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Abstract

In Additive manufacturing (AM) processes the melt-pool shape is related with the
defect formation that affects the final mechanical behaviour. In this regard, it is
essential to understand the influence of different process parameters, such as the
scanning speed or the laser power, on the molten pool. For this reason, a numerical
tool to accurately predict the melt pool size has been developed. The model has been
implemented within an in-house HPC finite element solver that can solve coupled
thermo-mechanical AM simulations. The Goldak’s double ellipsoidal heat source
model has been used to reproduce the power density distribution within the melt
pool. Furthermore, to solve the phase-change at the melt-pool interface, the latent
heat released during the transformation has been considered. To solve the resulting
nonlinear problem, the Newton-Raphson method has been implemented. The model
has been successfully verified and validated against the available experimental evi-
dence. Beforehand, the double ellipsoidal parameters need to be calibrated to match
the experimental results. In this regard, the energy absorptivity is found to be the
most sensitive parameter for the predicted melt pool sizes.

Keywords: Additive manufacturing (AM), Melt-pool analysis, Double ellipsoidal
heat source, Finite element method, Newton-Raphson method.
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1 Introduction

In this section the subject studied is briefly introduced. First, the main motivations
for this work are described. Then, the scope of the project and the outline of the
report are explained.

1.1 Motivation

Additive manufacturing (AM) is a growing industrial technology used to produce
high-performance parts through a layer-by-layer material deposition. For metallic
materials, mainly two types of AM processes are used; powder bed fusion (PBF)
and direct energy deposition (DED). In PBF, the powder particles are melted using
a high energy source and sintered in a powder bed which forms the building layers.
On the other hand, during DED processes, the metal powder is blown into the laser
beam, which fuses the particles with a substrate creating a melting pool (Fig. 1).
Both powders and filler wires are used as feedstock materials in DED. Besides, dif-
ferent types of high energy sources such as laser or electron beams are used to melt
the material.

Figure 1: DED processes using (A) laser beam with powder feedstock and (B) electron
beam with wire feeder [1].

The key advantages of AM in front of other metal forming technologies such as cast-
ing, consists in the process flexibility which allows for customized design in short
production times. Thus, complex shapes with very thin walls or inner cavities can
be produced using AM technologies. Its many different applications go from the
aerospace to the biomedical industries, where it is used to produce turbine blades,
aircraft stiffeners and medical implants.

The final properties of AM parts depend on the resultant transient temperature
field, the solidification conditions and the microstructure evolution of the material.
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A large number of AM process variables, such as the type of heat source, the scan-
ning pattern, the hatch spacing or the powder properties influence the complex AM
thermo-mechanical phenomena [4]. Thus, AM parts are normally produced and cer-
tified by trial and error for each individual component, material and AM process
variant. To improve the AM design, efficient and reliable numerical tools that can
model the AM process are required. Therefore, the development of mechanistic mod-
els that can accurately predict the defect formation or the solidification structure
given any process parameters are crucial in AM technologies. In comparison with
experimental techniques, the numerical simulations can provide detailed information
within the melting pool, needed for the prediction of residual stresses, distortions
and grain structure and texture.

The shape and thermal history of the molten pool is directly related with the defect
formation [3]. Thus, the high temperature gradients around the heat source produce
residual stresses and plastic deformations which affect the mechanical behaviour
of the final component. While particle based models exists, normally thermo-
mechanical continuum models are used to solve the melt-pool [5]. In this way, a
great number of different phenomena can be modelled such as the liquid metal con-
vection, the Marangoni effect or the vaporization. Typically, the finite element (FE)
method is used to solve AM simulations [6].

The heat source characterization is critical to accurately reproduce the melt-pool
shape in AM processes. Both the geometry and the power density distribution
are crucial to predict the solidification structure and the thermal cycles within the
molten pool. The first heat source models were developed for welding analysis.
First, a surface heat flux with a disc shape was proposed by Pavelic [3]. However,
for high energy sources such as the laser or the electron beam, the surface disc
model ignores the laser digging action that transports heat well below the surface.
To solve that, a volume heat source was proposed instead. The idea was to impose
a Gaussian power density distribution within an ellipsoidal volume. In early 1980s,
Goldak realized that the ellipsoidal power density distribution was not modelling
accurately the melt pool shape. The calculation experience with the ellipsoidal heat
source model revealed that the temperature gradient in front of the heat source was
not as steep as expected and the gentler gradient at the trailing edge of the molten
pool was steeper than the experimental evidence [3]. To overcome this limitation,
two ellipsoidal sources are combined in the double ellipsoidal heat source model.

1.2 Objectives

This project aims at developing a numerical model to accurately predict the melt-
pool shape in AM processes. The model is implemented within the HPC finite ele-
ment solver FEMUSS, developed at the International Center for Numerical Methods
in Engineering (CIMNE) in Barcelona. The software is capable of solving AM cou-
pled thermo-mechanical simulations. Nevertheless, only the thermal analysis will be
addressed during this work. First, the Goldak’s double ellipsoidal heat source model
will be developed to reproduce the laser power distribution within the melt pool.
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Furthermore, to solve the phase-change at the melt-pool interface, the latent heat
released during the transformation will be considered in the thermal analysis. Given
the high energy source and the phase change, the resulting heat transfer problem is
highly nonlinear. To solve that, the Newton-Raphson method will be implemented.
Thus, the temperature dependent properties and the latent heat terms will be lin-
earised. Once the computational framework is properly tested, the numerical model
will be validated against experimental data from the RMIT Centre for Additive
Manufacturing in Melbourne. Therefore, the melt-pool sizes will be computed and
compared with the available experimental evidence.

1.3 Outline

The present report is organized as follows. First, in Sec. 2, the methodology used in
this study is introduced. Starting from the balance of energy equation, the numerical
formulation to solve the melt-pool in AM processes is presented. The finite element
discretisation is explained step-by-step until obtaining the fully discrete form. The
double ellipsoidal heat source model is explained in detail in Sec. 2.1.3. In addition,
the nonlinear solver and the main implementation details are discussed in Sec. 2.4
and 2.5. Finally, the computational models used for validation are presented in Sec.
2.6 and 2.7, addressing the meshing strategy and the boundary conditions used. In
Sec. 3, the main results are presented and discussed. A mesh convergence study
and a time discretization study are performed in Sec. 3.2 and 3.3. After that, the
model is validated against Goldak’s results and experimental data in Sec. 3.5 and
3.6. Lastly, based on the presented results, final conclusions are drawn.
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2 Methodology

The methodology followed in this study consists in two different parts. First, the
computational framework used to solve the molten pool in AM is presented. Starting
from the strong form of the problem, the finite-element formulation is introduced
until obtaining the fully discrete form. Once the simulation environment is intro-
duced, the second part consists in developing the computational models needed to
validate the results.

2.1 Strong Form

The strong form of the problem can be obtained using the balance of energy equation
as follows:

Ḣ = −∇ ·q + Q̇ (1)

where Ḣ and Q̇ represent the enthalpy rate and the power source per unit of volume
and q is the heat flux vector per unit of surface which can be expressed using the
Fourier’s law:

q = −k(T )∇T (2)

where k(T ) is the temperature dependent thermal conductivity and the negative
sign indicates that the heat flux goes from high to low temperatures. The enthalpy
H(T, fL) is defined as a state variable which depends on the temperature, T , and
the liquid fraction, fL. Therefore, the enthalpy rate can be expressed as [6]:

Ḣ(T, fL) =
∂H

∂T
Ṫ +

∂H

∂fL
ḟL = C(T )Ṫ + LḟL (3)

where C(T ) is the temperature dependent heat capacity and L is the latent heat
released during the phase-change process. The heat capacity is usually obtained as
C(T ) = ρc(T ) where ρ is the material density and c(T ) is the specific heat capacity.

Consider a bounded domain Ω ⊂ Rd, where d is the number of spatial dimensions,
closed by the boundary Γ. The temperature distribution in time and space can be
obtained solving the strong form of the problem as follows:

ρc
∂T

∂t
+ L

∂fL
∂t
−∇ · (k∇T ) = Q̇ in Ω× (0, tend],

T = T0 in Ω× {0},
−k∇T ·n = qrad + qconv on Γ× (0, tend],

(4)

where T0 is the temperature initial condition at t = 0, n is the unit normal vector,
qrad and qconv are the radiation and convection heat fluxes at the boundary and tend
denotes the final time of interest. The problem is nonlinear due to the temperature
dependent properties k(T ) and c(T ) as well as the latent heat term. Notice that
the liquid fraction fL(T ) depends on the temperature, introducing a further non
linearity into the problem.
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2.1.1 Latent Heat

Since the phase-change for metals is non-isothermal, the sudden enthalpy increase
during the melting process is defined between the solidification temperature TS and
the liquid temperature TL. During the phase transformation the material volume,
V , can be split into the liquid and solid phases volumes, VL and VS . The liquid and
solid fractions represent the phase volume with respect to the total volume, fL = VL

V

and fS = VS
V , so that fL + fS = 1. Therefore, the evolution of the liquid fraction,

ḟL, defines the phase-change, that is, how the latent heat is absorbed or released
during the transformation. For our purposes, the liquid fraction is assumed linear
between the solid and liquid temperatures:

fL(T ) =


0 for T < TS

T − TS
TL − TS

for TS ≤ T ≤ TL

1 for T > TL

(5)

2.1.2 Boundary Conditions

The boundary conditions represent the amount of heat lost due to convection and
radiation mechanisms. The radiation and convection heat fluxes are defined as
follows:

qrad = σε(T 4 − T 4
env) (6)

qconv = h(T − Tenv) (7)

where σ is the Stefan-Boltzmann constant, ε is the material emissivity, h(T ) is the
temperature dependent heat convection coefficient which will be assumed constant
and Tenv is the surrounding environment temperature. Notice that far from the
scanning path the heat loses due to convection and radiation will decrease until
zero.

2.1.3 Heat Source

In additive manufacturing processes, the heat source Q̇ from Eq. 4 can be ap-
proximated as a Gaussian distribution within an ellipsoid which is moving with a
constant speed [4]. The center of the ellipsoid corresponds with the laser position
at each time step. Notice that in this way, the heat source Q̇(x, y, z, t) depends on
both time and space. It can also be expressed with a coordinate system that moves
in the x direction with the heat source using the following transformation:

ξ = x+ v(τ − t) (8)

where ξ is the first ellipsoidal coordinate, v is the scanning speed and τ is a parameter
needed to define the initial heat source position. Therefore, the Gaussian distribution
of the power density in an ellipsoid can be written as:

Q̇(ξ, y, z) = q0 e
−Aξ2e−By

2
e−Cz

2
(9)
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where q0 is the maximum value of the power density at the center of the ellipsoid
and A, B, and C are different constants that define the power Gaussian distribution.
Using the conservation of energy, all the net input power needs to be distributed
within the ellipsoid as follows:

ηP = 4

∫ a

0

∫ b

0

∫ c

0
q0 e
−Aξ2e−By

2
e−Cz

2
dξ dy dz (10)

where P is the input power in watts, η is the energy absorptivity parameter and a,
b and c are the ellipsoid axes. Solving the integral from Eq. 10:

ηP =
q0π
√
π

2
√
ABC

erf(
√
Aa) erf(

√
Bb) erf(

√
Cc) (11)

where erf(x) is the Gauss error function. The constants A, B and C are defined
such that the power density falls to 5% at the surface of the ellipsoid. Therefore,

Q̇(a, 0, 0) = q0e
−Aa2 = 0.05q0 (12)

Giving,

A =
ln 20

a2
' 3

a2
(13)

Similarly,

B =
3

b2
C =

3

c2
(14)

Substituting Eq. 13 and 14 into Eq. 11, an expression for q0 is obtained:

q0 =
ηP6
√

3

abc π
√
π
φ (15)

where φ is a volume correction factor that appears because the power density is
evaluated on the finite domain enclosed by the ellipsoid. If the power density would
have been evaluated on an infinite domain, then limx→∞ erf(x) = 1 giving φ = 1.
Therefore, when the power density is only evaluated inside the region defined by the
ellipsoid, the maximum power q0 needs to be corrected to ensure the conservation
of energy. Evaluating the Gauss error functions from Eq. 11,

φ = erf(
√

3)−3 ' 1.0442 (16)

Finally, the expression from Eq. 15 is introduced into the initial Gaussian distri-
bution in Eq. 9. The ellipsoidal heat source distribution is obtained undoing the
change of variables in Eq. 8.

Q̇(x, y, z, t) =
ηP6
√

3

abc π
√
π
φ e−3[x+v(τ−t)]2/a2e−3y2/b2e−3z2/c2 (17)

7



Figure 2: Goldak’s double ellipsoidal heat source model [2].

In early 1980s, Goldak introduced a double ellipsoidal power density distribution
combining two ellipsoids (Fig. 2). The idea is that the front and rear half of the
heat source, Q̇f and Q̇f , are modelled using different Gaussian distributions as
follows [3]:

Q̇f (ξ, y, z) =
ηffP6

√
3

afbc π
√
π
φ e−3ξ2/a2f e−3y2/b2e−3z2/c2 (18)

Q̇r(ξ, y, z) =
ηfrP6

√
3

arbc π
√
π
φ e−3ξ2/a2re−3y2/b2e−3z2/c2 (19)

where ff and fr are the power fractions corresponding to the front and rear ellipsoids
and af and ar are the front and rear ellipsoid axis. Notice that the two Gaussian
distributions need to be continuous at the mid plane ξ = 0.

Q̇f (0, y, z) = Q̇r(0, y, z) (20)

Giving the following relation between the power fractions, ff and fr, and the ellipsoid
axis, af and ar [2]:

ff
af

=
fr
ar

(21)

Besides, it can be proven that the power fractions need to sum 2 to follow the
conservation of energy in Eq. 10 [3].

ff + fr = 2 (22)

Combining Eq. 21 and 22, an expression for the power fractions ff and fr is obtained:

ff =
2 af

af + ar
fr =

2 ar
af + ar

(23)

2.2 Weak form

To solve the strong form, the following discrete functional space is introduced:

Wh(Ω) :=
{
W ∈ L2(Ω) : W |Ω ∈ Pk(Ω)

}
(24)
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where Pk(Ω) denotes the space of polynomial functions of complete degree at most
k in Ω. The weak form is obtained integrating Eq. 4 over the domain Ω and
multiplying by the test function w.∫

Ω
w

[
ρc
∂T

∂t
+ L

∂fL
∂t

]
dΩ−

∫
Ω
w∇ · (k∇T )dΩ =

∫
Ω
wQ̇dΩ (25)

Applying the chain rule to the second integral in the left hand side,∫
Ω
w

[
ρc
∂T

∂t
+ L

∂fL
∂t

]
dΩ+

∫
Ω
∇w ·(k∇T )dΩ =

∫
Ω
wQ̇dΩ+

∫
Ω
∇ · (wk∇T )dΩ (26)

Applying the divergence theorem to the second integral in the right hand side, the
normal heat flux boundary condition is recovered on the boundary Γ [7].∫

Ω
w

[
ρc
∂T

∂t
+ L

∂fL
∂t

]
dΩ+

∫
Ω
∇w · (k∇T )dΩ =

∫
Ω
wQ̇dΩ+

∫
Γ
w(k∇T ·n)dΓ (27)

Finally, the weak form of the problem reads: find T ∈ L2

(
(0, tend];Wh(Ω)

)
such

that∫
Ω
w

[
ρc
∂T

∂t
+ L

∂fL
∂t

]
dΩ +

∫
Ω
∇w · (k∇T )dΩ =

∫
Ω
wQ̇dΩ−

∫
Γ
w(qrad + qconv)dΓ

(28)
for all w ∈ L2

(
(0, tend];Wh(Ω)

)
.

2.3 Discrete form

The spatial discretisation is performed using first-order isoparametric hexahedral
elements. The nonlinear semi-discrete form can be written as

M(T)
dT

dt
+
dL(T)

dt
+ K(T)T = Q̇−B(T) (29)

where T is the vector containing the nodal values of the temperature, M is the
temperature dependent mass matrix, L is the latent heat vector, K is the tempera-
ture dependent Laplacian matrix, Q̇ is the heat source vector and B represents the
nonlinear boundary conditions contribution.

MIJ =

∫
Ω
ρc(T )NINJdΩ (30a)

LI =

∫
Ω
NILfL(T )dΩ (30b)

KIJ =

∫
Ω
∇NIk(T )∇NJdΩ (30c)

Q̇I =

∫
Ω
NIQ̇dΩ (30d)

BI =

∫
Γ
NI [qrad(T ) + qconv(T )] dΓ (30e)
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An implicit time discretisation is proposed to approximate the temporal derivatives
in Eq. (29). Introducing the first-order backward Euler method (BDF1), the fully
discrete residual at time t = tn+1 is obtained:

Rn+1 := M(Tn+1)(Tn+1 −Tn) + L(Tn+1)− L(Tn) + ∆t
(
K(Tn+1)Tn+1

)
∆t
(
−Q̇n+1

+ B(Tn+1)
)

= 0
(31)

2.4 Nonlinear solver

The resulting nonlinear residual from Eq. 31 needs to be linearized in order to obtain
a linear system of equations. Two different nonlinear solvers have been studied: the
Newton-Raphson method and the Picard’s method.

2.4.1 Picard’s Method

The Picard’s method approximates all the nonlinear terms from the residual in Eq.
31 using the solution from the previous iteration. So, the solution Tn+1

i+1 at iteration
i + 1 is obtained solving the following linear system which depends on the known
solution Tn+1

i and Tn:

A(Tn+1
i )Tn+1

i+1 = b(Tn+1
i ,Tn) (32)

with

A(Tn+1
i ) = M(Tn+1

i ) + ∆tK(Tn+1
i ) (33)

b(Tn+1
i ,Tn) = ∆t

(
Q̇
n+1 −B(Tn+1

i )
)

+ M(Tn+1
i )Tn + L(Tn)− L(Tn+1

i ) (34)

2.4.2 Newton-Raphson Method

The Newton-Raphson (NR) method computes the exact Jacobian matrix to linearize
the residual at tn+1 as follows:[

dR(T)

dT

]n+1

i

∆Tn+1
i+1 = −Rn+1

i (35)

where the incremental solution ∆Tn+1
i+1 at iteration i + 1 is obtained solving a lin-

ear system using the known solution Tn+1
i from the previous iteration. Then, the

solution is updated as follows

Tn+1
i+1 = ∆Tn+1

i+1 + Tn+1
i (36)

Notice that the Newton-Raphson method can also be formulated using a non-
incremental form analogous to the Picard’s method in Eq. 32.[

dR(T)

dT

]n+1

i

Tn+1
i+1 = −Rn+1

i +

[
dR(T)

dT

]n+1

i

Tn+1
i (37)
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The Jacobian matrix from Eq. 35 can be obtained as

dR(T)

dT
=
dM(T)

dT
·T + M +

dL(T)

dT
+ ∆t

(
dK(T)

dT
·T + K

)
(38)

with [8] (
dM

dT
·T
)
IJ

=

∫
Ω
NI ρ

dc

dT
T NJdΩ (39a)(

dL

dT

)
IJ

=

∫
Ω
NIL

dfL
dT

NJdΩ (39b)(
dK

dT
·T
)
IJ

=

∫
Ω
∇NI

dk

dT
∇T NJdΩ (39c)

Remark 1 Notice that in Eq. 38, the boundary conditions term B has not been lin-
earized. Instead, the nonlinear radiation heat flux, qrad, is treated using the Picard’s
method and evaluated at the previous iteration. The convection heat flux, qconv, is
linear and therefore does not need any linerization strategy.

Remark 2 The Newton-Raphson non-incremental form in Eq. 37 has been selected
for the implementation. The main idea is to obtain a linear system analogous with
the Picard’s method to simplify the implementation. Thereby, the M and K terms
in Eq. 38 are canceled with the residual in the right hand side of Eq. 37.

2.5 Implementation Details

To illustrate the decisions made during the development, the main implementations
details regarding the double ellipsoidal heat source and the Newton-Raphson lin-
earisation terms are going to be explained.

2.5.1 Double Ellipsoidal Heat Source

Before starting the computations, the double ellipsoidal parameters (af , ar, b, c, ff
and fr) are calculated using the estimated melt pool size input values. At each time
step, the new heat source position, xn+1, is computed. Then, the power density
Q̇n+1 is evaluated at the gauss points for each element inside the melt pool (Algo-
rithm 1).

To select which elements are inside the double ellipsoidal at each time step, the
MeltPoolBox is defined. It is a hexahedral domain with sides af + ar, 2b and c
that contains the double ellipsoidal (Fig. 2). Using a face intersection algorithm,
the elements inside the MeltPoolBox are determined. Notice that the expressions
to compute the power density in Eq. 18 and 19 are using a local coordinate system
that moves with the heat source. Therefore, a change of variables from the global
to the ellipsoidal coordinates is needed (Algorithm 1).

Remark 3 A common alternative to define the heat source is to use a constant
power density within the melt pool [9]. First, the elements inside the melt pool are
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Algorithm 1: Compute double ellipsoidal heat source

Input: xn+1, af , ar, b, c, ff , fr
Output: Q̇n+1

MeltPoolBox ← BuildMeltPoolBox(xn+1, af , ar, b, c)
for e ≤ nOfElem do

inside← isElementInsideMeltPoolBox(e,MeltPoolBox)
if inside then

for g ≤ nOfGaussPoints do
xgaus ← GetGaussCoord(e, g)
xellip ← GaussToEllipsoidCoord(MeltPoolBox,xgaus)
if xellip(1) ≥ 0 then

P ∗ ← ffP
a∗ ← af

else
P ∗ ← frP
a∗ ← ar

end

Q̇n+1(e, g)← EllipsoidPowerDensity(P ∗, a∗, b, c,xellip)

end

end

end

determined, computing the total volume of the melt pool, VMP . The constant power
density is obtained as the net input power divided by the melt pool volume as follows
Q̇ = ηP

VMP
. After that, another loop over the elements inside the melt pool is needed

to assign the heat source at each element. Regarding the implementation, the double
ellipsoidal model presents a clear advantage in front of the constant heat source,
given that only one loop over all the elements is needed.

2.5.2 Material Properties Derivatives

The temperature dependent material properties c(T ) and k(T ) are defined using a
set of discrete data. These data is linearly interpolated to compute the material
properties at any given temperature, T . First, a bisection algorithm is used to find
the discrete temperature values, Ti and Ti+1, that define the temperature interval
which contains T . Thereby, any temperature dependent property, θ(T ), can be
calculated as follows:

θ(T ) = θiai + θi+1(1− ai) with ai(T ) =
Ti+1 − T
Ti+1 − Ti

(40)

where θi and θi+1 are the discrete property values at temperatures Ti and Ti+1

respectively. Derivating Eq. 40 with respect to T , an expression to compute the
material properties derivatives in Eq. 39 is obtained.

d θ(T )

dT
=
θi+1 − θi
Ti+1 − Ti

(41)
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2.5.3 Liquid Fraction Derivative

The liquid fraction, fL(T ), is calculated for any given temperature, T , using Eq.
5. However, when computing its exact derivative in Eq. 39, two problems appear.
The derivative is not continuous at TS and TL, but more important, the derivative is
zero outside the phase-change temperatures. Therefore, if the temperature difference
between Tn+1 and Tn is greater than the phase-change, the latent heat linearisation
term may be ignored. That is, if the time step is too large, the enthalpy jump is not
considered by the Jacobian matrix. To solve that, an secant approximation of the
derivative is used outside the transformation temperatures. While within the phase-
change temperatures TS and TL, the exact constant derivative is used. Thereby, to
compute the liquid fraction derivative at tn+1 the following algorithm has been used.

Algorithm 2: Compute liquid fraction derivative

Input: Tn+1, Tn TL, TS

Output: dfL
dT

n+1

if Tn+1 ∈ [TS , TL] then
dfL
dT

n+1
= 1

TL−TS
else

fnL ← ComputeLiquidFraction(Tn, TS , TL)

fn+1
L ← ComputeLiquidFraction(Tn+1, TS , TL)

dfL
dT

n+1
=

fn+1
L −fnL
Tn+1−Tn

end

2.6 Goldak’s Model

To validate the simulation results, the computational model presented by Goldak
in [3] has been used. It consists of a low carbon steel thick section bead-on-plate
weld. The welding conditions and ellipsoid parameters used are reported in Fig. 4.
In Goldak’s analysis, a 2D simulation was done in the plane normal to the welding
direction to reduce the computational costs, Thus, it is assumed that the heat flow
in the welding direction can be neglected when the welding speed is high enough.
To obtain a more general approach, a 3D model has been developed instead.

The simulation domain in Fig. 3, has been constructed to be long enough such that
the steady-state solution is achieved. During the fist time steps, the material is
being heated by the laser power, increasing the peak temperature within the melt
pool. Once the steady-state is achieved, the melt pool size and the peak temperature
remain constant as the laser moves throughout the domain. It has been found that
75mm are needed to reach the steady-state solution. Comparing it with the dou-
ble ellipsoidal length, ar + af = 45mm, it correspond to 1.6 times the heat source
length. It has been noticed that the solution is not completely steady outside the
melt pool region. In fact, the heat affected zone behind the laser keeps growing far
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from the melt as the laser advances.

(a) Initial coarse mesh

(b) Refined mesh around the melt-pool

Figure 3: Octree-based adaptive mesh refinement with 4 levels of refinement (view
from the top).

A structured hexahedral mesh has been used with an octree-based adaptive mesh
refinement. The idea is to reduce the computational costs by using a coarse mesh
with h = 10mm far from the melt pool. At the same time, a really small grid is
used around the melt pool to properly capture the phase-change (Fig. 3). The mesh
is hierarchically refined using different levels of refinement. Thus, an error estimator
is used to determine if further mesh refinement is needed around the melt pool at
each time step. Besides, a coarsening criteria is used to keep the number of elements
constant as the double ellipsoidal heat source is moving throughout the domain. An
efficient load-rebalanced adaptive mesh refinement algorithm for high performance
computing has been used [10].

2.6.1 Boundary Conditions

In Goldak’s model, all faces except the top surface are assumed insulated. Thus, the
normal heat flux, qn, is set to zero. In addition, a symmetry boundary condition is
used at the middle plane to model only half of the melt pool. On the top surface, a
combination of convection and radiation loses is considered imposing the following
normal heat flux:

qn = H (T − Tenv) with H(T ) = 24.1× 10−4εT 1.61 (42)

where H is a combined heat transfer coefficient and the emissivity is set to ε = 0.9.
Besides, in Goldak’s analysis, the portion just under the welding arc was assumed
insulated during the time the arc was playing upon the surface. In other words, no
loses were considered on the double ellipsoidal top surface. To reproduce the same
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Figure 4: Goldak’s computational model with the ellipsoidal parameters used and the
welding experimental conditions [3].

boundary conditions, the heat convection coefficient, h, from Eq. 7 has been cali-
brated to match Goldak’s loses. Therefore, in Fig. 5, the convection and radiation
boundary conditions are compared with Goldak’s normal heat flux in Eq. 42.
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Figure 5: Comparison between Goldak’s heat loses and the radiation and convection
boundary conditions.
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Assuming a constant heat convection coefficient, the Goldak’s heat loses are accu-
rately predicted up to approximately T = 1400◦C. For higher temperatures, the
fourth-order radiation boundary condition increases the heat loses beyond Goldak’s
expression. Nevertheless, Goldak’s model is not considering any loses on the double
ellipsoid top surface, so it is reasonable to assume that beyond the solid tempera-
ture, TS , no loses occur. Thus, to match Goldak’s boundary conditions, the heat
convection coefficient and the radiation emissivity are set to zero inside the melt
pool. The following expressions are used to validate Goldak’s model.

h(T ) =

{
80 for T ≤ TS
0 for T > TS

ε(T ) =

{
0.9 for T ≤ TS

0 for T > TS
(43)

2.6.2 Material Properties

The relevant low carbon steel material properties are taken from [3] and presented
in Fig. 6 and Tab. 1.
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(b) Thermal Conductivity

Figure 6: Low carbon steel material properties.

Density Latent Heat Solid/Liquid Temperature
[kg/m3] [J/kg] [◦C]

7850 2.67 ×105 1430 - 1480

Table 1: Low carbon steel material properties.

Notice how the specific heat capacity in Fig. 6 presents a remarkable peak around
the transformation temperature which introduces a highly non-linearity. At the solid
temperature, the specific heat remains constant because the heat of fusion is already
being considered using the latent heat. The thermal conductivity at the liquid phase
is set to k = 120W/m◦C, to reproduce the convection heat transfer effects within
the fusion zone. Finally, the density is assumed constant to fulfill the conservation
of mass at all times.
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2.7 Experimental Model

The presented double ellipsoidal heat source model has been validated against ex-
perimental data provided by the RMIT Centre for Additive Manufacturing in Mel-
bourne. The model’s ability to accurately predict the melt pool shape has been
tested using different operating conditions. Using direct energy deposition (DED),
different tracks have been produced and analysed (Fig. 7). The melt pool depth ad
width have been measured using different laser powers and transverse speeds. The
experimental substrate samples consists of Ti-6Al-4V titanium alloy plates with di-
mensions 200 mm long, 100 mm wide and 4.1 mm thick. The plate surfaces have
been wiped with acetone before the process. Besides, a coaxial nozzle has been used
with Ti-6Al-4V powder. The main experimental parameters are detailed in Tab. 2.

Powder Feed Rate 3 rpm
Powder Flow Rate 2.27 g/min
Laser Spot Size 2.5 mm
Carrier Gas (Helium) 10 L/min
Shielding Gas (Argon) 16 L/min

Table 2: Experimental global build param-
eters.

Figure 7: Experimental tracks
produced with DED using Ti-6Al-4V
alloy.

The computational model to validate the experimental evidence has been build using
the previous experience with Goldak’s model. Thus, the same meshing strategy has
been used, as well as the boundary conditions detailed in Sec. 2.6. However, the
double ellipsoidal heat source parameters have been changed to accurately reproduce
the experimental results. The af and c ellipsoidal axes have been determined using
the laser spot size in Tab. 2. The optimal front and rear power fractions, ff and fr,
found by Goldak in [3] have been used. Using the continuity condition from Eq. 21,
the rear ellipsoid axis, ar, has been computed. Finally, the energy absorptivity, η,
and the ellipsoid depth, b, have been calibrated to match the experimental evidence.
The parameters used are detailed in Tab. 3.

af [mm] ar [mm] b [mm] c [mm] ff fr η

2.5 5.83 0.3 2.5 0.6 1.4 0.6/0.78

Table 3: Double ellipsoidal heat source parameters.

To calibrate the double ellipsoidal model, a single experimental track has been sim-
ulated using different values for η and b. The melt pool results have been compared
with the experimental data to chose the most accurate parameter combination. The
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double ellipsoidal axis and the power fractions in Tab. 3 represent how the laser
power is spread into the domain and are expected to remain independent from the
operating conditions. The heat source shape will highly depend on the additive
technology used, as well as different experimental parameters such as the laser spot
size or the type of nozzle used. However, the absorptivity parameter which repre-
sents the amount of energy absorbed by the powder particles is found to dependent
on the laser input power. Among many other parameters, the absorptivity depends
on the local temperature of the material within the melt pool which is increased by
the input power. Thus, a lower absorptivity is needed to match the experimental
results with higher laser powers.

2.7.1 Material Properties

The relevant Ti-6Al-4V material properties are taken from [11] and presented in Fig.
8 and Tab. 4.
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Figure 8: Ti-6Al-4V material properties.

Density Latent Heat Solid/Liquid Temperature
[kg/m3] [J/kg] [◦C]

4420 2.9 ×105 1697 - 1703

Table 4: Ti-6Al-4V material properties.

The Ti-6Al-4V temperature dependent material properties present a similar be-
haviour than the low carbon steel used in Goldak’s model. However, the specific
heat capacity transformation peak is much less pronounced in Fig. 8, introducing a
smaller non-linearity. On the other hand, the thermal conductivity phase change dis-
continuity is sharper in Fig. 8, given that the solid to liquid temperature difference
is only 6 ◦C. Therefore, really small elements are needed at the melt pool interface
to properly capture the phase-change discontinuity and the latent heat effect.
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3 Results and Discussion

In this section, the results obtained are presented and discussed. First, the double
ellipsoidal heat source model is tested with an analytical expression. After that, the
numerical model is verified studying the mesh and time convergence. The Newton-
Raphson convergence is also investigated. Finally, the proposed model is validated
with Goldak’s original results and the available experimental evidence.

3.1 Heat Source Validation

The Goldak’s double ellipsoidal heat source model defined in Sec. 2.1.3 has been
validated with an analytical expression to verify that the conservation of energy
holds. The idea is to define an insulated domain with no heat loses and check that
the final temperature is consistent with the amount of power, P , introduced by the
moving heat source. Using constant material properties, the following analytical
relation can be obtained.

Tend =
ηP∆t

ρcV
+ T0 (44)

where Tend is the steady state constant temperature, ∆t represents the heat source
scanning time, V is the domain volume and T0 is the initial temperature. The
Goldak’s heat source is activated during ∆t = 6 s. Then the simulation is continued
until a constant temperature is reached in all the domain. A high thermal conduc-
tivity is used to reduce the time to reach the steady state. The results are presented
in Tab. 5 using different minimum element sizes, hmin, to discretise the melt pool.
Besides, the effect of the volume correction factor, φ, from Eq. 16 has also been
studied.

hmin Tend without φ Tend with φ
[mm] [◦C] [◦C]

4 47.48 -0.98% 48.68 +1.52
2 47.29 -1.38% 48.48 +1.11%
1 47.08 -1.81% 48.28 +0.68%

0.5 46.94 -2.11% 48.1 +0.31%

Table 5: Goldak’s double ellipsoidal heat source validation.

The percentage errors in Tab. 5 are computed comparing the simulation results
with the analytical expression in Eq. 44. It can be seen how the results with the
volume correction factor are improved when the mesh is refined. On the other hand,
the simulations without the volume correction factor are giving worst results when
reducing the element size. As discussed in Sec. 2.1.3, the volume correction factor
is needed to correct the amount of energy distributed within the double ellipsoidal.
Therefore, the results without φ are underestimating the final temperature Tend.
The definition of the volume correction factor in Eq. 16 assumes that the energy
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is distributed within the finite domain enclosed by the double ellipsoidal. This
assumption holds for fine meshes that can accurately reproduce the double ellipsoidal
domain, but not for coarse meshes. As it can be seen in Tab. 5, for big element
sizes Tend is overestimated due to the fact that the double ellipsoidal is not well
resolved. The results in Tab. 5, show the importance of the mesh resolution within
the melt pool to accurately reproduce the double ellipsoidal domain and fulfill the
conservation of energy.

3.2 Mesh Convergence

To verify the computational model presented in Sec. 2.6, a mesh convergence study
has been performed. The idea is to study the effect of different refinement levels
on the melt-pool size to determine the optimal melt pool discretization. To that
end, four different meshes with an adaptive mesh refinement have been used (Tab.
6). Thus, the melt-pool dimensions and the peak temperature have been computed
using different meshes in Tab. 7. The melt-pool (MP) length, width and depth are
calculated using the liquid temperature, TL. The peak temperature corresponds to
the maximum temperature within the melt pool. The relative error with respect to
the finer mesh is also shown in Tab. 7.

Refinement Levels hmin [mm] Number of Elements

Mesh 1 3 1.25 40×103

Mesh 2 4 0.625 130×103

Mesh 3 5 0.313 230×103

Mesh 4 6 0.156 540×103

Table 6: Minimum element size hmin and total number of elements for different refine-
ment levels.

MP Length MP Width MP Depth Peak Temperature
[mm] [mm] [mm] [◦C]

Mesh 1 58.5 0% 13.75 7.3% 15 2% 2452 0.32%
Mesh 2 58.8 0.51% 14.38 3.1% 15 2% 2448 0.16%
Mesh 3 58.8 0.51% 14.69 1% 15.31 0% 2447 0.12%
Mesh 4 58.5 - 14.84 - 15.31 - 2444 -

Table 7: Melt pool dimensions and peak temperature mesh convergence study.

In Tab. 7, the MP width is clearly the most sensitive parameter to the mesh refine-
ment level. Thus, the MP width increases when reducing the minimum element size
at the melt pool interface. The rest of parameters in Tab. 7, present a smaller error
that can be accepted. Notice that the optimal mesh is determined by balancing
the computational cost, which increases dramatically with the number of refinement
levels, with the solution accuracy. The Mesh 2 with hmin = 0.625 has been selected
to validate the simulation results. It presents a maximum error of 3.1% in front
of the finer mesh used, but the computational costs are greatly reduced from half
million of elements to 100 thousand. Of course, the number of elements depends also
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on the domain length, which in Goldak’s model is build to achieve the steady-state
solution.

3.3 Time Convergence

The time discretization is studied to determine which is the maximum welding step
that can be used without compromising the solution accuracy. A larger welding step
is desired to reduce the number of time steps required to achieve the steady-state
solution. Thus, the MP dimensions and the peak temperature are computed using
different welding steps ∆x in Tab. 8. The welding step represents the distance that
the heat source is moving at each time step. Therefore, it is directly related to the
time step, ∆t, and the welding velocity, v, as follows ∆x = ∆t v. The relative error
with respect to the smaller time step is also shown in Tab. 8.

∆x MP Length MP Width MP Depth Peak Temperature
[mm] [mm] [mm] [mm] [◦C]

10* 72.3 5.7% 14.38 4.1% 14.38 4.1% 2413 4.6%
5* 67.2 1.8% 14.38 4.1% 15 0% 2467 2.5%
2 69.3 1.3% 15 0% 15 0% 2511 0.8%
1 68.1 0.4% 15 0% 15 0% 2525 0.2%
0.5 68.4 - 15 - 15 - 2534 -

Table 8: Melt pool dimensions and peak temperature time convergence study.

The larger welding steps, ∆x = 10mm and ∆x = 5mm, are highlighted because the
Newton-Raphson scheme only converges until 1e-4 for these cases. So, the nonlinear
residual is not exactly zero for the larger time steps. As it will be studied in Sec.
3.4, the Newton-Raphson convergence is highly affected by the chosen welding step.
In Tab. 8, it can be seen how the time step does not have a huge influence on the
MP dimensions and peak temperature. Therefore, the optimal welding step is the
maximum that achieves the Newton-Raphson convergence. In Goldak’s model, it
is set as ∆x = 2mm. Taking into account the Goldak’s double ellipsoidal length,
af +ar = 45mm, it is deduced that the heat source needs to be superposed 23 times
to accurately reproduce the melt pool.

3.4 Newton-Raphson Convergence

The Newton-Raphson method has been chosen over the Picard’s scheme to solve the
nonlinear residual from Eq. 31. It has been found that the Picard’s method is not
converging, possibly due to the highly nonlinear nature of the problem. Thus, to
study the Newton-Raphson convergence, the temperature difference norm, ‖∆T‖,
has been monitored throughout the iterations in Fig. 9. Besides, the temperature
difference convergence rate, CR, has been computed in Tab. 9 for different welding
steps ∆x.
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Figure 9: Newton-Raphson convergence study at t = 15 s using different welding steps
∆x in mm.

Iter
∆x = 5 ∆x = 2 ∆x = 1 ∆x = 0.25

‖∆T‖ CR ‖∆T‖ CR ‖∆T‖ CR ‖∆T‖ CR

1 0.12 - 0.052 - 0.026 - 6.5e-3 -
2 0.035 1.15 9.6e-3 1 3.4e-3 0.82 5.5e-4 0.76
3 8.7e-3 0.72 1.6e-3 0.85 6.5e-4 1.1 8.2e-5 0.83
4 3.2e-3 1.25 3.6e-4 0.83 1.03e-4 0.88 1.7e-5 0.75
5 8.8e-4 0.14 1e-4 1.3 2e-5 0.87 5.3e-6 0.9
6 7.3e-4 0.06 2e-5 1.5 4.8e-6 0.97 1.8e-6 0.92
7 7.2e-4 - 1.8e-6 0.67 1.2e-6 0.99 6.9e-7 0.95
8 7.2e-4 - 3.6e-7 0.99 3.06e-7 0.99 2.8e-7 0.97
9 7.2e-4 - 7.4e-8 0.98 7.8e-8 0.99 1.1e-7 0.97
10 7.2e-4 - 1.5e-8 0.96 2.05e-8 0.98 4.8e-8 0.98
11 7.2e-4 - 3.5e-9 - 6.4e-9 - 2.06e-8 -

Table 9: Temperature difference norm and convergence rate at each Newton-Raphson
iteration at t = 15s using different welding steps ∆x in mm.

In Fig. 9, it can be seen how the Newton-Raphson method with ∆x = 5mm is
not converging after the fifth iteration. Thus, the temperature difference norm is
stabilized at 7.2e-4 because the previous time step solution, Tn, is too distant from
Tn+1. Using smaller welding steps, the temperature difference reaches 1e-8 with 11
iterations. In Tab. 9, it can be observed how the optimal NR quadratic convergence
is not achieved. Instead, a linear convergence is obtained probably because the exact
Jacobian matrix is not computed when dealing with the liquid fraction derivative
(see Sec. 2.5.3). The welding step ∆x = 2mm gives the better convergence, reaching
a CR of 1.5 in the sixth iteration. Furthermore, in Fig. 9, the convergence using
∆x = 0.25mm is clearly deteriorated during the last iterations. The number of
iterations needed for convergence depends on the problem nonlinearities. Therefore,
during the first iterations where there material is not melted, the NR iterations are
greatly reduced.
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3.5 Goldak’s Validation

The results obtained with Goldak’s model are presented and compared with the
original results from [3]. The melt pool distribution is shown in Fig. 10 using
two different views. In addition, the temperature distribution along the top surface
width has been plotted in Fig. 11.

(a) Melt pool view from the top (b) Melt pool cross section

Figure 10: Goldak’s model melt-pool with mesh refinement (a) and depth and width
sizes (b).

The melt pool is defined as the region where the local temperature is higher than
the liquid temperature (red region in Fig. 10). In Fig. 10 (a), it can be seen how
the smaller elements are concentrated at the front of the melt pool, where the solid
to liquid phase change happens quicker. On the other hand, at the rear part of
the melt pool, the phase change is smoother which induces a smaller temperature
gradient in the welding direction. The melt-pool cross section in Fig. 10 (b) can be
compared with Goldak’s result in Fig. 4. Thus, the MP width measures 15.3mm
while Goldak’s fusion zone measures 16mm and the experimental value is 14mm.
Notice that the MP depth is equal to the width because the ellipsoidal parameters
b and c are the same in Goldak’s analysis. Besides, no heat loses are allowed on the
double ellipsoidal surface, so the normal heat flux on the top surface is also zero.

The temperature distribution along the top surface width has been validated against
Goldak’s results in Fig.11 (a). The solution is computed 57.5mm behind the laser,
meaning that the local ellipsoidal coordinate is equal to ξ = −57.5mm. It can be
seen how the solution matches the experimental distribution outside the melt-pool
region, but gives completely different temperature values within the melt pool. One
of the reasons could be the radiation and convection boundary conditions, which
are imposed differently in Goldak’s original model (Sec. 2.6.1). The idea is that
the double ellipsoidal top surface is much bigger than the melt pool, so at the end,
Goldak’s original model is predicting lower loses on the top surface. This could
explain the maximum temperature difference in Fig. 11 (a). Besides, the Goldak
model solution does not meet the symmetry conditions at x = 0, where the normal
heat flux should be zero.
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Figure 11: Goldak’s model temperature distribution along the top surface width.

In Fig. 11 (b), different ξ locations have been compared to see how the local temper-
atures distribution changes while the heat source is moving. It can be seen how the
peak temperature is not located at the laser spot, but behind it due to the moving
heat source. Also, the temperature distribution is not smooth at the phase-change
due to the released latent heat. The effect is more pronounced behind the laser,
where the phase-change is slower.

3.6 Experimental Validation

The results obtained with the experimental model described in Sec. 2.7 are com-
pared with the melt pool experimental measures in Tab. 11. The melt pool sizes
and the peak temperature are computed using the operating conditions detailed in
Tab. 10. Furthermore, the melt pool cross section is shown in comparison with the
experimental evidence in Fig. 12-14. Finally, the melt pool shape is presented in
Fig. 15 for the different experimental tracks.

Laser Power Laser Speed Laser Radius MP Depth MP Width
[W ] [mm/min] [mm] [µm] [µm]

Track 10 1000 800 2.5 636.2± 55 1346.7± 55
Track 14 1500 800 2.5 756.8± 55 1763.1± 55
Track 17 2000 400 2.5 1535.1± 55 2631.5± 55

Table 10: Experimental tracks operating conditions and measured melt-pool sizes.

In Tab. 11, the double ellipsoidal model is under-predicting the MP width with a
maximum error of 14%, while over-predicting the MP depth with a maximum error
of 11%. A priori, one may think that the results could be improved reducing the
double ellipsoidal axis b. However, during the calibration process detailed in Sec.
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MP Depth MP Width MP Length Peak Temperature
[mm] [mm] [mm] [◦C]

Track 10 0.635 -0.18 % 1.29 -4.21% 5.2 1983
Track 14 0.82 +8.35% 1.51 -14.3% 5.95 2130
Track 17 1.71 +11.4% 2.3 -12.6% 7.73 2673

Table 11: Melt pool dimensions and peak temperature compared with the experimen-
tal evidence.

2.7, it was found that reducing b had almost no effect on the resulting MP depth.
Instead, the MP width was slightly increased. Notice that the final MP depth is
much bigger than the double ellipsoidal axis b. Overall, the energy absorptivity η is
the most sensitive parameter for the MP size. In fact, for Track 10 the absorptivity
was set to η = 0.78, but a smaller value of η = 0.6 was needed for Track 14 and 17
to match the experimental results.

The qualitative results in Fig. 12-14 show a good agreement with the experimental
evidence. However, it can be observed that the experimental melt pool presents a
steeper shape at the top surface. Regarding the results in Fig. 15, it can be seen
how the melt pool sizes increase proportionally to the laser power, showing a similar
shape but with bigger sizes (Track 10 and 14). Nevertheless, when the scanning
speed is reduced, the melt pool becomes thicker presenting a more circumferential
cross section (Track 17). This happens because the resulting power density intro-
duced by the laser is increased during the same time step.

Figure 12: Track 10 melt pool cross section comparison between experimental evidence
and simulation results.
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Figure 13: Track 14 melt pool cross section comparison between experimental evidence
and simulation results.

Figure 14: Track 17 melt pool cross section comparison between experimental evidence
and simulation results.
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(a) Track 10 (b) Track 14

(c) Track 17

Figure 15: Melt pool shape with depth, width and length sizes in mm for different
experimental tracks.
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4 Conclusions

A numerical tool to predict the melt-pool shape in AM processes has been devel-
oped. The computational model has been successfully verified and validated against
the available experimental evidence. It has been found that the mesh resolution
around the melt pool is crucial to obtain a consistent definition of the double ellip-
soidal heat source. Besides, the minimum element size needs to be small enough to
accurately solve the phase-change interface. Furthermore, given the highly nonlin-
ear nature of the problem, the maximum welding step is restricted to achieve the
Newton-Raphson convergence.

The model’s ability to predict the melt pool width and depth has been proven with
a maximum error of 14%. Beforehand, the double ellipsoidal parameters need to be
calibrated to match the experimental results. In this regard, the energy absorptivity
is found to be the most sensitive parameter for the predicted melt pool sizes. Com-
pared with Goldak’s results, the presented model is clearly not suited to predict
the temperature distribution at the melt pool tail. However, more details about
Goldak’s original results would be needed to extract further conclusions.

The melt-pool in DED processes presents a slender shape which grows more or less
proportionally in all directions with the laser input power. However, when reducing
the scanning speed, the molten pool becomes thicker presenting a more circumfer-
ential cross section.
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