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Abstract

According to Wikipedia; The vehicle routing problem (VRP) is a combinatorial integer
programming and optimisation problem that asks ”What is the optimal set of routes that
a fleet of vehicles should travel to deliver to a given set of customers?”.

Many years have passed since Dantzig and Ramser introduced this problem in 1959. They
described a real-world application concerning the delivery of gasoline to service stations
and proposed the first mathematical programming formulation and algorithmic approach.
But even so, route optimisation is now more important than ever. Large delivery compa-
nies invest a lot of their capital in VRP consultancy, knowing the most optimal route to
deliver saves you a lot of time and money.

This project attempts to solve a route planning problem. This problem is based on the
primary notions of a TSP (Travel Salesman Problem). Tries to solve a problem where we
are in a city on an e-scooter and we want to visit a number of places in that city in the
shortest possible time.

To reach all the places that are a goal for you, the battery of the e-scooter has to be
considered, as it is decreasing through the distance travelled. So you have to consider if
it is worth to deviate from the fastest route to take another e-scooter that has enough
battery to reach the next destination, changing e-scooter adds extra time (time in which
you change from one e-scooter to another).

The goal of the thesis is to design and implement an algorithm solving the problem, i.e.
that shows you the fastest route and the time it takes to visit all destinations in the
shortest possible time.
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Resum

Segons la Viquipèdia; El problema d’enrutament de vehicles (VRP) és un problema com-
binatori de programació sencera i optimització que es pregunta ”Quin és el conjunt òptim
de rutes que ha de recórrer una flota de vehicles per lliurar a un conjunt donat de clients?”.

Han passat molts anys des que Dantzig i Ramser van introduir aquest problema en 1959.
Van descriure una aplicació del món real relativa al lliurament de gasolina en estacions de
servei i van proposar la primera formulació de programació matemàtica i un enfocament
algoŕıtmic. Però tot i això, l’optimització de rutes és ara més important que mai. Les grans
empreses de repartiment inverteixen gran part del seu capital en consultories de VRP, ja
que conèixer la ruta òptima per al repartiment els hi estalvia molt de temps i diners.

Aquest projecte tracta de resoldre un problema de planificació de rutes. Aquest problema
es basa en les nocions primàries d’un TSP (Problema del viatger). Tracta de resoldre un
problema en el qual ens trobem en una ciutat en un e-scooter i volem visitar una sèrie de
llocs d’aquesta ciutat en el menor temps possible.

Per arribar a tots els llocs que són un objectiu per a tu, cal tenir en compte la bateria
de l’e-scooter, ja que va disminuint amb la distància recorreguda. Aix́ı que cal considerar
si val la pena desviar-se de la ruta més ràpida per agafar un altre e-scooter que tingui
prou bateria per arribar a la següent destinació, el canvi d’e-scooter afegeix temps extra
(temps en el qual es canvia d’un e -scooter a un altre).

L’objectiu de la tesi és dissenyar i implementar un algoritme que resolgui el problema, és
a dir, que li mostri la ruta més ràpida i el temps que triga a visitar totes les destinacions
en el menor temps possible.
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Resumen

Según la Wikipedia; El problema de enrutamiento de veh́ıculos (VRP) es un problema
combinatorio de programación entera y optimización que se pregunta ”¿Cuál es el con-
junto óptimo de rutas que debe recorrer una flota de veh́ıculos para entregar a un conjunto
dado de clientes?”.

Han pasado muchos años desde que Dantzig y Ramser introdujeron este problema en
1959. Describieron una aplicación del mundo real relativa a la entrega de gasolina en esta-
ciones de servicio y propusieron la primera formulación de programación matemática y
un enfoque algoŕıtmico. Pero aún aśı, la optimización de rutas es ahora más importante
que nunca. Las grandes empresas de reparto invierten gran parte de su capital en la con-
sultoŕıa de VRP, ya que conocer la ruta más óptima para el reparto les ahorra mucho
tiempo y dinero.

Este proyecto trata de resolver un problema de planificación de rutas. Este problema se
basa en las nociones primarias de un TSP (Problema del viajante). Trata de resolver un
problema en el que nos encontramos en una ciudad en un e-scooter y queremos visitar
una serie de lugares de esa ciudad en el menor tiempo posible.

Para llegar a todos los lugares que son un objetivo para ti, hay que tener en cuenta la
bateŕıa del e-scooter, ya que va disminuyendo con la distancia recorrida. Aśı que hay que
considerar si merece la pena desviarse de la ruta más rápida para coger otro e-scooter
que tenga suficiente bateŕıa para llegar al siguiente destino, el cambio de e-scooter añade
tiempo extra (tiempo en el que se cambia de un e-scooter a otro).

El objetivo de la tesis es diseñar e implementar un algoritmo que resuelva el problema, es
decir, que le muestre la ruta más rápida y el tiempo que tarda en visitar todos los destinos
en el menor tiempo posible.
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1 Introduction

1.1 Statement of purpose

The goal of the thesis is to design and implement an algorithm solving an e-scooter route
planning problem, and to make an evaluation of the algorithm to see how it behaves in
different scenarios.

What motivated me to do this project is that more and more we need to get to places
quickly. We waste a lot of our time commuting between home and work for example.

I wanted to find a problem that was based on route optimisation for vehicles. Especially
electric vehicles, as I consider them to be the future.

In this way, I could learn new fields that I consider to be of vital importance. Large
delivery companies are constantly looking to optimise the delivery route of their vehicles,
as it saves time and money.

I have chosen to make this route planning problem about e-scooters for the following
reason. This reason is that it is a transport vehicle that anyone can use as no licence is
needed.

1.2 Requirements and specifications

• Requirements:
If I wanted to solve a route planning problem. First of all, I had to have a route
planning problem. At least an idea of what route planning problem I could solve. So,
I together with Marek Cuchý came up with the idea to come up with the following
problem to solve.

Basic structure of the problem:

1. Map of the city. We have a map to work on.

2. Location of e-scooters. Across the map, we have e-scooters randomly placed
at different points on the map.

3. List of places. The starting point and the goals where the user wants to go
are located on top of the same map.

Once we have the environment set up, we want to find the fastest route to all the
goals the user wants to visit. To do this, we have to take into account the distance
from the origin to the sites to be visited and the battery of the e-scooter

• Specifications:
Now we have an idea of what problem to solve. For this project, what came next
was to construct the problem and solve it.
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We could separate the type of search into two parts, one for the construction of the
problem and one for the solution itself. We would have to do an intensive study
on data structures, specifically in Java for the construction of the problem. Then
another intensive study on search algorithms for the solution of this problem. In
addition, when it came to doing the research on these algorithms, it forced me to
carry out other types of search that you will see later on, such as heuristic distances.

1.3 Methods and procedures

This project is made from scratch, it is not the continuation of any project. This project
was proposed by Marek Cuchý from CTU to the student Marc Gracia i Riera from ET-
SETB degree of UPC and accepted by Juan José Costa Prats from UPC.

From CTU, through Marek Cuchý, a Python script was provided to Marc Gracia i Riera.
This Python script allows downloading OSM1 data from a given region by entering its
coordinates, processing them and converting them into a graph. The graph is saved in
geojson files. The Python script is executed in the text editor Sublime Text 3.

The rest of the project is done in Java language in NetBeans IDE by Marc Gracia i Riera.

1.4 Work Plan

The methodology to organize the project is the same used at the rest of the degree.
The project is splitted in a work breakdown structure with different work packages. A
Gantt diagram is elaborated taking in account that changes on time plan may depend
on circumstances such as machines maintenance, broken samples or other inconveniences
that we cannot control.

1https://learnosm.org/en/osm-data/data-overview/
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1.4.1 Work Breakdown Structure

Figure 1: Work Breakdown Structure

1.4.2 Milestones

WP Short title Milestone/deliverable Date (week)
1 Idea Problem DOC about project idea 08/02/2021
2 OSM Data and Script Script and map 22/02/2021
3 Studies - 28/02/2021
4 Data Structure/Algorithm Netbeans Project 05/05/2021
5 Idea experiments DOC about experiments idea 20/05/2021
6 Testing experiments and conclusions Charts and conclusions DOC 10/06/2021

Table 1: Milestones
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1.4.3 Gantt Diagram

Figure 2: Gantt Diagram

1.5 Deviations of the original plan and and incidences

The project started in mid-February 2021. This year has been particularly complicated
due to the SARS Covid-19 pandemic. The limitations of mobility, prevention measures and
other things derived from it, made us adapt our timetable to the government’s indications.
However, we were aware of this problem from the beginning, so adapting the work plan
was not a big problem.

The project started very well, I knew what to do each week and was keeping to the
timetable as planned. A month and a bit into the project, I started to get stuck. I didn’t
know what algorithm; Dijkstra, A*, ... my algorithm would be based on, every week I was
changing algorithm and data structure. It felt like every week I was starting the project
all over again.

Once I had decided on which algorithm I was going to base it on, and I had the data struc-
ture well thought out. The problems started when it came to knowing how to implement
it. All these problems caused me to fall behind with the project.

However, I overcame all these problems and managed to get the project on time.
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2 State of the art of the technology

In this section we will explain three theoretical aspects necessary for the realisation of the
project. We will talk about basic data structures, search algorithms and heuristics needed
to solve our project.

2.1 Some Data Structures

Data structures are a way of organising data in the computer in such a way as to allow
us to perform operations with it in a very efficient way. Depending on the algorithm we
want to execute, there will be times when it is better to use one data structure or another
structure that allows us more speed.

Therefore, it is very important to know what kind of data structures we can have. In this
way, make a study of them to know which data structure suits you for your algorithm.
Much of the information below is taken from Book [1].

2.1.1 Linked List

The Simple Linked List is the most fundamental pointer-based data structure, and the
other data structures are derived from its fundamental concept.

The linked list allocates space for each separate element in its own block of memory, called
a node. The list connects these nodes using pointers, forming a string-like structure.

A node is an object like any other, and its attributes will do the work of storing and
pointing to another node. Each node has two attributes: a ”content” attribute, used to
store an object; and a ”next” attribute, used to refer to the next node in the list.

Figure 3: Linked List Diagram

2.1.2 Stack

The stack is a structure based on the LIFO concept, i.e. the last element in is the first
element out. Stack is a very simple data structure.
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Imagine you have a toy gun that shoots balls, and, to load it, you have to feed the balls
one by one down the front of the gun barrel, one after the other. The first ball you shoot
will be the last one you put in, and the last one you shoot will be the first one you put
in. That’s a stack.

The implementation of a stack is very similar to that of a linked list, and only differs in
the way we manage the stored elements. In a stack, we will create methods that fulfil the
functions outlined below and clarified with Fig. 4, i.e. one method that adds a node to
the top of the stack and one method that removes the first node from the stack. For this
implementation, the nodes will be instances of the Node class, defined in the same way
as we defined it for the linked list.

Figure 4: Stack Diagram

2.1.3 Queue

The queue is a structure based on the FIFO concept, i.e. the first item in is the first item
out.

Like stacks, the implementation of the queue is very similar to that of the linked list, and
differs only in the way we manage the stored elements. In a queue, we will create methods
that fulfil the functions outlined below and clarified with Fig. 5, i.e. a method that adds a
node to the back of the queue and a method that removes the first node from the queue.

17



Figure 5: Queue Diagram

2.1.4 Graph

From the concepts explained above, with special mention of the linked list concept, we
can construct a graph.

A graph is a non-empty set of objects called vertices (or nodes) and a selection of pairs
of vertices, called edges, which can be oriented or not. Typically, a graph is represented
by a series of points (the vertices) connected by lines (the edges). In addition, edges can
have a weight.

There are many types of graphs, but we won’t go into too much depth here; this article
[2] explains graph theory in more detail.

Figure 6: Graph Diagram

If you are interested in learning more about data structures in Java, I recommend this
article [3].
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2.2 Search Algorithms

A search algorithm can have many functionalities depending on the context. In our con-
text, we will use it to find a solution in a data structure.

In this section we will focus on two search algorithms, Dijkstra and A*, which have been
studied for this project. Later, we will explain the travelling salesman problem, a problem
that inspired us to solve ours.

2.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm [4]. Also called the minimum paths algorithm, it is an algorithm for
determining the shortest path given a source vertex to the rest of the vertices in a graph
with weights on each edge. Its name refers to Edsger Dijkstra, who first described it in
1959.

• It is a greedy algorithm.

• It works in stages, and takes the best solution at each stage without considering
future consequences.

The Dijkstra algorithm is solved as follows:
Given a weighted directed graph of N non-isolated nodes and with non-negative weights,
let x be the initial node, a vector D of size N will store at the end of the algorithm the
distances from x to the rest of the nodes.

1. Initialise all the distances in D with an infinite relative value since they are unknown
at the beginning, except that of x which must be set to 0 since the distance from x
to x would be 0.

2. Let a = x (we take a as the current node).

3. We traverse all adjacent nodes of a, except for the marked nodes, we will call these
unmarked nodes Vi.

4. For the current node, we calculate the tentative distance from that node to its
neighbours with the following formula: dt(Vi) = Da + d(a, Vi). That is, the tentative
distance of node Vi is the distance that node currently has in vector D plus the
distance from node a (the current node) to node Vi. If the tentative distance is less
than the distance stored in the vector, we update the vector with this tentative
distance. That is: If dt(Vi) < DV i → DV i = dt(Vi).

5. We mark node a as complete.

6. We take as the next current node the one with the smallest value in D (this can
be done by storing the values in a priority queue) and go back to step 3 as long as
there are unmarked nodes.

Once the algorithm is finished, D will be completely full.

In this paper [5], an interesting application of the Dijkstra algorithm for the planned route
of a robot is carried out.
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2.2.2 A* Algorithm

A* [6] is an intelligent or informed search algorithm that searches for the shortest path
from an initial state to the goal state through a data structure, using admissible heuristics.

An admissible heuristic is the one that guarantees the finding of an optimal path between
the start node and the goal node, if such a path exists. In the search A* an admissible
heuristic is one that does not overestimate the remaining distance between the current
node and the target node.

A* is an informed algorithm that bases its behaviour on the evaluation of a function
expressed as follows:

• g(n) ≡ the cost of the distance made from the origin node to the current node

• h(n) ≡ the heuristic function. It represents the estimated cost of the best path from
the current node to the goal node.

• f(n) = g(n)+h(n) ≡ this sum gives an approximate distance from the origin to the
target.

In pathfinding, the heuristic function is usually the straight path to the goal, since no
matter what the map is like.

In addition, I extracted a lot of important information through paper [7], like the concept
of open and closed list for nodes. This paper gives us a visualisation of A* search at the
multi-objective level.

2.2.3 Dijkstra vs. A*

A* is generalization of Dijkstra, the only difference is that A* tries to search for a best
path by using a heuristic function that gives priority to nodes that are supposed to be
better than others, while Dijkstra simply explores more sub paths. This is because in the
function f(n) = g(n) + h(n), h(n) = 0 in Dijkstra

The optimum depends on the heuristic function used, can may return a sub-optimal result
because of this and at the same time, the better the heuristic for your specific design,
the better the result (and possibly the speed). If the heuristic is admissible, A* finds an
optimal solution

It is bound to be faster than Dijkstra even if it requires more memory and more operations
per node, as it scans far fewer nodes and the gain is good in any case, but not always
happen. So, we have to consider that may we can have a consistent heuristic that however
takes a lot of time to calculate which can make Dijkstra’s algorithm faster in practice.

This paper [8] makes a real comparison between the Dijkstra algorithm and A*, which
I find very interesting. It makes you see from another perspective their utilities when it
comes to search.
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2.2.4 Travelling salesman problem

The following information is extracted from the following paper [9].

• TSP’s description: We have a number of nodes (cities, towns, localities, shops, com-
panies, etc.) connected by edges with a weight that must be visited by an entity
(person, travelling agent, car, plane, bus, etc.), without visiting the same node twice.
If we have 3 nodes (a, b and c) to visit, then we would have a function of permuta-
tions c(3,2), that is, we would have 6 possible solutions: abc, acb, bac, bca, cab, cba,
for the case of 4 nodes we would have 12 combinations, for 10 nodes we would have
90 combinations, for 100 cities we would have 9,900 combinations and so on. As an
example in the problem of Homer’s Ulysses who tries to visit the cities described in
the Odyssey exactly once (16 cities) where there are multiple connections between
the different cities, Grötschel and Padberg (1993) came to the conclusion that there
are 653,837’184,000 different routes for the solution of this problem.

• Basic Algorithm: The TSP is considered as a set of graphs whose edges are the
possible paths that the entity can follow to visit all the nodes, and whose algorithm
can be represented as follows:

Algorithm 1 Algorithm based on a Travelling Salesman Problem

1: procedure (INPUT)C(i, j)→ i, j = 1..N . Number of cities N and array of costs
(weights between the nodes), we begin from city number 1

2: Starting values
3: C ← 0
4: cost← 0
5: visits← 0
6: e← 1 . e = pointer of the visited city
7: for r = 1 to N − 1 do
8: Choose of pointer j with
9: minimum = C(e, j) = min C(e, k); visits(k) = 0 and k = 1..N

10: cost = cost+minimum
11: e = j
12: C(r) = j

13: C(n)← 1
14: cost = cost+ C(e, 1)
15: OUTPUT . Vector of cities and total cost

• Characteristics: The TSP is classified as a Combinatorial Optimisation Problem, i.e.
it is a problem involving a certain number of variables where each variable can have
N different values and whose number of combinations is exponential, which gives
rise to multiple optimal solutions in theory (solutions that are calculated in a finite
time) for an instance.

TSP is a problem considered difficult to solve, being called in computational lan-
guage NP-Complete, that is, it is a problem for which we cannot guarantee that the
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optimal solution will be found in a reasonable computational time. Different methods
are used to provide a solution, among which the main ones are called meta-heuristics
whose objective is to generate good quality solutions in much shorter computation
times (time-response optimal solutions).

As we can see, this problem bears some resemblance to our own. Like us, in this problem
you are given certain places to reach in an optimal way, getting to all the places as quickly
as possible.

Figure 7: example of TSP solution

2.3 Heuristics

When I discovered the A* algorithm. I understood that the key to a good performance
of its algorithm was to find a good method of calculating heuristic distances between two
points. So I had to do an intensive research for heuristic distance calculations in case I
finally chose to base my algorithm on the A* algorithm.

• What is a heuristic distance?
Heuristics are criteria, methods or principles for deciding which of a number of
actions promises for deciding which of several actions promises to be the best to
achieve a given goal.
The use of heuristics allows us to guide our search for a solution. Which will allow
us to us to obtain a solution more quickly than if we blind search strategies.
In search problems:
- A heuristic heuristic is be a function that we will use to estimate how close we are
to the goal.
- Each heuristic will be designed for a particular search problem. Hence, we first
have to do a study to see what type of heuristic can best suit our project.
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After a long research. I found three methods for calculating heuristic distances between
two points. In my case, these two points would be two nodes within my graph. These
three methods are: euclidian distance, Manhattan distance and haversine distance.

2.3.1 Euclidian distance

The Euclidean distance is a positive number that indicates the separation of two points
in a space where the axioms and theorems of Euclidean geometry are satisfied.

The distance between two points A and B in a Euclidean space is the length of the vector
AB belonging to the only straight line passing through these points.

Two-dimensional Euclidean space is a plane. The points of a Euclidean plane satisfy the
axioms of Euclidean geometry, for example:

- A single straight line passes through two points.
- Three points on the plane form a triangle whose internal angles always add up to 180°.
- In a right triangle the square of the hypotenuse is equal to the sum of the squares of its
legs.

In two dimensions a point has X and Y coordinates.

For example a point P has coordinates (xP , yP ) and a point Q coordinates (xQ, yQ).
The Euclidean distance between point P and Q is defined by the following formula:

d(P,Q) =
√

(Xq −Xp)2 + (Yq − Yp)2

It should be noted that this formula is equivalent to the Pythagorean theorem, as shown
in Figure 8.

Figure 8: The distance between two points P and Q in the plane satisfies the Pythagorean theorem.
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2.3.2 Manhattan distance

The Manhattan distance tells us that the distance between two points is the sum of the
absolute differences of their coordinates. That is, it is the sum of the lengths of the two
legs of the right triangle. Something like the length of any staircase going up from A to
the point B. A route linking point A and B through horizontal and vertical segments.

The Manhattan distance is based on the calculation of the Euclidean distance plus the
possibility of avoiding obstacles. It is always a longer distance, but it is closer to a real
distance. As long as, between those two points in real life you can encounter obstacles if
you go in a straight line.

A clear example is Barcelona’s Eixample, Fig.9. If you go in a straight line between two
points that do not have a slope of 0 with respect to the coordinate axes you will crash
into the buildings. On the other hand, if you apply the Manhattan distance, the
distance is longer but you avoid crashing into the buildings.

Figure 9: Eixample de Barcelona

It can be perfectly understood thanks to figure 10. Where the difference between the
two heuristics is shown graphically.
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Figure 10: In Euclidean geometry, the green line has length 6×
√

2≈ 8.48, and is the only shortest
path. In Manhattan geometry, the other lines have length 12, so it is not shorter than the other paths.

2.3.3 Haversine distance

The haversine formula is an important equation for astronomical navigation, in terms of
calculating the great-circle distance between two points on a globe by knowing their
longitude and latitude. It is a special case of a more general formula of spherical
trigonometry, the haversine law, which relates the sides and angles of ”spherical
triangles”.

25



Figure 11: Representation of ”spherical triangles”.

For the calculation of any pair of points on a sphere. We can use the following formula.

haversin( d
D

) = haversin(ϕ1 − ϕ2) + cos(ϕ1)cos(ϕ2)haversin(4λ)

Where:

• haversin ≡ haversine’s function. haversin(θ) = sin2( θ
2
) = (1−cos(θ))

2

• d ≡ the distance between two points.

• R ≡ the radius of the sphere.

• ϕ1 ≡ the latitude of point 1.

• ϕ1 ≡ the latitude of point 2.

• 4λ ≡ the length difference.

Then, to find the distance d, it can be done simply as follows:

d = R ∗ haversin−1(h) = 2R ∗ haversin(
√
h)

Where:

• h is haversin(d/R)

The following article [10] is interesting, as it explains heuristic distances in transport
applications.
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3 Methodology / project development

This project, as mentioned above, is separated into two parts; the construction of the
problem and its solution.

After having done the intensive study for the two parts, it was time to get down to
work. We started by constructing the problem and then solving it.

3.1 Construction of the problem

The construction of the problem has two clear parts, the downloading of the map and
the uploading of input data to the map. We will explain these two parts step by step at
a high level. But it is worth mentioning that after intense study, we decided that the
best data structure we could have was a graph, with its vertices and edges with a
weight, this weight being the actual distance between the nodes.

3.1.1 Downloading the map

As mentioned above, I was given a script from the CTU. This script is written in
Python language.

The script allows you to download an area of the map from OSM. You enter the
coordinates of the map area you are interested in. Then, in a directory, two files in
geojson format2 are created for you. These files are the nodes and another one the edges
that join the nodes, allows you to build a graph.

In order to visualise a graphical representation of the graph we have just downloaded.
We use the software QGIS3; Quantum GIS is a programme for visualisation, editing and
analysis of data that makes up a geographic information system.

Thanks to QGIS we can visualise the geojson files that the script has just given us on an
OSM layer. In this way, we can see perfectly the distribution of the nodes of the graph
on the map. In addition, we can see the weight of the edges, which is the real distance
between nodes in centimetres. Also, it gives us more information, but it is not necessary
for our project.

In the picture below. We can see a small graph obtained from the Python script and
visualised from QGIS. You can see labels indicating the indexes of the nodes, and also,
the weight of the edges, as we said before, in centimetres.

2https://en.wikipedia.org/wiki/GeoJSON
3https://www.qgis.org/en/site/
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Figure 12: Visualisation of a graph in QGIS

3.1.2 How the input data is loaded

Once we have the geojson files, we have to load them into our programme in order to be
able to work with them.

To do this, as we said before, we will work with the Java language on Netbeans IDE.

To load these files, we will use the Jackson Java library4. Jackson is a java library that
allows us to convert classes to JSON text and vice versa. To do this we have to build
classes that have the same names as the attributes in the geojson files. In this way, we
can make the data in the files readable.

We use the Jackson library in a class called Graph. This class takes the data from the
files and returns a list of vertices.

We now have a graph built that allows us to start working on it. So all we need to do is
to add the e-scooters and the sites to be visited to the graph.

To do this, we will rely on a class called Vertex, to learn more about the Vertex class,
see the section 4.1. If we want a node to have an e-scooter or a place to visit, we take
the Vertex object that refers to that node. For it to have an e-scooter, we set a battery
value to that e-scooter and for it to be a place to visit, with a boolean we set that node
to be a place to visit.

3.2 Solution approach

We will now explain the main part of this project. The search algorithm. We are going
to explain how it is built, on which search algorithm it is based and its main functions.

First of all. We need to know what data we are passing to the algorithm. We pass two
pieces of data to the main function in charge of running the whole algorithm. A vertex

4https://www.tutorialspoint.com/jackson/index.htm

28



list, which is a list of all the loaded information that is not created in the algorithm.
That is, the vertex list comes with all the input data already loaded. In addition, the
other parameter that is passed to it is the source node.

For the construction of the algorithm, we have based ourselves on the A* search
algorithm but with multi-objectives, dominance and pareto-sets. Recall the basic
operation of the A* algorithm in section 2.2.2. Since we will use heuristic distances to
find in a faster way the target nodes. We will also apply Dijkstra, we just have to change
the heuristic distance to 0.

We will now focus on the description of the algorithm. We will go over how it works
with the support of a pseudocode. Finally, we will go in depth into three aspects of the
algorithm; how the time/distance is calculated, how the battery is calculated and the
concept of dominance.

3.2.1 Description of the algorithm

As mentioned above, our algorithm is based on the A* model. The basis of our
algorithm is a priority queue of states.

But what are states? States are objects that are created on vertices, and have 4 main
attributes; the index of the vertex, the actual time it takes from the origin to the current
node plus the heuristics and the current battery that the e-scooter has and the locations
that have been visited.

The states are stored in the priority queue prioritising the state with the least amount of
time to reach the next goal. Then, if the time between two states is the same, they are
ordered according to the battery prioritising the one with the highest battery is chosen
first. For a better understanding of states, I explain the State class in section 4.2. This
section goes into more detail about states, and their attributes.

We will now start by describing the algorithm without going into detail, but at a high
level. In section 3.2.3, there is the pseudocode of the algorithm that will help you to
follow the explanation.

Once we receive the graph and the source node, we can start. It is important to know
that in the graph, the places to visit are those that have the boolean Place set to true,
and that the e-scooters are located in those nodes where their battery is greater than 0.

To start solving the problem, the first thing to do is to arrange the order in which we
want to visit the goals entered by the user in a simple way, by the nearest neighbor. To
find out which locations are closer, we do this by calculating a heuristic distance
between nodes. After all the study done on the calculation of heuristic distances, we
decided to use Haversine because we understood that it was an admissible heuristic to
be able to solve our problem, see in section 2.3.3.

Now, starting from the origin vertex, we take out the origin state. To create a state, we
have to pass it all the necessary attributes of the vertex. Once we have this state, we
add it to the priority queue and to the open state list of the source vertex.
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The open list is for those states that we have not yet created new states of their
neighbours from this one. See section 3.2.2 in ”dominance section” for a better
understanding of how we sort this list.

We will now enter the loop. We will not exit this loop until the priority queue is
completely empty or found a solution.

Inside the loop, the first thing we have to do is to take the first state out of the queue.
From this state we pull out the next goal that has to reach this state, this depends
directly on the number of targets it has currently visited. What it does is that if for
example this state has already visited a goal, we will set the next goal to visit to be the
one that is in the number one position in the list of targets. Also, from this state we get
the Vertex object that has the same index as the state.

Once this is done, we take the state we have taken from the open list, this state is the
same as the one we are working with that we have extracted from the priority queue, of
this vertex and add it to the closed list of states. In this way we tell the algorithm that
we will not see any more of this state once we have looked at all its connections to its
nearby nodes.

Once we have the vertex, we look to see if it is the node we want to reach. If it is, we put
that the state we are working with has reached one more target. If by adding one more
target, this state has reached all targets, we add it to a new priority queue, although it
could be a list. It could be a list and always extract the first state from the list, since the
first state we get is always the optimal solution. This new priority queue is ordered in the
same way as the previous one, but only states that have reached all targets are added.
But if this is not the case, what we do is set the new target that this state has to reach.

Once we have looked at all this, we will go into the expand function. This function is
where the new states are created.

We enter a new loop. This loop is used to look at all the neighbour nodes of the node
where we are currently located.

The first thing we do is to see if we can reach the neighbouring node we are targeting
with the battery we have. If we can’t reach it, then we stop targeting that neighbouring
node and look at the next neighbouring node. On the other hand, if we can reach it,
what we do is to continue with the process of creating new states.

If the neighbouring node has no e-scooter, we will only create a single new state. The
important thing for the creation of an e-scooter is to create it with the index of the
vertex in which it is located, pass it the times, the battery that the e-scooter has once it
has reached that neighbouring node and finally tell it how many targets it has already
visited. This information is taken from the state with which we are working and we tell
it that the new state is created from this one.

Things change a bit if this neighbouring node has an e-scooter. This will create two
states instead of one. One will be created in the same way as before. Then, we will
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create another one, in which we will represent that we are changing e-scooter. This new
state will collect all the information of the state from which it comes, but with
modifications in time and battery. The battery of the new state will be the battery of
this e-scooter that we have found, and in the time we will have a penalty. This penalty
is 5 minutes, which represents the time to change from one e-scooter to another.

Once we have created the states we have to look at whether or not they are dominated
by other states. If this new state is dominated by any other state in the open or closed
list of states, this new state is not retained. Since there are states that are better than
this new state.

´Once we have checked that this new state is not dominated, we do two things; add this
state to the priority queue and to the open state list and see if this state dominates
another state in the open state list. If it does, what we do is remove the dominated state
from the open list and from the priority queue.

Once we have done this, we look at the next neighbouring node and do the same process
again. On the other hand, if we have already looked at all the neighbouring nodes, we go
back to the top. We take the first state in the queue and go through the whole process
again.

When the queue is empty. It will mean that we have already looked at all possible paths
to reach all targets. What we do then is to take the first state from the priority queue of
the states that have managed to reach all the targets. From this state we go through the
whole path of nodes that we have done, even saying if we have changed e-scooter in any
node, until the node from which we have started. We know this thanks to the fact that
when we created a new state we told it from which state it came from. In addition, we
can get information such as the total distance travelled and how long it took us to reach
all the nodes.

To better understand how the battery is calculated, the time and how we look at
whether one state dominates another, go to section 3.2.2.

3.2.2 Important functions of the algorithm

This section is created to better understand how the algorithm works. We go into detail
on 3 important functions, the battery calculation, the time calculation and how to see if
one state dominates another.

• To calculate the battery: To calculate the battery we use a function that is
passed two parameters; the state we are working with (actualState) and the real
distance in metres between the node I am located at and the neighbouring node I
am targeting (weight).
We set two established parameters; the maximum battery that the e-scooter can
have (maxBattery = 100) and the maximum range in metres that it could have
(maxRange = 15000). The range is chosen after looking at the different ranges of
e-scooters on the market. In addition, we reduce the autonomy that the
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manufacturer claims to have due to the calculation of the battery cycles already
made. That is to say, they are not new e-scooters from the factory so that they are
closer to a real case.
This function has two more parameters; the actual battery that the e-scooter I am
riding has (actualStatebattery) and the battery that I will have once I have reached
the neighbouring node (battery). The latter is the one we return. To calculate it,
we use a linear function that only depends on the distance travelled between the
two nodes. We do not depend on the weight of the user, the surface of the road or
whether or not there is a slope.

battery = actualStatebattery − (weight ∗ maxBattery
maxRange

)

It should be noted that if the battery calculation is negative, 0 is returned, i.e. it
does not reach the neighbouring node.

• To calculate the time/distance: The fact that we have relied on A* for the
construction of our algorithm is mainly due to this part. What we will do is to use
the function f = g + h for the calculation of the distance. If here, we set the value
of h to 0, we switch to the Dijkstra algorithm. Remember the difference between
Dijkstra and A* in section 2.2.3.

As you already know from section 2.2.2. This function is used to measure an
approximate distance from the origin to the next target. Where g is the actual
distance from the origin to the node I am at and h is the heuristic (Haversine)
distance from the node I am at to the next target.

Then, to calculate the time we use the uniform rectilinear motion function. This
function is t = x

v
where t ≡ time, x ≡ distance and v ≡ speed. We have to set a

default value for the speed, an average speed. In our case we decided to set 500 m
min

.

• Dominance: It should be clear that if you want to look at whether one state
dominates another, the indices have to match. Then you look at the other
attributes, time, battery and number of targets achieved. It should also be noted
that there are many states that do not dominate each other.

Let’s put it this way, one state dominates another state’ if:
- index = index′

- time <= time′

- battery >= battery′

- goalsArrived >= goalsArrived′

These 4 conditions have to be met in order to decide whether one state dominates
another. There is one very important detail, and that is that the time to look at is
different depending on whether we are looking at dominance in the priority queue
or in the open list of states. In the queue we look at the actual time from the origin
to the node plus the heuristic time from the node to the next target. Then, in the
open state list we look only at the real time from the origin to the node we are at.
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3.2.3 Pseudocode

Algorithm 2 Optimal Route Search

1: procedure (INPUT)G(V,E)→ V = 0..N − 1 . Each edge has the weight between
vertices (weight real distance in meters)

2: Starting values
3: PQ . priority queue of states (sorted by the time + heuristic)
4: PQA. priority queue of states (sorted by the time + heuristic) already arrived to

all goals
5: Goals←Vi has place = true
6: Escooters←Vi has battery > 0
7: toSortGoals()
8: originV ertex→ create new state: actualState
9: add actualState to PQ

10: add actualState to OPENEDV

11: while PQ not empty do
12: actualState← PQ.poll()
13: set goalV ertex depending on goals already visited
14: get V from actualState
15: remove actualState from OPENEDV

16: add actualState to CLOSEDV

17: if V==goalV ertex then
18: actualState.set(number of places already visited + 1)
19: if actualState arrived to all goals then add actualState to PQA

20: set newGoalV ertex depending on goals already visited

21: expand()

22: OUTPUT Returns traceback from PQA.poll() . Algorithm finishes
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Algorithm 3 Expand function

1: procedure (INPUT) actualState
2: for each targetV ertex ∈ V do
3: if calculateBattery()→ 0 then . doesn’t arrive to targetV ertex
4: continue
5: if targetV ertex.battery == 0 then
6: create newState
7: else
8: create two newState→one with the battery calculated and other with the

battery from targetV ertex + 5 minutes of extra time for switching e-scooters

9: You have to set the predecessor of newState that is actualState and set the
real distance already done in meters from source.

10: if newState is dominated in CLOSEDtargetV ertex then
11: continue
12: if newState is dominated in OPENEDtargetV ertex then
13: continue
14: add newState to PQ
15: add newState to OPENEDtargetV ertex

16: for all state in OPENEDtargetV ertex do
17: if newState dominates state then
18: remove state from PQ
19: remove state from OPENEDtargetV ertex
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4 Implementation

In this section we take an in-depth look at the Vertex and State classes. We will also
explain what we did to check that the algorithm satisfied what we wanted, i.e. delivered
the optimal solution. This will help us to understand much better how this project is
built. Above all, to better understand how the algorithm works.

4.1 Vertex Class

It is very important to understand what these vertices are. From these vertices all the
information that the algorithm will work with is taken or stored.

Each vertex is a node extracted from the geojson file. The information extracted in the
Graph class thanks to the Jackson library is stored in the Vertex class.

Understanding what this class is composed of, makes it possible to understand the
project much better.

Each object of the Vertex class represents a node of the graph. The main attributes of
this class are:

• Node ID: it is only necessary for the Graph class to return the list of vertices in
order to build the graph. Since the geojson file that gives us the information about
the edges, indicates the connections of the nodes from their ID’s and not their
indexes.

• Node Index: indicates the index of that node. It helps us to find the node in
question easily. The range of the indices will always go from 0 to the value of the
number of nodes in the graph minus 1. The ID, on the other hand, are larger
numbers that identify the node according to its position in the world
(latitude-longitude).

• A list of adjacency list of objects of the Edge class: which after a long
study, we understand that it is a way to build a graph we felt comfortable with.
The Edge class is simpler but very important as it links the nodes together. It
returns the origin node, which is always the vertex that calls this list, the node to
which it is connected and the weight of the edge in centimetres.

At the moment, all this information is collected in the Graph class. However, there are
attributes that allow us to create different scenarios for our experiments with the
algorithm; to draw routes, behaviours... For example:

• Goal: attribute that tells us if that node is a target to be visited by the algorithm.

• Battery: Then, there is an attribute that tells us if that vertex has an e-scooter
there with a percentage of battery. That is, if this attribute is 0, we say that there
is no e-scooter.
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Finally, there are attributes that are used and loaded by the algorithm. In this case two
state lists, one open and one closed.

4.2 State Class

The states are objects that trace the route to reach all the objectives within the graph,
but not all of them manage to get there. We will explain their attributes, because this
way we will have a good base when we explain the algorithm.

The state is collected by the State class. The state has 4 main attributes:

• Index: which is the same index on the node/vertex where it is located.

• Time: which would be the actual time it has been travelled plus a heuristic time
remaining to reach the next goal.

• Battery: which is the battery that the e-scooter has at that moment.

• Goals: The number of targets it has already reached.

In addition, there are other attributes that are not the main ones. That is, they are not
the attributes that actually define a state. They are also important for the development
of the algorithm. These are attributes such as:

• Real time: the actual time that has elapsed not counting the changes from one
e-scooter to another, we do not take into account a heuristic time.

• Extra time: this time allows us to add 5 minutes each time the e-scooter has
been changed.

• Predecessor state: it is good to know from which state it has been created and
then trace a route from the end point to the origin.

• Real distance: the actual distance travelled so far is also recorded.

4.3 Testing

Before I start to explain the results, I would like to mention how the algorithm was
checked to ensure that it worked correctly. For this I had to do calculations by hand. I
was checking if the battery was decreasing well as I went along, if I was getting the
distance right. But of course, in graphs with hundreds or even thousands of nodes, it’s
not possible. So I was inspired to do it on graphs like the one in figure 12. As there were
only a few nodes, I could follow the trajectory by hand. Of course, I was changing the
percentages of the batteries, the number of targets, the distances between the nodes, I
was changing the speed, etc. All these primary experiments gave me the confidence that
the algorithm worked correctly and that it returned the optimal route.
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5 Experiments and results

In this section we will explain the experiments we have carried out to look at the
behaviour of the algorithm. We will look at the behaviour of the algorithm by making
various changes to the number of targets, the number of e-scooters and even the battery
percentage of the e-scooters.

5.1 Experiments

To start the experiments, we had to be clear about what data we had to enter. This
input data could change according to two types; the targets and origin, and the
e-scooters.

In addition, we had to have a graph on which to do the experiments. We decided on the
one you can see in figure 13. It is a map of the city of Prague, this graph itself has more
than 7000 nodes, 7602 to be more specific, its an area of 25km2. We understood that it
was a map size on which we could draw good conclusions. It is even a map that favours
us to have a real scenario. I mean, an e-scooter rental company could easily have
e-scooters all over this area.

Figure 13: Graph for the experiments

• Goals and source: On goals, we have a fixed list of 20 goals (nodes) entered by
hand (as shown in Fig.14). These nodes represent places of interest in the city of
Prague.
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Figure 14: Map with the goals to visit (blue dots)

So, what we do is we do 150 iterations. In each of these iterations we have a
different origin and different goals. The number of goals varies depending on the
experiment we are running, can be 1 goal, 2 goals or 3 goals. The goals are got
randomly from the goals fixed list. The source is any node of the graph. For each
of the 150 iterations, the battery percentage of the e-scooters is the same and they
are located at the same nodes.

• E-scooters: For e-scooters we can modify two aspects. These two aspects are; the
number of nodes an e-scooter has and the battery they have.
Regarding the number of nodes that have an e-scooter, we divided it in three
parts, 20 percent of the nodes have an e-scooter, 2 percent and finally 10 percent.
This last one is the type that would be closest to a real case. We indicate this as a
real case based on our own experience. We tried to find real data on how many
e-scooters these rental companies have per square kilometre, but we did not get
any results.
Finally, we experimented with modifying the batteries. Also in three categories for
the battery; all e-scooters have 100 percent of the battery, all have 15 percent and
finally another category closer to a real case, also from our own experience when
using apps about renting e-scooters. This last category divides the e-scooter
batteries in a logical way. This way can be seen in the table 2.

Percentage of the e-scooters Battery
5 100
25 [75,100)
35 [50,75)
30 [25,50)
5 [15,25)

Table 2: Real e-scooters scenario

38



Now, we mix different input data so we can see how the algorithm behaves. We will look
at the behaviour according to three types; looking at how it reacts depending on the
number of goals, the number of nodes that have an e-scooter and finally the battery
they have.

It is important to know that when we performed the experiments to look at the
behaviour according to the number of goals, the battery... We take the real case for the
other categories. An example; we want to look at the battery of e-scooters, we take 3
targets and that 10 percent of the nodes have an e-scooter. The number of goals, either
1, 2 or 3, could logically be a real case, but we choose 3 as this way the algorithm works
longer.

• Goals experiment: We look at how it behaves according to the number of
targets. For each source node, we will make 3 charts, one for each category
(number of goals). This way we will check how the algorithm behaves with 1, 2 or
3 goals both in Dijkstra and A*. The e-scooters in this case, will be located at 10
per cent of the nodes and for the battery we will use the one the the table 2, to get
closer to a real case.

• Number of e-scooters experiment: We will check how the algorithm behaves
according to the number of nodes that have e-scooters. We will also have 3 charts,
where in each graph we will have the result in Dijkstra and A*. Each chart
corresponds to a percentage of nodes with e-scooter, remember that these
percentages are; 2, 10 and 20. Then, for each one we will perform the experiment
with 3 goals and the battery of e-scooters will be set as shown in table 2.

• Battery of the e-scooters experiment: Finally, in this last set we will look at
how the algorithm behaves depending on the battery of the e-scooters. Remember
that we also had three categories for this; 100 percent battery, 15 percent battery
and distributed as shown in table 2. Then, to make it closer to a real case, we will
say that we have 3 targets to reach and that only 10 percent of the nodes have an
e-scooter. We will obtain three charts in which each one will have the Dijkstra and
A* experiments performed.

Once all the experiments have been carried out, what we have to do is to draw the
charts. To do this, what we have been doing is for each of the 150 iterations that we
have per experiment, we have to save a point.

This point, obviously has part x and part y. The x part would be the total real distance
travelled, and the y part is the time taken by the algorithm. We have 150 iterations,
each of the 150 iterations has a source node and different targets as we have already
explained above. But for each chart, a priori, we have 300 points, 150 in Dijkstra and
150 in A*. We say a priori because those unsolvable experiments, i.e., that cannot reach
all the targets, are discarded, we do not keep them as points.
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5.1.1 Solution example

But obviously we do not only get the points mentioned above. The main objective of
this project is to offer you a solution to a problem. The solution to this problem is to
give you the optimal route to reach all your destinations. An example of one of the
results obtained is shown in Fig15.

In figure 15, we see the solution to one of the 150 experiments carried out to test the
behaviour of the algorithm with 3 goals. In the figure 15 we can see the ID of the
experiment, in this case it is experiment number 136. In addition, we can see that in the
graph we have 760 e-scooters distributed, remember that for each experiment, the
position of the e-scooters is the same. We say, that the battery is ”Random”, remember
what it meant with table 2. It tells you from which node you start and the battery of
the e-scooter with which you start the journey. Then, it tells you the places to visit, it
tells you the index of the nodes and it gives you a heuristic distance, as a reference, that
you will have to do to reach all the goals. Later, it indicates the first node to visit,
although it gives you the goal nodes in the order in which you are going to visit them.
Now, it indicates all the nodes you have to go through in order to reach all the goals.
Note that it tells you when you have to change e-scooter. In the example, we can see
that when we reach node 2686, we have changed e-scooter at node 2685. Then, it
indicates the real distance travelled and the time taken by the logarithms to find the
route. These times are not the ones that are the direct reference to discuss how they
behave in the section 5.2, since we do an average of the 150 experiments.

Figure 15: Example of a route solution for a random input data

5.2 Results

In this section we will discuss the charts we have obtained from the experiments. We
will draw conclusions on how the algorithm works regardless of the input data we
introduce. In addition, we will see the difference between Dijkstra and A*.

40



5.2.1 Commentaries about the charts

In this section we will not yet comment on the time difference between the Dijkstra and
A* algorithms. We will make the comparisons separately. We will discuss the results
between the different times of the same algorithm depending on the input data. Then,
we will compare the times between A* and Dijkstra.

1. Goals experiment: We will start by commenting on the experiments carried out
in the first set 5.1. The charts obtained from these experiments are: Fig16, Fig17
and Fig18.

The charts, irrespective of the maximum distance travelled, are quite similar. The
times are very small, i.e. the time depends rather little on the distance travelled.
Since our chart, although we have chosen this size to be as close as possible to a
real case, see the map in figure 13, it is also small enough so that the distances do
not have so much weight in the time of the algorithm. Even so, separately, we can
see in the 3 graphs how the linear regression increases as the distance gets bigger
and bigger.

Now we are going to look at all 3 charts at the same time. If we try to compare
them, it is difficult to find any clear difference. That happens because times are
very similar, so at first glance it costs. For that we have table 3. In this table we
see the average time of the 150 experiments carried out by table and algorithm,
that is, it is the average of all the points that we see in the table, separated by
algorithm, we do not mix the times from the 2 algorithms (Dijkstra and A*). In
this table we can see the difference between the 3 charts. Although the time
difference is low, we also obtain that on average with 3 goals, the algorithm takes
5us longer to offer the solution of the route in case A * than if we only have a single
objective. In the Dijkstra case, it is almost 6us apart. We obtain logical results.

Number of Goals: 1 2 3
A* 64.772 67.953 70.146

Dijkstra 66.333 68.8 72.101

Table 3: Time in microseconds of the experiments to look at the behaviour of the A*
and Dijkstra algorithms according to the number of goals to be visited.

2. Number of e-scooters experiment: From this set of experiments, we have
obtained the following graphs Fig20, Fig21 and Fig19.

Recall that in this set of experiments, the number of targets to reach is the same
for all. We chose 3 goals, hence in the 3 charts, the maximum distances reached
are similar. With a maximum range of about 30km.

As in the previous case, we obtain the same type of charts. Here we can see that
the linear regressions are ascending. It is true that the time in which the algorithm
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takes, is very volatile, being so small, we obtain a very small difference between
the times.

If we take a good look at table 4, we can see the times, and we can see that they
are reasonable times. They are reasonable times for two main reasons. The fact
that the map, even though it is a real scenario, is small means that the number of
e-scooters, in a logical scenario, is not very relevant. So, we can get an e-scooter
without straying too far from the route. The other point is that the more
e-scooters there are, the more states are created, which slows down the search time
of the algorithms. With this reasoning, we can understand that the experiment
carried out with only 150 e-scooters is the lowest but we can’t draw any serious
conclusion because the differences are too small.

Number of E-scooters: 150 760 1520
A* 69.373 70.445 69.763

Dijkstra 70.926 71.899 72.273

Table 4: Time in microseconds of the experiments to look at the behaviour of the A*
and Dijkstra algorithms according to the number of e-scooters.

3. Battery of the e-scooters experiment: From this last set of experiments we
obtain the following charts: Fig24, Fig23 and Fig22.

Looking at the graphs, we can draw very similar conclusions to those of
experiment set number 2, as they also have 3 goals, and the distance range is very
similar. That makes, that the algorithm times are quite similar.

Let’s look at table 5. In this table we see how the times of the algorithms change
with respect to the battery that the e-scooters have. We can clearly see that the
fact that all the e-scooters have 100 percentage of the battery means that there are
fewer changes of e-scooters, i.e. we save time when searching for e-scooters to reach
all the targets, so the search time of the algorithms is shorter. Looking at the times
of the ”Random” batteries, and when everyone has 15 percentage of battery they
seem to me more rare. It doesn’t fit very well since ”Random” would have to be
lower, but it is true that in the 150 experiments carried out in ”Random” it could
be that the route passed through places with e-scooters with a low battery. Even
so, the time between these two categories is very small, the search time is still fast.

Battery of the e-scooters: Random 100 15
A* 70.12 68.886 69.306

Dijkstra 71.233 70.32 71.06

Table 5: Time in microseconds of the experiments to look at the behaviour of the A*
and Dijkstra algorithms according to the battery of the e-scooters.

42



To conclude this section, I would like to make an aside on the comparison of the
algorithms. We have observed that in all the experiments carried out, the time of the A*
algorithm is less than that of Dijkstra. This is because, as we have already learned,
Dijkstra has to go through almost all the nodes to find the solution, it has no heuristic
distance. But it is true that for two reasons, the time difference is not so great. This is
because the map is not big enough to have a significant weight and also because for the
creation of each state, A* has to find a heuristic distance. This search requires a
computation that slows down the algorithm, but Dijkstra saves it because the heuristic
distance for it is 0, it does no computation.

5.2.2 Charts

Figure 16: 1 Goal
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Figure 17: 2 Goals

Figure 18: 3 Goals
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Figure 19: 150 e-scooters

Figure 20: 760 e-scooters
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Figure 21: 1520 e-scooters

Figure 22: 100 battery
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Figure 23: 15 battery

Figure 24: Random battery
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6 Budget

The budget of this project is:

• Computer: An ASUS computer, the original cost of which was 799€

• Salary: A student of Telecommunications Engineering at the ETSETB is paid
9€/h when he/she is in a company doing a curricular internship. The total hours
are 450.

• At Software level. All the software used for this project, such as QGIS, NetBeans
IDE and Sublime Text 3 are Open Source.

Items Concept Amount(€)
Item 1 Computer 799
Item 2 Salary 4050
Item 3 Software 0
Total 4849

Table 6: Budget

The total cost is 4849€.
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7 Conclusions

In this section we will draw conclusions from the completed project. We will discuss
what we have learned and whether the results obtained are satisfactory.

It has been a project, which in my opinion has been very comprehensive. It has taken
many hours of work but it has been worth it in the end. We have been able to achieve
the objectives we had set ourselves. We have managed to create a fairly fast algorithm
that finds the fastest route in a short time.

We have learned different data structures in Java, and after some study, we have been
able to create the best one for our case. In addition, we have also learned about search
algorithms.

On the A* vs Dijsktra comparison. We have seen in real cases how A* is faster than
Dijsktra. So it was a good decision to base my algorithm on A*. In addition, the fact of
doing it with states, has made me optimise the search time, based on the heuristic
distances.

As expected, we could see how the algorithm time increases with the number of targets.
But what we have noticed is that in maps, like ours, in a real case like the city of
Prague, the number of e-scooters and the battery in logical situations is not very
relevant. The search time does not change that much.

This leads us to think about the following. Let’s imagine that an e-scooter company
wants to add software with similar functionality to this project to their app. This
company would only have to take into account the number of targets to be reached. The
aspects of the number of e-scooters, being a reasonable number, a real case and their
respective batteries do not have much influence on the route finding. Then they would
have to focus more on finding an optimised way for the software to give them the
solution depending on the targets to be reached.
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8 Future Work

In this section we will discuss improvements that can be made from this project. These
improvements could not be made in this project for various reasons such as lack of time,
lack of knowledge or other problems.

All of the following ideas are ideas that could help this project come closer to a real case.

For example, right now the battery reduction is linear, it only depends on the distance
travelled. It would be possible to make the battery reduction also depend on other
factors such as the weight of the user, if the terrain is sloping, the road surface. In
addition, the actual speed at which the user is going at any given moment could also be
taken into account as a factor in the reduction of the battery. These are factors that
would help the battery reduction to be closer to a real case.

It would be nice to have a collaboration with an e-scooter rental company. So that they
could provide us with real data on the actual positioning of the e-scooters and their
respective batteries.

Moreover, right now, if you can’t reach all your goals on an e-scooter, that scenario is
marked as unsolvable. One last idea would be that when this happens, the user would
start walking to the nearest e-scooter or directly to the next target. As long as the
optimal route is chosen, but in this way all scenarios can be solved.

Finally, a very good idea to show the solution. This solution would be to create a
graphical interface that would show you the route and changes of the e-scooter through
an interactive map.

50



References

[1] Michael T Goodrich, Roberto Tamassia, and Michael H Goldwasser. Data
structures and algorithms in Java. John Wiley & Sons, 2014.

[2] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall
Upper Saddle River, 2001.

[3] Michael Main and M Main. Data structures & other objects using Java.
Addison-Wesley, 2003.

[4] Yong Deng, Yuxin Chen, Yajuan Zhang, and Sankaran Mahadevan. Fuzzy dijkstra
algorithm for shortest path problem under uncertain environment. Applied Soft
Computing, 12(3):1231–1237, 2012.

[5] Huijuan Wang, Yuan Yu, and Quanbo Yuan. Application of dijkstra algorithm in
robot path-planning. In 2011 second international conference on mechanic
automation and control engineering, pages 1067–1069. IEEE, 2011.

[6] Masoud Nosrati, Ronak Karimi, and Hojat Allah Hasanvand. Investigation of
the*(star) search algorithms: Characteristics, methods and approaches. World
Applied Programming, 2(4):251–256, 2012.
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Abbreviations

CTU Czech Technical University

ETSETB Barcelona School of Telecommunications Engeneering

FIFO First In First Out

LIFO Last In First Out

OSM Open Street Maps

TSP Travel Salesman Problem

VRP Vehicle Route Problem
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