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Abstract

The Decomposition-Ensemble forecast strategy with Adaptive Tree is a new
technique aimed to perform predictions in periods with high volatility and/or
structural changes.

In the present study, we apply a Decomposition-Ensemble framework to
perform a 5-day ahead WTI oil spot price forecast during the first weeks after
the Covid19 outbreak in Feb20 by leveraging the CEEMDAN algorithm to
decompose the original series into several IMFs, apply to each an Adaptive Tree,
and combine the result to get the final prediction. In all the leveraged techniques,
a simple features’ engineering process has been applied, i.e., using past demand
pattern as the only input, simulating an autoregressive-like behavior as ARIMA.

The results have been compared with several benchmark models, i.e., AR-
IMA, regular XGBoost, and CEEMDAN-XGBoost, with the goal to study which
is the added value of applying a Decomposition algorithm prior to performing
the prediction, as well as the potentially better performance of Adaptive Trees
over XGBoost in combination with CEEMDAN in a high-volatility environment
like the one in 2020 after the Covid19 outbreak.

Results show that ML-based methods outperform ARIMA. In the same
direction, decomposing the original series by CEEMDAN before applying XG-
Boost or Adaptive Tree minimizes RMSE when assessing performance in daily
and weekly buckets. Unfortunately, Adaptive Tree combined with CEEMDAN
has not shown a clear better performance than CEEMDAN-XGBoost except
for the periods with extreme changes in the price signal.

Nevertheless, the study proposes a Roadmap and Business Case to show
how an O&G company might implement the proposed Decomposition-Ensemble
strategy as a first step to become a digitized company with integrated planning
capabilities.
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Introduction

In this chapter, we will review which are the motivations behind this study as
well as the specific triggers that drove the author to work on this topic. We
will go through the main objectives of this study and the scope. Finally, we
will review the evolution of the study from the initial idea we had, all the way
to the final structure and content of the present report.

1.1 Motivation

The year 2020 and -so far- 2021, will be remembered as the beginning of the
2nd decade of the XXI century; but also because of the historical Australian
bushfires; and Kobe Bryant’s death; and as the year when for the first time,
a non-English-language movie won the Oscars, Parasite; and the Black Live
Matter protests; and the assault on the US Capitol by Trump’s supporters; and
Biden becoming the 46th US President; etc.

But, undoubtedly, this was the year of the SARS-CoV-2 pandemic, also
known as Covid19.

Since the end of WWII, the world has never experienced such a big and
global disruption. At this moment, we are not able to estimate the impact it
had and will have, not only in terms of lives and physical and/or psychological
aftereffects but also in the economy for each and every country and company in
the globe.

One of the biggest impacts of the pandemic was on the oil markets, the
year when, for the first time in history, oil prices turned negative. Just before
the pandemic explosion, back to Jan 2020, the global oil demand-supply was
balanced around 100 Mbbl/day. Nevertheless, with the start of the application
of severe lockdowns in most of the countries, the economy entered a standby
mode, plunging the demand for petroleum products. With the supply not able
to react as fast as required, the markets entered a bearish and high-volatility
period. Moreover, in March, a price war between Saudi Arabia and Russia
increased the negative trend in oil prices and added more uncertainty to the
markets. Despite several OPEC cuts in supply during Spring 2020, it was not

1



1.1. Motivation

enough to avoid the historical crash in oil prices in April 2020 nor to avoid the
uncertainty that was present for the rest of the year.

Figure 1.1: WTI NYMEX daily price in the period Feb-Jul 2020. During Apr 20th, WTI oil futures
turned negative for the first time in history.

Since then, despite several attempts from the OPEC+ members and Oil
Majors to cut supply, oil prices remained low and with high volatility for the
rest of the year.

As IOCs and NOCs slowly start to onboard into the Digitalization journey,
reacting and adapting faster to changes in their ecosystems and being able to
accurately predict oil price, is a must, offering several competitive advantages:

• If a breakeven point is reached, upstream operations can be slowed down
to avoid negative operational costs and flood the market with cheaper oil.

• Exploration activities can be activated or postponed.

• Refineries or Downstream companies may decide to buy large quantities
of cheap crude oil to increase their margins.

• Tanker companies may adjust their transport capacity.

• Oil companies may perform large Trading operations or open/negotiate
contracts.

In order to drive each of the beforementioned points, an accurate oil price
forecast is required.

After several years working as a Strategy Consultant for Oil&Gas companies,
I realized that they historically paid little attention to those topics as they were
having big revenues and benefits. These times are over. Covid19 set the first
stone to (probably), the new Energy market, where Renewables and Hydrogen
will increase their share.

2
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1.2 Objectives

As mentioned in Section 1.1, the Covid19 disruption set the first stone for a new
Energy market with new players taking more and more market share from the
Oil&Gas companies. For them, being able to accurately predict oil prices will
be a competitive advantage, allowing them to rapidly react to market and/or
environmental changes.

The Covid19 pandemic has been one of the first rapid-response stress tests
for IOCs and NOCs, and they were not ready. When talking about planning
and forecasting, these companies often rely on classical or basic statistical
models in order to predict oil prices hindering their ability to quickly adapt to
new requirements.

The objective of this paper is to study the WTI spot oil price daily forecast
performance for h + 1, · · · , h + 5 by leveraging a Decomposition-Ensemble
strategy based on CEEMDAN-Adaptive Trees during the Covid19 outbreak, i.e.
from the first hit in Feb 2020 till the mid of that year. In order to compare the
added value of this methodology, results will be compared with ARIMA, simple
XGBoost, and CEEMDAN-XGBoost. In order to make a fair comparison
between ARIMA and the ML-based strategies, past daily values have been used
as the only features for the algorithms, trying to mimic as much as possible
ARIMA’s behavior and assess the added value of these methodologies over
classical approaches.

There are several reasons behind the usage of the Decomposition-Ensemble
strategy:

• Commodities’ prices tend to be complex, non-linear, and non-stationary
time series. By applying a decomposition algorithm to the raw data, we
get several simpler components to be forecasted, showing stationary and
linear patterns.

• Gradient Boosting-based methods are iterative, i.e., in each step, a tree is
trained on the pseudo-residuals made by the average of all previous trees.
With this, difficult-to-predict observations causing large prediction errors,
get more "attention" from the model. As described in the next chapter,
Adaptive Trees allow the user to give more weight to recent observations.
Because of that, this methodology is more suitable to deal with time series
with structural changes compared to regular GBM like XGBoost.

In the end, by leveraging the decomposition-ensemble methodology, we
should be able to deal with non-linearity and non-stationarity as well as periods
with structural changes.

As a summary, by the end of this study we’d like to give an answer to the
following questions:

• Are ML-based methods outperforming ARIMA when calculating daily
forecasts for WTI spot price during periods with structural changes?

3
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• Which is the added value of applying a decomposition algorithm to regular
XGBoost in terms of forecast accuracy?

• Can we prove that CEEMNDAN-Adaptive Trees is a better forecasting
strategy than the others in terms of accuracy during periods with structural
changes?

• How can an Oil&Gas company implement the winning forecast strategy?

1.3 Scope

The scope of the study changed slightly from the beginning as part of the
learning process. The initial idea was to use data in weekly buckets and perform
1-step ahead predictions. Using weekly data was opening the possibility of using
other oil-related features as well as macroeconomic data to enrich training and
prediction for XGBoost and Adaptive Trees. The main shortfalls identified
were:

• From a business perspective, if the forecast is meant to be used for
operational and trading purposes, it makes more sense to provide a daily
than a weekly forecast. For trading purposes, it even makes more sense
to get down to hourly frequency. Because of the intra-day variability
of oil prices, studying it at a weekly level we are at the risk of losing
too much information as prices are not stable within a week. The usage
of weekly buckets was firstly picked because of computation limitation:
weekly frequency means fewer data points and more stable signal hence,
a reasonable amount of data and computation to be tackled by a regular
personal computer.

• Machine Learning algorithms can stand out from benchmarking models
when dealing with complex and large datasets. By using weekly buckets,
the added value of the Decomposition-Ensemble framework either with
XGBoost or Adaptive Trees is small compared to ARIMA.

After getting not-as-good-as-expected results for weekly frequency, given
the 2 points below and having access to a powerful AWS EC2 instance, drove
the decision to switch from 1-step ahead weekly forecast to 5-step ahead
daily forecast, for the period week 09.2020 - 32.2020. Because of switching to
daily buckets, other oil-related data couldn’t be used and training phases for
XGBoost/Adaptive Trees were purely based on the time series itself.

4
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Methodology

2.1 ARIMA

ARIMA is an acronym that stands for Auto-Regressive Integrated Moving
Average, a forecasting technique that was originally developed by Nortbert
Wiener et al., in the ’30s-’40s, and later updated to be used in business
and economic data by George Box and Gwilym Jenkins, which developed a
systematic method called the Box-Jenkins methodology to identify, fit, and
check ARIMA models to time series data.

ARIMA models are composed of 2 different parts, an Auto-Regressive and
a Moving Average that can be defined as:

Xt = φ1Xt−1 + · · ·+ φpXt−p + c+ at − θ1at−1 − · · · − θqat−q (2.1)

where φ are the auto-regressive parameters, θ the moving average parameters,
X is the original time series, and a is the series of unknown random errors
(assumed to follow a normal distribution). By using the so-called backshift
operator B defined as

BXt = Xt−1 (2.2)

the expression in Eq 2.1 can be rewritten as

(1− φ1B − · · · − φpBp)Xt = c+ (1− θ1B − · · · − θqBq)at (2.3)

Eq 2.3 is known as an ARMA model of order p and q, i.e., ARMA(p,q).
Most economical time series are usually not showing stationary behavior. As
the Box-Jenkins method is suited for stationary processes only, differentiation
should be applied to the original time series

(1− φ1B − · · · − φpBp)(1−B)dXt = c+ (1− θ1B − · · · − θqBq)at (2.4)

Eq 2.4 is now defining and ARIMA(p,d,q), where d is represneting the
number of differentiations made into the original time series to make it stationary.

As pointed out before, Box and Jenkins provided an iterative process to fit,
estimate, and check ARIMA models:
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1. Identification: By using autocorrelation and partial autocorrelation
plots the user can identify p, d, and q.

2. Estimation: φd and θq are estimated normally bu maximum likelihood.

3. Checking: The fitted model is checked for the remaining structure
in the residuals by analyzing the residuals’ autocorrelation and partial
autocorrelation functions. If still large correlation values, adjusted values
of p and/or q are proposed and the model re-estimated.

This is a quite manual and time-consuming process, that’s why there are
several automatic algorithms replacing the original Box-Jenkins method. In
this study , we relied on auto.arima() function from the forecast R package
developed by Hydnman and Khandakar. As described in their paper [7], the
selection of p, q, P , and Q is made by minimizing AIC

AIC = −2log(L) + 2(p+ q + P +Q+ k) (2.5)

where k = 1 if c 6= 0 and 0 otherwise.

Regarding the estimation of d and D, for non-seasonal data d is selected
based on successive KPSS unit-root tests [8]. For seasonal data, the extended
Canova-Hansen test is used to select D [2], and successive KPSS tests over the
seasonal-differentiated time series are run to identify d.

2.2 XGBoost

XGBoost (Extreme Gradient Boosting) was developed by Tianqi Chen and
Carlos Guestrin in 2016 as a more efficient and scalable implementation of the
original Gradient Boosting Trees firstly proposed by J.H. Friedman in 2001.

In general, Gradient Boosting Trees predict the output by leveraging K
additive functions. For a given data set with n rows and m columns or features
defined as D = {(xi, yi)} being xi the features (xi ∈ Rm) and yi the target to
be predicted (yi ∈ R), the estimated target is obtained as,

ŷi = φ(xi) =
t∑

k=1
fk(xi), fk ∈ F (2.6)

where F represents the space of regression trees, also known as weak learners.
The general principle is to use weak learners leveraging an additive stretgy: fix
what we have learned and add a new tree in each iteration. Being ŷi(t) the
prediction at time t,

ŷ
(0)
i = 0

ŷ
(1)
i = ŷ

(0)
i + f1(xi)

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi)

· · ·

ŷ
(t)
i =

t∑
k=1

fk(xi) = y
(t−1)
i + ft(xi)

(2.7)
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In order to train each model fk(xi), the following regularized objective
function is minimized,

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (2.8)

where Ω(f) = γ + 1
2λ‖w‖

2

The loss function l measures the difference between the prediction ŷi and
the target yi. The second term Ω is penalizing the complexity of the model,
acting as a regularization component to avoid overfitting.

As the model in Eq.2.8 has functions as parameters, it can not be optimized
using regular techniques, hence, the model is trained in an additive manner.
A detailed explanation of how the optimization is performed can be found in
Chen et al.[3].

XGBoost’s authors proposed 2 more functionalities to avoid overfitting:
shrinkage and subsampling.

Shrinkage scales newly added weights by a factor η known as learning rate
to reduce the influence of each individual tree and leave space for future trees
to improve the prediction task [4]. As η gets smaller, less weight is given to
each boosted tree, decreasing the chance of incurring overfitting but increasing
the number of iterations needed to achieve good prediction results (η ∈ [0, 1]).

ŷi = φ(xi) =
t∑

k=1
ηfk(xi) (2.9)

By subsampling rows and columns of the original dataset, we add a stochastic
element in each boosted tree, decreasing also the likelihood of overfitting. This
technique was already applied successfully in the first implementations of the
Random Forest algorithm [1][5]. Given the nature of the data used in this study
(a time series), row subsampling it’s not applied, as we’d break the correlation
structure of the raw data.

2.3 Adaptive Trees

Adaptive Trees introduce a new paradigm called adaptive boosting to deal
with structural changes, a phenomenon known as concept drift in Machine
Learning literature. This issue arises when the distribution of the target
variable Y , the features used for prediction X, and the joint distribution,
change over time. Some studies propose to use a small training window from
the near-term past as this will collate more information about the present
structural change. Nevertheless, by following this approach we are at risk of
generating a short-sighted prediction, not being able to replicate patterns from
the mid/long term past that may re-occur in the future.

The Adaptive Trees methodology developed by Woloszki in [10] is an
extension of Gradient Boosting Trees and it is based on the XGBoost algorithm

7
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as the estimator of the model and predictions. This methodology is built on
the fact that GBT gives more importance to hard-to-predict observations as
described in 2.7. Based on that, we get an adaptive behavior by the usage
of increasing ex-ante observation weights during the Gradient Boosted Trees’
training phase. By doing this, Adaptive Trees adjust to structural change,
making the impacted observations harder to predict compared to the remote
past, hence, the algorithm will put more "effort" into predicting them accurately.

Let w(t) be the weight applied to the obvservation at time t with t ∈ [1, T ],

w(t) = e−θ(1− t
T ) (2.10)

The θ parameter defines the steepness of the weights curve and it normally
has a value around 15 [10]. When structural change arises, the more recent
observations, which are more heavily weighted, will get increasing weights along
with the boosting iterations as they will be inaccurately predicted. As a result,
Adaptive Trees will give more importance to the short term whilst capturing
patterns from the mid-long term past.

2.4 CEEMDAN decomposition algorithm

The main goal of this algorithm is to decompose a non-linear, non-stationary
time-series into several Intrinsic Mode Functions (IMFs) and a residual.

x(t) =
∑
n

IMFn(t) + r(t) (2.11)

IMFs should obey two properties [17]:

1. An IMF has only one extremum between two sub-sequent zero crossings,
i.e., the difference between the number of local minima and maxima is at
most one.

2. An IMF has a mean value of zero.

In order to understand how the Complete Ensemble Empirical Mode De-
composition with Additive Noise (CEEMDAN) works, one must first explore its
predecessors: the EMD and the EEMD algorithms.

The EMD (Empirical Mode Decomposition) algorithm was first defined by
Huang et al. (1998) with the aim of decomposing a sequence, i.e. a time-series,
into several IMFs [6].

Step 0: Set n = 1, r0(t) = x(t); being x(t) the original time series.

Step 1: Extract the n-th IMF as follows:

(a) Set h0(t) = rn−1(t) and k = 1.
(b) Identify all local maxima and minima of hk−1(t).

8



2.4. CEEMDAN decomposition algorithm

(c) Construct the upper (Uk−1(t)) and lower (Lk−1(t)) envelopes linking
all maxima and minima by cubic splines.

(d) Calculate the mean envelope mk−1(t) = 1
2 (Uk−1(t)− Lk−1(t)).

(e) Build the k-th component hk(t) = hk−1(t) − mk−1(t). If hk(t)
satisfies the IMF criteria, then set IMFn(t) = hk(t), rn(t) =
rn−1(t)− IMFn(t).

Step 2: If early stop is met, stop the process, if not rn(t) is the input signal for
n = n+ 1, going back to Step 1.

Being EMD a heuristic method, it suffers from some shortcomings, being
the most critical the appearance of the mode mixing effect. This effect can
be defined as the situation that similar pieces of oscillations exist at the same
corresponding position in different IMFs [17].

To overcome this issue, Wu and Wang extended the original EMD to a
new algorithm, EEMD (Ensemble Empirical Mode Decomposition), which adds
white noise to the original time series and performs EMD several times [15].

xi(t) = x(t) + wi(t) (2.12)

where x(t) is the original time series, and wi(t) the i-th white noise with
i = 1, 2, · · · , N , being N the number of times one runs the EMD algorithm.

EEMD algorithm decomposes every xi(t) into the associated IMF ik(t), to
finally get IMFk by averaging each IMF ik(t).

IMF k = 1
N

N∑
i=1

IMF ik(t) (2.13)

Theoretically, as the mean of the white noise is zero, the impact of this should
be eliminated by calculating 2.13. Nevertheless, Torres et al. found that a large
number of xi(t) are needed to completely remove the white noise impact. Be-
cause of that, Torres et al. developed an updated version called CEEMDAN [14].

CEEMDAN algorithm overcomes this issue as well as the model-mixing.
The algorithm is described as follows [16]

Let Ek(.) be the operator that produces the k-th mode obtained by EMD,
and let wi(t) be a realization of a zero-mean unit variance white noise.

Step 0: For every i = 1, 2, · · · , N decompose each xi(t) = x(t) + ε0wi by EMD
until the first CEEMDAN IMF is obtained as,

IMF 1 = 1
N

N∑
i=1

IMFi1 (2.14)

Step 1: Calculate the residue for the first stage (k = 1).

r1(t) = x(t)− IMF 1 (2.15)

9



2.5. Training, evaluation, and test

Step 2: For every i = 1, 2, · · · , N , decompose each r1(t) + ε1E1(wi(t)) by EMD,
until its first mode, and define the second CEEMDAN IMF as,

IMF 2 = 1
N

N∑
i=1

E1(r1(t) + ε1E1(wi(t))) (2.16)

Step 3: For k = 2, 3, · · · ,K calculate the k-th residue,

rk(t) = rk−1(t)− IMF k (2.17)

Step 4: For every i = 1, 2, · · · , N decompose each rk(t) + εkEk(wi(t)) by EMD,
until its first mode, and define the (j + 1)-th CEEMDAN IMF as,

IMF j+1 = 1
N

N∑
i=1

E1(rk(t) + εkEk(wi(t))) (2.18)

Step 5: Go to step 4 for the next k.

Repeat steps 4 to 6 until the obtained residue can no longer be further
decomposed. The final residue is,

rK(t) = x(t)−
K∑
k=1

IMF k (2.19)

Therefore, the original time series can be expressed as,

x(t) =
K∑
i=1

IMF k + rK(t) (2.20)

The parameter ε allows the selection of the SNR at each stage.

2.5 Training, evaluation, and test

As in any regular Supervised Learning problem, in order to perform a
prediction/classification task, the data set should be split into 3 sets:

• Training set: Sample of data used for training purposes.

• Evaluation set: Subset of the original dataset used for evaluating the
fit of the model on the training set and fine-tune the hyperparameters.

• Test set: Sample of data used to evaluate in an unbiased way the final
model performance.

One of the most used methodologies to split the original dataset into the 3
subsets mentioned above, is the k-fold Cross-Validation. Given the nature of
the dataset used here, i.e., a time series, the beforementioned method is not
applicable, as one of its main characteristics is to randomly split the data into
k folds, breaking any time-dependency existing in the observations. Because
of that, we’d take an iterative approach defining a fixed training, validation,
and test set in the 1st step, and increasing and moving that 1 period in each
iteration. This technique is known as the walk-forward approach.
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2.5. Training, evaluation, and test

2.5.1 Walk-forward approach

This methodology was firstly introduced by R. Stein in 2007 for validating
credit default models [13]. This approach relies on using out-of-sample and
out-of-time testing to evaluate the final performance of a model, which have
been proved as a more reliable strategy compared to the typical hold-out sample
technique.

The walk-forward procedure works as follows:

1. Select a fixed training set.

2. Define the validation set with the next d contiguous days to the set defined
in step 1.

3. Fit the model using the defined training set in step 1. Perform the
validation of the model with the settings defined in step 2.

4. Once the model is validated, create a prediction using as input the training
set plus d. Save the prediction as part of the result set, used later on to
evaluate the out-of-sample model performance.

5. Increase the training set in step 1 by 1 period and repeat steps 2 to 4 to
retrain the model with the last data available and add the new predictions
to the result set in every iteration.

By leveraging this methodology we are simulating the out-of-sample and out-of-
time performance, re-training, and re-validating the model with each new piece
of data that we are getting.

Figure 2.1: Walk-forward iterative process used in this study as the backtesting technique.

2.5.2 Performance metrics

Along with the study, there are 2 types of performance metrics used to assess
performance at 2 different levels:

11



2.6. Data used

• Global metrics: Used to assess the performance of the forecasting
strategies and compare among them.

• Training and validation metrics: Used during the training and
validation phases to minimize the objective function and evaluate the
performance of the model with the different hyperparameters.

Global Metrics

In order to evaluate the overall Forecasting Strategy performance and do
comparisons between them, 2 different metrics have been used.

• RMSE: Square root of the mean squared error (MSE).

RMSE =

√∑N
i=1(ŷi − yi)2

N
(2.21)

• FCA: Performance metric used by the Industry to assess in a percentual
way, how accurate the predictions are.

FCA = min{0; 1−
∑N
i=1 |ŷi − yi|∑N

i=1 yi
} (2.22)

Training and validation metrics

Depending on the model used, the training and validation metrics are different.

• ARIMA: The auto.arima function from the forecast R package,
estimates several ARIMA models with optimized parameters to the time
series. The metric driving model selection is AIC as described in Eq 2.5.

• XGBoost and Adaptive Trees: Given the learning task to be performed
by the algorithm, i.e. a regression task, the RMSE is the objective function
to be minimized and the metric used to assess the in-sample performance
during training, the validation, and out-of-sample performance. Refer to
Eq. 2.22 for further details.

2.6 Data used

The oil price index to be forecasted is the daily WTI Crude Oil Spot Price.
WTI is a US blend of several streams of domestic light sweet crude oil. The
centralized point of delivery for WTI is located in Cushion, Oklahoma which
has a storage capacity of around 91 Mbbl. Although the pricing and delivery of
these contracts are done in the US, the WTI index is used as a benchmark for
energy markets worldwide.

The time series used is reported on daily buckets (Monday to Friday) and
so will be the target feature to be forecasted. The time horizon used is between
Jan 1986 and the 3rd week of 2021.

12



2.8. Forecasting strategies

As XGBoost and Adaptive Trees rely on features in order to train the
models and calculate predictions, the original Time Series is used to artificially
generate lagged values of it, i.e., shift the original data set backward from 1 to
200 periods, so in order to predict yd = f(xd−1, xd−2, · · · , xd−100).

For both ARIMA and Decomposition-Ensemble methods, from the complete
data set, periods going from Jan 1986 till week 9 in 2020 have been used as
the initial training set. Then, using the Walk-forward approach described in
Section 2.5.1, the training set is increased by 5 days until week 2020.32. In each
iteration, a 5-day forecast is calculated and compared with the actual WTI
price.

2.7 Data cleansing and transformations

Missing values’ extrapolation has been the only data cleansing technique applied.
From the original Time Series of dimension 9115, there are 310 missing values,
all of them related to US bank holidays. The following logic has been used:

• For isolated days in a week with a missing value, the average between
d− 1 and d+ 1 has been used.

• For cases where more than 1 consecutive day is missing, the average
between d− 2 and d− 1 has been used.

In terms of data transformations, as tree-based algorithms are robust to
outliers, we did not apply any. This might lead to a loss in performance for
ARIMA, but in order to do a fair comparison between all the applied techniques,
the author decided to not apply any transformation.

2.8 Forecasting strategies

After reviewing the main techniques and data that support this report, in this
section, we’ll go through the 4 forecasting strategies that will be leveraged to
provide a prediction over the WTI oil prices.

Table 2.1: Forecasting strategies used during the study and compared to assess the best performer
when generating 5-setp ahead daily forecast for the WTI price.

Name Description

1 CEEMDAN-Adaptive
Trees

The original WTI time series is decomposed in n IMFs
and Adaptive Trees are used to calculate the forecast for
each component. The final forecast is an ensemble of the
one calculated for each IMF.

2 CEEMDAN-XGBoost The original WTI time series is decomposed in n IMFs
and XGBoost is used to calculate the forecast for each
component. The final forecast is an ensemble of the one
calculated for each IMF.

3 XGBoost Regular XGBoost is applied directly into the WTI time
series to calculate the 5-step ahead daily forecast.

4 ARIMA The ARIMA model is applied directly into the WTI time
series to calculate the 5-step ahead daily forecast. ARIMA
parameters are estimated automatically by leveraging the
auto.arim() function from the forecast package.
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2.8. Forecasting strategies

2.8.1 Strategy 1 and 2

The first two forecasting strategies are based on the Decomposition-Ensemble
framework which leverages the CEEMDAN algorithm to decompose the original
Time Series into several IMFs plus a residual (as described in section 2.4), in
combination with a Machine-Learning-based forecasting technique applied for
each IMF/residual. Finally, an ensembling of each forecast is performed to get
a final prediction for the target variable.

In this study, the ML-based algorithms used to perform the forecast for each
IMF are XGBoost and Adaptive Trees, being the latter, in combination with
CEEMDAN, a new technique never used before for prediction over commodity’
prices during periods with structural changes (like the one in 2020 because
of the Covid19). A graphical representation of the Decomposition-Ensemble
framework can be found in Figures 2.2 and 2.3.

Figure 2.2: High-level Decomposition-Ensemble framework to calculate predictions based on
XGBoost.

Backtesting

The technique used to simulate the past performance of the Decomposition-
Ensemble strategy has been the Walk-forward approach as described in section
2.5.1. The iterations performed are the same as the ARIMA in section 2.8.3.

As a result, we will have a weekly forecast in daily buckets calculated every
week starting from week 2020-09 till week 2020.32. This set of predictions
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2.8. Forecasting strategies

Figure 2.3: High-level Decomposition-Ensemble framework to calculate predictions based on
Adaptive Trees.

are the ones used to assess the forecast performance and compare it with the
benchmark model.

Model training and fine-tuning

The Model training phase is the most critical step in any ML Supervised
Learning problem. During the Model Training, we provide the algorithm
with examples and the associated labels with the aim to find the best way to
accurately predict the labels while minimizing the algorithm’s objective loss
function.

During this phase, the user should also define the values of the model’s
hyperparameters, as these cannot be estimated from data. There are several
techniques to get the optimal values of the hyperparameters, in this study we
are using Grid Search.

Grid Search is a brute-force technique, which simply makes a complete
search over a given subset of the hyperparameters’ space. One of the main
shortfalls of this method is that for high-dimensional spaces, the computation
time can be big. The lightest version of Grid Search is Random Search, which
just visits a random subset of the complete hyperparameters space. Random
Search can outperform a regular Grid Search, especially if only a small number
of hyperparameters affect the performance of the machine learning algorithm [9].
Because of the limitations in computing power, the number of hyperparameters
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2.8. Forecasting strategies

we will fine-tune is limited as well as its ranges. Therefore, the hyperparameter’s
space is smaller, and we can apply Grid Search.

The following hyperparameters have been optimized in XGBoost and
Adaptive Trees:

Table 2.2: XGBoost hyperparameters to be optimized.

Hyperparameter Description Grid Search range

η Controls the learning rate, i.e., scale the
contribution of each tree by a factor of
0 < η < 1 when it is added to the
current approximation. Used to prevent
overfitting by making the boosting process
more conservative.

[0.01, 0.25]

Boosting iterations Maximum number of boosting iterations. {200}
ex-ante θ Value given to the θ parameter in Eq.

2.10.
{10,12,15}

Setting the Adaptive Tree algorithm

As the Adaptive Tree is a quite new prediction technique, as of now, there is
not a standard function in R nor Python to be leveraged. Nevertheless, by
tweaking the xgboost() function from the xgboost R package, the Adaptive
Tree described in [10] can be set up.

During the XGBoost training phase with the xgboost() function, the weight
argument should be specified with a numeric vector including the ex-ante weights
for each observation in the training set. The ex-ante weights are calculated as
described in Eq 2.10.

Iteration and Computation

In order to calculate the 5-step ahead daily forecast for the weeks in scope,
perform the hyperparameter’s optimization, for each IMF, to finally combine the
results into an ensemble, several iterations have been performed. A high-level
algorithm can be found in Algorithm 2.
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2.8. Forecasting strategies

Algorithm 1 Strategy 1 and 2 algorithm
1: Decompose X(t) into IMFs by CEEMDAN
2: Define hyperparameters matrix
3: p:= backtesting periods
4: h:= {1,2,3,4,5}
5: for each IMF do
6: for each element in p do
7: for each element in h do
8: define training set
9: define validation set

10: for each combination of hyperparameters do
11: train XGBoost / Adaptive Tree
12: prediction using the model
13: end for
14: assess RMSE of the predictions with the validation set
15: opt.par:= hyperparameters’ set that minimizes RMSE
16: move the training set one period forward
17: define test set as the validation set moved 1 period forward
18: train XGBoost / Adaptive Tree with opt.par
19: perform 1-step ahead prediction
20: end for
21: accumulate predictions for each h
22: end for
23: accumulate results for each p
24: end for
25: accumulate results for each IMF
26: aggregate predictions by addind up results for each IMF to get the Ensemble

Given the complexity of the Algorithm 2, with 4 loops, in each of them,
training several XGBoost and Adaptive Trees, it was impossible to run it on a
regular computer. Just as a reference, do a test for 1 IMF, and 1 backtesting
period took 12h in a Lenovo i5 vPRO with 8 cores and 8Gb RAM.

In order to accelerate the calculation, the whole algorithm was parallelized
using the future_map function from the furrr package, and run into an EC2
AWS instance. More specifically, the m5a.12xlarge instance was used with 48
vCPU and 192Gb RAM on top of a Windows Server 2019 AMI. With those 2
actions, the full Algorithm 2 for XGBoost and Adaptive Trees took around 15h.

2.8.2 Strategy 3

In this strategy, a regular XGBoost is applied to the training set to calculate
the daily forecast. The backtesting, model training, and fine-tuning phases are
the same as the ones used for Strategies 1 and 2 described in Section 2.8.1.
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2.8. Forecasting strategies

Algorithm 2 Strategy 3 algorithm
1: Define hyperparameters matrix
2: p:= backtesting periods
3: h:= {1,2,3,4,5}
4: for each element in p do
5: for each element in h do
6: define training set
7: define validation set
8: for each combination of hyperparameters do
9: train XGBoost

10: prediction using the model
11: end for
12: assess RMSE of the predictions with the validation set
13: opt.par:= hyperparameters’ set that minimizes RMSE
14: move the training set one period forward
15: define test set as the validation set moved 1 period forward
16: train XGBoost with opt.par
17: perform 1-step ahead prediction
18: end for
19: accumulate predictions for each h
20: end for
21: accumulate results for each p

2.8.3 Strategy 4

As described in 2.1, we relied on the auto.arima() function from the forecast
R package.

In order to mimic the backtesting approach by the Decomposition-Ensemble
strategy described in Section 2.5.1 and 2.6, we have leverageg the following
algorithm:

Algorithm 3 ARIMA algorithm
1: p:= backtesting periods
2: for each element in p do
3: define training set
4: define validation set
5: estimate ARIMA model with training set
6: training set := training set + validation test
7: set test set as the period contiguous to the training set
8: calculate 5-step ahead forecast
9: end for

10: accumulate results for each p
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3

Results

3.1 Descriptive statistics

The WTI Spot Price data set used has 9,015 data points, starting in 20/01/1986
up to 07/08/2020. A graphical representation of the time series can be found
in Figure 3.1.

Figure 3.1: Daily evolution of the WTI Spot price from Jan 1986 till Aug 2020.

As ilustrated in Figure 3.2, there has been 5 major disruptions in WTI
prices during the last 15 years:

• The big peak (yellow): All oil-reference index had a maximum price by
that year, with a record of 145.85 USD on North Sea Brent.

• The 2008 crash (light blue): After the maximum in July 2008, a sell-off
burst began after President Bush announced the lift on the ban for offshore
oil drilling in the US coasts [11]. By the end of that week, prices went
down 11% and kept that trend for the rest of the year, more aggressively
after the Lehman Brothers bankruptcy. By Dec 2020, it reached 32 USD.

19



3.1. Descriptive statistics

Figure 3.2: Daily evolution of the WTI Spot price from Jan 1986 till Aug 2020 with a focus on 5
major disruptions in prices during the last 15 years.

• Hydraulic fracturing era (orange): US economy was growing after the
2008 crisis, and hydraulic fracturing wells were drilled over the country.

• Oversupply (red): The gains in fracking’s efficiency enabled oil suppliers
to flood the market with cheap oil.

• The Covid19 big crash (blue): The big reduction in demand worldwide
due to lockdowns, the lack of response from suppliers to cut production
ended up in a dramatic reduction in stock capacity in Cushion, which
triggered a panic to investors that start selling the M+1 WTI Future
contracts. The sale momentum was so big that translated into negative
oil prices.

Figure 3.3: Within-week standard deviation evolution.

Figure 3.3 shows in a more analytical way the periods with high volatility, i.e.
with structural changes by showing the evolution of the within-week standard
deviation. The Covid19-related break is the biggest one by far.
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3.2. Number of IMFs

Figure 3.4: CEEMDAN of the WTI price into 13 IMFs and a residual.

3.2 Number of IMFs

As proposed in the original EMD study by Huang et al. (1998) [15], the residual
can be seen as the long-term trend, because of that, and following the same
approach as other papers leveraging CEEMDAN, we have been increasing the
number of IMFs starting with 5 until we got a residual showing a linear trend
behavior.

As shown in Figure 3.4, we achieve the beforementioned condition, i.e.,
getting a residual with a clear linear trend, after 13 IMFs plus 1 residual, the
first 8 showing a high-frequency pattern whilst the remaining 5, a low-frequency
one. As a result, for all the forecast strategies used in this study relying on
CEEMDAN, the WTI time series has been decomposed into 13 IMFs and 1
residual.
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3.3. Weekly forecast performance

Table 3.1: Descriptive statistics for the WTI price IMFs and residual.

Mean Variance Variance per-
centage

Perc of
0-crossing
points

IMF 1 < −0.001 0.419 0.070 65.109
IMF 2 -0.001 0.052 0.009 43.976
IMF 3 0.002 0.392 0.066 46.544
IMF 4 -0.001 0.473 0.079 25.368
IMF 5 0.001 0.659 0.110 13.573
IMF 6 -0.001 1.025 0.172 7.000
IMF 7 -0.004 1.644 0.275 3.401
IMF 8 0.044 6.426 1.075 1.635
IMF 9 0.008 18.755 3.138 0.790
IMF 10 -0.156 19.216 3.215 0.329
IMF 11 1,179 57.233 9.577 0.121
IMF 12 -0.140 150.245 25.141 0.033
IMF 13 -0.832 105.578 17.667 0.208
Residual 43.979 235.495 39.406 0.000

Table 3.1 supports the number of IMFs chosen by visual assessment:

• Residual is not showing a wave pattern as mean is > 0.

• As we get closer to the residual, the variance increases heavily, especially
from IMF12 onwards.

• In the residual there is not any 0-crossing, confirming the non-waived
behavior.

3.3 Weekly forecast performance

In this section, we will explore the weekly forecast performance of the 4
forecast strategies analyzed. In order to analyze results at this aggregation level,
we are accumulating the daily errors within a week for both the RMSE and FCA.

Although the focus of this study is the daily forecast performance, by
analyzing the weekly, we can get an overview and identify those periods with
the biggest gap between the strategies. A complete view over the weekly
performance can be found in Table 3.2.

A few facts to summarize the weekly results:

• In 19 out of the 24 weeks analyzed (79%), the Machine Learning
approaches, are outperforming ARIMA.

• In 11 out of the 24 weeks analyzed (46%), regular XGBoost shows the
best performance than ARIMA.
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T
ab

le
3.
2:

W
ee
kl
y
fo
re
ca
st

pe
rf
or
m
an

ce
fo
r
th
e
4
fo
re
ca
st

st
ra
te
gi
es

an
al
ys
ed

in
th
is
st
ud

y.
E
m
pt
y
ce
lls

in
w
ee
k
20
20
.1
6
be

ca
us
e
w
it
h
ne

ga
ti
ve

va
lu
es

F
C
A

ca
nn

ot
be

ca
lc
ul
at
ed

.

20
20

.0
9

20
20

.1
0

20
20

.1
1

20
20

.1
2

20
20

.1
3

20
20

.1
4

20
20

.1
5

20
20

.1
6

20
20

.1
7

20
20

.1
8

20
20

.1
9

20
20

.2
0

R
M

S
E

A
R

IM
A

2.
38

8.
84

8.
37

2.
99

11
.3

1
4.

98
1.

68
24

.9
6

3.
74

5.
34

2.
92

5.
11

X
G

B
oo

st
3.

03
7.

74
7.

98
6.

89
7.

36
3.

64
1.

47
24

.8
4

4.
5

3.
13

3.
18

2.
13

C
E

E
M

D
A

N
-X

G
B

oo
st

2.
01

2.
55

5.
09

4.
28

3.
17

1.
99

1.
61

20
.4

2
3.

21
3.

66
1.

86
1.

71
C

E
E

M
D

A
N

-A
da

pt
iv

e
T

re
es

2.
70

3.
24

5.
14

5.
37

4.
04

1.
68

2.
31

19
.3

5
1.

54
4.

88
1.

91
0.

84

F
C

A

A
R

IM
A

95
.1

2
72

.9
6

68
.8

9
87

.0
2

56
.3

8
80

.0
5

92
.4

4
80

.1
5

78
.2

0
91

.2
6

84
.7

8
X

G
B

oo
st

93
.8

8
76

.5
5

71
.8

5
71

.0
0

70
.8

8
86

.4
8

93
.9

6
74

.6
6

87
.9

4
90

.8
2

94
.4

1
C

E
E

M
D

A
N

-X
G

B
oo

st
95

.9
8

93
.4

9
81

.7
7

81
.8

8
87

.4
5

92
.1

5
93

.4
0

82
.0

2
86

.0
8

94
.8

3
95

.0
3

C
E

E
M

D
A

N
-A

da
pt

iv
e

T
re

es
94

.9
0

90
.8

9
81

.9
8

77
.3

3
82

.9
9

94
.3

1
89

.5
4

91
.3

8
79

.9
7

94
.6

1
97

.8
6

20
20

.2
1

20
20

.2
2

20
20

.2
3

20
20

.2
4

20
20

.2
5

20
20

.2
6

20
20

.2
7

20
20

.2
8

20
20

.2
9

20
20

.3
0

20
20

.3
1

20
20

.3
2

R
M

S
E

A
R

IM
A

1.
14

2.
93

1.
44

1.
72

1.
08

1.
43

0.
43

0.
43

0.
81

0.
83

1.
42

0.
7

X
G

B
oo

st
1.

50
1.

43
2.

07
1.

82
0.

78
1.

74
1.

53
0.

69
0.

91
2.

42
1.

23
2.

58
C

E
E

M
D

A
N

-X
G

B
oo

st
1.

21
2.

44
1.

48
1.

41
1.

16
0.

90
0.

55
0.

46
0.

40
2.

82
2.

52
1.

74
C

E
E

M
D

A
N

-A
da

pt
iv

e
T

re
es

1.
08

1.
84

0.
46

0.
92

1.
06

1.
23

1.
18

1.
45

0.
57

2.
42

1.
75

1.
15

F
C

A

A
R

IM
A

97
.2

3
92

.9
2

96
.7

6
96

.1
2

97
.4

4
96

.6
3

99
.0

8
99

.1
3

98
.3

1
98

.4
0

96
.8

0
98

.5
6

X
G

B
oo

st
96

.1
7

96
.7

1
95

.3
5

95
.3

2
98

.1
8

96
.0

0
96

.7
7

98
.4

1
98

.2
3

96
.0

9
97

.1
9

94
.3

3
C

E
E

M
D

A
N

-X
G

B
oo

st
96

.9
5

95
.7

9
96

.6
6

97
.1

0
97

.4
4

98
.1

3
98

.8
2

99
.1

2
99

.1
5

93
.7

8
94

.2
7

96
.3

6
C

E
E

M
D

A
N

-A
da

pt
iv

e
T

re
es

97
.3

3
96

.0
5

98
.9

2
97

.8
4

97
.4

8
97

.3
0

97
.8

6
97

.2
6

98
.7

5
95

.6
1

96
.0

3
97

.7
7

23



3.4. Daily forecast performance

• In 18 weeks out of the 24 (75%), the CEEMDAN-XGBoost outperforms
XGBoost, i.e., the decomposition-ensemble strategy is clearly adding value
in terms of forecast performance.

• In 12 out of 24 weeks (50%), CEEMDAN-Adaptive Tree is performing
better than CEEMDAN-XGBoost, especially in high-volatility periods.

From the points above we can clearly state that ML-based learning shows
a better performance than time series-based ARIMA when analyzing daily
forecasts aggregated to weekly buckets. We can conclude the same when
comparing the regular XGBoost vs Decomposition-Ensemble approach.

3.4 Daily forecast performance

In this section, we are analyzing the performance of the 5-step ahead forecast
calculated every first day of the week.

Figure 3.5: Daily forecast evolution for the 4 strategies in scope. UOM: US Dollars.

In Figure 3.5, the daily evolution of the forecast is shown for the 4 forecast
strategies. In order to better analyze the daily results, we split the 24 weeks in
scope into 3 periods:

3.4.1 First Covid19 hit

(24/02/2020 - 07/04/2020). During these 4 weeks, the first hit of Covid19
impacted the WTI price due to the several lockdowns in China, Europe, and
the US causing a plunge in oil and petroleum products’ demand.

As shown in Figure 3.6, at a high level, the two Decomposition-Ensemble
strategies remain closer to the actual values, in a smoother way, without
reacting too much to ups and downs. When comparing both, there is not a
significant difference between them, nor during more stable days, nor periods
with some volatility.

On the other hand, the regular XGBoost is clearly showing more erratic be-
havior, overreacting to drops and peaks and sometimes showing a non-expected
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3.4. Daily forecast performance

Figure 3.6: Daily WTI price evolution during the first analised period. UOM: USD.

patterns like the one during 18/03/2020 - 21/03/2020.

ARIMA reacts sluggishly and keeps a very conservative estimation within
the studied period. It is also noticeable the flat pattern reproduced for entire
weeks, which gives the calculation made by ARIMA a stepped way of looking.

Table 3.3: Aggregated FCA and RMSE results for the first analysed period, i.e., 24/02/2020 -
07/04/2020

ARIMA XGBoost CEEMDAN-XGBoost CEEMDAN-Adaptive Tree
FCA 79.7% 81.3% 90.2% 88.7%
RMSE 7.02 6.23 3.32 3.83

At an overall level, Table 3.3 confirms that for this first period,
Decomposition-Ensemble strategies outperform ARIMA and the regular XG-
Boost by far. Nevertheless, CEEMDAN-Adaptive Trees shows a slightly worst
behavior than CEEMDAN-XGBoost.

3.4.2 Historical drop

(08/04/2020 - 24/04/2020). This period comprises the days before the big crash
and the ones just after the plunge on April 13th.

Figure 3.7 shows a similar picture as Figure 3.6: both Decomposition-
Ensemble strategies fits better to the actuals than ARIMA and XGBoost.

Focusing on the big drop, CEEMDAN-Adaptive Trees performs marginally
better than CEEMDAN-XGBoost, by reacting more aggressively to the plunge.

XGBoost shows again an overreacting behavior but just after the drop.
ARIMA reproduces a quasi-linear forecast without capturing any movement in
the WTI price.

In Table 3.4 one can assess the overall performance over period 2, which
confirms what was seen for period 1: Decomposition-Ensemble outruns ARIMA
and XGBoost -also during high-volatility periods. The difference between
CEEMDAN-XGBoost and CEEMDAN-Adaptive Trees is negligible.
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3.4. Daily forecast performance

Figure 3.7: Daily WTI price evolution during the second analised period. UOM: USD.

Table 3.4: Aggregated FCA and RMSE results for the second analysed period, i.e., 08/04/2020 -
24/04/2020

ARIMA XGBoost CEEMDAN-XGBoost CEEMDAN-Adaptive Trees
FCA 41.0% 40.1% 55.8% 56.0%
RMSE 15.68 15.68 12.80 12.08

3.4.3 Recovery and stabilization period

(27/04/2020 - 07/08/2020). These weeks include the recovery from the big drop
and the short-term stabilization around 40USD/bbl (prices went higher from
onwards and are still showing a positive trend as of Sep 2021).

Figure 3.8: Daily WTI price evolution during the third analised period. UOM: USD.

Results for period 3 (in Figure 3.8) do not add new insights not already
captured before:

• Decomposition-Ensemble framework fits better to the actuals than ARIMA
and XGBoost.

• There is not a noticeable difference performance-wise between CEEMDAN-
XGBoost and CEEMDAN-Adaptive Trees.

• XGBoost shows a weird behavior, not reproducing any familiar actual
pattern.
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3.5. Summary

• ARIMA proposes a smoother forecast with flat lines in consecutive days
within a week.

Table 3.5: Aggregated FCA and RMSE results for the third analysed period, i.e, 27/04/2020 -
07/08/2020

ARIMA XGBoost CEEMDAN-XGBoost CEEMDAN-Adaptive Trees
FCA 95.5% 95.8% 96.3% 96.6%
RMSE 2.39 1.96 1.86 1.83

Aggregated results for period 3 in Table 3.5 confirms the conclusions made
in the 3 points above.

3.5 Summary

After analyzing the forecast performance results for the 4 strategies in scope on
weekly and daily buckets, and in different periods (period 1: negative trend with
medium volatility; period 2: big drop with high-volatility; period 3: positive
trend with low volatility), we can conclude:

• The Decomposition-Ensemble strategy (whether combined with XGBoost
or Adaptive Trees), clearly outperforms ARIMA and XGboost, more
specifically, the former it’s adding +8-9pp in FCA for period 1, +15pp in
period 2, and 1-2 pp in period 3 compared to the latter.

• When comparing XGBoost and Adaptive Trees combined with CEEM-
DAN, there is not a significant difference performance-wise; the 2nd shows
slightly better results in periods 2 and 3.

• Regular XGBoost is reproducing non-expected patterns and overreacting
to peaks and drops. We can conclude that decomposing the original time
series by CEEMDAN is adding around +8pp in terms of FCA.

• ARIMA is the forecasting strategy showing the lowest results in the 3
analyzed periods. The difference is not so big in periods with a stable
pattern and low volatility, as ARIMA tends to produce a flat and smooth
forecast.
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4

Discussion

In this last chapter of the study we will provide an answer to the questions we
asked ourselves in Section 1.2 and build a high-level roadmap and Business
Case for one of the Oil Majors companies I have been working on over the last
years. As the last step, we will briefly expose which are the improvements and
next steps identified during this study.

4.1 Did we achieve our Objectives?

During the Introduction chapter in this report, we listed down the specific
questions we wanted to get an answer for after analyzing the results (see Section
1.2). Let’s review them one by one.

• Are ML-based methods outperforming ARIMA when calculating daily
forecasts for WTI spot price during periods with structural changes?

Clearly yes, at both weekly and daily buckets as shown in Section
3.3 and 3.4. At the weekly level, we saw that in ≈ 80% of the 24 weeks
analyzed, the ML-based methods outperformed ARIMA in terms of RMSE
and FCA. In the same direction, at a daily level, and for the 3 periods
analyzed (with different volatility patterns), the Decomposition-Ensemble
strategy shows a higher performance than ARIMA, adding up to +15pp
in FCA during the Historical drop.

• Which is the added value of applying a decomposition algorithm to regular
XGBoost in terms of forecast accuracy?

Adding the Decomposition algorithm to XGBoost is clearly increas-
ing the forecast performance. When analyzing the results in weekly
buckets, in ≈ 75% of the 24 weeks analyzed, the CEEMDAN-XGBoost
gets higher accuracy than the regular XGBoost. At the daily level, the
CEEMDAN algorithm is adding up to +15pp in terms of FCA. Just
as a reference, in a similar study [18], the authors found that adding
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4.2. Roadmap and Business Case

CEEMDAN to XGBoost improved the RMSE from an average of 1.26 to
0.41 for 1-step ahead daily forecast1.

• Can we prove that CEEMNDAN-Adaptive Trees is a better forecasting
strategy than the others in terms of accuracy during periods with structural
changes?

Unfortunately with the features used and the non-exhaustive train-
ing phase performed, we cannot conclude that CEEMDAN-Adaptive Tree
is the best of the strategies. Analyzing the weekly and daily results we
can see that there are no significant differences when compared with
CEEMDAN-XGBoost. Just during periods with high volatility (like
the historical drop), Adaptive Trees is outperforming the XGBoost one.
Woloszko (2020) [10] conducted a study to forecast GDP for a bunch of
European countries in monthly buckets with Adaptive Trees (without
decomposition). For most of the countries analyzed, they were able
to reduce RMSE by 50% by using Adaptive Trees when compared to
Gradient Boosted Trees (similar to XGBoost). In our case, we really
think that the performance of the Decomposition-Ensemble strategy has
been hindered by the lack of computation power and usage of simple
features during the training phase. A more extended discussion on this
topic can be found in Section 4.3.

• How can an Oil & Gas company implement the winning forecast strategy?

In Section 4.2.1 we provide a detailed answer to this question: how
to implement an enhanced version of the Decomposition-Ensemble
strategy and how this can be the first step towards a Digitalization
journey towards a real Integrated Planning capability. We are also
including the associated Business Case with benefits and implementation
and running costs.

4.2 Roadmap and Business Case

Most of the Oil Majors are in a similar maturity level when it comes to
Digitalization. These companies have historically been the ones with more
revenues and benefits. Just as an example Royal Dutch Shell plc. reported
annual revenues of 344,877 mUSD in 2019 and an EBITDA of 29,566 mUSD
with an EBITDA profitability of 8.5% [12]. On the same page, Saudi Aramco
was in 2019 the most profitable company in the world by large, with a net
income of 111.1 bUSD vs. the 59.5 bUSD reported by Apple, the 2nd most
profitable (this picture is different after the pandemic). Diving in these big
profitability numbers, Oil Majors became big and complex organizations, not
focusing too much on getting into the Digitalization journey.

This translated into a large amount of manual workload to execute processes,
sometimes not relying on any system; decisions driven more by gut feelings
rather than on data. In terms of forecasting capabilities, there is not any or

1This study was conducted in 2019 in a pre-Covid19 scenario with no structural changes.
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4.2. Roadmap and Business Case

really basic: Excel spreadsheets with some historical data and predictions
done by moving averages with different time windows. In some of the analyses
these companies perform, they just take an average crude oil price, making the
consequent conclusions not robust at all.

4.2.1 A Roadmap towards Digitalization

The baseline (or starting point) is really set the basics, hence an implementation
of the enhanced methodology we explored and the ingestion of it into their
planning and trading processes may take some time. In fact, implementing the
enhanced Decomposition-Ensemble methodology will just be one of the first
steps into the Digitalization journey. As shown in Figure 4.1, we propose to
achieve an Advanced and Integrated Planning in 4 years with a list of initiatives
to reach that North Star divided into 4 groups: Planning capabilities, Analytics,
Skills / Organization, and Technology.

Planning capabilities

• ERP Integration: Crude Oil forecast in daily buckets is shared with
the ERP system so all the organization is leveraging the same information
when steering operational and trading activities. Ad-hoc analysis and
reporting are based on the same underlying information.

• Enhance Operations Planning: Crude Oil forecast is incorporated
into the existing planning tools. This information is used by such tools to
enhance planning processes: adjust production throughput, manufacturing
capacity, inventory levels, procurement, and transport planning.

• Scenario Planning: Advanced planning tools are implemented with
Scenario Planning capabilities (e.g. Kinaxis, E2Open). Users can
simulate the impact of different parameters (e.g. oil price) on operational
performance and costs. The generation of different scenarios allows the
users to make better decisions based on data.

• Digital Twin: Taking Scenario Planning to the next level. Digital Twin
allows the user to completely mimic a physical Supply Chain in a virtual
space and test in real-time different configurations and assess the impact.
The configuration made on the virtual environment is executed in the
physical Supply Chain.
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4.2. Roadmap and Business Case
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4.2. Roadmap and Business Case

Analytics

• Decomposition-Ensemble: An enhanced version of the methodology
presented in this report is implemented. It can be upgraded with the
enhanced version presented in Section ??.

• External data: The beforementioned methodology can be improved by
adding external data into the modeling, e.g., macroeconomic data for the
US and Europe, prices of other crude oil grades and commodities, crude
oil stock capacity in the US, crude export/imports, refinery capacities,
etc.

• Reporting: In order to assess the forecast performance a user-friendly
and robust reporting layer is implemented. On top of it, a Continuous
Improvement process can be arranged to identify corrective actions and
hence, improve the forecast performance.

• High-frequency data: Hourly or real-time price data is leveraged into
the Ensemble-Decomposition framework. As a result, the hourly or real-
time forecast is calculated, fostering rapid response in the Supply Chain.

Skills / Organization

• Data Science Team: Most of the O&G companies are still lacking a
dedicated Data Science team and are simply relying on in-house employees
with analytical acumen. In order to successfully implement all the
initiatives, a dedicated Data Science team should be built.

• Business Analyst: Although all companies have some spare FTEs under
the Business Analyst or Business Intelligence profiles, a dedicated team
will allow the organization to effectively communicate the results and
outcomes of the Data Science team across the company. This team can
also be steering the Continuous Improvement function.

• Data Engineering: As the models and data used to become more
complex, dedicated Data Engineers are required in order to effectively
store and manage the large amounts of data required by the Data Science
Team.

• Data Science Hub: As the organization becomes more mature, the
usages of ML-based forecasting techniques can be expanded, and the Data
Science team can become a sort of Data Science as a Service team. In
such cases creating a central dedicated Hub will increase the efficiency
when offering these services across the company.

Technology

• Open Source Platform: In the early stages of digitalization, the whole
organization can rely on open source platforms for all analytics-related
topics: R or Python for ML, MySQL for data storage, and Shiny for data
visualization.
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4.2. Roadmap and Business Case

• Business Intelligence: In order to support Advanced Data Visualization
functionalities, a dedicated tool should be implemented such as Tableau
or Qlikview. These tools are way flexible than Shiny when it comes to
scaling and connection to different and diverse data sources.

• Cloud Computing: When executing complex ML models traditional
servers become obsolete. To sustain the big computing power required,
we recommend the usage of cloud computing solutions such as Microsoft
Azure or Amazon AWS.

• IoT: As the infrastructure supporting becomes more advanced, including
advanced data storage solutions and cloud computing, the organization
can do a big step forward by installing sensors in their facilities in order to
capture real-time operational data. This information can be leveraged by
the Data Science team to enhance their models and tackle new problems,
i.e., Predictive Asset Maintenance, Spare Parts Inventory Optimization,
etc.

4.2.2 High-level Business Case

One of the main outcomes of building a roadmap of initiatives is the Business
Case. In the Business Case, we estimate the potential impact in Revenues, Cost,
and CAPEX of the different initiatives to reach the future statement, and these
are confronted with the cost of implementing the solution.

Figure 4.2: Value Tree with the value levers taht are mostly impacted by the initiatives in Section 4.2.

The Impact shown in Figure 4.2 represent the increase or decrease in
percentage over the associated Value Lever if the company is able to successfully
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4.2. Roadmap and Business Case

implement the Initiatives stated in the Roadmap.

In order to get a glimpse of the impact this may have on an Oil Major,
let’s apply the Business Case into Shell’s 2019 financial figures as per the 2019
Annual Report (the last one before Covid19 outbreak).

Table 4.1: 2019 values reported in the Shell plc 2019 annual report and the associated Business
Case. Numbers in brackets indicate negative numbers. Values out of the 2019 Shell Annual Report
[12]. UOM: mUSD.

Value lever Adressable P&L Impact Business Case
Operating Revenue 58,709 0.5 -1% 294 - 587
Non-Operating Revenue 7,396 0.2 - 0.8% 15 - 59
COGS -47,599 1 - 2% (476) - (952)
Operating Expenses 8,040 0.5 - 1% 40 - 80
Inventory Levels -3,859 3 - 5% (116) - (193)

By adding the 2 first rows of Table 4.1, we get a total increase in revenue of
309 - 646 mUSD. In the opposite direction, by aggregating figures in the 3rd
and 4th row, we get the reduction in total expenditure of (436) - (872) mUSD.
The reduction in crude oil Inventory Levels is translated into a reduction of
(116) - (193) in the Balance Sheet.

Assuming the rest of the P&L items remain the same, the above figures
translate into an increase in profitability2 of 3 - 6% (2019 EBITDA 25,485
mUSD; updated EBITDA 26,230 - 27,003 mUSD).

All these numbers, however, do have an associated implementation and
running cost.

Table 4.2: Evolution of the implementation and running costs of the Roadmap. Assumptions in
Appendix 1. UOM: mUSD

Cost item 2021 2022 2023 2024
Headcount cost 0.60 0.45 0.60 2.03
Consultancy Cost 18.75 15.63 9.38 3.13
Technology Cost 4.00 8.00 10.00 15.00
Total Cost 23.35 24.08 19.98 20.15
Benefits 1,286 1,108 1,112 1,112
Business Case 1,263 1,108 1,112 1,112
Cumulative Business Case 1,263 2,371 3,843 4,594

Table 4.2 shows how the implementation and running costs are evolving
through the 4 years of Roadmap’s deployment. As stated in the last row of the
table, even with the high costs for the first 2 years, the benefit of deploying the
Roadmap clearly overcomes the cost.

2Measured as EBITDA.
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4.3. Improvements and next steps

4.3 Improvements and next steps

In this section, we will review which have been the main improvement points
identified through the study and which are the potential next steps to further
improve and start the implementation.

Regarding the identified improvement points, the most relevant has been the
computation power constraint. Although an AWS EC2 instance was used, the
high associated cost limited the number of hours the server was used, limiting
the ability to test different parameters and features. When implementing this in
a company, a bigger budget will be available and a more powerful EC2 instance
(or similar) might be available on demand.

Because of the same reason, during the hyperparameter’s optimization phase,
the number of parameters and ranges to look for an optimal combination were
low, limiting the potential forecast performance of the Decomposition-Ensemble
methods. If more powerful computing resources are available, the number
of hyperparameters to optimize and the reviewed optimization space will be
bigger, increasing the forecast performance. This has been especially a pain
point for Adaptive Tree, where just 3 values of the θ parameter have been
reviewed during the training phase, limiting the potential of this methodology
in terms of forecast performance.

With bigger computation power, a longer forecast horizon can be calculated.
Once the methodology is implemented and in production, for planning and trad-
ing purposes, a daily forecast for the next 3 months should be available (at least).

In order to make all the forecasting strategies comparable among them and
understand the added value of each, the feature engineering remained basic,
i.e., just using past values, simulating a kind of auto-regressive model like
ARIMA. This approach reduced the required computation power and made
the comparisons between methodologies fairer but, at the same time, hindered
the performance of the most advanced techniques, mainly the Decomposition-
Ensemble. When implemented, we strongly recommend extracting more features
from the time series, e.g., day of the week, week indicator, month indicator,
average/median values, min and max values within a week, moving averages,
etc. External data can be also leveraged: macroeconomic metrics or O&G
specific.

Related to the last point, with a broader set of features to train the models,
a deeper study around features’ importance can be conducted. One of the most
user-friendly capabilities of the XGBoost implementation in R and Python is
the possibility to estimate which is the importance of each feature used to train
the model. In the present report, all features have been used. By removing
features with low importance or those highly correlated, a reduction in complex-
ity and risk of overfitting can be achieved, translating into more accurate results.

Regarding next steps, or how to start Roadmap’s implementation:

• Before going any step further, the stakeholders may request a detailed
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4.3. Improvements and next steps

version of the Business Case. This is crucial in order to get buy-in from
the organization. To do that we need to tailor down the cost items
that might be impacted by the initiatives and use up-to-date financial
information from the company. In the same way, a more detailed picture
of the implementation and running costs should be provided. With these
2 pieces of information, the Business Case is more detailed and shows a
more realistic view of the impact and associated costs.

• For each of the initiatives in the Roadmap, a plan should be built
including tasks to be performed with timelines, owner of each of the
tasks, benefit, and cost of implementing, initiative’s sponsor, objective,
and interdependencies with other on-the-fly initiatives.

• For the Decomposition-Ensemble initiative, the one of more interest in this
study, all the improvement points stated above should be applied before
going into implementation mode. Afterward, a pilot for 1 specific country
or Business Unit should be performed in order to test the methodology,
fine-tune if required, and proof value.

• A PMO function should be set up to ensure the Roadmap’s realization
and track status over all the initiatives being implemented.

• A few weeks before kicking off a new initiative, the required team should
be mobilized, ensuring everyone in the team has a good understanding of
the activities to be performed.

• Once an initiative is in implementation mode, perform regular meetings
with all the task force in order to check the status and identify potential
risks and roadblocks. Ensure a proper escalation path is established in
order to raise any issue the team might face.

• During the implementation of each initiative and when closing, it is
important to revisit the initiative’s Business Case and assess the level of
adherence to it and the initial plan. This might help in refining the plan
and Business Case for the following initiatives to be implemented.
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Glossary

• ARIMA, Autoregressive Integrated Moving Average

• AWS, Amazon Web Services

• bbl, one barrel of crude oil

• bUSD, billion USD

• CAPEX, Capital Expenditure

• CEEMDAN, Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise

• COGS, Cost of Goods Sold

• EBITDA, Earnings Before Interest, Taxes, Depreciation, and Amortiza-
tion

• EEMD, Ensemble Empirical Mode Decomposition

• EMD, Empirical Mode Decomposition

• FCA, Forecast Accuracy

• FTE, Full Time Employee

• GBM, Gradient Boosting Machine

• GBT, Gradient Boosting Tree

• IMF, Instrinsic Mode Function

• IOC, International Oil Company

• IoT, Internet of Things

• Mbbl, One million of crude oil barrels

• ML, Machine Learning
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• mUSD, million USD

• NOC, National Oil Company

• O&G, Oil&Gas

• OPEC, Organization of the Petroleum Exporting Countries

• OPEC+, Extended Organization of the Petroleum Exporting Countries
(including Russia)

• P&L, Profit&Loss

• PMO, Project Management Office

• RMSE, Root-Mean Square Error

• SNR, Signal-to-Noise Ratio

• UOM, Unit of Measure

• WTI, West Texas Intermediate

• XGBoost, Extreme Gradient Boosting
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Business Case assumptions

The aim of this appendix is to list down all the assumptions made when
calculating the Business Case and the associated implementation and running
costs.

• Addressable P&L: Portion of the Revenue and Cost stated in the
2019 Shell Annual Report which can be impacted by the initiatives. It
was estimated that the main impacted area within the company is the
Downstream Manufacturing Business Unit, representing ' 17%.

• Impact: Values on the 3rd column in Table 4.1 come from market
benchmarks. Data source: confidential.

• COGS: Calculated as the sum of Purchases and Production and
manufacturing expenses P&L items from the Consolidated Statement
of Income in the 2019 Shell Annual Report.

• Operating Expenses: Calculated as the sum of Selling, distribution,
and administrative expenses, Research and development, Exploration,
Depreciation, depletion, and amortiation, and Interest expense P&L items
from the Consolidated Statement of Income in the 2019 Shell Annual
Report.

• Headcount cost: Cost of new employees. Average annual cost: Data
Scientist 60,000 USD, Business Analyst 45,000 USD, Data Engineer 60,000
USD. The number of new hires per year:

– 2021: 10 Data Scientists.
– 2022: 10 Business Analysts.
– 2023: 10 Data Engineers.
– 2024: 20 Data Scientists, 10 Business Analysts, and 5 Data Engineers.

• Consultancy Cost: Cost associated with the support of an external
partner, i.e., a consulting firm. Assuming an Average Daily Rate per
consultant of 2,500 USD/day. The number of working days of the
consulting team per year: 250 days. Size of consulting team per year:
2021, 30 consultants; 2022, 25 consultants; 2023, 15 consultants; 2024, 5
consultants.
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• Technology Cost: Implementation and running costs (including licenses)
of the tools required to deploy the Roadmap, i.e., Cloud Computing
services, Data Visualization tools, Advanced Planning tools, etc.
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