where they are second-order approximations of the pressure. This assumption gives

φ(t̄) = µφ+ (1 + t̄) δφ, (25)

where µφ = (φn +φn−1)/2. This interpolation is then used to calculate the approximate values φ̃i
as the values of the interpolant at time instants t = tn + ci∆t/2, which gives the prediction

φ̃i = µφ+
(

1 +
ci
2

)
δφ. (26)

It was shown in [10] that this estimate is able to retain the third-order accuracy for a three-stage,
third-order RK procedure.

To have a more general treatment, here, we use an interpolation in which φn and φn−1 are
assumed to be located at general time instants t = tn − β∆t and t = tn−1 − β∆t, and the values
β = 0 and β = 1/2 give the two linear interpolations (23) and (25), as already discussed. As a result,
the following general formula for φ is obtained:

φβ(t̄) = µφ+

(
1 + 2β

2
+ t̄
)

δφ. (27)

The linear interpolation (27) can now be used to calculate the approximate pseudo-pressures at
the i-th stage inside the time step (tn, tn+1) as an evaluation of φβ(t̄) at a general time instant t̄ = αci,
with α ranging form 0 to 1, the cases (24) and (26) corresponding to α = 1 and α = 1/2, respectively.
This assumption gives the general position

φ̃i = φβ(αci) = µφ+

(
1 + 2β

2
+ αci

)
δφ. (28)

Equation (28) is a two-parameter family of approximations that gives an expression of the most
general linear interpolation of the pseudo-pressure φ inside the stages as a function of the values φn

and φn−1. The calculated pseudo-pressure φ̃i is used as an approximation of φi to avoid the solution
of the PPE in Equation (17). The proposed FPJ algorithm is finally articulated as follows:

• Given the velocity field un and the values of the pseudo-pressures φn and φn−1, the velocity
fields at the stages inside the time interval (tn, tn+1) are directly calculated as

ui = un + ∆t
i−1

∑
j=1

ai,jFj − ci∆tGφ̃i, (29)
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where φ̃i is given by Equation (28) for a particular choice of the parameters α and β.
This evaluation substitutes the steps given by Equations (16)–(18) and avoids the solution of the
PPE in Equation (17).

• The final projection step is made as in Equations (19)–(21).

The case α = β = 0 gives φ̃i = φn, i.e., the LM procedure. The case α = 1, β = 0 gives the
standard prediction of Equation (24), also used by Aithal and Ferrante [13], and the case α = β = 1/2
gives the procedure proposed in [10]. These three methods will be denoted by FPJ-0, FPJ-1, and FPJ-2,
respectively, and in the subsequent sections, they are analyzed for various RK methods and in different
flow configurations. A general assessment of the formula proposed in Equation (28) is also presented.

3. Results

3.1. Taylor–Green Vortices

The family of pseudo-pressure interpolations illustrated in the previous section is firstly analyzed
by applying the proposed FPJ schemes to the two-dimensional Taylor–Green problem, for which the
following analytical solution exists:

uex(x, y, t) = − cos(x) sin(y)e−2t/Re, (30)

vex(x, y, t) = sin(x) cos(y)e−2t/Re, (31)

pex(x, y, t) = −1
4
(cos(2x) + cos(2y)) e−4t/Re. (32)

The viscous NS equations are solved in a 2D square domain with length 2π, with initial conditions
obtained by setting t = 0 into Equations (30)–(32) and periodic boundary conditions. For the present
analysis, the value Re = 100 has been chosen. The equations are discretized in space with a standard
pseudo-spectral method on a uniform mesh of 202 points, and the convective terms are expressed by
using the so-called skew-symmetric form to ensure spatial conservation of quadratic invariants [14,15].
Time integration is performed by using six different RK methods: the three-stage third-order Heun,
Kutta, and Wray schemes, the classical fourth-order RK4 scheme, and the four-stage 3p5q and five-stage
3p6q pseudo-symplectic schemes presented in [16,17]. The latter methods are here considered with the
aim of extending the analysis to nonstandard RK schemes. It is expected that the perturbations to the
divergence-free constraint inside the stages alter the improved energy-conservation properties of the
pseudo-symplectic schemes. However, since this effect is not relevant for our study, it is not considered
here, and a dedicated analysis of this topic is left for possible future investigations. Integration in
time is performed up to the final time Tf = 2 with different time steps to evaluate the temporal
order of accuracy. Our numerical tests show that, except for a slight deviation of the Heun scheme in
conjunction with the FPJ-2 procedure, all the considered schemes give very similar results for what
concerns the errors on both velocity and pressure fields, with error curves usually indistinguishable in
our plots. For this reason, in what follows, only the results for RK4 and Heun schemes are reported.

In Figure 1a, the temporal order of accuracy is shown for the velocity field. The L∞ norm of the
differences between numerically computed and analytical solutions at the final time Tf is employed.
It is found that the FPJ-0 and FPJ-1 procedures have second-order accuracy in time, whereas FPJ-2 has
third-order accuracy. In addition, the figure shows that the absolute values of the errors are reduced by
two or three orders of magnitude for the FPJ-2 method. In Figure 1b, the maximum divergence inside
the stages of the final time step is reported for the RK4 and Heun methods. The figure shows that the
FPJ-2 method always has the lowest maximum divergence, also confirming the better performances in
terms of satisfaction of the divergence-free constraint.
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Figure 1. Results for the two-dimensional Taylor–Green problem for the fast-projection (FPJ)-0 (4),
FPJ-1 (2), and FPJ-2 (#) methods: (a) order of accuracy of the velocity field; (b) maximum divergence
inside the stages. Dashed (blue) lines refer to the Heun method, and continuous (black) lines refer to
the RK4 method.

In Figures 2 and 3, a parametric study is reported to assess the accuracy of the whole family of
methods expressed by Equation (28). In Figure 2, various quantities are reported, both for the RK4 and
the Heun method, as functions of α for the one-parameter family of schemes obtained by restricting
Equation (28) to the case α = β. In this one-parameter family, the FPJ-0 and FPJ-2 schemes are both
present and correspond to the values α = 0 and α = 0.5. In Figure 2a,b, the L∞ norm of the error on
velocity and pressure, respectively, is reported as a function of α. The pressure error is calculated as the
difference between the calculated value φn and the analytical solution pn (square symbols) or pn−1/2

(round symbols). The plots nicely confirm the strong reduction of the errors between the FPJ-0 and
FPJ-2 methods (from 4.3× 10−6 to 7.6× 10−9 on velocity). Figure 2c depicts the maximum divergence
inside the stages as a function of α, and Figure 2d reports the order of accuracy (on velocity) calculated
on the simulation data at each value of α. The gain in order of accuracy for the FPJ-2 procedure is clearly
shown by the plot in Figure 2d. A similar analysis is reported in Figure 3, where the one-parameter
family obtained by restricting Equation (28) to the case α = 1− β is now considered. In this case,
the value α = 1 corresponds to the FPJ-1 method, whereas, as usual, the case α = 0.5 corresponds
to the FPJ-2 method. The data reported in Figure 3 confirm all the observations made for the case
α = β. In this case, the reduction in the velocity errors between the FPJ-1 and FPJ-2 methods is from
8.6× 10−7 to 7.6× 10−9.

In Figure 4, a general parametric study of the procedure is presented by independently varying
the parameters α and β. The map shows the magnitude of the L∞ norm of the error in velocity in the
α− β plane. Time integration is performed by using the standard RK4 method, but similar results
are obtained with all the considered RK methods. The families α = β and α = 1− β are depicted as
continuous lines, whereas the scheme α = β = 1/2 is highlighted by the filled dot at the center of
the plot. The fully two-dimensional analysis reveals that the FPJ-2 method is a particular member of
a family of schemes determined by the values of α and β lying on a straight line, which we estimated
as β = −2/3α + 5/6 (dashed line). An inspection of this family of schemes confirms that all its
members have third-order accuracy and have performances very similar to that of the FPJ-2 method.
A theoretical analysis of this new family of methods is not attempted here, and is left for future work.
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Figure 2. Parametric study of the case α = β. (a) Velocity error, (b) pressure error (see text),
(c) maximum divergence inside the stages, (d) order of accuracy. Empty circles refer to the Heun
method, and filled circles refer to RK4.

Figure 3. Parametric study of the case α = 1 − β. (a) Velocity error, (b) pressure error (see text),
(c) maximum divergence inside the stages, (d) order of accuracy. Empty circles refer to the Heun
method, and filled circles refer to RK4.
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Figure 4. Magnitude of the L∞ norm of the error in velocity in the α− β plane using the RK4 method.
The continuous lines represent the families α = β and α = 1− β; the dashed line β = −2/3α + 5/6
describes the most accurate methods; the filled dot at the curves’ intersection marks the FPJ-2 method
α = β = 1/2.

3.2. Lid-Driven Cavity Flow

The lid-driven cavity flow is a well-known test problem for the assessment of numerical
discretizations of NS equations. It has been used in many studies to evaluate the performances
of novel numerical methods and, as a consequence, it has also been the subject of many publications
aiming at providing accurate benchmark results (e.g., [18,19]). The problem is that of a two-dimensional
viscous incompressible flow inside a rigid square cavity in which the top wall moves at a constant
velocity parallel to itself. Both the side of the cavity and the velocity of the top lid are assumed to
be equal to one in non-dimensional units. For moderate Reynolds numbers, after an initial transient,
the problem reaches a steady state with a central core vortex and, depending on the magnitude of the
Reynolds number, several corner and side vortices.

The spatial discretization of the problem is here performed with a classical second-order
Harlow–Welch procedure on a staggered uniform mesh, which guarantees a robust control of
the pressure odd–even decoupling and global preservation of kinetic energy by convective terms
([14,15]). Equations were advanced in time with the classical RK4 scheme, and the three FPJ schemes
illustrated in Section 3.1 were employed. The results presented here are relative to the case Re = 1000.
Spatial discretization was performed with 200 nodes on each dimension and the time step was set
such that the Courant number based on the lid velocity was 0.8. The flow was integrated with a full
projection scheme, which is assumed as the reference solution, and with the FPJ-0, FPJ-1, and FPJ-2
methods. In Figure 5, the stationary numerical solution is reported as streamlines (left) and magnitude
of the horizontal and vertical components of velocity through the (vertical and horizontal, respectively)
centerlines of the cavity (right). The stream function contour values are the same as in Table 7 of [19]
(also reported in Table III of [18]), provided that a change in the sign is taken into account due to
a different convention on the direction of the moving wall. The horizontal and vertical components
of velocity in Figure 5 (right) are plotted together with the data reported in Tables I and II of [18].
The output of the various FPJ methods is indistinguishable at plotting accuracy in both cases.
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Figure 5. Streamlines (left) and magnitude of the horizontal and vertical components of velocity
through the centerlines of the cavity (right) for the lid-driven cavity flow at Re = 1000. Black and red
streamlines refer to negative and positive values of the streamfunction, respectively. Triangles and
circles refer to the vertical and horizontal velocity components of the reference solution in Tables I and
II of [18].

In Figure 6, the differences between the values computed with the various FPJ methods and
the full-projection method for the horizontal (left) and vertical (right) components of velocity are
reported. The plot also shows that for this problem, a remarkable reduction in the errors is obtained
with the FPJ-2 method as compared to the FPJ-0 and FPJ-1 methods. The maximum errors on the
u-velocity component for FPJ-0, FPJ-1, and FPJ-2 are 2.6× 10−8, 5.3× 10−9, and 9.3× 10−11, respectively,
confirming the reduction of two to three orders of magnitude of the maximum error.

Figure 6. Difference between the FPJ and full-projection methods for the horizontal (left) and
vertical (right) components of the velocity along the centerlines of the cavity.

3.3. Turbulent Channel Flow

As a last test, the accuracy of the FPJ methods was verified on a fully turbulent configuration.
The channel flow is a common choice because, while having simple geometry and boundary conditions,
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it is key to the investigation of wall-bounded turbulence. Here, we pick Reτ = δ uτ
ν = 180 as in

Moser et al. [20], where δ is half the channel height, ν the kinematic viscosity, and uτ =
√

τw/ρ the
friction velocity, with density ρ and shear stress at the wall τw. For reference, Table 1 reports a literature
survey of Direct Numerical Simulation (DNS) studies for this value of Reτ . Following the usual
convention, x identifies the stream-wise direction, y the wall-normal direction, and z the span-wise
one; the corresponding velocity components are u, v, and w, respectively. The non-dimensionalized
quantities are marked with a plus sign (‘+’) apex.

In order to run the simulations, the methods were implemented in a pre-existing open-source
Fortran 90 incompressible parallel solver, Incompact3D, which was first presented in the paper by
Laizet and Lamballais [21] and, later on, by Laizet and Li [22]. It has been extensively used in the
academic field because of its versatility and because of the modifiable source code that can be adapted
to the needs of the current research. The code employs sixth-order compact schemes for spatial
discretization and, among other schemes, the Wray (RKW) method for time integration.

Table 1. Overview of DNS simulations of channel flow, Reτ = 180. The averaging time T has been
non-dimensionalized with the characteristic time τ. The mean velocity has been divided by uτ , and the
root mean square velocities by u2

τ .

Centerline Values
Database Reτ T U+ urms vrms wrms

Incompact3D, exact 177.1 180 18.49 0.7949 0.6132 0.6081
Incompact3D, FPJ-2 176.9 180 18.52 0.7998 0.6154 0.6143
Moser, Kim, and Mansour [20] 178.1 ? 18.30 0.8140 0.6118 0.5893
FD2, Vreman and Kuerten [23] 180.0 200 18.25 0.7974 0.6149 0.6139
S2, Vreman and Kuerten [23] 180.0 200 18.28 0.7971 0.6166 0.6140
Abe, Kawamura, and Matsuo [24] 180.0 40 18.64 0.8054 0.6368 0.6041
del Álamo and Jiménez [25] 185.6 50 18.28 0.7892 0.6062 0.6068
Kozuka, Seki, and Kawamura [26] 180.0 3.1 18.55 0.8084 0.6410 0.6280

When applying the approximation methods, particular attention was paid to the peculiar
three-register low-storage implementation of the RKW method, which led to a slight variation with
respect to the algorithm described in Section 2.2. The three variables that are used at each stage i
are the velocity field evaluated at the previous stage u∗i and the values of Fi−1 and Fi−2 (for i > 1).
These are sufficient because of the special property of the RKW method:

ai,j = ai−1,j for each i > 3 and j < i− 2

bj = as,j for each j < s− 1.
(33)

The evolution equation used to update the velocity field from one stage to the next is

ui = ui−1 + ∆tηiFi−1 + ∆tγiFi−2 − (ci−1 − ci−2)∆tGφ̂i−1 (34)

with ηi = ai,i−1, ηs = bs, γi = ai,i−2 − ai−1,i−2, γs = bs−1 − as−1,s−1. The pseudo-pressures φ̂i in this
scheme are not the same as those that were previously found, but it is possible to find the relationship
between them by comparing the values of (ui − ui−1)/(∆t) obtained from Equation (34) and from
Equations (16) and (18):

∑i−1
j=1 ai,jFj −∑i−2

j=1 ai−1,jFj − (ci−1Gφi−1 − ci−2Gφi−2) = ηiFi−1 + γiFi−2 − (ci−1 − ci−2)Gφ̂i−1

∑i−2
j=1

(
ai,jFj − ai−1,jFj

)
− γiFi−2 = (ci−1Gφi−1 − ci−2Gφi−2)− (ci−1 − ci−2)Gφ̂i − 1

∑i−3
j=1

(
ai,jFj − ai−1,jFj

)
= G(ci−1φi−1 − ci−2φi−2 − (ci−1 − ci−2)φ̂i−1). (35)
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The left-hand side of the last equation is null because of the property in Equation (33)
and, consequently,

ci−1φi−1 − ci−2φi−2 = (ci−1 − ci−2)φ̂i−1. (36)

Substituting in Equation (28), the new formula is

˜̂φi = µφ+

(
1 + 2β

2
+ α

c2
i − c2

i−1
ci − ci−1

)
δφ. (37)

Analogous transformations need to be applied to other schemes written in low-storage or
unconventional forms, and should be derived on a per-case basis. Once this procedure has been
implemented, it is possible to compare the results of the standard method involving the resolution of
all the pressure equations with those obtained using the third-order accurate FPJ-2 method.

Both cases have the same geometry, discretization, and initial conditions. The domain in the
stream-wise, normal, and span-wise directions has size 4π × 2× 4

3 , and has been discretized with
a 128× 129× 128 mesh, as in [20]. For the time step, the value ∆t = 0.01 was chosen. The flow was
initialized with the laminar solution and a superposition of random noise to trigger transition to
turbulence. Once a statistically steady state was reached (as confirmed by a stable value of the friction
coefficient), statistics were collected every tenth of the typical turnover time of the large-scale eddies,
defined as τ = δ/uτ , so that the samples could be considered as statistically independent. In order to
make sure that convergence was reached, 1800 samples were collected; as usual, the flow field was
averaged along the homogeneous directions (x− z planes) and with respect to y = 0.

The results obtained with both methods are in very good agreement with classical results from
literature. For comparison, two reference datasets were considered: The one associated with the work
of Moser, Kim and Mansour (MKM) [20], which has the same spatial resolution as in the present work,
and the one listed as S2 in [23] (VK), which uses a finer mesh. Both datasets were obtained using
spectral methods.

In Figure 7 (left), very good agreement can be observed in terms of the mean velocity profile,
except from a slight deviation in the center of the channel. Both methods demonstrate that they correctly
evaluate the root-mean-square velocities (Figure 7, right) and kinetic energy dissipation rate (Figure 8,
left). In order to better distinguish the results produced by the different approaches, relative differences
are shown on the right-hand side of Figure 8, which were computed by dividing the difference by the
value found with the exact method. The discrepancy in the case of the velocity profile is always under
3× 10−3; slightly larger values are reached when considering the other quantities; however, this might
be due in part to them approaching zero and consequently increasing the relative difference.

As expected, the use of the FPJ procedure brought about a reduction in the wall-clock time
of the simulation. A careful analysis performed using 256 CPUs on the GALILEO supercomputer
(CINECA) showed that the average time step took approximately 3.024× 10−2 s for the standard
method, and about 2.243× 10−2 s for the FPJ one, i.e., a reduction of almost 26%. This specific value is
closely related to the algorithm employed by Incompact3D, which makes use of an optimized direct
Poisson solver; we expect higher CPU time savings in situations where the PPE solution takes a larger
fraction of the overall algorithm.
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Figure 7. Comparison of the mean stream-wise velocity (left) and root-mean-square
velocities (right) for the channel flow with published data at Reτ = 180.
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Figure 8. On the left, comparison of the kinetic energy dissipation rate components for the channel
flow with published data at Reτ = 180. On the right, relative difference of the results obtained with
FPJ-2 and exact methods for the computed statistics.

4. Conclusions

In this paper, we proposed a cost-effective fractional-step algorithm for the incompressible
Navier–Stokes equations based on arbitrary explicit RK time-integration schemes. The approach,
called the FPJ method, is able to decrease the number of PPEs to be solved within a time step from s
(the number of stages of the RK method) to only one, therefore significantly alleviating the required
computational cost. The FPJ method consists of projecting the velocity field at the intermediate
sub-stages by means of a suitable approximation of the pseudo-pressure, rather than by solving
the corresponding PPE. In this work, we explored a general family of linear interpolations for the
pseudo-pressure based on its values at previous time steps. Of note, earlier versions of FPJ methods
proposed in the literature are found to be particular members of this family. We assessed the temporal
accuracy of the velocity field for various methods obtained using different interpolation formulas.

A systematic characterization of the numerical errors was carried out for two-dimensional
Taylor–Green vortices, for which an analytical solution is known. A careful analysis of the results
showed that, only for a specific interpolation of the pseudo-pressure (called FPJ-2), the method
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provides third-order-accurate velocity fields, which are generally only second-order accurate for the
other methods. Similarly, a lid-driven cavity test demonstrated that the FPJ-2 method can provide
a significant reduction of the numerical error when compared to a reference method where s Poisson
solves are performed. Finally, we implemented the FPJ-2 method in an existing NS solver, Incompact3D,
to perform a turbulent channel flow simulation. Again, the FPJ-2 scheme showed very little relative
error when compared to the traditional method (s PPE solves), and both provided results in very good
agreement with reference datasets.

Future work includes a more in-depth investigation of the family of interpolation formulas
providing third-order accuracy as well as a careful inspection of the energy-conserving properties of
the FPJ algorithms.
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