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Sliding modes in a class of complex-valued
nonlinear systems

Arnau Dòria-Cerezo, Josep M. Olm, Domingo Biel, and Enric Fossas

Abstract—A number of physical systems allow a complex-
valued representation. This paper extends the theory of sliding
modes to a class of nonlinear systems described by complex-
valued variables. Hence, states, parameters, control actions, and
sliding manifolds belong, in general, to the complex field. It
is also shown in the article that the proposed design in the
complex-valued framework provides shorter reaching times to the
sliding manifold than the standard sliding mode design at equal
initial condition and control effort. Different implementation
approaches are also evaluated, and numerical examples illustrate
the proposal.

Index Terms—Complex valued dynamical systems, sliding
modes

I. INTRODUCTION

THE representation of physical systems using a Complex-
Valued State-Space (CVSS) is not new. Many examples

refer to three-phase electrical systems [1], where this descrip-
tion allows order reduction and simplifies the analysis. Exam-
ples in the electrical systems field include electrical machines
[2], and power converters [3] [4], while other applications deal
with mechanical rotating systems [5], the study of mechanical
vibrations [6], complex-valued neural networks [7], band-pass
filters [8]...

Control theory tools for complex-valued systems are not
extensive and include, for example, the generalisation of the
Routh-Hurwitz test for complex polynomials, proposed in [9]
and extended in [10], [11]. More recently, complex extensions
of other linear control techniques such as the root locus
method [12] and frequency-domain analysis [13] have also
been reported. However, most of the referenced techniques
are oriented to the linear case, and nonlinear complex-valued
systems are less studied. Among the few examples found are
stability analysis of complex-valued differential equations and
delay differential equations, which are discussed in [14] and
[15], respectively.

In this paper, sliding modes are extended to a class of
complex-valued nonlinear dynamical systems. Sliding mode
control using complex-valued manifolds was used in [16] to
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A. Dòria-Cerezo is with the Dept. of Electrical Engineering and the Inst.
of Industrial and Control Engineering, Universitat Politècnica de Catalunya,
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seek for higher control flexibility using a complexification of a
real-valued dynamics. Differently from [16], that was limited
to linear systems and where the complexification was used to
generalise the control design, the starting point of this paper
are nonlinear systems with complex-valued dynamics.

The resulting complex-valued sliding modes can be seen as
induced by a multidimensional variable structure controller.
In particular, the proposal resembles the discontinuous state
feedback controllers for real systems introduced in [17], [18],
[19] -also known as unit control design methods [20]- which
ensure sliding motion on a prescribed manifold. However, in
this paper systems are described by complex-valued state space
models, thus allowing its dynamic analysis and control to be
carried out in a natural frame and with reduced order with
respect to the corresponding real representation.

It is also shown in the paper that, at equal initial con-
dition and control effort, the sliding manifold’s reaching
times achieved with the proposed complex-based controller
are shorter than those obtained with a standard sliding mode
control design. Such a result, which can be straightforwardly
extended to the unit control methods, is not reported in the
referenced papers, and underlines an additional benefit in using
both this or the complex-valued control approach. Moreover,
the implementation of complex sliding modes by means of
some continuous and hysteretic approximations is discussed.
Finally, a few examples are presented to illustrate the pro-
posal, including a complex-based sliding observer designed to
estimate the rotor flux of an induction motor.

The remainder of the paper is structured as follows. The
basics of sliding mode control theory for compled-valued
dynamical systems are set in Section II. Then, a comparative
analysis of the reaching times achieved with complex-based
and standard sliding modes is performed in Section III. The
implementation of complex sliding mode controllers is dis-
cussed in IV. Numerical examples are presented in Section V.
Finally, conclusions are drawn in Section VI.
Notation. j =

√
−1 is used, instead of i, to avoid confusion

with electrical currents used in the application examples;
Cn denotes the complex nth-dimensional space; Ω ⊂ Cn
denotes an open subset of Cn; H (Ω,Cn) denotes the set of
holomorphic maps from Ω to Cn; C (Ω,R≥0) denotes the set
of continuous maps from Ω to R≥0; Re(z) and Im(z) denote
the real and imaginary parts, respectively, of z ∈ C; z∗ denotes
the conjugate of z ∈ C; |z| and ϕz denote the magnitude and
phase, respectively, of z ∈ C; sign(z) denotes the sign function
of a complex value z ∈ C\{0}, which is computed as in [21]:

sign(z) =
z

|z|
. (1)
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II. SLIDING MODE CONTROL OF CVSS SYSTEMS

Consider a single input affine CVSS system as

ż = f(z) + g(z)u, (2)

where z ∈ Cn is the state vector, f, g ∈ H (Ω,Cn) are the
system and control vectors, respectively, and

u = u (z, sign (σ)) ∈ C, (3)

is a switched control input signal, while σ ∈ H (Ω,C) is
known as the complex switching function.

Definition 1 (Complex switching/sliding manifold & sliding
domain): Let system (2) be driven by the control law (3). The
complex-valued set

S := {z ∈ Ω; σ(z) = 0}

is called the complex switching manifold. If sliding motion
is induced on Ω0 ⊆ S, then S is called the complex sliding
manifold, and Ω0 is the sliding domain.

Definition 2 (Equivalent control): Let ∂σ
∂z g(z) 6= 0, for all

z in a neighborhood of Ω0 ⊆ S. The equivalent control is the
control law, u = ueq , which makes S an invariant manifold
with respect to (2). Namely,

ueq = −
(
∂σ

∂z
g(z)

)−1
∂σ

∂z
f(z). (4)

Proposition 1: Let σ ∈ H (Ω,C) be a complex switching
function, let S denote the corresponding switching manifold,
and let also k ∈ R. Assume that there exists Ω1 ⊆ Ω with
Ω1 ∩ S 6= ∅, and ε1 ∈ R+ such that, for all z ∈ Ω1:∣∣∣∣∂σ∂z g(z)

∣∣∣∣ ≥ ε1. (5)

Then, the switched control action

u = ueq + kej(π−ϕσ′g)sign (σ) , (6)

with ueq defined in (4), induces sliding motion of system (2)
on the sliding domain Ω1 ∩ S. Moreover, for all z(0) close
enough to Ω1 ∩ S , the sliding manifold is reached in finite
time.

Proof: Consider the autonomous, positive definite auxil-
iary function

V (z) =
1

2
σ∗(z)σ(z). (7)

By assumption, V ∈ C (Cn,R≥0) and it is locally Lipschitz
in z. In turn, its time derivative over the trajectories of (2) for
all z ∈ Ω1 \ S is:

V̇ =
1

2
(σ∗σ̇ + σσ̇∗) = Re

(
σ∗
∂σ

∂z
(f(z) + g(z)u)

)
=

= Re
(
σ∗
∂σ

∂z
g(z) (u− ueq)

)
= −Re

(
k

∣∣∣∣∂σ∂z g(z)

∣∣∣∣ |σ|) =

= −k
∣∣∣∣∂σ∂z g(z)

∣∣∣∣ |σ|.
Now, using (5) it is immediate that

V̇ ≤ −kε1|σ|, (8)

and setting

γ =
√

2kε1 > 0, (9)

(8) can be written as

V̇ ≤ −γV 1
2 . (10)

Hence, V̇ (z) < 0 for all z in a neighborhood of Ω1 \ S, and
(2) undergoes sliding motion on Ω1 ∩ S [20]. Moreover, it
follows from (10) that V (t) = 0 for t ≥ T , with

T =
2

γ

√
V (0),

this entailing the existence of T̄ ∈ (0, T ] such that

lim
t→T̄

σ (z(t)) = 0;

therefore, S is reached in finite time for all z(0) close enough
to Ω1 ∩ S .

Remark 1: The holomorfic character assumed for f , g, and
σ includes the case in which (2) is a linear system and S is a
linear switching manifold, i.e.

ż = Az +Bu

σ(z) = Cz,

where A is an n×n matrix with coefficients in C, and B,C ∈
Cn.

Remark 2: Condition (5) is a technical assumption strongly
related to the transversality condition, namely, ∂σ

∂z g(z) 6= 0,
already assumed in the definition of the equivalent control
(recall Definition 2). Notice from (10), (9) that knowledge of
ε1 allows to appropriately set the control gain, k, in case a
specific reaching time is required.

Proposition 1 gives a control gain design criterion to meet
the control goal that uses the equivalent control. However,
when uncertainties are present it may be difficult to compute
ueq . An alternative for those cases in which an upper bound
is known for |ueq| is given below.

Proposition 2: Let σ ∈ H (Ω,C) be a complex switching
function, and let S denote the corresponding switching man-
ifold. Assume that there exist Ω1 ⊆ Ω with Ω1 ∩ S 6= ∅,
κ ∈ C \ {0}, and ε1, ε2 ∈ R+ such that, for all z ∈ Ω1:∣∣∣∣∂σ∂z g(z)

∣∣∣∣ ≥ ε1 (11a)

|κ| cos (ϕσ′g(z) + ϕκ)− |ueq| ≥ ε2, (11b)

with ueq defined in (4). Then, the switched control action

u = −κ sign (σ) (12)

induces sliding motion of system (2) on Ω1 ∩ S. Moreover,
for all z(0) close enough to Ω1 ∩ S, the sliding manifold is
reached in finite time.

Proof: Consider again the autonomous, positive definite,
Lipschitz continuous, auxiliary function defined in (7). Using
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(12), (4), its time derivative over the trajectories of (2) for all
z ∈ Ω1 \ S can be written as:

V̇ =− Re
(
σ∗
∂σ

∂z
g(z) (κsign (σ) + ueq)

)
=

=− |σ|Re
(
κ
∂σ

∂z
g(z) +

∂σ

∂z
g(z)

σ∗

|σ|
ueq

)
=

=− |σ|
∣∣∣∣∂σ∂z g(z)

∣∣∣∣ (|κ| cos (ϕσ′g(z) + ϕκ) +

+ |ueq| cos
(
ϕσ′g(z) + ϕueq (z)− ϕσ(z)

))
,

where it has been taken into account that (1) immediately
entails

sign (z) = ejϕz , z 6= 0. (13)

Now, using (11) it follows that

V̇ ≤ −ε1 (|κ| cos (ϕσ′g(z) + ϕκ)− |ueq|) |σ| ≤ −ε1ε2|σ|,
(14)

which can be written as (10) by setting

γ =
√

2ε1ε2 > 0. (15)

Hence, the result follows analogously as that in Proposition 1.

Remark 3: Condition (11a) is exactly the same as (5), so the
first part of Remark 2 also applies to Proposition 2. As regards
convergence time setting, notice from (10), (15), (11b) that,
in this case, the adjustment is to be done not directly by the
control gain but through the design parameter ε2, which is to
be selected according to ε1. Once ε2 is fixed, the corresponding
control gain, κ, is obtained from (11b) with |ueq| replaced by
a known upper bound. Notice also that the closer the argument
of κ is to compensate that of σ′g, the less control gain effort,
|κ|, is required to fulfill (11b).

Remark 4: It is clear from (13) that the discontinuity in the
control actions (6), (12) stems from the intrinsic singularity in
the complex zero argument. Moreover, it is worth mentioning
that analogous results for the real case under unit control are
derived in [20]. In fact, (11b) is the complex-valued analogous
of a condition on the control gain in classical unit control
designs to guarantee finite-time convergence of sliding modes
in systems with uncertainties in the open-loop vector field, f ,
while (11a) (or (5)) is also considered in unit control aiming
at finite-time convergence [20].

III. REACHING TIME REDUCTION

The major flexibility in the control action selection given by
complex sliding mode controllers with respect to the standard
version may yield lower reaching times. This will be shown
in this section for the control design introduced in Proposition
2 and linear switching functions, which can be represented as

σ := z1 (16)

without loss of generality. A similar computation, which is
here omitted for the sake of brevity, can be carried out for the
control design in Proposition 1.

A key feature of the proposed complex-valued sliding mode
controller is the definition of the sign function as in (1), this

immediately yielding (13). Hence, the control law (12) can be
written as

u = −κejϕσ , σ 6= 0, (17)

with κ ∈ C \ {0}, which means that it can take any value on
the circumference with radius |κ|. Instead, as indicated in the
Introduction, complex-valued sliding modes can be treated as
real-valued higher dimensional systems. In such a context, σ ∈
C in (16) may be written as (Re (σ) , Im (σ)), and its sign is
to be computed componentwise. Hence, only four possibilities
are allowed in the real case, namely,

sign (σ) = (±1,±1) =
√

2 (cosϕσ, sinϕσ) ,

with ϕσ = (2n+1)π
4 , n = 0, 1, 2, 3. Then, the standard sliding

mode controller analogous for (12) may be written as

ux = −κxsign (σ) = −
√

2κxe
jϕσ , σ 6= 0, (18)

where κx ∈ C \ {0} (in order to account for rotation-based
decoupling terms in the control action), and it just takes
four specific values on the circumference of radius

√
2 |κx|.

Therefore, a complex design with switching component (17)
has a standard design analogous with switching component
(18) and |κx| = |κ|√

2
.

Now, recalling Remark 3 it will be assumed that

ϕκ = ϕκx = −ϕσ′g(z), (19)

this yielding restriction (11b) for a standard design to become

|κx| − |ueq| > ε2. (20)

Then, when following the proof of Proposition 2 for a standard
design, relation (14) becomes

V̇ ≤ −ε1 [|κx| (|Re(σ)|+ |Im(σ)|)− |ueq| |σ|] ≤
≤ −ε1ε2|σ| = −γxV

1
2 ,

an upper bound of the reaching time being

Tx =
2

γx

√
V (0),

where γx is the one in (15). Instead, for a complex design
relation, using (20) we have that

|κ| − |ueq| =
√

2 |κx| − |ueq| >
√

2ε2,

and (14) becomes

V̇ ≤ −
√

2ε2ε3|σ| = −
√

2γxV
1
2 .

Therefore, an upper bound of the reaching time is

T =
Tx√

2
< Tx.

Remark 5: A straightforward extrapolation of this result
allows to conclude that unit control designs also offer lower
reaching times than standard sliding mode controllers.
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Re(σ)

Im(σ)

εh

Fig. 1. Hysteresis area for the complex function. Filled area for Algorithms
1 and 3, and dotted area for the squared hysteresis in Algorithm 2.

IV. IMPLEMENTATION OF COMPLEX SLIDING
CONTROLLERS

Similarly to the standard sliding mode control approach,
ideal complex sliding modes require infinite switching fre-
quency, but this feature is unavailable in practical applications.
In this section, different implementation strategies are pro-
posed that approximate the complex sign function defined in
(1), which appears in the switched control action proposed in
(12), and the switching component in (6). Two approximations
are considered: the boundary layer approach, and hysteresis
functions.

A. The boundary layer solution

In standard sliding mode control theory, the boundary
layer solution avoids discontinuities in the control action by
approximating the sign function by a saturation term [22]. The
boundary layer approach proposed here is equivalent to the one
in [23], where a continuous unit control-type law is proposed
for systems with bounded uncertainties. The complex-valued
version is:

u =

{ −κ σ
|σ| if |σ| > εb

−κ σεb if |σ| ≤ εb,
(21)

where εb ∈ R+ is the boundary layer width.

B. Hysteretic approximations

The hysteresis approximation for the complex sign function
is illustrated in Figure 1. It basically defines a ball of radius
εh in the complex plane representation of σ where the output
state is remembered. Out of this area, the complex function
is evaluated. The hysteresis for the complex function (12) is
implemented as shown in Algorithm 1, where p refers to each
iteration.

Algorithm 1 Algorithm for a complex hysteresis
Input: σp, up−1, εh, κ
Output: up

1: if (|σp| < εh) then
2: up = up−1

3: else
4: up = −κ σp

|σp|
5: end if
6: return up

The area in the complex plane can be shaped depending
on the switching dynamics, which will affect the chattering
phenomena. See for example Algorithm 2, that implements
the squared hysteresis area shown in Figure 1.

Algorithm 2 Algorithm for a squared complex hysteresis
Input: σp, up−1, εh, κ
Output: up

1: if (|Re(σp)| < εh) & (|Im(σp)| < εh) then
2: up = up−1

3: else
4: up = −κ σp

|σp|
5: end if
6: return up

Standard multi-input sliding modes can be recovered
if the control action takes discrete values, for example
Re(u), Im(u) ∈ {−k, k}, where k ∈ R+. Then, Algorithm 1
can be modified as in Algorithm 3. More precisely, when the
hysteresis is defined independently for the real and imaginary
parts, the standard sliding mode control technique can be
written as in Algorithm 4.

Algorithm 3 Algorithm for a complex hysteresis with discrete
control values, Re(u), Im(u) ∈ {−k, k}
Input: σp, up−1, εh, k
Output: up

1: if (|σp| < εh) then
2: up = up−1

3: else
4: cp = − σp

|σp|
5: up = k · sign(Re(cp)) + jsign(Im(cp))
6: end if
7: return up

Algorithm 4 Algorithm for a squared complex hysteresis with
discrete control values, Re(u), Im(u) ∈ {−k, k}
Input: σp, up−1, εh, k
Output: up

1: if (|Re(σp)| < εh) & (|Im(σp)| < εh) then
2: up = up−1

3: else
4: cp = − σp

|σp|
5: up = k · sign(Re(cp)) + jsign(Im(cp))
6: end if
7: return up

V. EXAMPLES

In this section the complex-based control design proposed
in Section II, and their possible implementations discussed
in Section IV, are illustrated by an academic example and
an application in the field of electrical machines. First, the
complex sliding mode control technique is applied to a CVSS.
The example is worked out using the control law (12) in
Proposition 2, which is more robust than that in Proposition
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1 as it does not require knowledge of the plant’s model.
Then, the reaching time reduction property of complex-based
sliding mode controllers with respect to the standard version is
illustrated using the same CVSS. Finally, a rotor flux complex-
valued sliding observer for an induction motor is proposed in
Section V-C.

A. Nonlinear example

Consider the nonlinear complex-valued controlled system
based on Example 13 in [14], defined by (2) with

f(z) =

(
z2

1 − jz1 + z2

−2z1 − z2

)
, g(z) =

(
2− j
j

)
. (22)

As shown in [14], function f is holomorphic and the open-
loop (u = 0) system has two equilibrium points, the origin and
(z∗1 , z

∗
2) = (2 + j,−4 − 2j), which are stable and unstable,

respectively. The control objective is to stabilise the system at
the unstable equilibrium point, namely,

zd1 = 2 + j, zd2 = −4− 2j.

Resorting to the error variables ei = zi − zdi , i = 1, 2, (22)
becomes

f(e) =

(
e2

1 + (4 + j) e1 + e2

−2e1 − e2

)
, g(e) =

(
2− j
j

)
, (23)

where e = (e1, e2)
T .

Defining the complex switching function as

σ := e1, (24)

the equivalent control, obtained from (4), results in

ueq = −2 + j

5

[
e2

1 + (4 + j) e1 + e2

]
. (25)

Proposition 2 guarantees the existence of complex sliding
modes using control law (12) whenever (11) is met. It is
immediate from (23), (24) that condition (11a) is fulfilled,
with ∣∣∣∣∂σ∂e g(e)

∣∣∣∣ =
√

5 = ε1. (26)

On the other hand, recalling Remark 3 the control gain, κ ∈
C \ {0}, is selected as

κ = |κ|ejϕκ (27)

and fulfilling (19), i.e.

ϕκ = −ϕσ′g(z) = arctan

(
1

2

)
; (28)

then, (11b) boils down to

|κ| −
∣∣e2

1 + (4 + j) e1 + e2

∣∣ > ε2 > 0.

Once sliding motion is guaranteed, the complex-valued ideal
sliding dynamics on σ = 0 is given by

ė2 = −4 + 2j

5
e2,

which tends asymtoptically to e2 = 0 because [14]

Re
(
−4 + 2j

5

)
= −4

5
.
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Fig. 2. Real part (top), imaginary part (mid), and modulus (bottom) of
the complex switching function, σ(t), of system (22), (12) for different
implementations: complex sign function (blue), boundary layer approximation
(red), and hysteretic approach (yellow).
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Fig. 3. Real part (top), imaginary part (mid), and complex plane (bottom)
plot of the control action, u(t), of system (22), (12) for different implementa-
tions: complex sign function (blue), boundary layer approximation (red), and
hysteretic approach (yellow).

A numerical simulation has been run in Matlab to test the
proposed algorithm. The control gain is set to |κ| = 50, and
parameters for the sigmoid and hysteretic approximations are
εb = εh = 0.1. The software used a fixed-step solver with
10−6s as fundamental sampling time.

Figures 2 and 3 show the complex switching function and
the complex control input using the complex sign function
(12), the boundary layer solution (21), and the complex
hysteresis implementation proposed in Algorithm 1. Notice in
Figure 2 that, as the boundary layer approximation becomes
continuous in a neighborhood of σ = 0, finite convergence
is replaced by an asymptotic behavior with small error. On
the other hand, when the hysteretic approximation is used,
oscillations around Re(σ), Im(σ) occur, limited by a |σ| < εh.
Differently from the usual case in multi-input classic sliding
modes, σ = 0 is reached simultaneously by the real and
imaginary parts of σ.

The control actions are plotted in Figure 3. Notice that
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Fig. 4. Complex plane plots of the switching function, σ(t), of system (22),
(12) for different implementations: complex sign function (top left), hysteretic
approximation (top right), hysteretic approximation with four admissible
control values (bottom left), squared hysteretic approximation with four
admissible control values (bottom right).

the resulting values from (12) and Algorithm 1 are switched
and belong to a circle with radius |κ| (recall (27)), while
the control signal from the boundary layer approximation
(21) is continuous and takes values closer to the steady-state
equivalent control, namely, u = 0 according to (25). It is
worth clarifying that the control values obtained from the sign
function (12) are displayed by dots, and the vertical lines
linking them have been omitted: this is to allow including the
three signals in the same plot, otherwise this one would hide
the other two, and also to show that the switching frequency
is that of the time step of the numerical solver. In turn, it is
immediate that the control signal (12) values fill the circle with
radius |κ| during the transient, because in the steady-state it
switches between two values. Finally, it has been numerically
observed that the transient may be shortened by reducing the
sampling time of the simulation.

Figure 4 compares the values of the complex switching
function σ for different control implementations: the complex
sign function (12), the hysteretic approximation in Algorithm
1, the hysteretic approximation with four admissible control
values of Algorithm 3, and the squared hysteretic approxi-
mation with four admissible control values of Algorithm 4.
It is worth noticing that a limit cycle seems to appear in
the hysteretic area when the implementation constrains the
admissible control values. Examples of applications where the
control values are limited include electrical power drives and
converters.

B. Complex versus standard sliding mode control

CVSS systems admit a real representation by splitting real
and imaginary parts, the resulting system dimension being
twice the original one. The system described by (22) is
equivalent to

ẋ = f(x) + g(x)v (29)

with x ∈ R4, v ∈ R2,

f(x) =


x2

1 + x3 + x2 − x2
2

2x1x2 − x1 + x4

−2x1 − x3

−2x2 − x4

 , g(x) =


2 1
−1 2
0 −1
1 0

 ,

where z1 = x1 + jx2, z2 = x3 + jx4 and u = v1 + jv2 have
been used. Notice that (29) is now a fourth-order system with
two inputs and two outputs, with references set to xd1 = 2
and xd2 = 1 so as to make the problem equivalent to that
considered in Section V-A.

A standard sliding mode controller for system (29) is
proposed defining

s =

(
s1

s2

)
=

(
x1 − xd1
x2 − xd2

)
,

and using

ux = −kM
(

sign(s1)
sign(s2)

)
,

with k ∈ R+ and

M =

∥∥∥∥ ∂s∂xg(x)

∥∥∥∥( ∂s∂xg(x)

)−1

=
1√
5

(
2 −1
1 2

)
,

as a control action. Notice that, in accordance with the
discussion in Section III, kM is the real analogous of κx in
(18), with M standing for eϕκx and fulfilling (19): it has a
unitary (induced) 2-norm, and the first row corresponds to the
complex number with argument arctan 1

2 (see also (27)-(28)).
Moreover, ∥∥∥∥ ∂s∂xg(x)

∥∥∥∥ =
∥∥∥√5M

∥∥∥ =
√

5,

as happens in the complex case (26). Therefore, setting

k =
|κ|√

2
=

50√
2

the reaching time of this classic design can be fairly compared
-in the sense of Section III- with that obtained in Subsection
V-A for a complex design.

As predicted in Section III, Figure 5 shows that the reaching
time is lower when using the complex approach. Notice also in
Figure 6 (top) how in the complex design the target is attained
in a straightforward manner, while for the standard design this
is attained in a hierarchical manner, i.e. sliding firstly occurs
for one component. Finally, Figure 6 (bottom) illustrates the
fact that standard sliding mode control only uses four control
combinations, while the complex-based controller may take
any value on the circumference of radius |κ|.

C. A complex-based sliding mode observer

Rotor flux observation in induction motors is a known
problem in the control of electrical drives that attracts attention
within the electrical community, see examples in [24] or
more recently in [25]. A rotor-flux observer for an induction
machine will be designed in this subsection to exemplify
the use of complex-valued sliding modes in an engineering
application.
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Fig. 5. Complex-based sliding control (blue) versus standard sliding (red) us-
ing the complex switching surface function/switching surface vector: real/first
component (top), imaginary/second component (mid), modulus/norm (bot-
tom).
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Fig. 6. Complex-based sliding control (blue) versus standard sliding (red)
using polar/plane plots of the switching function/switching surface vector
(top), and complex control variable/control vector (bottom).

The complex vector representation of the inductor motor is
thoroughly developed in [26]. The electrical equations of the
inductor motor are:

dis
dt

= −γis + β (η − jnpω)ψr +
1

µLs
vs

dψr
dt

= − (η − jnpω)ψr + ηMis,

where is, ψr ∈ C are the stator current and rotor flux, ω ∈ R
is the mechanical speed vs ∈ C is the stator voltage, which is
used as a control input, np ∈ R+ is the number of pole pairs,

µ =

(
1− M2

LsLr

)
, η =

Rr
Lr

are the leakage factor and rotor time constant, respectively,

γ =
Rs
µLs

+
RrM

2

µLsL2
r

, β =
M

µLsLr
,

Ls, Lr,M ∈ R+ are the stator, rotor and mutual inductances,
and Rs, Rr ∈ R+ are the stator and rotor resistances modelling
the inductor loses.

Assuming that all the parameters are known and the me-
chanical speed is measurable the proposed observer, similarly
to [27], is

d̂is
dt

= −γîs + β (η − jnpω) ψ̂r +
1

µLs
vs − u (30a)

dψ̂r
dt

= − (η − jnpω) ψ̂r + ηMîs + lu (30b)

where l, u ∈ C. Defining the observation error as

ĩs = îs − is
ψ̃r = ψ̂r − ψr,

the error dynamics becomes

˙̃is = −γĩs + β (η − jnpω) ψ̃r − u, (31a)
˙̃
ψr = ηMĩs − (η − jnpω) ψ̃r + lu. (31b)

Proposition 3: Let
σ := ĩs (32)

be a complex switching function, and let S denote the
corresponding switching manifold. Assume that there exist
Ω1 ⊆ C2 with Ω1 ∩ S 6= ∅, and k, ε2 ∈ R+ such that, for
all
(
ĩs, ψ̃r

)
∈ Ω1:

k −
∣∣∣−γĩs + β (η − jnpω) ψ̃r

∣∣∣ > ε2. (33)

Then, the switched control action

u = k sign
(̃
is
)

(34)

induces sliding motion of system (31) on Ω1 ∩ S. Moreover,
for all

(
ĩs(0), ψ̃r(0)

)
close enough to Ω1 ∩ S, ĩs converges

to zero in finite time.
Proof: Let z1 = ĩs, z2 = ψ̃r. Then, system (31) can be

written as (2), with

f(z) =

(
−γz1 + β (η − jnpω) z2

ηMz1 − (η − jnpω) z2

)
, g(z) =

(
−1
l

)
,

while the switching surface (32) is now:

σ := z1.

Notice that
∂σ

∂z
g(z) = −1,

which, on the one hand, allows to compute the equivalent
control following (4), this yielding

ueq = −γz1 + β (η − jnpω) z2;

on the other hand, it guarantees the fulfillment of (11a). In turn,
taking into account Remark 3, (33) is equivalent to (11b) with
κ = −k, k ∈ R+, because ϕκ has been selected as

ϕκ = −ϕσ′g = −π.

hence, the result follows straightforward from Proposition 2.

Once on sliding motion, the ideal sliding dynamics follows
replacing ĩs = 0 and u = ueq in (31b), namely,

˙̃
ψr = − (1− lβ) (η − jnpω) ψ̃r. (35)
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Fig. 7. Rotor-flux observation for an induction motor. From top to bottom:
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and imaginary components of the observation error, ψ̃r .

Notice that

Re (− (1− lβ) (η − jnpω)) = − (1− Re(l)β) η+Im(l)βnpω,

and being η, β, np > 0 it results that a selection fulfilling

Re(l)η + Im(l)npω <
η

β

ensures ψ̃r → 0 asymptotically.
Numerical simulation have been run to test the observer

proposed in (30). The selected induction motor was a two
pole-pairs machine with the following parameters: Ls =
Lr = 109.3mH, M = 100mH, Rs = 2.7Ω, Rr = 0.5Ω,
J = 0.001kg·m2, b = 0.001N·m·s. The observer gains were:
k = 50 and l = −0.5−0.1j, and the control function (34) was
implemented using Algorithm 1 with a hysteresis band εh = 1.
The test consisted in connecting the induction motor to a 200V,
50Hz voltage. The obtained results, gathered in Figure 7, show
that the observation of the rotor-flux is achieved thanks to the
sliding motion induced on the absolute error observation of
the stator currents, ĩs, as observed in the mid plot.

VI. CONCLUSIONS

In this paper, sliding modes for complex-valued dynami-
cal systems have been analysed. The proposed methodology
results in a generalisation of standard sliding modes with the
main advantage of considering more admissible control values,
which directly translates into an improvement of the reaching
time. Some implementation approximations have also been
discussed. The proposal has been numerically validated in an
academic example and an electrical application.
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