
Received October 3, 2021, accepted October 19, 2021, date of publication October 22, 2021, date of current version October 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3122331

Dynamic Spectrum Allocation Following Machine
Learning-Based Traffic Predictions in 5G
RAKIBUL ISLAM RONY , (Student Member, IEEE), ELENA LOPEZ-AGUILERA ,
AND EDUARD GARCIA-VILLEGAS
Department of Network Engineering, Universitat Politécnica de Catalunya, BarcelonaTech, 08034 Barcelona, Spain

Corresponding author: Rakibul Islam Rony (rakibul.islam.rony@upc.edu)

This work was supported in part by the EU Horizon 2020 Research and Innovation Program (5GAuRA) under Grant 675806, and in part by
the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement from the Generalitat de Catalunya under
Grant 2017 SGR 376.

ABSTRACT The popularity ofmobile broadband connectivity continues to grow and thus, the futurewireless
networks are expected to serve a very large number of users demanding a huge capacity. Employing larger
spectral bandwidth and installing more access points to enhance the capacity is not enough to tackle the
stated challenge due to related costs and the interference issues involved. In this way, frequency resources are
becoming one of the most valuable assets, which require proper utilization and fair distribution. Traditional
frequency resource management strategies are often based on static approaches, and are agnostic to the
instantaneous demand of the network. These static approaches tend to cause congestion in a few cells,
whereas at the same time, might waste those precious resources on others. Therefore, such static approaches
are not efficient enough to deal with the capacity challenge of the future network. Thus, in this paper
we present a dynamic access-aware bandwidth allocation approach, which follows the dynamic traffic
requirements of each cell and allocates the required bandwidth accordingly from a common spectrum pool,
which gathers the entire system bandwidth. We perform the evaluation of our proposal by means of real
network traffic traces. Evaluation results presented in this paper depict the performance gain of the proposed
dynamic access-aware approach compared to two different traditional approaches in terms of utilization and
served traffic. Moreover, to acquire knowledge about access network requirement, we present a machine
learning-based approach, which predicts the state of the network, and is utilized to manage the available
spectrum accordingly. Our comparative results show that, in terms of spectrum allocation accuracy and
utilization efficiency, a well designed machine learning-based bandwidth allocation mechanism not only
outperforms common static approaches, but even achieves the performance (with a relative error close
to 0.04) of an ideal dynamic system with perfect knowledge of future traffic requirements.

INDEX TERMS 5G, automation, machine learning, BW allocation, spectrum sharing.

I. INTRODUCTION
Ever since the inception of cellular networks, the popular-
ity of wireless connectivity is increasing everyday. Every
generation of cellular networks, i.e., 1st, 2nd, 3rd and 4th
Generation (1G, 2G, 3G and 4G) improved the performance
of the previous generation in terms of capacity, coverage,
data rate, etc, to meet the expectations of an evolving and
connected society. Moreover, with the increasing popularity
of mobile devices, tactile internet applications, video stream-
ing and multi-fold varieties of use cases (e.g., broadband
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access everywhere, higher user mobility, extreme real-time
communications, ultra-reliable communications), wireless
networks are becoming more popular as a cost-effective
solution for ubiquitous connectivity. In that sense, the latest
generation, that is, the 5th Generation (5G), is considered
revolutionary, since it is promising a level of services and
facing new challenges like never before. For instance, 5G is
expected to provide around one hundred times more capacity
(i.e., 10 Mbps per m2) to a hundred times more con-
nected devices (i.e., 106 connected devices per Km2) com-
pared to 4G. Additionally, the expected end to end latency
for delay-sensitive applications is expected to be less than
1ms [1]. According to [2], in 2020, the number of mobile
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subscriptions has totaled 7.9 billion globally, and mobile data
traffic grew by 49% within the previous year. By the end
of 2026, the amount of mobile subscriptions is expected to be
8.8 billion, among which, 88% will consist of mobile broad-
band connections. Furthermore, with this mobile broadband
connectivity, each user will be expecting a huge capacity,
i.e., 25 Gigabyte (GB) on average per month [2].

To meet the aforementioned demands (high capacity, low
latency, etc.), provide ubiquitous coverage, and be able to
serve different scenarios (Internet of Things (IoT), Device
to Device (D2D), Vehicle to everything (V2X), enhanced
mobile broadband (eMBB) communications, etc.), wireless
networks are becoming more complex everyday. Disrupting
features of future wireless networks, such as Massive Mul-
tiple Input Multiple Output (MIMO), multi layer heteroge-
neous Radio Access Technologies (Multi-RATs), Centralized
Radio Access Network (CRAN), Network slicing, Edge com-
puting, Network Function Virtualization (NFV), etc. are the
key enablers of 5G to meet the promised level of Quality of
Service (QoS). Thus, implementing highly dense, complex
and multi layered 5G networks will require a higher degree
of automation [3]. Although, according to [4], the existing 5G
networks do not provide such level of flexibility or automa-
tion yet, Artificial Intelligence (AI) offers solutions to tackle
the complexity of 5G and beyond [3], [4]. Among many
other AI techniques, (e.g., autonomous vehicles, robotics,
computer vision, etc.), Machine Learning (ML) is arguably
the most convenient mechanism since it depends on the avail-
ability of large amounts of data, something that abounds in a
modern mobile network.

On the other hand, cell densification has always been the
most effective and fastest way to increase the area capacity
of the network, however, this process is costly and introduces
additional challenges, i.e., interferencemanagement. Deploy-
ment of small cells (SC) and techniques like eICIC are pop-
ular solutions for the aforementioned cost and interference
challenges, respectively. Largely deployed SCs along with
network-wide deployed IoT devices will result into a Ultra
Dense Network (UDN) [5]. The aggregated capacity require-
ment of such UDN will be enormous and potentially unbear-
able for current capacity enhancement techniques, such as
carrier aggregation or Frequency Reuse (FR), because of
poor frequency resource management: while some coverage
areas are overprovisioned, others appear overloaded. Thus,
along with these techniques, it is important to ensure the best
usage of the scarce frequency resources by allocating them
according to the network’s varying demand.

As our contribution, we provide an intelligent access-aware
dynamic spectrum allocation technique whereby resources
are shared from a common spectrum pool. First, to ensure
the best utilization of the available spectrum, we propose an
allocation mechanism that follows the instantaneous capacity
requirements in the access network. Then, we analyse the
adaptation of a ML technique to predict the capacity require-
ments throughout different times of the day. We compare the

performance of our methods with common static approaches
and with an ideal (though unfeasible) dynamic mechanism.

The remaining of this paper is structured as follows.
In Section II, we review the state of the art by present-
ing a detailed discussion on different spectrum allocation
techniques, and the growing popularity of different ML tech-
niques inwireless networks. In Section III, we present the sys-
tem model and describe the proposed dynamic access-aware
spectrum allocation technique. In Section IV, the description
of the evaluation scenario, the related simulation assumptions
and comparative traditional approaches are provided. Finally,
in Section V, detailed analysis and comparative results for
the proposed intelligent access-aware spectrum allocation
technique are presented. Additionally, Section V analyses the
performance of the ML-approach, which provides bandwidth
assignments according to traffic predictions. Section VI con-
cludes the paper.

II. STATE-OF-THE-ART
5G is expected to use CRAN for its deployment, where most
of the RAN functionalities will be centralized into a Central
Unit (CU), and the Access Points (APs) will be left only
with basic radio frequency functionalities. This centralized
approach allows controlling the network from a central con-
troller, having the network-wide knowledge. Additionally,
it is expected that in future networks, the available spectrum
will be pooled together into a spectrum pool, which is shared
by all the APs [5]. This spectrum pool will be controlled
by a Software Defined Network (SDN)-based central con-
troller, which allows the functionality to control and distribute
Bandwidth (BW) among different APs according to their
current requirements. Furthermore, to be resource-efficient
in 5G complex UDN, it will be necessary to learn the network
behaviour and predict the future requirements such that the
BW distribution approach can be made ahead of the dynamic
requirements and be ready with the correct resource distri-
bution. Therefore, in this era of automation, future cellular
networks are expected to adopt ML techniques to perform
dynamic resource allocations. In this section, we discuss
different spectrum allocation and ML approaches.

A. SPECTRUM ALLOCATION TECHNIQUES
Licensed spectrum has always been the most expensive and
scarce resource from wireless networks service provider’s
point of view. With the aggressive growing of capacity
demand on wireless networks, the spectrum became more
precious, given that the most straightforward way to meet
the higher capacity requirements is to increase the assigned
BW [6]. However, this approach also brings additional chal-
lenges. BW distribution of the spectrum among different cells
for ensuring the best utilization of the scarce resources has
always been a very challenging task.

Throughout the previous generations of cellular net-
works, Fixed Spectrum Allocation (FSA) has been a popular
approach for BW distribution among different APs. In this
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solution, an initial capacity plan is performed, and BW is
allocated to the APs according to the maximum requirements
it is expected to serve during peak hours, and to the available
resources. Later on, BW allocation remains static and agnos-
tic to the dynamic capacity requirements of the different APs
in the network [7].

Compared to FSA, in Dynamic Spectrum Allocation
(DSA), allocation of spectrum follows the instantaneous
requirements of the APs, according to the available resources.
A simple approach is presented in [7], where a DSA is
triggered after a particular time interval, which estimates
the load for the next time interval, computes the spectrum
requirements and, if needed, allocates additional spectrum for
the subsequent time interval. In [7], authors argued that DSA
can be potentially used to share the idle spectrum in a multi-
operator environment sharing a spectrum pool.

DSA technique has been very popular since its inception as
it increases the spectral efficiency of the network by allowing
the under-utilized frequency bands to be employed in an
efficient way [8]. With the evolution of wireless technolo-
gies, DSA techniques also evolved. For example, different
approaches emerged in the Cognitive Radio (CR) environ-
ment, where DSA is used to allocate the idle channels to
SecondaryUsers (SU), which usually are unlicensed and have
lower priority in the network [9]–[13], based on Fuzzy logic,
Q-learning, randomized rounding algorithm, etc., to learn,
estimate and allocate the required spectrum.

In [14], authors proposed a Reinforcement Learning (RL)-
based DSA technique for spectrum allocation to the IoT users
in a cellular network. In this proposal authors successfully
showed that DSA technique can be used to identify the under-
utilized spectrum in the network to be reused for a sensor-
aided IoT network, subsequently, enhancing the spectrum
re-usability.

In [15], RL-based DSA technique is used, where each cell
can take its own decision of spectrum allocation to its users
with the objective of maximization the overall SINR. In this
work, authors tested the DSA technique in a decentralized
approach, where each cell acts as an individual DSA agent,
although collecting the spectrum allocation information from
the neighbouring cell or DSA agent. In another work [16]
from the same authors, RL-based DSA technique was tested
in a centralized approach, where a central DSA agent controls
and takes the spectrum allocation decision for all the cells in
a considered area. The two studies showed that DSA-based
spectrum allocation technique can outperform traditional FR
techniques, both in an homogeneous (i.e., macrocell only),
or heterogeneous (coexistence of macrocell and femtocell/SC
together) scenario. However, both the presented works uti-
lize DSA technique to minimize the intercell interference
in OFDMA networks. In this paper, however, we propose a
technique similar to DSA, where spectrum allocation to the
cells follows the access network’s dynamic requirements of
each cell in a real network scenario.

ML-based Dynamic Frequency and Bandwidth Assign-
ment (DFBA) focusing on spectrum allocation to the small

cells in a cellular network was studied in [17]. The authors
presented a technique to learn and predict Long Term Evo-
lution (LTE) KPIs (e.g., SINR per resource block, Medium
Access Control (MAC) level throughput, delay, etc.) and
assign/rearrange spectrum allocation to the LTE-based SCs
in the network. However, this work also does not consider
the opportunity to enhance the spectral efficiency and system
fairness by allocating the scarce spectrum according to the
current load of the cells.

During the previous generations of cellular networks
(i.e., 1G and 2G), compilation of a set of neighbouring cells
were known as clusters, and the entire available BW was
distributed among the cells within a cluster, avoiding overlap-
ping portions of the spectrum. Thus, the whole available spec-
trum could be reused again in each cluster [18]. On the other
hand, in newer generations of wireless networks, i.e., 4G and
5G, as part of the strategy to reach the required capacity,
the technology allows the use a FR factor equal to one [18],
which means that the same frequency band is reused in each
cell in the network. The interference introduced due to such
aggressive reuse is expected to be handled (i.e., controlled
down to a minimum level) by new generation of advanced
technologies, such as, eICIC, beamforming, etc. However,
reusing the entire BW is neither efficient nor a fair approach
since, in dynamic 5G networks, different APs will have dis-
tinct levels of load to serve.

Moreover, in future UDN, due to the wide variety of
use cases, different sizes of APs (e.g., Macro Base station
(MBS), SCs) will serve different numbers and types of users.
Additionally, due to the mobility and higher user density,
the capacity requirements of each AP can differ largely.
Moreover, the number of served users or the amount of traffic
carried by each AP will vary dynamically with the time of
the day [19]. Thus, in 5G networks, the static allocation of
BW is not an efficient approach, rather a dynamic solution is
required, where, unlike the discussed related work, BW dis-
tribution must follow the current requirements of individual
APs. In this paper, utilizing a spectrum pool, we adopt the
DSA technique to allocate required BW to MBSs accord-
ing to their current requirements, which, in our study, are
based on real traffic traces. A similar approach was pre-
sented in [20], where authors address the problem of dynamic
changes in the required capacity in a multi-service (i.e., cellu-
lar network, vehicular network and IoT) 5G network. In [20],
authors presented how underused frequency bands from one
service, e.g., IoT networks, can be requested and used by
another service, e.g., vehicular networks, to meet individual
dynamic capacity requirements during a congestion situation.
Another approach of spectrum sharing can be found among
coexisting different Mobile Network Operators (MNOs) to
enhance the capacity of their network [21], [22].

In this paper, however, we consider each cell belonging
to a single MNO, as an independent entity having its own
dynamic capacity requirements. A spectrum pool, which we
consider is managed by an intelligent SDN-based controller
(similar to the centralized DSA approach in [16]), allocates
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and rearranges small portions of licensed spectrum bands
(e.g., 5 MHz chunks) extracted from the entire available
BW (e.g., 100 MHz). Even though 100% frequency reuse
is allowed (i.e., FR = 1), our approach seeks to meet each
cell’s requirement while minimizing the bandwidth assigned.
In this way, we also mitigate the effect of that aggressive
frequency reuse, minimizing interference without sacrificing
capacity. Additionally, utilizing a ML technique, we pre-
dict the throughput requirements of each cell and allocate
BW according to the predicted behaviour. To validate the
approach, we also compare real and predicted throughput
requirements, and compare the BW allocation for real and
predicted approaches. Such approach can be further studied
in a multi-MNOs scenario, which we leave for future work.

B. MACHINE LEARNING IN WIRELESS NETWORKS
Benefits of using ML techniques in wireless communications
can be multi-fold. Utilizing ML techniques, a network is able
to analyze the behaviour, learn from it, predict future status,
and prepare itself for it. In wireless networks, by relating the
system parameters to the desired objective [23], ML tech-
niques can address the challenge of traditional optimization
approaches, which tend to leave a large gap between the-
oretical and real-time design of the network [24]. There-
fore, for the development and automation of 5G networks,
ML-based approaches are getting enormous attention and
can be adopted in different aspects of cellular networks,
e.g., interference management [24], beamforming [25]–[27],
link quality estimation [28], 5G-based IoT [29], energy effi-
ciency [3], [30], resource management [31], etc. There are
different ML techniques: i) supervised learning, where the
model learns by studying a set of labeled data, ii) unsuper-
vised learning, where themodel learns from a set of unlabeled
data and, iii) reinforcement learning, where the model learns
by assigning positive and negative rewards for its actions.
Their corresponding different learning models (e.g., Support
Vector Machines (SVM), K-means clustering, Gradient fol-
lower (GF), etc.), and their usage guideline for future wireless
networks are well summarized in [32]–[34].

In this study, unlike the DSA techniques discussed earlier,
we decouple the ML and DSA agent. We use a ML tech-
nique to predict the traffic, i.e., access network requirements,
since reliable traffic prediction is already being considered
as a key enabler for future wireless networks to improve
QoS by reducing uncertainty [35]. The central controller
collects the predicted traffic requirements of access network
for each cell fromML agent and, after necessary calculations,
it (the central controller) assigns/rearranges the spectrum
allocation to each cell accordingly. In this way, the central
controller offloads the ML complexity into a dedicated sep-
arated agent. Additionally, as discussed, most of the DSA
techniques use RL-based learning, which require relatively
large time, since it is a positive/negative reward-based pro-
cess. Moreover, unlike RL-based DSA agents, our proposed
central controller takes a faster decision following predicted
requirements, since the proposed technique restricts the large

number of spectrum allocation combinations among the cells
by enforcing a few realistic constraints, as discussed in the
next section. Therefore, our proposed spectrum allocation
technique requires a simple time-series predictive ML tool.

In [36], utilizing collected trace data, authors have devel-
oped a model to predict the aggregated traffic and, sub-
sequently, reduce the monitoring effort. Classification and
clustering of cells were used to improve the traffic predictions
in [3], [37]. However, these approaches require additional
cell-level data. On the other hand, advanced ML-techniques
such as Neural Networks (NN) reduce the dependency on
additional features, and can be efficiently used to predict
the traffic by analyzing a time series traffic data. A NN
(aka. Artificial Neural Networks (ANN)), is a supervised
ML technique, which emulates the way human brain works,
by simulating artificial neurons with basic functionalities
created from the complex computation [33]. A typical NN
is composed of three types of functional layers, i.e., input
layer, one or more hidden layers, and an output layer. All the
layers consist of a set of nodes, which are connected with
adjustable weight coefficients to each of the nodes in the next
layer. The weights connect the input data (via input layer),
to the activation and transfer function (inside hidden layer)
and generates an output (in the output layer) if the weighted
sum activates the neuron [38]. Since NN can solve non-
linear complex problems by finding true relations between the
input and output parameters, and confirms maximum level
of generalization, NNs are very commonly used as a ML
technique in recent studies [39]–[47].

In [48] authors have summarized a few studies on the
benefit of NN network-based spectrum prediction techniques,
and concluded that without needing much prior knowledge of
the system, ANN show the best performance.

Long-Short Term Memory (LSTM), a kind of recurrent
ANN, avoids long-term dependency on input [49] by using
additional information about whether to remember or for-
get it. In [49], authors have presented LSTM-basedmulti-step
traffic prediction of a LTE network. However, LSTM is more
complex to implement compared to the classical NN. On the
other hand, LSTM is more suitable to go beyond the available
time series data and predict traffic requirements for one or
more time-steps in the future. In this study, however, we focus
on traffic prediction during the available time series, which
can be validated on the existing data. According to [50],
Autoregressive Neural Network (NARNET), a NN-basedML
technique, is arguably one of the best ML technique to predict
non-linear time series data. Additionally, in [51], authors
showed that NARNET outperforms other studied techniques
in terms of Coefficient of determination or R-squared (R2),
which implies higher reliability for forecasts. More detail
about NARNET is discussed in Section IV.B.

III. ACCESS-AWARE DYNAMIC SPECTRUM
ALLOCATION AND SYSTEM MODEL
As discussed in Section II.A, following a static approach,
spectrum is allocated to the APs without timely knowledge

VOLUME 9, 2021 143461



R. I. Rony et al.: Dynamic Spectrum Allocation Following Machine Learning-Based Traffic Predictions in 5G

of the varying access network requirements, and it is usu-
ally based on the expected traffic during the peak hour.
Subsequently, in most of the cases, either the spectrum
is over-provisioned or under-provisioned [19]. In a dense
5G network, due to the aggressive capacity demand by a
large number of connected devices, such static approach for
spectrum allocation becomes unfair. Therefore, access-aware
spectrum allocation, which allocates the spectrum to each of
the APs following current requirements, is unavoidable. Such
an approach is presented in [5], where access-aware spectrum
allocation is applied to a two-tier heterogeneous network
(i.e., coexistence of MBS and SCs), and SCs are anchored
to the MBSs via wireless links. In such a complex network,
three different types of links compete for the same pool of
spectrum resources: i) direct link, the link between MBS and
its users; ii) backhaul link, connecting the SCs to the anchored
MBS and, iii) access link, the link between SC and its users.
In [5], authors state that, in comparison with the traditional
approaches (i.e., unaware of access demands), aforemen-
tioned access-aware spectrum allocation solution ensures a
better network performance in terms of user throughput, spec-
trum allocation fairness and spectral efficiency. However,
the access-aware approach presented in [5] can still be consid-
ered static, since the dynamic changes in the access network
requirements are not taken into consideration. In this work,
we propose a dynamic access-aware spectrum allocation,
where BW allocation is performed following the dynamic
changes in the access networks’ requirements varying with
time. Unlike [5], this work is based on a real deployment
(cf. Section IV), where all APs can be considered, in fact,
asMBS. EachMBS in this realistic model constitutes (one or)
multiple cells. For this reason, the term MBS is henceforth
used instead of the more generic AP.

A. SYSTEM MODEL
We assume, BS is the set of MBSs, each having nMCi cells,
so that

∑numMBS
i=1 nMCi = numMC , where numMBS is the

number of MBSs, and numMC is the total number of cells.
MCi is then the set of nMCi cells of the ith MBS. Bi is the total
BW assigned to that MBS, so that Bi =

∑nMCi
j=1 bij, where bij

are the elements of matrix B, representing the BW assigned
to jth cell in ith MBS. The minimum frequency resource
(i.e., 5 MHz in our scenario) is defined as bm, and bM is
the maximum BW (i.e., 100 MHz in our scenario). Finally,
R is an array, the elements rij therein represent the capacity
requirements for jth cell in ith MBS, as read from the traces,
or predicted by the ML model (c.f. Section V.C.). Similarly,
cij are the elements of the matrix C, representing the capacity
available in jth cell of ith MBS, according to the currently
assigned bandwidth, and following Eq 1.

C = B ∗ log2(1+
S

N + I
)bits/s (1)

For a given amount of assigned BW, to compute the
achievable throughput (C) in bits per second (bps) for a cell,
we utilize the Shannon - Hartley theorem (Eq. 1).B is the total

allocated BW for a cell (bij) in Hz, S is the received signal
power from the serving cell, which is calculated subtracting
the pathloss from the transmitted power and antenna gains,
I is the received power from the interfering links, and N is the
sum of thermal noise and noise figure. Note that the received
signal and the interference are obtained after 1,000 random
droppings of one UE within the cell’s coverage area. Thus,
both S and I refer to average values throughout the cell’s
coverage area, ensuring the generality of the results.

B. PROPOSED ALGORITHM
Our proposed access-aware BW allocation algorithm is trig-
gered at time intervals. It starts by sorting, in descending
order, all the cells according to their requirements, so that the
cell serving higher traffic has more chances to be assigned
more resources in a BW-limited scenario. Afterwards, for
each MBS, and for each cell in that MBS in the BS set, two
conditions are checked; i) if the achievable capacity cij is less
than the required capacity rij and, ii) if the anchoring MBS of
that cell still has frequency resources available. Here, to limit
the co-channel interference with the adjacent cell, which
degrades the network performance due to strong coverage
overlapping for the same frequency band, we avoid frequency
re-usewithin aMBS but it allows the assignment of frequency
resources up to the system bandwidth. Thus, the cumulative
allocated BW of all cells belonging to one MBS (Bi) cannot
exceed the system BW (i.e., bM). It can be reused in the
other MBS. If both the aforementioned conditions for a cell
are met, the cell is assigned with an additional minimum
size frequency resource (bm = 5 MHz, for example) taken
from the entire available system BW (e.g., bM = 100 MHz),
as explained in Section II.A. Hereafter, allocated BW to that
cell and to the anchoring MBS is updated and the achievable
capacity cij is re-calculated. If the new achievable capacity
reaches the required capacity rij, the cell is considered as
satisfied and counted as allocated for this time interval. On the
other hand, if the new achievable capacity still does not meet
the required capacity (let us call it unsatisfied cell), the cell
waits for the next iteration, where according to the afore-
mentioned two conditions, only the unsatisfied cells of the
MBSs with available BW are assigned additional frequency
resources. On the contrary, if the cumulative assigned BW
for the MBS, which is anchoring the unsatisfied cell, reaches
the maximum allowed BW, the cell is counted as allocated,
whether it is satisfied or not. The iteration stops for this time
interval when all the cells are considered as allocated.

The discussed BW allocation approach is depicted in
Algorithm 1.

IV. EVALUATION SCENARIO
At this point, we want to evaluate the proposed access-aware
dynamic BW allocation approach following a real traffic
scenario. We use network traces provided by a real network
operator, including data collected during seven days with
15 minutes granularity of a LTE based network serving a
large number of users in the downtown area of a Greek city.
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Algorithm 1 Access-Aware Dynamic BW Allocation
1: Input: numMBS, numMC, nMC, B, R
2: Initialize Bi ← 0 for all i in (1, numMBS)
3: Initialize bij ← 0 for all i, j
4: allocated ← 0
5: while allocated < numMC do
6: for all i in (1, numMBS) do
7: Sort MCij according to their requirements rij in decreasing order
8: satisfied ← 0
9: for all j in (1, nMCi) do

10: if Bi + bm ≤ bM and rij > cij then
11: bij ← bij + bm; allocate additional bm to cell MCij
12: Bi ← Bi + bm; update total assigned bandwidth to MBSi
13: cij ← capacity(MCij, bij); update MCij’s capacity according to Eq. 1
14: if cij ≥ rij then
15: allocated++
16: satisfied++
17: end if
18: end if
19: end for
20: if Bi == bM then
21: allocated ← allocated + nMCi − satisfied
22: end if
23: end for
24: end while

The network consists of 21 evolved Node B (eNB), compris-
ing 96 cells, with an average of 4.5 cells per eNB (varying
from 1 to 9 cells). A simple representation of the considered
scenario is depicted in Figure 1.

To observe the behavior of the traffic, we take one cell to
start our analysis. Figure 2 depicts the average (i.e., average of
seven days converted into a 24 hour scenario) Downlink (DL)
data (in Mega Bytes (MB)) for a randomly selected cell vary-
ing with the time of the day. It can be observed from Figure 2,
that the demand on DL data in the network varies largely with
time and thus, a static BW allocation approach designed to
meet those varying requirements is not an efficient approach,
rather, a dynamic approach is required.

A. SIMULATION ASSUMPTIONS
To evaluate our proposed access-aware dynamic BW allo-
cation approach using a real traffic scenario, we reproduce
the network scenario, where the traces were collected, into
Matlab code. Since our vision is to test our proposal in a
5G-like scenario, we make several assumptions, as recom-
mended by the 5G Infrastructure Public Private Partnership
(5GPPP) in [52], yet, assuming the traffic pattern follows the
real LTE traces collected.

In [52], 5GPPP claims that in 5G networks, most popular
RAT for MBS will be Sub-6 GHz: Carrier frequency (CF)
at 3.5 GHz with 100 MHz channel BW. Additionally, 3GPP
and ETSI also identify Sub-6 GHz (CF: 3.5 GHz, BW:
100 MHz) as a candidate for 5G New Radio (NR) in [53].
Utilizing Sub-6 GHz operating band, we consider the

FIGURE 1. Spectrum pool concept to share the available system
bandwidth.

narrowest transmission BW for a MBS to be 5 MHz, as rec-
ommended in [53], which we allocate in every iteration of the
proposed BW allocation technique (cf. Section III.B).

As mentioned earlier in Section III, we consider a deploy-
ment with no frequency reuse within each MBS; that is,
bandwidth assigned to the different cells inside the sameMBS
does not overlap. Additionally, we consider that directivity
of antennas in the different cells and frequency assignment1

are such that cells from adjacent MBSs do not interfere each

1Note that, our mechanism allocates bandwidth, but frequency assignment
is out of the scope of this proposal and left for a future work.
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FIGURE 2. Time vs. average DL (in MB) of a randomly selected cell.

TABLE 1. Simulation assumptions following 5GPPP
recommendations [52], [54].

other significantly, and only one cell per non-serving non-
adjacent MBS is considered as a source of interference for
the application of Eq. 1. Thus, each cell will be experiencing
interference from 17 other cells.

In the following, we describe three different BW allocation
approaches to present our evaluation results in the subsequent
section.
• Static Approach 1:Each cell in aMBS is allocated a non-
overlapping 20 MHz channel (the maximum channel
BW for LTE [55]), while not exceeding the maximum

BW per MBS, which is 100 MHz. If, due to the higher
number of cells, 20 MHz per cell is not achievable,
the entire available BW is evenly distributed among all
the cells in that MBS, which is also a very common
approach, where FR = number of cells (usually 3) [16].
For example: If MBS-1 has two cells, each cell will be
allocated 20MHz separated channels, and the remaining
60 MHz will not be assigned in MBS-1. On the other
hand, if MBS-2 has 6 cells, each cell will be allocated
16.6 MHz.

• Static Approach 2: The available BW is equally split
among the cells, not limiting the maximum BW per
cell to 20 MHz. In this way, each cell from MBS-1 in
the previous example will be allocated 50 MHz. The
allocated BW for the cells in MBS-2 remains the same
as in static approach 1.

• Proposed Dynamic Approach: It follows the operation
explained in Section III.B; that is, iteratively, we allocate
additional 5 MHz to every cell until its requirements
for the next interval are met, or the maximum BW
(i.e., 100 MHz per MBS) is reached.

B. PREPARATION OF THE NEURAL NETWORK
According to the discussion presented in Section II.B, given
our data set and the objective of the prediction, the most
suitable architecture is defined by NARNETs. We focus on
a BW distribution problem that must follow the dynamic
requirements of a cell, which changes with the time of the
day. Hence, we follow a time series data, which are collected
from a real network, to understand the dynamic changes in
the required throughput.

In both closed loop and open loop scenarios, utilizing past
samples (e.g., y(t − 1), y(t − 2) . . . y(t − d) of the output,
known as delays (d)), and by modeling the underlying char-
acteristics of the time series, NARNET has the ability to self-
learn and provide good multi-step predictions (y′(t)) of a non-
linear time series [50], [56]–[59]. A simple representation of
NARNET model is presented in Eq. 2, where function f is
the result of the process represented in Figure 3. Each neuron
performs a linear combination of all its inputs, applying an
adjustable weight to each one, followed by an activation
function (i.e., non-linear transformation) fn.

y′(t) = f (y(t − 1), y(t − 2) . . . . . . y(t − d)) (2)

To predict the throughput requirements of the access net-
work for each cell, we used NARNET.More precisely, we use
DL MB (cf. Figure 2) data extracted from the traces as the
input y(t) for the NARNET. To predict and compare the
results with real traces we used Matlab. While creating a
NARNET in Matlab, it allows the selection of the portion of
the data set to be utilized during the three phases of learning,
i.e., training, validation and testing. During the training phase,
a part of the available data is used, and the weight coefficients
are adjusted by taking feedback, known as backward propa-
gation, from the comparison between predicted and expected
output by means of a given loss function, e.g., Mean Squared
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FIGURE 3. Structure of a typical NARNET.

FIGURE 4. Basic representation of training, validation and testing process
of NARNET.

Error (MSE) or other estimators. During the validation phase,
the training is validated on a different data set, and the results
are utilized to generalize (i.e., performance for unseen data)
or improve the generalization of the NN. Finally, during
the testing phase, the model is tested on the last portion
of the data, and the NN performance is computed. A basic
representation of the aforementioned process is depicted
in Figure 4. Figure 3 presents the structure of a typical
NARNET. Here, after trying different combinations, we end
up using 70% of the data for training, 15% for validation, and
15% for testing, since that was the partition providing the best
performance (i.e., least MSE) for our data set. Three different
training algorithms are offered by a Matlab-based NARNET,
i) Levenberg-Marquardt (LM), which was originally
designed for faster results, however, consumes more memory
and is less accurate; ii) Bayesian Regularization (BR), which
has the additional objective of minimizing the sum of squared
weights and, subsequently, achieves a good generalization
of the model [60] (i.e., less prone to overfitting). Compared
to LM, BR is a slower model, however, it provides better
generalisation for noisy data; and iii) Scaled Conjugate Gra-
dient (SCG), which stops the training when generalization
does not improve anymore, consumes less memory, and
follows minimization of MSE as the only objective function.
A detailed comparative analysis of LM and BRwas presented
in [60] and the results show that BR outperforms LM for
different types of data sets. To find the best configuration for
our data set, we performed NARNET training utilizing mul-
tiple combinations of following hyper parameters: number of
hidden layers (from 1 to 60), delay samples (d = 1 to 5) and

training models (i.e., LM, BR and SCG). Following different
combinations of the aforementioned parameters, we had a
large number of predicted data sets, and we measured their
corresponding performance by calculating Relative Error
(RE) (Eq. 3) for each sample, along with MSE measured by
NARNET. Finally, the best combination of the different hyper
parameters in NARNET for our data set consists of 8 hidden
layers, delay of 1 sample and BR as the training algorithm,
which provides an average RE (average of the seven days
samples for all the cells in the scenario) of 0.132.

RE =
Real data− Predicted data

Real data
(3)

All the assumptions related to the evaluation are sum-
marised in Table 1.

V. RESULTS
In this section we present the obtained results in a com-
parative manner for different approaches described in
Section IV.A.We discuss the results in three different phases;
i) peak-hour analysis (i.e., time slot with highest load),
ii) 24 hour analysis (average of seven days converted into one
day), and iii) machine learning-based traffic prediction and
BW allocation for seven days.

Note that, in this work we are interested in testing our
proposed dynamic approach in a 5G-like environment, and
thus, we scaled up the collected LTE throughput requirements
into a 5G scenario, considering that the traffic shows the same
behaviour as in LTE. In [61], ITU-T predicted that, com-
pared to recent LTE networks, data rate requirements in 5G
will be 10-folded, whereas, according to NTT DOCOMO,
the increase ratio will be closer to 100 folds [62]. Therefore,
we tried different numbers, i.e., from 10 to 120, as a Scal-
ing Factor (SF), with which we multiply the observed LTE
carried traffic to scale it in order to resemble a challenging
5G scenario.

A. PEAK HOUR ANALYSIS
Initially, we select the peak hour (i.e., the time slot when a
cell experiences the maximum load during a day) to evaluate
our proposed access-aware dynamic BW allocation approach
for different values of the SF. In this peak hour scenario,
we compare the performance of the proposed approach with
two static approaches, as described in Section IV.A.

Analyzing the available data set, we found that most cells
experience the highest load of the day around 23:15:00h,
as shown in Figure 2. Figure 5 presents the number of unsat-
isfied cells (i.e., the bandwidth assignment could not meet
the actual requirements, as read from the network traces,
and scaled by the SF) during the peak hour (23:15:00h)
for different levels of SF. Clearly, our proposed dynamic
approach outperforms the two traditional static approaches
by serving more cells (≈10), while utilizing the same level
of system BW (i.e., 100 MHz). At a very high level of SF
(i.e., 90 to 120), the number of unsatisfied cells for Static
approach 2 and dynamic approach are very close. This is due

VOLUME 9, 2021 143465



R. I. Rony et al.: Dynamic Spectrum Allocation Following Machine Learning-Based Traffic Predictions in 5G

FIGURE 5. Number of unsatisfied cells with different levels of SF.

FIGURE 6. Average UF of the worst five cells with maximum load for
different levels of SF.

to the very high requirements, which are really difficult to
meet by nowadays LTE deployments such as the one used
as the basis of our model, designed to support a lighter
load. In that extreme, the deployment of a denser network
(i.e., more BSs) will be a necessity. On the other hand,
in terms of Utilization Factor (UF), which we define as the
ratio between required capacity vs. the achieved capacity
for a cell, the proposed dynamic access-aware approach per-
forms better for any level of SF. Its performance improves
for higher SFs, being it especially efficient for large loads
(e.g., SFs 90 and 120). To ensure a fair distribution of BW
and to maximize the spectral efficiency, it is better to keep
UF value as close to 1 as possible. Values smaller than 1 mean

FIGURE 7. Average UF of 96 cells for different levels of SF.

that the network is overprovisioned and frequency resources
are wasted, while values larger than 1 imply that capacity
requirements are not fully met. Figure 6, depicts the average
UF of the five cells with highest load (identified from the
previously analyzed unsatisfied cells) for different levels of
SFs, which shows a fairer and better distribution in a dynamic
access-aware BW allocation approach, compared to the static
approaches. The results presented in Figure 6 also show
that, utilizing the same level of system BW, the dynamic
access-aware approach, is capable of serving more traffic
(i.e., UF closer to 1) compared to the static approaches.

Figure 7 shows the UF averaged over the 96 cells. The
results present similar trend as in Figure 6, i.e., proposed
dynamic access-aware approach performs better (i.e., UF val-
ues closer to 1) than the other two static approaches, and for
higher values of SF the performance gain becomes more evi-
dent as congestion increases (i.e., UF values higher than 1).
Additionally, from Figure 7 we can conclude that SF between
20 - 30 consist in the scenarios where we can actually meet
the maximum capacity requirements (UF <= 1) utilizing the
available system BW (i.e., 100MHz perMBS). For larger SF,
the studied deployment, designed to support current traffic
demands, becomes unable to serve the projected requirements
(UF >= 1). In other words, with a scaling factor lower than
30, the studied network has the potential to carry the scaled
traffic and, therefore, remains useful for the study of a future
5G scenario. In contrast, when scaling the traffic x120, a net-
work 4 times denser would be needed (i.e., 4 times the number
of deployed MBSs). Therefore, in the subsequent sections
we use three levels of SF, i.e., 20, 25 and 30, to present the
evaluation results.

B. 24 HOUR ANALYSIS
In this section, we analyze the results in a 24 hour scenario,
utilizing the average results of seven days. In Figure 8 we
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FIGURE 8. Average UF of 96 cells for different approaches.

present the average UF of 96 cells, varying with the
time of the day. As mentioned earlier, UF value closer
to value 1 states that available BW is more efficiently
used. As depicted in Figure 8 for each SF (i.e., 20, 25
and 30), the proposed dynamic access-aware approach uses
less resources than the other two static approaches to serve
the same amount of traffic during off-pick hour. On the
other hand, during the pick-hour and for higher value of SF
(i.e., 30), it is shown that, the dynamic access-aware solution
serves more traffic (i.e., UF closer to 1) for a congestion sce-
nario. Therefore, utilizing the same level of system BW, and
employing our proposed dynamic distribution, the congestion
(i.e., UF > 1) period is 7% shorter (in a 24 hour scenario for
SF = 30), compared to the Static approach 2.

Figure 9 depicts the number of unsatisfied cells,
(i.e., those cells that could not reach the required capacity),

FIGURE 9. Number of unsatisfied cells during the day for different
approaches.

during the day for the different approaches. The dynamic
access-aware approach tends to satisfy higher number of cells
given the BW limitations for a MBS. For instance, for SF
20, during off-peak hour, i.e., low load hour (03:00:00h to
08:15:00h), dynamic access-aware approach is able to serve
all the 96 cells without any congestion. However, both the
static approaches have a few number of congested cells.
On the other hand, during the peak hours (i.e., 20:00:00h
to 23:45:00h), dynamic access-aware approach satisfies
9% - 12%more cells compared to the static approaches. With
the highest SF of 30, the performance gain of dynamic access-
aware approach is even higher (i.e., 10% - 15%more satisfied
cells) compared to the two static approaches. Therefore,
the proposed dynamic access-aware BW allocation approach
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FIGURE 10. Total allocated BW to each MBS for different BW allocation approaches.

FIGURE 11. Real and predicted average (over 96 cells) throughput requirements for seven days.

appears as a better solution for the congestion problem in the
network.

At this point, we also want to observe how much sys-
tem BW the proposed dynamic access-aware BW allocation
approach can save by assigning the necessary amount of BW
following the access networks’ requirements. In Figure 10,
the total BW assigned (average of 24 hours) to each of the
studied 21MBS is depicted for the three different approaches.
For Static approach 1, the assigned BW for a MBS depends
on the number of cells it has (with a maximum of 20 MHz
per cell), remaining agnostic to the access networks’ current
requirements, and thus, being independent of the SF. On the
other hand, for Static approach 2, total assigned BW for each
MBS is 100 MHz, independent of the number of cells, or the
dynamic requirements of the access network. On the contrary,
the total BW assigned for a MBS in the dynamic access-
approach is a total reflection of the throughput requirements
of the access networks and, to a lesser extent, of the number of
cells of aMBS, given that all cells are assigned at least 5MHz.
Moreover, the total assigned BW changes for each cell and
MBS, if required, depending on the SF. Thus, in Figure 10,

the total BW for a MBS varies for different levels of SF,
contrary to the static approaches, where it remains unchanged
and agnostic to the current network condition. Additionally,
as depicted in Figure 10, for the highest SF studied (i.e., 30),
dynamic access-aware approach can save from 5 MHz
(i.e., MBS 17) to 60 MHz (i.e., MBS 10) of system BW,
compared to Static approach 1, whereas, the number can be
between 10 MHz (i.e., MBS 1) to 90 MHz (i.e., MBS 21)
compared to Static approach 2.

C. MACHINE LEARNING BASED TRAFFIC PREDICTION
AND BW ALLOCATION
In this section we focus on the ML predicted throughput
requirements and the variation in the BW allocations based
on the results of the predictions.

Thus, this section compares the quality of the BW assign-
ments when the system has perfect prior knowledge of the
traffic demands, with the case where the algorithm relies on
traffic predictions produced by the neural network described
in Section IV.B. In Figure 11, varying with the time of seven
days, we present the average (i.e., average of 96 cells) real
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FIGURE 12. CDF of average (over 96 cells) assigned BW for perfect
knowledge of real traffic (Real) and ML predicted traffic, using different
scaling factors (SF).

traffic requirements as extracted from the traces, and the aver-
age requirements predicted by the trained NARNET for the
same time instant. As depicted in Figure 11, our selected ML
approach provides a prediction showing mean RE = 0.132,
and follows the behavior of the real trace. However, it is also
observed that predicted traces are slightly higher than the real
traces, considering the average of 96 cells. This difference
has a clear reflection on the BW assignment, because, in our
proposed dynamic access-aware BW allocation approach,
BW is allocated according to the throughput requirements.

Figure 12 depicts the Cumulative Distribution Func-
tion (CDF) plot of the average (over 96 cells) assigned BW
(in MHz) to a cell during seven days following real and
predicted traces for different levels of SF. As discussed ear-
lier, the predicted traces have usually shown higher values
than the real traces, hence, the assigned BW based on those
predictions is also slightly higher than strictly needed in
practice. For instance, depicted in Figure 12, with SF of 25,
a cell is satisfied with 10 MHz or less, on average, 62% of
the time, whereas, following ML predictions, this is reduced
to 52% of the time. A similar trend follow the results observed
for SF values of 20 and 30, where cells are assigned a
slightly higher BW when the mechanism is based on predic-
tions instead of having a perfect knowledge of future traffic.
In practice, this conservative behavior would be more robust
in front of unexpected increments in traffic, at the cost of less
adjusted UF.

In Figure 13, we present an analysis of UF for the four
BW assignment approaches: i) static approach 1, ii) static
approach 2, iii) ideal dynamic approach assuming perfect
knowledge of future demands (i.e., following real traces),
and iv) dynamic approach following ML predictions. Note
that for all the cases, UF is computed with respect to the
real requirements, i.e., for iv), UF is the ratio between real
throughput requirements vs. the achievable capacity of the
network configured based on traffic predictions. Figure 13
presents the CDF plot of average UF (over 96 cells) during

FIGURE 13. CDF of average (over 96 cells) UF for perfect knowledge of
real traffic (Real); and ML predicted traffic, using different scaling
factors (SF).

seven days (i.e., 672 samples: 7 days with 15 minutes gran-
ularity) for different SFs (i.e., 20, 25 and 30). As depicted
in Figure 12, due to slightly higher throughput predictions,
the predicted BW allocation is also slightly higher than the
ideal access-aware dynamic BW allocation approach, and
thus, UF (Real traces) in Figure 13 for different levels of
SF are slightly better (i.e., closer to value 1) compared to
the ML approach. On the other hand, it is also observed that
ML-based BW assignment results into better UF (i.e., closer
to value 1) compared to the two static approaches during
satisfied (UF < 1) and unsatisfied (UF > 1) period.
As shown in Figure 13, for the dynamic approach following

the real traces (iii), and the dynamic approach follow-
ing the predicted traces (iv), UF values remain acceptably
close, showing mean RE = 0.0485 for SF = 20, mean
RE = 0.0463 for SF = 25, and mean RE = 0.0475 for high
SF = 30. Therefore, in terms of utilized resources, the effi-
ciency of a solution based on traffic predictions is similar
to the performance obtained if perfect knowledge of future
traffic demands were possible. Hence, the predictions from a
well trained NARNET, which is performed utilizing a batch
of real data set, can be very useful to predict the future
requirements and perform an efficient allocation of BW to
serve the real traffic in the network. Moreover, as depicted
in Figure 5, 6, 7, and 13 for different levels of SF, our
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proposed dynamic approach always performs better than the
static approaches.

As a limitation of this work, we believe that the average
UF_Real and UF_ML is not very remarkable (i.e., should be
more close to value 1), this is because, during the off-peak
hour (03:00:00h to 08:15:00h) the required throughput is
usually low compared to the configured capacity utilizing the
minimum offered BW (i.e., 5 MHz) considered. This can be
an area of improvement for this work to look for more fine-
grained channel BW for such future potential mid-band RAT
(i.e., Sub-6 GHz). Also note that, limited by the granular-
ity of collected traces, the proposed access-aware dynamic
spectrum allocation technique triggers every 15 minutes.
We believe, shorter Reporting Output Period (ROP) to collect
the traces can make the proposed approach more dynamic
and spectral-efficient, without increasing complexity, since
the application of the NARNET is computationally cheap,
once trained.

VI. CONCLUSION
Expected capacity requirements of future wireless networks
continue to challenge the traditional approaches of frequency
resource allocation. Moreover, the access network require-
ments vary dynamically, which requires a dynamic allocation
of the frequency resources to ensure the efficient usage of
precious resources.

Presented access-aware dynamic BW allocation approach
follows the current requirements of each cell and allocates
the required BW to serve the carried traffic. The evaluation
results show that, with the dynamic access-aware approach,
the frequency resources are used more efficiently, i.e., UF
closer to 1. Additionally, such intelligent allocation can serve
more traffic, specially during the peak hours. Utilizing the
same level of system BW, dynamic allocation approach
recovers 9% - 12% cells from congestion compared to the
traditional static approaches. We have presented the evalua-
tion results by scaling requirements of a real LTE network
into a 5G-like scenario, and concluded that, with the higher
values of scaling factor, the performance gain of the dynamic
access-aware approach are more tangible in terms of number
of congested cells.

However, having the perfect network knowledge (i.e., real
traces) is a challenge, which cannot be taken for granted.
Therefore, in this paper we have presented a NARNET-
based ML technique to predict the access network require-
ments with an acceptable level of error (i.e., RE: 0.132).
Presented comparative results show that, in terms of resource
utilization and BW allocation, following a NARNET-based
predictions, dynamic access-aware BW allocation approach
performs very close to the results obtained with perfect net-
work knowledge.
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