
Extending a modern RISC-V vector accelerator with direct
access to the memory hierarchy through AMBA 5 CHI

Final Document

by

Miquel Roset Julia

Director: Alireza Monemi (BSC)
Co-Director: Nehir Sonmez (BSC)

Ponent: Miquel Moretó (UPC)
GEP Tutor: Joan Sarda (UPC)

Computer engineering specialization
UNIVERSITAT POLITÈCNICA DE CATALUNYA

January 2022

Abstract

The BSC is developing a decoupled RISC-V-based vector accelerator. In the previous

version of this project, the vector accelerator uses the Open Vector Interface (OVI) to

access the shared L2 cache, through a scalar processor core. Furthermore, the processor

core accessed the shared L2 cache via the NoC. This two-level memory access mechanism

introduces a significant latency overhead to the system. Moreover, memory access time is

critical to the performance of the accelerator. To attack this problem, this project designs

an AMBA 5 CHI interface IP that provides the accelerator with direct access to the NoC,

thus reducing memory latency.

This project aims to obtain a functional design with basic operations to facilitate the

integration phase. Therefore, the interface IP has no specific area or power constraints.

The IP design covers different AMBA 5 CHI protocol aspects, assembles the architecture,

and proposes a set of tests to verify the functionality of the designed module. Final results

show that this IP can successfully provide the accelerator with direct access to the shared

L2 cache, replacing the OVI interface and improving performance. We also give pointers

on how to further improve the AMBA 5 CHI interface IP in terms of performance and

functionalities.

Keywords: RISC-V, Network on Chip, AMBA 5 CHI, Level 2 cache, vector acceler-

ator

Resumen

El BSC está desarrollando un acelerador vectorial desacoplado basado en RISC-V. En la

versión anterior de este proyecto, el acelerador utiliza Open Vector Interface (OVI) para

acceder a la caché L2 compartida, a través del núcleo escalar del procesador. Posterior-

mente, el núcleo del procesador accede a la caché L2 compartida a través del NoC. Este

mecanismo de acceso a la memoria en dos niveles introduce un aumento considerable en

la latencia de los acceso. Además, el tiempo de acceso a la memoria es fundamental para

el rendimiento del acelerador. Para atacar este problema, este proyecto diseña una IP que

hace de interfaz para AMBA 5 CHI y que proporciona al acelerador acceso directo al

NoC, reduciendo ası́ la latencia de los accesos a memoria.

Este proyecto pretende obtener un diseño funcional con operaciones básicas para fa-

cilitar la fase de integración. Por lo tanto, el diseño no tiene restricciones ni de área, ni

de energı́a. El diseño cubre diferentes aspectos del protocolo AMBA 5 CHI, ensambla la

arquitectura y propone un conjunto de pruebas para verificar la funcionalidad del módulo

diseñado. Los resultados finales muestran que esta IP puede proporcionar con éxito al

acelerador acceso directo al caché L2 compartida, reemplazando la interfaz OVI y mejo-

rando el rendimiento. También brindamos sugerencias sobre cómo mejorar aún más la

interfaz IP AMBA 5 CHI en términos de rendimiento y funcionalidades.

Palabras clave: RISC-V, Network on Chip, AMBA 5 CHI, Level 2 cache, acelerador

vectorial

Resum

El BSC està desenvolupant un accelerador vectorial desacoblat basat en RISC-V. A la

versió anterior d’aquest projecte, l’accelerador utilitza Open Vector Interface (OVI) per

accedir a la memòria cache L2 compartida, a través del nucli escalar del processador. Pos-

teriorment, el nucli del processador accedeix a la memòria cache L2 compartida a través

del NoC. Aquest mecanisme d’accés a la memòria en dos nivells introdueix un augment

considerable en la latència dels accessos. A més, el temps d’accés a la memòria és fon-

amental per al rendiment de l’accelerador. Per atacar aquest problema, aquest projecte

dissenya una IP que fa d’interfı́cie per a AMBA 5 CHI i que proporciona a l’accelerador

accés directe al NoC, reduint aixı́ la latència dels accessos a memòria.

Aquest projecte pretén obtenir un disseny funcional amb operacions bàsiques per fa-

cilitar la fase d’integració. Per tant, el disseny no té restriccions ni d’àrea, ni d’energia. El

disseny cobreix diferents aspectes del protocol AMBA 5 CHI, construeix l’arquitectura

i proposa un conjunt de proves per verificar la funcionalitat del mòdul dissenyat. Els

resultats finals mostren que aquesta IP pot proporcionar amb èxit a l’accelerador accés

directe a la memòria cache L2 compartida, reemplaçant la interfı́cie OVI i millorant el

rendiment. També brindem suggeriments sobre com millorar encara més la interfı́cie IP

AMBA 5 CHI en termes de rendiment i funcionalitats.

Paraules clau: RISC-V, Network on Chip, AMBA 5 CHI, Level 2 cache, accelerador

vectorial

Table of Contents

List of Figures 1

List of Tables 3

1: Contextualization and Scope of the project 4

1.1 Context . 4

1.1.1 eProcessor . 5

1.2 Terms and concepts . 5

1.2.1 European Processor initiative . 5

1.2.2 RISC-V . 6

1.2.3 Vector Architecture . 6

1.2.4 Vector Processing Unit . 6

1.2.5 Network on Chip . 6

1.2.6 Memory hierarchy . 6

1.2.7 AMBA 5 CHI . 7

1.2.7.1 Request Node . 7

1.3 Motivation . 7

1.3.1 Accelerators . 7

1.4 Stakeholders . 8

1.4.1 BSC . 8

1.4.2 Scientific community . 9

1.5 Justification . 9

1.6 Project scope . 9

1.6.1 Objectives . 9

1.6.2 Requirements . 10

1.6.3 Obstacles and risks . 11

1.7 Methodology and rigour . 11

1.7.1 Task management . 11

1.7.2 Shared Google Drive . 12

1.7.3 Code repository . 12

1.7.4 Meetings . 12

2: Time planning 13

2.1 Project Management . 13

2.2 Project Development . 14

2.2.1 Familiarize with RN-I from AMBA 5 CHI 14

2.2.2 Familiarize with the Vector Processor Unit 14

2.2.3 Define an interface between VPU and RN-I 14

2.2.4 Design a model for the RN-I . 15

2.2.5 Implement the design of the RN-I 15

2.2.6 Additional verification process 15

2.3 Human and material resources . 16

2.4 Estimates and Gantt representation . 16

2.5 Tasks summary . 18

2.6 Risk management: alternative plans and obstacles 18

2.7 Changes in the planning . 19

3: Budget 20

3.1 Identification of Costs . 20

3.1.1 Wages . 22

3.2 Management Control . 23

ii

4: Sustainability 24

4.1 Environmental impact . 24

4.2 Economic impact . 25

4.3 Social impact . 25

5: Background 27

5.1 AMBA . 27

5.2 AMBA 5 CHI . 28

5.2.1 Architecture overview . 28

5.2.1.1 Layers . 29

5.2.2 Terminology . 29

5.2.3 Transactions . 31

5.2.3.1 Channels overview . 31

5.2.3.2 Transaction structure 33

5.3 Link layer . 35

6: Interface proposal VPU - RN-I 37

6.1 Modules involved . 37

6.1.1 Load Store Unit (LSU) . 37

6.1.2 IO coherent Request Node (RN-I) 37

6.2 Transactions . 37

6.2.1 Channels overview . 39

6.2.2 Channel fields and Flit packet definitions 39

6.2.2.1 Fields’ constraints . 40

6.2.3 Transaction Structure . 40

6.2.3.1 Read transaction structure 40

6.2.3.2 Write transaction structure 41

6.3 Flit fields Encodings . 42

6.4 Request and acknowledge handshake . 43

iii

7: RN-I proposal 44

7.1 Environment constraints . 44

7.2 Module operations . 45

7.2.1 Read . 45

7.2.2 Write and WritePtl . 46

7.3 Circuit Design . 48

7.3.1 REQ module . 49

7.3.2 RDAT module . 51

7.3.3 RSP module . 52

7.3.4 WDAT module . 53

7.3.5 Transaction lookup table . 54

7.4 Verification . 54

7.4.1 RN-I tests . 56

7.4.2 NoC with RN-I tests . 58

8: Conclusions 60

8.1 Future Work . 60

References 62

iv

List of Figures

1.1 OoO core, on-chip accelerators, caches and TLBs 8

2.1 Gantt diagram showing duration and dependencies of tasks. 17

5.1 Evolution of AMBA protocols [1] . 28

5.2 ReadNoSnp and ReadOnce structure without Direct Data Transfer. [2, p.

48] . 33

5.3 Reduced WriteNoSnp transaction structure options [2, p. 58] 34

5.4 Reduced WriteUnique transaction structure options [2, p. 60] 35

5.5 RN-I interface. [2, p. 305] . 35

5.6 REQ channel interface pins [2, p. 306] 36

5.7 FLITPEND indicating a valid flit in next cycle [2, p. 341] 36

6.1 VPU block diagram . 38

6.2 Read transaction structure. 40

6.3 Write transaction structure. 41

6.4 Handshake of each channel between VPU and RN. 43

7.1 Connections of the Request Node. 44

7.2 Read transaction structure. 46

7.3 Write transaction structure. 48

7.4 Top module layout of the RN-I. 48

7.5 REQ module circuit. 49

1

7.6 Credit module circuit. 50

7.7 RDAT module circuit. 51

7.8 RSP module circuit. 52

7.9 Control Logic from the RSP module. 53

7.10 WDAT module circuit. 53

7.11 Mesh network configured as 4x4. 55

7.12 2x2 mesh used to test the RN-I. 56

7.13 2x2 mesh with two acting RN-Is. 58

2

List of Tables

2.1 Task summary . 18

3.1 Costs per activity (CPA) . 21

3.2 Costs per activity (CPA) . 22

5.1 Layers of the CHI architecture [2, p. 19] 29

5.2 Channel naming and designation at the RN and SN nodes [2, p. 32]. . . . 32

5.3 REQ channel interface signals [2, p. 306] 36

6.1 Channel’s mapping and designation at the RN-I and VPU 39

6.2 Flit format and fields description . 39

6.3 REQ channel opcodes . 42

6.4 Kill value encodings . 42

6.5 Excl value encodings . 42

6.6 Attr value encodings . 42

7.1 L2HN Supported CHI opcodes and RN-I comatibles. 45

7.2 Mapping process made by the VPU to CHI block 50

3

1 Contextualization and Scope of the
project

The work described in this document is conceived within a complex context. This context

spans across a diversity of fields that go far beyond the technology discussed here. This

becomes clear when the development of these technologies, which are the core of exascale

machines, are being funded from European initiatives defined as ”an important step of a

strategic plan to develop an independent and innovative European supercomputing and

data ecosystem” [3].

Therefore, this chapter aims to briefly describe the agents, both economically and/or

scientifically, that take part in this ecosystem, as well as to define the base concepts from

which this thesis develops.

1.1 Context

Dating back to 23 March 2017, the EU launched the EuroHPC declaration. With it, the

ambition of a world’s top High Performance Computing (HPC) infrastructure until 2022-

2023 was set [4].

Since then, multiple public-private partnerships appeared, such as the EuroHPC Joint

Undertaking (JU), created a year later, working with budgets arround 1.1 billion Euros for

2018-20, and 7 billion Euros for 2021-27 [5]. From the EuroHPC JU emerges the Euro-

pean Processor Initiative (EPI) as a broader strategy to develop an independent European

HPC industry. As of September 2021, the EPI gathers 28 partners from 10 European

countries [6].

Meanwhile, problematic themes like the EU’s dependencies with Asia on semiconduc-

tors have increased. The European Commissioner for Internal Market since 2019 Thierry

Breton states, ”While global demand has exploded, Europe’s share across the entire value

4

chain, from design to manufacturing capacity has shrunk. We depend on state-of-the-art

chips manufactured in Asia. So this is not just a matter of our competitiveness. This is

also a matter of tech sovereignty” [7].

In this race for EU tech sovereignty, the Barcelona Supercomputing Center (BSC)

plays an important role as a research center, embracing multiple of the EU initiatives

including the already mentioned EPI.

1.1.1 eProcessor

The main goal of this EuroHPC project is to build a new open source OoO (Out of Order)

processor and to deliver the first completely open source European full-stack ecosystem

based on this new RISC-V CPU. The current thesis takes place in this project within the

co-design and development of a vector processor based on the RISC-V instruction set

architecture [8].

This thesis implements a memory interface for a RISC-V decoupled vector accelera-

tor. The main RISC-V OoO processor issues the vector instructions, and the accelerator

deals with processing them at their entirety. For vector memory instructions, the accel-

erator performs accesses directly to a shared L2 cache after translating virtual addresses

with a private TLB. It also ensures that memory ordering is maintained and uses/updates

all related control and status registers (CSRs).

1.2 Terms and concepts

1.2.1 European Processor initiative

European initiative focused in the following three objectives.

• Develop low-power processor technology to be included in a European pre-exascale

(capable of around 1016 calculations per second) and exascale systems (1018 calcu-

lations per second).

• Guarantee that a significant part of that technology is European and

• Ensure that the application areas of the technology are not limited only to HPC, but

cover other areas such as the automotive sector or the data centres [3].

5

1.2.2 RISC-V

Risc-V is an open standard instruction set architecture (ISA). Introduced in 2010, it is

based on the classic RISC architecture from UC Berkeley. Aside from its notable features,

RISC-V has experimented a rise in popularity since it allows smaller device manufacturers

to build hardware without paying royalties and allow developers and researchers to design

and experiment with a proven and freely available instruction set architecture (ISA) [9].

1.2.3 Vector Architecture

Vector architectures group sets of data elements scattered about memory, place them into

large, sequential register files, operate on data in those register files, and then disperse

the results back into memory. This means that a single instruction operates on vectors of

data resulting in dozens of register-register operations on independent data elements [10,

p. 264].

1.2.4 Vector Processing Unit

A Vector Processing Unit is the unit of a SoC (System on Chip) which performs the actual

work of computing the vector instructions that the ISA in use specifies.

1.2.5 Network on Chip

This type of network is used for interconnecting microarchitecture functional units, reg-

ister files, caches, compute tiles, and processor and IP cores within chips or multichip

modules [10, Appendix F, p. 3].

1.2.6 Memory hierarchy

Memory hierarchy is an economical solution for supporting access to large amounts of

fast memory. It takes advantage of locality and trade-offs in the cost-performance of

memory technologies. Since fast memory is expensive, a memory hierarchy is organized

into several levels – each smaller, faster and more expensive per byte than the next lower

level, which is farther away in terms of access latency, from the processor [10, p. 72].

6

1.2.7 AMBA 5 CHI

AMBA 5 CHI is the latest generation of freely-available AMBA protocol specifications.

It introduces the Coherent Hub Interface (CHI) architecture, which defines the interfaces

for the connection of fully coherent processors and high-performance interconnects [11].

1.2.7.1 Request Node

A Request Node, also referred as RN, generates and sends AMBA 5 CHI transactions,

including reads and writes. These requests are sent to the interconnect were other AMBA

5 CHI elements, such as Home Nodes (HN) generate the corresponding responses.

1.3 Motivation

As stated earlier in this chapter, the eProcessor architecture is composed of three main

components. These three components are the core, the interconnection network or NoC

and multiple domain specific accelerators, such as the vector processor and the AI and

Bioinformatics accelerator.

Figure 1.1 shows the layout of the top main components of the processor. Additionally

we can observe how the TLBs and the caches complete the design. The scope of this

thesis is to link some of the accelerators to the NoC from where the Shared L2 cache is

accessible. Therefore, this document won’t elaborate on the rest of the design.

1.3.1 Accelerators

eProcessor will have a vector processing unit (VPU) intended to improve the performance

of High Performance Computing (HPC) and Bioinformatics applications and two distinct

accelerators for Artificial Intelligence (AI) applications: one on-chip unit and another one

off-chip.

As of the iteration previous to this thesis, the memory interface that the accelerators

utilized to made his way to memory worked through the core of the system. This was

accomplished with the implementation of an open source spec, supported by both, the

processor core in use, and the vector accelerator, called Open Vector Interface (OVI) [12].

Moreover, the processor core used the AMBA 5 CHI protocol to access the second level of

the memory hierarchy. This way to memory had a performance issue even though OVI is

specially designed for the core to accommodate functional units like vector accelerators.

7

Figure 1.1: OoO core, on-chip accelerators, caches and TLBs

The overhead causing a performance degradation happened because the VPU requests

need to go through the processor core first and AMBA 5 CHI afterwards.

One of the main characteristics that will be newly designed in eProcessor is to provide

direct access to the memory hierarchy for on-chip accelerators. This will improve the

performance of memory accesses while enforcing simple designs. This feature requires

that the accelerators support the CHI interface, implementing a vector Load/Store Unit

(VLSU) and a private L1D vector TLB that accesses a L2 TLB.

1.4 Stakeholders

This section specifies the agents who will benefit from the work done in this thesis.

1.4.1 BSC

The closest beneficiary from this work will be the BSC. The improvements developed in

this work are planned to be included in the project’s next iteration.

8

1.4.2 Scientific community

Because of the ISA chosen, RISC-V, the project as a whole work towards an open-source

ecosystem. This ecosystem presents advantages in multitude of aspects. For example, the

cost of software can dramatically reduce by enabling more reuse. This way, communities

such as the scientific one, can break free from expensive ISA’s which limit their capa-

bilities. Another example would be hardware providers who, without a proprietary ISA,

currently have close to none opportunities to enter the market.

1.5 Justification

The problem to be solved in this thesis is conceived as an improvement to an already

working product. The problems identified in previous sections face two situations. From

one side, a lack of quality, as for the performance degradation, and an unreached objective

regarding to the dependency between the vector accelerator and the core.

The dependency problem is tackled by removing as much interaction as possible be-

tween the VPU and the core. In our situation, OVI represents an issue. Regarding the

overhead of the OVI and AMBA 5 CHI interfaces, the idea is to connect the VPU directly

to the memory hierarchy thus getting rid of the OVI interface.

An important thing to remark is that the dependency problem is the most important

from the two and that there are no other solutions a part from the one that has been com-

mented. This means that even though the performance in the final result is not as expected,

it will mark the starting point for improvements since it will satisfy the independence

wanted for the VPU.

1.6 Project scope

The scope of this thesis is limited to the propagation of the operations issued by the VLSU

to the NoC. It’s important to remark that the NoC uses the AMBA 5 CHI protocol.

Within this scope, the following global objectives, sub-objectives, functional require-

ments, obstacles and risks emerge.

1.6.1 Objectives

• Understand AMBA 5 CHI:

9

– Comprehensive reading of the protocol and concepts in use.

– Use an implementation of the protocol provided by BSC to simulate specific

situations of the protocol.

• Understand the starting state of the vector accelerator:

– Locate the exact place from which the VPU will connect to the memory hier-

archy.

– Understand and communicate with teams in charge of the modules surround-

ing that point.

– Agree on an interface with the team members issuing memory operations

which is both efficient and effective for its purpose.

BSC already has a working model that implements the AMBA 5 CHI protocol but

it has plenty of functionalities that the VPU does not require.

• Adapt a working model, provided by BSC, to the needs:

– Understand the basic organization of the working model that implements the

protocol.

– Design a module which adds what is missing from the working model and

eliminates what is unneeded.

At this point, there is a synchronization with the teams that develop the modules

from the VPU that interact with our module. Once their circuit is implemented the

implementation of the module designed can start.

• Implement the design:

– Implement the design.

– Test and verify the results.

1.6.2 Requirements

Next, we’ll enumerate and briefly explain what types of requirements this project has.

• Meet the requirements specified by the team issuing memory operations.

10

• Meet the guidelines and criteria established by the VPU developers team including

tests and documentation.

• Make a hardware efficient design.

• Test and verify all implemented functionalities.

1.6.3 Obstacles and risks

During the development of the project multiples obstacles and risks can appear. Here is a

short list of some of them.

• Synchronization delays: At one point in the project, the material needed is pro-

vided by another team. In this case, the deliver might get delayed and it is needed

some mechanisms to reduce its impact on the development of the project.

• Implementation errors: Good development practices reduce the time spent fixing

implementation errors. Despite this, an unnoticed mistake can take weeks, even

months to get fixed.

• Design errors: This type of errors are the ones with greater damage potential.

Since they are at the beginning of the development process, a mistake here can lead

to restarting regardless of the phase you are on.

1.7 Methodology and rigour

1.7.1 Task management

Hardware development is usually more complex than software development. Famous

methodologies such as Agile are unfeasible in this field and it usually falls back to the

classic Waterfall. Besides that, a Kanban methodology is used to organize the tasks.

This methodology is very comfortable since it’s widely supported by nowadays com-

mercial tools such as Trello. It allows you to visually group tasks and move forward as

you complete them. It also has plenty of features to comment, tweak and share the work.

11

1.7.2 Shared Google Drive

This tool has been chosen since it offers a large set of tools going from spreadsheets

to design tools to draw block diagrams. It also makes the sharing of the work straight

forward and, since it is on the cloud, there is no possible data loss.

1.7.3 Code repository

The tool to maintain and develop the code base is Git. This distributed version control sys-

tem is widely embraced by the developer community. The project team at BSC enforces

it and the platform in use is GitLab.

The module developed in this thesis is derived from a repository containing full im-

plementations of the AMBA 5 CHI protocol. This project develops a simpler version of

one of the components and joins the final design to the actual VPU repository.

1.7.4 Meetings

In order to coordinate this work, weekly one hour meetings have been organized. One slot

for all the team members developing the VPU and another slot to discuss the AMBA 5

CHI more in detail as well as coordinate with the people in charge of the nearby modules.

12

2 Time planning

This chapter aims to define and schedule tasks involved in completing the project. The

time frame dedicated to the project begins on August 1, 2021 and ends in late January

2022. During this period, 7 hours a day will be devoted.

In order to further work in the time planning, this chapter includes a Gantt diagram

representing the tasks scheduling and dependencies.

2.1 Project Management

This section enumerates and defines those tasks involved in the project management.

• PM.1 - Context and Scope: Contextualize the thesis and describe the scope.

• PM.2 - Time Planning: Enumerate and describe tasks, elavorate estimates and

develop a risk management strategy.

• PM.3 - Budget and sustainability: Elaboration of a budget and a sustainability

report.

• PM.4 - Project Documentation: Complete and compile generated documentation

in a single document together with support material. Roughly 18 hours of dedica-

tion after the completion of PM.1, PM.2 and PM.3.

– PM4.1: After the completion of [VFY.1], the documentation task should con-

tinue until the delivery date.

• PM.5 - Meetings: Two weekly one-hour meetings. One for coordination with the

working group and another one to coordinate with the project.

13

2.2 Project Development

This section enumerates and defines those tasks involved in the completion of the project

from the technical side.

2.2.1 Familiarize with RN-I from AMBA 5 CHI

Check how the IO Coherent Request Node (RN-I) works. With this, we understand the

VPU entry point to the NoC, which uses AMBA 5 CHI protocol.

• [CHI.1] - Understand the protocol: Using the specification provided by ARM,

read and understand the insights of the protocol.

• [CHI.2] - Understand an RN-F module: With an implementation of an RN-F

provided by BSC, read, compile and understand the project. Depends on [CHI.1].

• [CHI.3] - Simulate CHI transactions With the provided working model, simulate

some simple transactions and contrast them with the protocol specification. De-

pends on [CHI.2].

2.2.2 Familiarize with the Vector Processor Unit

Check how the VPU is implemented.

• [VPU.1] - Read about VPU architecture: Find memory model in use, interfaces

with the core, ISA supported, etc. Depends on [CHI.3].

• [VPU.2] - Place RN-I within the VPU: Understand where the RN-I will be placed

within the VPU architecture. Depends on [VPU.1].

2.2.3 Define an interface between VPU and RN-I

Coordinate with teams from the VPU in charge of memory operations to define an inter-

face that satisfies requirements from both sides.

• [IF.1] - Contrast requirements: Understand requirements imposed from the VPU

teams. See whether they can be satisfied from an RN-I node defined in AMBA 5

CHI issue C [2]. Depends on [VPU.2].

14

• [IF.2] - Agree on an interface: Once [IF.1] is positive, commit to an interface

which is both efficient and effective.

2.2.4 Design a model for the RN-I

Design the working model for the RN-I.

• [DSGN.1] - Remove unnecessary logic: BSC provides a model and implementa-

tion of a RN-F. Eliminate the logic that implements functionalities without support

from RN-I.

• [DSGN.2] - Add support for the interface: Adapt the resulting circuit from

[DSGN.1] to support the defined interface with the VPU.

2.2.5 Implement the design of the RN-I

Tasks involved with the implementation of the design. These tasks are performed itera-

tively over parts of the overall design. This ensures higher confidence on code over long

periods of implementation.

• [IMP.1] - Code the design: Specify the design and the necessary verification code

with System Verilog.

• [IMP.2] - Verification code: Write verification code for the design implemented.

Depends on [IMP.1].

• [IMP.3] - Register Transfer Level simulation: Run and check RTL simulations.

Depends on [IMP.2].

2.2.6 Additional verification process

Perform additional tests defined by the project in order to further verify the design.

• [VFY.1] - Gate Level Simulation: Run and check Gate Level Simulations.

15

2.3 Human and material resources

All material resources [MR] and human resources [HR] are used at any given task. The

resources used in this project are enumerated identified below.

• [MR.1] - Electronic devices: The personal computer as well as the infrastructure

deployed in BSC servers.

• [MR.2] - Work place: Office material, essentials, etc.

• [HR.1] - Team of engineers: Superiors, coworkers, etc.

• [HR.2] - Other roles: Employees from human resources, maintenance and other

departments required.

2.4 Estimates and Gantt representation

In this section we complete the task description with estimates of the tasks duration as

well as the dependencies between them. This is done through a Gantt representation.

16

Figure 2.1: Gantt diagram showing duration and dependencies of tasks.

17

2.5 Tasks summary

This section summarizes the tasks enumerated and described through this chapter.

Table 2.1: Task summary

ID Name Duration (h) Predecessors Resources
PM.1 Context and Scope 18 - HR, MR

PM.2 Time Planning 18 PM.1 HR, MR

PM.3 Budget and sustainability 18 PM.2 HR, MR

PM.4.1 Project Documentation 18 PM.3 HR, MR

PM.4.2 Project Documentation 18 VFY.1 HR, MR

PM.5 Meetings 52 - HR, MR

CHI.1 Understand the protocol 70 - HR, MR

CHI.2 Understand an RN-F module 42 CHI.1 HR, MR

CHI.3 Simulate CHI transactions 35 CHI.2 HR, MR

VPU.1 Read about VPU architecture 49 CHI.3 HR, MR

VPU.2 Place RN-I within the VPU 28 VPU.1 HR, MR

IF.1 Contrast requirements 42 VPU.2 HR, MR

IF.2 Agree on an interface 42 IF.1 HR, MR

DSGN.1 Remove unnecessary logic 91 IF.2 HR, MR

DSGN.2 Add support for the interface 91 DSGN.1 HR, MR

IMP.1 Code the design 105 DSGN.2 HR, MR

IMP.2 Verification code 105 IMP.1 HR, MR

IMP.3 Register Transfer Level simulation 105 IMP.2 HR, MR

VFY.1 Gate Level Simulation 105 IMP.3 HR, MR

2.6 Risk management: alternative plans and obstacles

This section describes the management of the risks and obstacles defined previously. It

also describes alternative tasks, any additional resources that might be needed and the

overall impact over the project.

In case of encountering an obstacle during the development of [IMP.1], [IMP.2] and

[IMP.3], the cyclic alternation of them allows to start over and keep progressing. This

means that there is no need for alternative tasks to deal with [IMP] obstacles.

18

Both [DSGN.1] and [DSGN.2] have huge potential in causing delay. In case of en-

countering an obstacle for this tasks, which could happen time after completing them, the

alternative tasks can be from the groups of [CHI] and [VPU] if they are due to misunder-

standing of those subjects and from [DSGN] if redesign is needed. They can also be from

[IMP] task group if the implementation can make up for the design obstacle.

Regarding the [VFY] task, obstacles encountered here usually require minor changes

from previously completed tasks.

None of the obstacles encountered need additional material resources. If obstacles

encountered cannot be solved autonomously, additional human resources might be needed

in form of specific help from coworkers.

Finally, the maximum delay that this project can cope with is one month. Since the

deadline to deliver the project is in late January and the Gantt diagram shows the comple-

tion of all tasks by the end of December, there is a hole month to extend delayed tasks, if

ever needed.

2.7 Changes in the planning

Regarding the planning exposed, there has been just one major change. This change

affects the Gate Level Simulation (GLS) or [VFY.1] task in the GEP document. Due to

the nature of the test, it should be carried out as a post-layout netlist verification once

almost all the technical parameters are known. Since at the time planned to carry out

this task the design of the VPU is incomplete, most of the parameters to carry out a GLS

remain indeterminate. In the place of [VFY.1], [IMP.3] has been extended on time and

the modules targeted for the RTL simulations have also been enlarged to the whole NoC

including different models of Home Nodes.

19

3 Budget

3.1 Identification of Costs

To perform the cost identification we start by identifying the different types of direct costs

involved in the achievement of the project.

• [HR.1] Team of engineers: Workers involved in the project. The role that performs

most of the tasks of this project is a Undergraduate Student [UE]. The rest of the

roles involved will be considered an average engineer [ENG] with an average salary

[13]. Despite this, actual roles might be:

– Master’s Student

– PhD Student

– Recognized Researcher

– Established Researcher

The team involved in the tasks is composed by two Undergraduate Students and 6

Engineers. All of them working full-time except from one Undergraduate Student.

Regarding the distribution of the tasks from this project among the roles described

above, the two Undergraduate Students will participate in all the [CHI], [VPU],

[IF], [DSGN], [IMP] and [VFY] task groups. Additionally, three more Engineers

will take part in [IF]. A single Undergraduate Student will perform the [PM.1],

[PM.2], [PM.3] and [PM.4] tasks. Finally, regarding [PM.5], one meeting will be

attended by two Engineers and two Undergraduate Students, and the second one

will be attended by two Undergraduate Students and 6 Engineers.

Another type of costs that this project includes come from the material resources.

20

• [MR.1] - Electronic devices: The most significant elements from this are software

licenses from Questasim 2019.4 [14] and the computational use time of 3 servers

we were given access to.

• [MR.2] - Work-place: Multiple costs derive from the work place at the office.

These are electricity, furniture and additional infrastructures such as Internet, etc.

Table 3.1 summarizes the costs described in this chapter. It groups costs per activity

(CPA), it also shows general costs (CG), Contingencies and Incidents Costs.

Table 3.1: Costs per activity (CPA)

Activity Import (e) Comments

PM.1

630 90 h x (1[US] x 7e/h)

PM.2

PM.3

PM.4.1

PM.4.2

PM.5 3099,2
26 h x (2[US] x 7 e/h + 2[ENG] x 11 e/h)

+ 26h x (2[US] + 6[ENG])

CHI.1

3.136 224 h x 2[US] x 7 e/h

CHI.2

CHI.3

VPU.1

VPU.2

IF.1
3092,88 84 h x (2[US] x 7 e/h + 2[ENG] x 11,41 e/hora)

IF.2

DSGN.1

4214 301 h x (2[US] x 7 e/h)

DSGN.2

IMP.1

IMP.2

IMP.3

VFY.1

Total CPA 14.174,16 Total costs per activity

Laptop 670

Hardware costs of desktop and EPI servers use.

2 Displays 452.54

Keyboard & mouse 22

Docking station 30

21

EPI servers 1.000

2 Modelsim licence 1995.01 Software used for simulations.

Electricity 450

Additional needs for the space at workplace.

Furniture 150

Internet Access 227

Total GC 6.991,00 Total of general costs.

Total CPA + Total GC 21.165,16 Total costs per activity plus general costs.

Total C 3.174,77 Total Contingency with a margin of 15 %

Total CPA + GC + C 24.339,93 Total CPA + GC + C

1 week Delay [IMP]
560 Cost: 40 h x 2[US] x 7 e/h. Risk: 40%

1 week Delay [VFY]

Total incidentals 1.120

TOTAL 25.459,93

3.1.1 Wages

Table 3.2 shows the wages of each role including social security tax. These wages are

used to calculate the Costs per Activity (CPA), Contingency and Incidents Costs.

To obtain the human resources cost for each task, we identified the cost of the roles

assigned to each task. This calculation is done with the salary of each role, the number of

people doing it and the amount of hours dedicated.

Note that the Undergraduate Student role has a contract of 1750 hours per year whereas

the Average Engineer has a contract of 1860 hours per year. The annual gross salary of

36.500 e for an Average Engineer is obtained from Jobted [13].

Table 3.2: Costs per activity (CPA)

Role Annual Salary (e) Annual Salary with SS (e) Price hour (e)
Undergraduate Student 14.000,00 18.200,001 8

Average Engineer 27.418,802 36.500,00 14,74

1 Obtained by multiplying by 1.3 the annual salary

2 Obtanied with a tool provided by El Pais [15]

22

3.2 Management Control

This section describes the mechanisms for controlling potential budget deviations. This

description will be accompanied with numerical indicators used for calculations used in

deviations.

The deviation of costs in human resources (HR) for each task described in the Gantt

diagram (CPA) is:

HR deviation = Cost per hour * (Estimated hours of dedication - Real hours of dedi-

cation)

As for the general costs (GC) it is useful to have the deviation with the amortization

process:

Amortization Deviation = (Estimated usage hours - Real usage hours) * Price per

hour

Another deviation that might occur could be with the material resources (MR). Thus

its formula is:

MR deviation = Estimated resources usage - Real resources usage

One of the biggest deviations could easily be the deviation of the Incidental cost. To

obtain it we use the following calculation:

Incidental cost deviation = (Estimated incidental hours - Real incidental hours) *

Total incidental hours

Lastly, to consider all the deviations as a hole we use the following calculus:

Cost Deviation = HR Deviation + Amortization Deviation + MR Deviation + Inci-

dental cost Deviation

The information provided by these indicators help to locate where the deviations in

the budget are. This allows to quickly overview how good the estimates are during the

project development.

23

4 Sustainability

This chapter studies how the project put into production (PPP) impacts society. This PPP

includes the planning, the development and the implementation of the project.

The study made in this chapter analyzes the PPP from three different points of view.

These are environmental, social and economic.

4.1 Environmental impact

Have you estimated the environmental impact that the project will have? Have you con-

sidered minimizing the impact, for example, by reusing resources?

First of all, the environmental impact of the PPP compared to the rest of process that

the product of this project will go through is insignificant. This is due to tasks being

very different in nature. While the result of the thesis is reached through simulations,

the process after it (fabrication) will directly involve mining, manufacturing, huge water

consumptions, etc.

During the development of this thesis, any task which has already been done by any

other coworker is reused thus minimizing computations.

Have you quantified the environmental impact of carrying out the project? What steps

have you taken to reduce the impact? Have you quantified this reduction?

The environmental impact of a hardware design project is challenging to measure. We

did not have the necessary tools to carry out such measurements when developing this

thesis.

Suppose we consider the circuit design produced rather than designing it; some related

parameters include circuit area and power consumption. These parameters have not been

analyzed in this thesis. However, they will be studied and optimized in future iterations

of the design.

24

If you did the project again, could you do it with fewer resources?

Probably yes. The main reason would be the reuse of knowledge, designs and the

development environment. These resources are worked to be scalable and instructive for

when the project needs to resume.

Will the project reduce the use of other resources? Overall, will the use of the project

improve or worsen the ecological footprint?

One of the most common uses of HPC is to simulate and predict. In most cases, this

process saves many resources. A great example could be the simulation of plane crashes.

Another example is the calculation of optimal solutions. HPC improve the results obtained

in this area, providing greater solutions, faster, and more accurate.

4.2 Economic impact

Have you estimated the cost of carrying out the project?

The cost of carrying out the project has been estimated. Considering the benefits

that come with the development of eProcessor, the costs are widely justified. Being able

to pursue such goals with this budgets is clearly an opportunity that BSC-CNS is taking

advantage of.

Has the expected cost been adjusted to the final cost? Have you justified the differ-

ences? The cost has been quantified by counting the dedication hours and the resources

used. The final cost has adjusted to the expected one. It has not been necessary to justify

any differences.

4.3 Social impact

What do you think the realization of this project will bring you on a personal level?

Regarding the technical side, an enormous learning of the procedures and method-

ologies used in the design and verification of Hardware. Regarding the industry, a first

glance over dynamics, interests and synergies required to push forward a project of this

kind. Last, but not least, an enrichment of the soft skills due to months of teamwork.

Has the realization of this project involved significant reflections on a personal, pro-

fessional or ethical level from the people who have intervened?

The most significant reflections have been about on a professional level. The develop-

ment of this project has given me the possibility to experience the process of designing a

25

hardware component for the first time. It has been a great opportunity to put into practice

the last 4 years of study and further test my curiosity and interest in the field.

Could scenarios occur that would make the project detrimental to some particular

segment of the population?

Lots of segments of the population can be affected by the product. The Hardware

industry makes tools. These tools can be used by many different people and with very

different intentions. Industries such as the oil and military ones might have great interest

in HPC, so can medical and social researchers. The manufacturing process might also be

detrimental to, for example, the workers from the factories, the miners, and many more

people involved in manufacturing the product if the working conditions are not correct.

26

5 Background

This chapter introduces some concepts from the ICN used in eProcessor that will be used

during this project. It describes the theoretical origin, the architecture in use and some

terminology.

5.1 AMBA

The Advanced Micro controller Bus Architecture (AMBA) bus protocols is a set of in-

terconnect specifications from the company ARM that standardizes on chip communica-

tion mechanisms between various functional blocks (or IP) for building high performance

SOC designs. The primary motivation of the AMBA protocols is to have a standard and

efficient way to interconnecting these blocks with re-use across multiple designs. [1]

Starting at 1995, AMBA 1 introduced Advanced System Bus (ASB) protocols for

high bandwidth interconnect and an Advanced Peripheral Bus (APB) protocol for low

bandwidth peripheral interconnects. Subsequent revisions of AMBA introduced various

protocols such as APB2, AHB, AXI3, AXI4, and ACE. Figure 5.1 shows the evolution of

AMBA protocols.

27

Figure 5.1: Evolution of AMBA protocols [1]

5.2 AMBA 5 CHI

The AMBA 5 revision introduced the Coherent Hub Interconnect (CHI) protocol as a

complete re-design of the AXI Coherence extension (ACE) protocol. CHI uses a layered

packet based communication protocol with support of Quality of Service (QoS) based

flow control and retry mechanisms. [1].

Since the start of CHI, multiple issues have been published. The current section is

based in the issue C.

5.2.1 Architecture overview

As mentioned earlier, CHI architecture provides a layered specification. This architecture

permits flexibility on the topology of the components connections, which can be driven

from the system performance, power, and area requirements [2, p. 18].

Some of the key features of the architecture are [2, p. 18]:

• Scalable architecture, enabling modular designs that scale from small to large sys-

tems.

• Independent layered approach, comprising of Protocol, Network, and Link layer,

with distinct functionalities.

• Packet-based communication.

28

Table 5.1: Layers of the CHI architecture [2, p. 19]

• All transactions handled by an interconnect-based Home Node that co-ordinates

required snoops, cache, and memory accesses.

• Both MESI and MOESI cache models with forwarding of data from any cache state.

• Error reporting and propagation across components and interconnect for system

reliability and integrity.

5.2.1.1 Layers

The specification differentiate three layers:

• Protocol.

• Network.

• Link

Table 5.1 describes the primary function of each layer.

5.2.2 Terminology

Transaction A transaction carries out a single operation. Typically, a transaction either

reads from memory or writes to memory [2, p. 21].

29

Packet The granule-of-transfer over the interconnect between endpoints. A message

might be made up of one or more packets. For example, a single Data response

message can be made up of 1 to 4 packets. Each packet contains routing informa-

tion, such as destination ID and source ID that enables it to be routed independently

over the interconnect. [2, p. 21]

Flit The smallest flow control unit. A packet can be made up of one or more flits. All the

flits of a given packet follow the same path through the interconnect. For CHI, all

packets consist of a single flit. [2, p. 21]

Requester A component that starts a transaction by issuing a Request message. The term

Requester can be used for a component that independently initiates transactions and

a component is also referred to as a master. The term Requester can also be used

for an interconnect component that issues a downstream Request message indepen-

dently or as a side-effect of other transactions that are occurring in the system. [2,

p. 21]

Completer Any component that responds to a transaction it receives from another com-

ponent. A Completer can either be an interconnect component or a component,

such as a slave, that is outside of the interconnect. [2, p. 21]

Slave An agent that receives transactions and completes them appropriately. Typically, a

slave is the most downstream agent in a system. A slave can also be referred to as a

Completer or Endpoint. [2, p. 21]

Protocol Credit A credit, or guarantee, from a Completer that it will accept a transaction.

[2, p. 22]

Link layer Credit A credit, or guarantee, that a flit will be accepted on the other side of

the link. A Link layer Credit (L-Credit) can be considered to be a credit for a single

hop at the Link layer. [2, p. 22]

ICN A short form of interconnect, which is the CHI transport mechanism that is used for

communication between protocol nodes. An ICN might include a fabric of switches

connected in a ring, mesh, crossbar, or some other topology. The ICN might include

protocol nodes such as Home Node and Misc Node. The topology of the ICN is

implementation defined. [2, p. 22]

30

RN Request Node. Generates protocol transactions, including reads and writes, to the

interconnect. [2, p. 22]

HN Home Node. Node located within the interconnect that receives protocol transac-

tions from Request Nodes, completes the required Coherency action, and returns a

Response. [2, p. 22]

SN Slave Node. Node that receives a Request from a Home Node, completes the required

action, and returns a Response. [2, p. 22]

IO Coherent node An RN that generates some Snoopable requests in addition to Non-

snoopable requests. The Snoopable requests that an IO Coherent node generates do

not result in the caching of the received data in a coherent state. Therefore, an IO

Coherent node does not receive any Snoop requests. [2, p. 22]

5.2.3 Transactions

As defined in Section 5.2.2, a transaction carries out a single operation. Typically, a

transaction either reads from memory or writes to memory. AMBA 5 CHI defines multiple

types of them. This section goes through the subset that are used in the thesis, describing

them as well as their structure.

5.2.3.1 Channels overview

Communication between nodes is channel based. Table 2-1 shows the channel naming

and the channel designations at the RN and SN nodes. [2, p. 32]

Table 5.2 shows the shorthand name and the physical channel name that exists on the

rn or sn component.

There are three different channels of interest, REQ, DAT, and RSP.The channel fields

of interest that have the same meaning across multiple channels are:

TgtID The node ID of the component to which the message is targeted. This is used by

the interconnect to determine the port to which the message is sent [2, p. 315].

SrcID The node ID of the component from which the message is sent. This is used by

the interconnect to determine the port from which the message has been sent [2, p.

315].

Opcode Specifies the operation to be carried out [2, p. 318].

31

Table 5.2: Channel naming and designation at the RN and SN nodes [2, p. 32].

Addr Specifies the address associated with the message [2, p. 322].

RespErr Indicates the state in the CompData sent from the Snoopee to the Requester [2,

p. 331].

The fields of interest exclusive to the REQ channel are:

Endian Indicates the endianness of Data in an Atomic transaction [2, p. 325].

Size Specifies the size of the data associated with the transaction [2, p. 323].

Order Specifies the ordering requirements for a transaction [2, p. 318].

MemAttr Memory attribute associated with the transaction [2, p. 323].

Excl Indicates that the corresponding transaction is an Exclusive type transaction [2, p.

325].

ExpCompAck Indicates that the transaction will include a CompAck response [2, p.

326].

The fields of interest exclusive to the DAT channel are:

DBID Data Buffer Identifier. The DBID field value in the response packet from a Com-

pleter is used as the TxnID for CompAck or WriteData sent from the Requester. In

Snoop responses with data pull, this field value indicates the value to be used in the

TxnID field of data pull response messages [2, p. 317].

32

Figure 5.2: ReadNoSnp and ReadOnce structure without Direct Data Transfer.
[2, p. 48]

BE Byte Enable. Indicates if the byte of data corresponding to this byte enable bit is

valid. [2, p. 333]

Data Data payload. This is the data payload that is being transported in a Data packet.

The data bus widths supported are: 128-bit, 256-bit, and 512-bit. [2, p.332]

5.2.3.2 Transaction structure

The operations used for read transactions are ReadNoSnp and ReadOnce.

ReadOnce Read request to a Snoopable address region to obtain a snapshot of the coher-

ent data [2, p. 143].

ReadNoSnp Read request by an RN to a Non-snoopable address region, or from HN to

obtain a copy of the addressed data from the Slave [2, p. 143].

The transaction structure is the same for both, ReadOnce and ReadNoSnp. Figure 5.2

illustrates the structure when no Direct Data Transfer is used. None of the read transac-

tions from this project include the ReadReceipt nor the CompAck messages.

33

The operations used for write transactions are WriteNoSnpFull, WriteNoSnpPtl, Write-

UniqueFull, and WriteUniquePtl.

WriteNoSnpFull/Ptl Write a full/partial cache line of data from an RN to a Non-snoopable

address region, or a write for a full cache line of data from Home to Slave [2, p.

150].

WriteUniqueFull/Ptl Write to a Snoopable address region. Write up to a cache line

of data to the next-level cache or memory when the cache line is Invalid at the

Requester [2, p. 150].

The transaction structure can be different between the two types of write operations.

Figure 5.3 show possible structures for WriteNoSnp.

Figure 5.3: Reduced WriteNoSnp transaction structure options [2, p. 58]

Figure 5.4 illustrates the slightly different transaction structure for WriteUnique. How-

ever, this project wont use the CompAck message. Setting the options this way, privides

the same structure for both, WriteUnique and WriteNoSnp.

34

Figure 5.4: Reduced WriteUnique transaction structure options [2, p. 60]

Figure 5.5: RN-I interface. [2, p. 305]

5.3 Link layer

Focusing on the node RN-I, the interface used consist of all the channels, with exception

of the SNP channel. A SNP channel is not required because an RN-I node does not include

a hardware-coherent cache or TLB. Figure 5.5 shows the RN-I interface. [2, 305]

Additionally, the design of the RN-I done in this project does not include the RSP

channel because it is not used.

Each channel have the same set of interface pins. Figure 5.6 shows the REQ channel

interface pins, where R is the width of REQFLIT. Figure 5.7 illustrates the time diagram

of a flit being sent.

35

Figure 5.6: REQ channel interface pins [2, p. 306]

Table 5.3: REQ channel interface signals [2, p. 306]

Information is transferred across an interface channel by the use of the Link layer

Credit (L-Credit). To transfer one flit from the transmitter to the receiver the transmitter

must have obtained an L-Credit. An L-Credit is sent from the receiver to the transmitter

by asserting the appropriate LCRDV signal for a single clock cycle. There is one LCRDV

signal for each channel. Each transfer of a flit from the transmitter to the receiver con-

sumes one L-Credit. The minimum number of L-Credits that a receiver can provide is

one. The maximum number of L-Credits that a receiver can provide is 15. [2, p. 339]

Figure 5.7: FLITPEND indicating a valid flit in next cycle [2, p. 341]

36

6 Interface proposal VPU - RN-I

This chapter describes a proposal for the interface between the VPU and the Request Node

(RN-I). The interface provides a custom way to communicate memory operations which

is far simpler than the method used to propagate them across the NoC.

Figure 6.1 illustrates the interface located in the emphasized connector between the

blocks ”Load/Store Unit” and ”CHI to L2 Cache”. Notice that the set of gray blocks

represents the VPU.

6.1 Modules involved

The following subsections identify the modules participating in the interface.

6.1.1 Load Store Unit (LSU)

This system is in charge of compiling needed information of memory operations and

propagate them to the Request Node. It also helps to maintain memory state according to

the RISC-V memory coherence model (RVWMO [16]).

6.1.2 IO coherent Request Node (RN-I)

This system is a bridge between the VPU and the NoC. It propagates the memory opera-

tions issued by the LSU by generating their corresponding AMBA 5 CHI transactions.

6.2 Transactions

This section gives an overview of the communication channels between the VPU and the

RN-I, the associated packet fields, and the transaction structure.

37

Figure 6.1: VPU block diagram

38

6.2.1 Channels overview

Communication between the VPU and the RN-I is channel based. Table 6.1 shows the

channel naming and the channel designations at the LSU and RN-I.

Table 6.1: Channel’s mapping and designation at the RN-I and VPU

Channel VPU channel designation RN-I channel designation
REQ TXREQ. Outbound Request. RXREQ. Inbound Request.

RDAT
RXDAT. Inbound Data.

Used for read data.

TXDAT. Outbound Data.

Used for read data.

RSP
RXRSP. Inbound Store Responses.

Used for store operations.

TXRSP. Outbound Store Responses.

Used for store operations.

WDATA
TXDATA. Outbound data.

Used for write operations

RXDATA. Inbound data.

Used for write operations.

6.2.2 Channel fields and Flit packet definitions

Table 6.2 details the payloads of the four channels previously described.

Table 6.2: Flit format and fields description

Channel Signal Width (b) Description

REQ

Tag 8 Transaction identifier

Opcode 2 Selects between Load/Store/StorePrl.

Addr 56 Specifies the address associated with the message.

Excl 1 Exclusive transaction type.

Attr 1 Selects between Device/Cacheable

RDAT

Tag 8 Transaction identifier.

Error 1 Error status.

Data 512 Requested data

RSP
Tag 8 Transaction identifier

Error 1 Error status.

WDATA

Kill 1 Cancel transaction.

Tag 8 Transaction identifier

Data 512 Data to be stored.

Be 64 Byte Enable mask.

39

6.2.2.1 Fields’ constraints

• Transactions issued through REQ channel must not have both Exclusive and Cacheable

fields selected.

• The Kill flag can only be asserted for WritePtl operations.

6.2.3 Transaction Structure

The transactions that this interface supports have two major classifications: Read and

Write. Each type of transaction has his own structure.

6.2.3.1 Read transaction structure

The transaction described in this subsection is used to carry out a read operation. The

progress of a the Read transaction is as follows:

1. The LSU sends a Read opcode on the REQ channel.

2. The RN-I sends a Load Response with the data requested through the RDATA chan-

nel.

There is one restriction that applies to Read transactions:

• The LSU can reuse the ”Tag” only after the response that uses it has been returned.

Figure 6.2 shows the transaction structure.

Figure 6.2: Read transaction structure.

40

6.2.3.2 Write transaction structure

The transaction described in this subsection is used to carry out a store operation. The

progress of a the store transaction is as follows:

1. The LSU sends a WritePtl opcode on the REQ channel.

2. The RN-I returns a response to indicate that it can accept the write data for the

transaction.

3. The LSU sends the write data and the associated byte enables. At this point, the

LSU is able to cancel the operation through the ”kill” WDATA channel field.

The Request/Response rules are:

• Write Data must only be sent by the LSU after the Store Response.

The following restrictions apply to Write transactions:

• The LSU can reuse the ”Tag” only after the Write Data that uses it has been sent.

• Two store operations are ordered only if the second one is started after the Store

Response from the first one is received.

Figure 6.3 shows the transaction structure.

Figure 6.3: Write transaction structure.

41

6.3 Flit fields Encodings

This subsection describes the different encodings from the channel fields. It includes the

field widths and a brief description of each value.

Table 6.3: REQ channel opcodes

Opcode[1:0] Request command
0x0 Read

0x1 Write

0x2 WritePtl

Table 6.4: Kill value encodings

Kill Description
0x0 Normal transaction.

0x1 Do not modify memory.

Table 6.5: Excl value encodings

Excl Description
0x0 Normal transaction.

0x1 Exclusive transaction.

Table 6.6: Attr value encodings

Attr Description
0x0 Cacheable. Looking up a cache is required.

0x1
Device. Indicates that the memory type associated with

the transaction is Device.

42

6.4 Request and acknowledge handshake

The synchronization mechanism is the same for all the channels. It consists of a valid/ack

type of handshake. This handshake transmits information whenever both, valid and ac-

knowledge signals are asserted. Figure 6.4 shows the signal behavior of a data transfer.

The number of cycles needed to transmit with this handshake is one.

Figure 6.4: Handshake of each channel between VPU and RN.

43

7 RN-I proposal

This chapter describes the design and verification of an IO coherent Request Node based

on the AMBA 5 CHI protocol which acts in demand through the interface described in

Chapter 6.

It starts by describing the operations it gives support to and how. It goes through the

significant AMBA 5 CHI protocol decisions and the overall operation structure chosen.

The design process proposes a top-level data flow followed by a deep dive into all the

modules’ architecture. Finally, a selection of test cases is analyzed to stress and check the

correct behavior of the design once implemented.

Figure 7.1, shows a simple representation of the RN-I port map. Note that the LSU

corresponds to the Load/Store Unit from Figure 6.1.

Figure 7.1: Connections of the Request Node.

7.1 Environment constraints

AMBA 5 CHI is a protocol specification rather large and complex. Moreover, key el-

ements inside the NoC , defined in AMBA 5 CHI, are optimized in terms of area and

44

latency. This optimization brings IP designers to choose carefully which parts of the pro-

tocol specification they should include instead of covering the whole specification.

Most of the other modules present in the NoC are already defined when designing

this module. In this situation, we should pay particular attention and reuse the already

implemented part of the specification whenever possible.

For the NoC of eProcessor, the element that adds these constraints is the host of the

second level of cache (L2). This element is a Home Node Full with the L2 cache, referred

from here on as L2HN. This node has a reduced selection of functionalities compared to

the full specification of the HN. Table 7.1 shows the subset of transactions that the L2HN

supports and can be used in a newly designed RN-I.

Table 7.1: L2HN Supported CHI opcodes and RN-I comatibles.

Channel L2HN Opcodes RN-I Compatibles

Request

(RX REQ)

ReadShared, ReadUnique,

ReadOnce,

ReadNoSnp, CleanUnique,

CleanShared, CleanInvalid,

WriteBackFull, WriteCleanFull,

WriteUniqueFull, WriteUniquePtl,

WriteNoSnpFull, WriteNoSnpPtl,

AtomicLoad, AtomicSwap,

MakeInvalid

ReadOnce, ReadNoSnp,

CleanShared, CleanInvalid,

WriteUniqueFull, WriteUniquePtl,

WriteNoSnpFull, WriteNoSnpPtl,

AtomicLoad, AtomicSwap,

MakeInvalid

Data

(RX DAT)

CopyBackWrData,

NonCopyBackWrData,

SnpRespData, WriteDataCancel

NonCopyBackWrData,

WriteDataCancel

7.2 Module operations

This section analyzes the transactions that the module RN-I will need to implement. This

set of transactions is deduced from the demands that the RN-I will receive through the

interface described in Chapter 6, thus being: Read, Write and Write Partial.

7.2.1 Read

This operation is used to retrieve 512 bits of data. The data retrieved can be from a device

memory type or a cacheable location. Exclusive access is also possible for device memory

45

types. The progress of the read transaction, regardless of their parameters, is as follows:

1. The VPU sends a Read request to the RN-I through the REQ channel.

2. The RN-I sends a Read request to the ICN through the CHI REQ channel with one

of the following opcodes:

• ReadNoSnp

• ReadOnce

3. The ICN returns to the RN-I the data and any associated transaction response with

the CompData opcode on the RDAT channel.

4. The RN-I responds to the VPU with the requested data and the processed error

status.

Figure 7.2 shows a read transaction of the RN-I.

Figure 7.2: Read transaction structure.

7.2.2 Write and WritePtl

These operations can write up to 512 bits, and in the case of WritePtl, they can have byte

granularity. The data can be written to a device memory type or a cacheable location. Ex-

clusive access is possible for device memory type. The progress of the write transactions

is as follows:

1. The VPU sends a Write request to the RN-I through the REQ channel with one of

the following opcodes:

• Load

• LoadPtl

46

2. The RN-I sends a request on the REQ channel with one of the following opcodes:

• WriteUniqueFull

• WriteUniquePtl

• WriteNoSnpFull

• WriteNoSnpPtl

3. The ICN has the following options:

• Return two separate responses:

– Return a DBIDResp response that provides a data buffer identifier indi-

cating that it can accept the write data for the transaction.

– Return a Comp response to indicate that the transaction is observable by

other Requesters.

• Return a CompDBIDResp response indicating both, (i) it can accept the write

data for the transaction, (ii) and that it is observable by other Requesters.

4. The RN-I waits until it has received one of the following responses:

• The CompDBIDResp associated with the transaction.

• DBIDResp associated with the transaction.

5. The RN-I tells the VPU, through the RSP channel, that it can send the write data

for the transaction.

6. The VPU sends the write data and any associated byte enables to the RN-I or op-

tionally it can cancel the operation with the Kill flag.

7. The RN-I has two options depending on the kill flag:

• If the Kill flag is asserted, forward the data with the byte deasserted.

• Otherwise, forward the write data and the associated byte enables.

Both options are sent with a WriteData opcode through the WDAT channel.

Figure 7.3 shows the write transaction structure of the RN-I.

47

Figure 7.3: Write transaction structure.

7.3 Circuit Design

This section explains the circuit’s design process to implement the operations described

previously.

Figure 7.4 shows the proposed data path at the top level of the RN-I. This figure uses

the acronyms REQ, RDAT, RSP, and WDAT to designate the main modules. Each module

is in charge of two channels, one coming from the VPU and another from the ICN. The

left module is a lookup table with two read ports, storing information needed to process

the incoming messages from the ICN.

Figure 7.4: Top module layout of the RN-I.

48

The following sections go through each module involved, describing the internal ar-

chitecture.

7.3.1 REQ module

The task of this module is to receive a request through the REQ channel of the VPU and

forward it to the REQ channel of the ICN in an AMBA 5 CHI compliant way. Figure 7.5

shows the proposed functional block diagram or architecture of the module.

Figure 7.5: REQ module circuit.

Control Logic Forwards the incoming request whenever the VPU requests it, and the

sending channel has credit. There is no need to delay the output of the control

logic, since the process required to obtain a valid CHI REQ flit is minimal.

Hardcoded fields This block sets all the CHI REQ flit fields that are fixed never change

their value. These values can be parameters from the ICN, the VPU, or unused

functionalities.

49

VPU to CHI This block processes the request made by the VPU and determines the Op-

code and Attr to be used in the CHI transaction. Table 7.2 defines the mapping

process.

Table 7.2: Mapping process made by the VPU to CHI block

I/F VPU-REQ CHI-REQ
opcode[1:0] attr[0:0] Opcode[5:0] MemAttr[3:0]

Load
0 ReadNoSnp 0010

1 ReadOnce 0100

Write
0 WriteNoSnpFull 0010

1 WriteUniqueFull 0100

WritePtl
0 WriteNoSnpPtl 0010

1 WriteUniquePtl 0100

Credit This block is a submodule already presented in multiple components of the NoC.

It implements the CHI credit system, holding the number of credits available into

a register and incrementing or decrementing it when necessary. The output of this

submodule tells whether the sender can use the channel. Figure 7.6 shows the credit

circuit.

Figure 7.6: Credit module circuit.

50

7.3.2 RDAT module

This module is in charge of the RDAT channel from CHI and the RDAT channel from the

VPU. Figure 7.7 shows the proposed functional block diagram of the module.

Figure 7.7: RDAT module circuit.

CHI RX Logic This block stores the incoming flit from the ICN along with some neces-

sary information in a FIFO. It has a two-cycle pipeline stage. In the first pipeline

stage, it performs a read from the Lookup Table shown in Figure 7.4, and in the

second pipeline stage, it writes to the FIFO. The FIFO in use is of type first-word

fall-through (FWFT). This type of FIFO always outputs the first element of the

queue with the valid signal asserted, if it is not empty. The size of the FIFO is the

maximum number of credits that the receiver can provide. This parameter is defined

across the ICN. Each entry of the FIFO stores the Excl bit read from the Lookup

Table with the following flit fields:

• RespErr

• Data

• TxnID

Flit processing This block is in charge of processing the incoming CHI flit and produc-

ing the corresponding load response for the VPU. Its only processing task consists

of interpreting the CHI field RespErr according to whether the transaction was ex-

clusive or not.

51

Control Logic The control logic of the module handles the progress of the received flits

from the ICN to the VPU. Whenever the VPU receives a load response, it removes

the entry from the FIFO and sends a credit through the CHI channel.

7.3.3 RSP module

The task of this module is to receive flits from the CHI-RSP channel, process them, and

propagate the result to the WDAT module and the VPU-RSP channel. The architecture of

this module is really similar to the RDAT module, because both perform a similar task.

The main difference is an additional link with the WDAT module used to propagate infor-

mation for write transactions. Figure 7.8 shows the proposed functional block diagram of

the module.

Figure 7.8: RSP module circuit.

Control Logic As described in Section 7.2.2, this module can receive three types of re-

sponses. Despite this, it is only needed to process: DBIDResp and CompDBIDResp.

The rest can be dropped without any further action. Once one of these two responses

is received, the module performs the following two actions:

• Send a store response to the VPU indicating that it can send the data to write.

• Inform the WDAT module about the TxnID and TgtID for the WriteData

packet.

Figure 7.9 shows the Control Logic, which is centralized. It differentiates in the

part corresponding to the detection of flits to process and the part corresponding to

the actuation.

52

Figure 7.9: Control Logic from the RSP module.

7.3.4 WDAT module

This module receives the store data from the VPU, the transaction information from the

module RSP builds the corresponding flit and sends it through the WDAT CHI channel.

Figure 7.10 shows the proposed functional block diagram of the module.

Figure 7.10: WDAT module circuit.

53

Lookup Table WriteData info Stores the transaction information obtained from other

modules. The stored transaction information consists of the DBID and SrcID from

the RSP module and they are used as TxnID and TgtID of the WDAT flit, respec-

tively. The index used to access the information of the table is the Tag field from

the interface with the VPU described in Chapter 6.

Credit This module is already explained in Section 7.3.1.

Build flit This block is in charge of compiling all the information needed to build a CHI-

WDAT compliant flit. The required data at this module comes from the VPU-

WDAT channel and the Lookup Table. The build process can prepare a flit to per-

form the write operation or to cancel it,23 depending on the Kill flag. In case of

cancellation, the byte enable is deasserted, and the Opcode is set to WriteDataCan-

cel.

Control Logic This control logic is the same as the one explained in REQ module. The

only difference is that the propagation of the txdatflitv signal is not forwarded to

the ICN directly. In this case, an additional read operation to the Lookup Table is

performed, which adds a cycle delay to the signal.

7.3.5 Transaction lookup table

This table stores transaction information. The information stored is written as soon as a

new request arrives at the RN-I. The primary use of this information is to process incoming

flits from the ICN. The modules that have this requirement are RSP and RDAT. This setup

is accomplished with one write port controlled by the REQ module and two read ports

used by the RSP and RDAT modules.

The information stored in the lookup table is the excl flag associated with each trans-

action. It is later used to parse the CHI flit RespErr.

In the future, the transaction information stored in the table will likely grow as more

functionalities get added to the interface described in Chapter 6.

7.4 Verification

This section proposes a set of tests derived from the design and implementation of the

RN-I. These tests are divided into two groups. The first group focuses on testing the

54

RN-I’s design, and the second on integrating it with the NoC. The tests discussed in this

section were simulated with QuestaSim 2019.4, using a behavioral simulation model of

the Register Transfer Level (RTL).

The simulation environment is composed of three elements. These elements are the al-

ready mentioned RN-I as the Design Under Test (DUT), the NoC, and a non-synthesizable

module that emulates the VPU. The NoC corresponds to the one used in the EPI simula-

tion model. The AMBA 5 CHI components are HN-F, SN-F, and the remaining ICN units,

such as routers. Moreover, the ICN topology of the simulation model is a configurable-

size mesh. The NoC includes a monitoring system for all the AMBA 5 CHI channels.

The monitoring system provides a in-depth view of the messages sent from each node.

Figure 7.11 illustrates the ICN topology configured as a 4x4 mesh.

Figure 7.11: Mesh network configured as 4x4.

The monitor system registers any flit sent, including source, destination, and content.

Listing 7.1 shows the RN-I messages logged from the RN-I channels in a load operation.

55

Listing 7.1: Loging of the ICN channels from the RN-I in a load operation

50030000: rni(1) txn(1) sends ReadOnce req flit to ...

50030000: rni(1) txn(1) sends req flit: qos (0) ...

50030000: rni(1) txn(1) sends req flit: allowretry ...

51630000: rni(1) txn(1) gets COMP_DATA_I dat flit ...

51630000: rni(1) txn(1) gets dat flit: qos (0), ...

51630000: rni(1) txn(1) gets dat flit: dbid (1), ...

7.4.1 RN-I tests

The testing strategy consists of the following steps:

1. Modules are divided into functionalities and associated with logic blocks.

2. The test produces all legal combinations of the block’s input signals.

3. It checks a condition that, when passed, indicates the correct behavior of the block.

The test scenario is specially configured to be as light as possible to reduce simulation

time. This environment is composed of the smallest mesh, populated with two RN-Is, one

HN-F, and one SN-F containing the memory. The tests are carried out with an additional

non-synthesizable module connected to one of the RN-Is through the interface described

in Chapter 6. This module will stimulate the RN-I to produce the appropriate test patterns.

Figure 7.12 shows the defined layout of the mesh.

The base test consists of a sequence of stores to a region of memory followed by a

series of loads retrieving it. The test passes if the data retrieved matches the data stored.

The following test cases proposed focus on corner cases since the base test already verifies

the correctness of most parts of the design.

Figure 7.12: 2x2 mesh used to test the RN-I.

56

The blocks identified and their test cases are described below.

REQ Module In this module, it is possible to identify three blocks to test:

• Control Logic: The test generates a specific corner case, where the CHI chan-

nel runs out of credit. This case can be reached by maximizing the throughput

of the VPU-REQ channel and slowing down the rest.

• VPU to CHI: The test generates transactions with all the possible Opcodes

and Attr. Table 7.2 shows the complete list of combinations.

• Credit: This submodule was not developed in this thesis and is already veri-

fied.

RDAT Module In this module, it is possible to identify three blocks to test:

• CHI RX Logic: The base test verifies this logic.

• Flit Processing: The input information of this block comes from the ICN,

thus not allowing the test environment to efficiently stimulate the signals. The

easiest way to verify it is to simulate a simple setting where the block is a

stand-alone module.

• Control Logic: The test generates an corner case that has a low receiving

rate.

RSP Module In this module, it is possible to identify three blocks to test:

• CHI RX Logic: The base test verifies this logic.

• Flit Processing: The functionality from this block is already tested in RDAT

module.

• Control Logic: Some input signals of the block come from the ICN, which

limits the capabilities of the test environment. Despite this, the test lowers

the receiving rate from the VPU-RSP channel and traces ICN messages to

ensure that the module has dealt properly with CompDBIDResp, DBIDResp,

and Comp.

WDAT Module In this module it is possible to identify three blocks to test:

• CHI RX Logic: This logic is tested in the base test.

• Build flit: The test generates a sequence of stores where some of them use the

cancellation mechanism.

57

• Control Logic: The test generates different sending rates to make the CHI

channel run out of credit. To maximize the throughput, the VPU-WDAT chan-

nel stalls until a big enough queue of messages is ready to be sent. Once the

condition is met, it starts sending them, one per cycle. This pattern encounters

the capacity limitation of the HN, which sets the maximum transactions that

can be stopped at this point.

The test results showed that some bug fixes were needed across the design. Despite

this, no major flaws were encountered with the proposed design. Some of the fixes applied

consisted of:

• Ensuring correct management of the clock signal.

• Removal of some unnecessary CHI flit fields.

• Fixing some logic from the RSP Control Logic.

7.4.2 NoC with RN-I tests

This group of tests is intended to stress the NoC with the newly designed node. These

tests lay out different environments and stimulate the RN-Is to use the NoC at its limit.

For this group of tests, a special test pattern module is developed. Its goal is to produce

requests with address ranges and data sets that do not overlap. This goal is accomplished

by providing an additional parameter to the test pattern that uniquely identifies it. The

parameter is then used to calculate the offset of the range. The same principle is used with

the data set.

Multiple RN-Is In this environment both RN-Is have a Test Pattern module connected to

them. The mesh is the same as the one used previously.

Figure 7.13: 2x2 mesh with two acting RN-Is.

58

Multiple HN This environment uses a 4x4 mesh. It features sixteen RN-Is, sixteen HNs,

and four SNs. Only two of the RN-Is have Test Pattern modules connected to them.

The mesh image has been omitted for conciseness.

The test results showed a number of problematic cases. These problems concerned

different node types and were reported to the NoC maintainers.

Slave Node Two issues were encountered. The initialization process was managed in

such a way were the transactions received during that time where dropped without

any response or warning. The generation of DBID did not take into account multiple

RN-Is, thus mixing incoming transactions with the same TxnID, but from different

sources.

Home Node Some opcodes used by the RN-I were not implemented.

59

8 Conclusions

This thesis aimed to improve the memory path of the VPU, an accelerator in eProcessor.

This objective has been accomplished with a new memory path that reduces latency by

allowing the VPU to directly have access to the second level of cache (L2), rather than

its predecessor. The final path includes a request node for the NoC connected to the VPU

through a custom interface.

The obtained result opens up a range of possibilities for the VPU, as its memory path

does not go through the processor core anymore. The new interface also hides details of

the AMBA 5 CHI protocol from the NoC to allow greater flexibility in implementing the

VPU.

The AMBA 5 CHI Request Node, described in Chapter 7, is specially designed to

propagate operations coming from the VPU. It implements reads, writes, and partial writes

in an AMBA 5 CHI-compliant way. It also implements a cancellation mechanism that

allows the VPU to perform speculative memory operations. The design uses a modular

approach that facilitates new features in the future. Another positive aspect of the Request

Node is that, since it only serves the VPU, it is fully adaptable to its demands.

Based on the analysis of AMBA 5 CHI performed during the design and implementa-

tion of both the interface and the Request Node, it can be concluded that the new memory

path will easily meet its expectations in a mid to long-term future. The AMBA 5 CHI

protocol offers many options and functionalities yet to be used and experimented with,

such as the Early Write Acknowledgement (EWA).

8.1 Future Work

Even though the proposed memory path achieved the objectives of this thesis, some more

steps are still needed to be done in terms of architecture, integration, and development

environment.

60

1. The current design of the RN-I has a peculiarity regarding the channels where it

acts as a transmitter (TX). This peculiarity consists of each channel having a single

source event that causes a flit to be sent. For example, the source event that causes

a flit to be sent through the CHI-REQ channel is an incoming request from the

VPU-REQ channel. As functionalities get added, more source events will appear.

Continuing with the CHI-REQ channel example, if the RN-I were to implement the

retry mechanism, an incoming flit from the CHI-RSP channel could also be a source

event that causes a CHI-REQ flit to be sent. The described situation brings the need

to arbitrate resources like the CHI-REQ channel. With all this said, a future archi-

tectural task will be the addition of arbiters to the resources that encounter structural

risks and adapt the modules’ control logic, ensuring good forward progress for the

transactions.

2. When finishing this thesis, the integration tests verified the RN-I model together

with the AMBA 5 CHI NoC. However, the VPU RTL model is not yet completed,

thus preventing including it in the process. This situation forces us to leave the

integration of the RN-I, the VPU, and the NoC as a future task.

3. Finally, the simulation environment used to produce and evaluate test cases does

not scale comfortably. It is highly encouraged for future work to develop a more

sophisticated way of testing that further exploits the verification features available

by the technologies used to implement the models. This set of features could in-

clude constrained randomization, assertions, coverage support, or even consider

using Universal Verification Methodology (UVM).

61

References

[1] Anysylicon, “Understanding AMBA Bus Architechture and Protocols,” [Online]

.Available:https://anysilicon.com/understanding-amba-bus-architecture-protocols/,

Accessed on 2021-09-28.

[2] AMBA 5 CHI Architecture Specification, Arm Limited or its affiliates, 5 2018, rev.

C.

[3] digital-strategy, “European Processor Initiative: consortium

to develop Europe’s microprocessors for future supercomput-

ers,” [Online].Available:https://digital-strategy.ec.europa.eu/en/news/

european-processor-initiative-consortium-develop-europes-microprocessors-future-supercomputers,

Accessed on 2021-09-28.

[4] ——, “The European declaration on High-Performance Comput-

ing,” [Online].Available:https://digital-strategy.ec.europa.eu/en/news/

european-declaration-high-performance-computing, Accessed on 2021-09-28.

[5] ——, “The European High Performance Computing Joint Undertak-

ing,” [Online].Available:https://digital-strategy.ec.europa.eu/en/policies/

high-performance-computing-joint-undertaking, Accessed on 2021-09-28.

[6] bsc.es, “EPI: European Processor Initative (EPI),” [Online].Available:https://www.

bsc.es/research-and-development/projects/epi-european-processor-initative-epi,

Accessed on 2021-09-28.

[7] Thierry Breton, “How a European Chips Act will put Europe back in the tech race,”

[Online].Available:https://ec.europa.eu/commission/commissioners/2019-2024/

breton/blog/how-european-chips-act-will-put-europe-back-tech-race en, Accessed

on 2021-09-28.

62

[Online]. Available: https://anysilicon.com/understanding-amba-bus-architecture-protocols/
[Online]. Available: https://anysilicon.com/understanding-amba-bus-architecture-protocols/
[Online]. Available: https://digital-strategy.ec.europa.eu/en/news/european-processor-initiative-consortium-develop-europes-microprocessors-future-supercomputers
[Online]. Available: https://digital-strategy.ec.europa.eu/en/news/european-processor-initiative-consortium-develop-europes-microprocessors-future-supercomputers
[Online]. Available: https://digital-strategy.ec.europa.eu/en/news/european-declaration-high-performance-computing
[Online]. Available: https://digital-strategy.ec.europa.eu/en/news/european-declaration-high-performance-computing
[Online]. Available: https://digital-strategy.ec.europa.eu/en/policies/high-performance-computing-joint-undertaking
[Online]. Available: https://digital-strategy.ec.europa.eu/en/policies/high-performance-computing-joint-undertaking
[Online]. Available: https://www.bsc.es/research-and-development/projects/epi-european-processor-initative-epi
[Online]. Available: https://www.bsc.es/research-and-development/projects/epi-european-processor-initative-epi
[Online]. Available: https://ec.europa.eu/commission/commissioners/2019-2024/breton/blog/how-european-chips-act-will-put-europe-back-tech-race_en
[Online]. Available: https://ec.europa.eu/commission/commissioners/2019-2024/breton/blog/how-european-chips-act-will-put-europe-back-tech-race_en

[8] eprocessor.eu, “About,” [Online].Available:https://eprocessor.eu/about/, Accessed

on 2021-09-28.

[9] wikipedia.org, “RISC-V,” [Online].Available:https://en.wikipedia.org/wiki/

RISC-V, Accessed on 2021-09-28.

[10] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach Fifth Edition. Elsevier, 2012.

[11] arm.com, “AMBA 5 Overview,” [Online].Available:https://developer.arm.com/

architectures/system-architectures/amba/amba-5, Accessed on 2021-09-28.

[12] R. Espasa and P. Marcuello and A. Moreno and S. Pomata, “AVISPADO - VPU Inter-

face,” [Online].Available:https://semidynamics.com/technology, Accessed on 2021-

09-28.

[13] jobted.es, “Sueldo del Ingeniero Informático en España,” [Online].Available:https:

//www.jobted.es/salario/ingeniero-inform%C3%A1tico, Accessed on 2021-09-28.

[14] intel.com, “Buy Modelsim,” [Online].Available:https://buyfpga.intel.com/

PartDetail?partId=2021454, Accessed on 2021-09-28.

[15] elpais.com, “Herramientas financieras,” [Online].Available:https://cincodias.elpais.

com/herramientas/calculadora-sueldo-neto/#tabla resultados, Accessed on 2021-

09-28.

[16] five-embeddedv, “14 RVWMO Memory Consistency Model, Version 2.0,”

[Online].Available:https://five-embeddev.com/riscv-isa-manual/latest/rvwmo.html,

Accessed on 2021-09-28.

63

[Online]. Available: https://eprocessor.eu/about/
[Online]. Available: https://en.wikipedia.org/wiki/RISC-V
[Online]. Available: https://en.wikipedia.org/wiki/RISC-V
[Online]. Available: https://developer.arm.com/architectures/system-architectures/amba/amba-5
[Online]. Available: https://developer.arm.com/architectures/system-architectures/amba/amba-5
[Online]. Available: https://semidynamics.com/technology
[Online]. Available: https://www.jobted.es/salario/ingeniero-inform%C3%A1tico
[Online]. Available: https://www.jobted.es/salario/ingeniero-inform%C3%A1tico
[Online]. Available: https://buyfpga.intel.com/PartDetail?partId=2021454
[Online]. Available: https://buyfpga.intel.com/PartDetail?partId=2021454
[Online]. Available: https://cincodias.elpais.com/herramientas/calculadora-sueldo-neto/#tabla_resultados
[Online]. Available: https://cincodias.elpais.com/herramientas/calculadora-sueldo-neto/#tabla_resultados
[Online]. Available: https://five-embeddev.com/riscv-isa-manual/latest/rvwmo.html

	List of Figures
	List of Tables
	Contextualization and Scope of the project
	Context
	eProcessor

	Terms and concepts
	European Processor initiative
	RISC-V
	Vector Architecture
	Vector Processing Unit
	Network on Chip
	Memory hierarchy
	AMBA 5 CHI
	Request Node

	Motivation
	Accelerators

	Stakeholders
	BSC
	Scientific community

	Justification
	Project scope
	Objectives
	Requirements
	Obstacles and risks

	Methodology and rigour
	Task management
	Shared Google Drive
	Code repository
	Meetings

	Time planning
	Project Management
	Project Development
	Familiarize with RN-I from AMBA 5 CHI
	Familiarize with the Vector Processor Unit
	Define an interface between VPU and RN-I
	Design a model for the RN-I
	Implement the design of the RN-I
	Additional verification process

	Human and material resources
	Estimates and Gantt representation
	Tasks summary
	Risk management: alternative plans and obstacles
	Changes in the planning

	Budget
	Identification of Costs
	Wages

	Management Control

	Sustainability
	Environmental impact
	Economic impact
	Social impact

	Background
	AMBA
	AMBA 5 CHI
	Architecture overview
	Layers

	Terminology
	Transactions
	Channels overview
	Transaction structure

	Link layer

	Interface proposal VPU - RN-I
	Modules involved
	Load Store Unit (LSU)
	IO coherent Request Node (RN-I)

	Transactions
	Channels overview
	Channel fields and Flit packet definitions
	Fields' constraints

	Transaction Structure
	Read transaction structure
	Write transaction structure

	Flit fields Encodings
	Request and acknowledge handshake

	RN-I proposal
	Environment constraints
	Module operations
	Read
	Write and WritePtl

	Circuit Design
	REQ module
	RDAT module
	RSP module
	WDAT module
	Transaction lookup table

	Verification
	RN-I tests
	NoC with RN-I tests

	Conclusions
	Future Work

	References

