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4-1. BINARY RESPONSE DATA. BINOMIAL MODELS 

4-1.1 Components of generalized linear models 

Generalized linear models are extensions of classic multiple regression models.  

Let  n

T yy ,,y 1  be a vector of n components randomly drawn from vector  n

T YY ,,Y 1

, whose variables are statistically independent and distributed with expectation  n

T  ,,1  : 

The random component assumes that mutual independence holds and each random variable in 

 n

T YY ,,Y 1
 belongs to the exponential family with one parameter distribution 

𝑌𝑖|𝑋𝑖~𝐹(. ; 𝜇𝑖 , 𝜙) = 𝐵𝑒𝑟𝑛(𝜋𝑖), 𝜙 = 1 𝑜𝑟 𝑚𝑖  and expected values 𝐸(𝑌𝑖|𝑋𝑖) = 𝜇𝑖 = 𝑚𝑖𝜋𝑖  

and 𝑉(𝑌𝑖|𝑋𝑖) = 𝜙𝜋𝑖(1 − 𝜋𝑖). 

 At the disaggregated level for each individual observation, the response is dichotomous and we 

are dealing with the Bernoulli distribution. For grouped data, binomial distributions are suitable. 

 The systematic component in the model specifies a vector  . The linear predictor vector is a linear 

combination from a limited number of explanatory variables  pXX ,,X 1
 or regressors and 

parameters  p

T  ,,1
 to be estimated. In matrix notation,  X  where   is nx1, 

X is nxp  and   is px1.  
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BINARY RESPONSE DATA. BINOMIAL MODELS 

For each observation, the expected value   is related to the linear predictor   through the scalar link 

function, denoted g(.) (logit, probit, clog-log) and thus 𝑔(𝜋𝑖) = 𝐱𝐢
𝐓𝛃 = 𝜂𝑖 .  

 

The response function is  𝜇𝑖 = 𝑚𝑖𝜋𝑖 = 𝑚𝑖𝑔−1(𝐱𝐢
𝐓𝛃) = 𝑚𝑖𝑔−1(𝜂𝑖) 

 

In ordinary least squares models for normal data, the identity link used is   .  

 

For binary data, several link functions are commonly used and will be presented in a later section. 

 

Since ML estimates:   �̂�  ∀𝑖 → �̂�𝑖 = 𝐱𝐢
𝐓�̂�   → �̂�𝑖 = 𝑔−1(�̂�𝑖) → �̂�𝑖 = 𝑚𝑖�̂�𝑖   

 

 For disaggregated data: �̂�𝑖 = 𝑚𝑖�̂�𝑖 = 1 ∙ �̂�𝑖 is the probability of positive response for 

observation i. 

 For grouped data: �̂�𝑖 = 𝑚𝑖�̂�𝑖  is the probability �̂�𝑖  of positive response for observations 

in group  i by group size, that is, the expected number of positive outcomes in group i.  
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BINARY RESPONSE DATA. BINOMIAL MODELS 

4-1.2 Classification of statistical linear models 

 

Explanatory 

variables 

 

Response variable  

Dichotomous or 

binary 
Polytomous Counts 

(discrete) 

Continuous 

Normal Time between 

events 

Dichotomous Contingency tables 

Logistic regression 

Log-linear models 

Contingency tables 

Log-linear models  

Log-linear 

models 

Tests for 2 

subpopulation 

means: t.test 

Survival 

analysis 

Polytomous Contingency tables 

Logistic regression 

Log-linear models 

Contingency tables 

Log-linear models 
Log-linear 

models 

ONEWAY, 

ANOVA 

Survival 

analysis  

Continuous 

(covariates) 

Logistic regression * Log-linear 

models 

Multiple 

regression 

Survival 

analysis 

Factors and 

covariates 

Logistic regression * Log-linear 

models 

Analysis of 

covariance 

Survival 

analysis 

Random 

effects 

Mixed models Mixed models Mixed 

models 

Mixed models Mixed models 
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4-2. INTRODUCTION TO BINARY RESPONSE DATA. BINOMIAL MODELS 

This variable appears when, given a sample, each individual has or does not have a target characteristic being 

studied, which is codified as (Y=1) or not (Y=0).  

For example, regarding mode selection in transportation models, one might be interested in the modal 

choice between public (metro, bus, light rail, etc.) or private (car, motorcycle, etc.) modes in the study 

area of home to work trips. In such models, the response variable can be defined for a commuter as Y=1 

(positive response or success, for example, public modes) or Y=0 (negative response or failure, in this 

case, private modes).  

 It is possible to have more than two levels or categories in the response variable. 

 The probability of success is denoted  , such that 

  kkYP  1 :  Probability of positive response (success) for kth individual in sample. 

  kkYP  10 :  Probability of negative response (failure) for kth individual in sample. 

 

Each individual in the sample is characterized by a set of variables (some of which are covariates such 

as income and age and some of which are factors such as gender, grades, etc.) that defines 

 
kpk xx 1T

kx .  
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INTRODUCTION TO BINARY RESPONSE DATA. BINOMIAL MODELS 

 Explanatory variables that will form the linear predictor  
kpk xx 1T

kx
 might be: 

 Quantitative variables or covariates. 

 Transformation of original variables. 

 Polynomial regressors built from covariates. 

 Dummy variables to represent factors. 

 Dummy variables to represent interaction between factors and covariates. 

For example, in the public-private binary modal choice model, for each commuter variable, such as income, 

gender, car availability, distance to local public transport, value of time, etc. 

 In this subject, the goal relies on studying the relationship between response variable y and the 

explanatory variables in order to model the probability of a positive response:  x  . 

 In designing the experiment, groups of individual units are defined and each group receives a 

combination of experimental conditions that are shared by all the units in the group. In general, factors 

are considered explanatory variables, and a kth experimental condition is modeled by a common set of 

values for all the explanatory variables of individual units in the group  and thus apply to km  individual 

units.  
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INTRODUCTION TO BINARY RESPONSE DATA. BINOMIAL MODELS 

 

 The total number of units in the sample is the sum of the size of the groups and, thus, the number of 

experimental conditions or groups is defined by n  and the total number of units is nmmN  1

. 

Each group or combination of experimental conditions defines a covariate class in which all individual 

units belonging to the covariate class share the same values for explanatory variables.  

 

The difference between individual and covariate class is critical when specifying data to statistical packages. 

In general, both representations are fully disaggregated (each individual outcome is broken down) or 

aggregation at some level is allowed according to covariate classes: 

 

1. Some analysis methods are well suited to aggregated data and perform badly when applied to 

disaggregated data, such as asymptotic approximations of normality.  

2. Asymptotic approximations for aggregated data are based either on the asymptotic evolution of the 

number of covariate classes (or groups) ( m ) or on the total number of individual units ( N ).  

3. Disaggregated data is suitable for asymptotic approximations based on the total size.  
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INTRODUCTION TO BINARY RESPONSE DATA. BINOMIAL MODELS 

 Let’s use a simple example to see differences in the representation. The table shows an experiment 

consisting of dichotomous factors A and C and thus n=4=2x2 is the number of covariate classes, but the 

total number of individuals is N=7. In our example, factor A is gender (two levels, coded as male and 

female) and factor C is car availability (1 car or more than 1). 

Disaggregated data Grouped data 

Individual unit Variables  Response Covariate class Class Size  Positive  
1 (male,1) 0 (1,1) 2 1 

2 (male,2) 1 (1,2) 3 2 

3 (male,2) 0 (2,1) 1 0 

4 (female,1) 0 (2,2) 1 1 

5 (female,2) 1    

6 (male,2) 1    

7 (male,1) 1    
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INTRODUCTION TO BINARY RESPONSE DATA. BINOMIAL MODELS 

 

Example: What would be the grouped data format for the Cordorniu 

data and the model glm(Codorniu~Region)? 

Codorniu is a binary variable built from P24REC, indicating a positive 

outcome when Codorniu was the first trademark to come to mind 

when thinking of cava. 

 

  

> dfgrup 

   Region   m ypos yneg 

1 Rgn.Nrd 440  182  258 

2 Rgn.Lvn 210   56  154 

3 Regn.Sr 144   17  127 

4 Rgn.Cnt 138   26  112 

5 Rgn.NrO 119   47   72 

6 Rgn.NrC 117   39   78 

7 R.BCNAM 203   71  132 

8 Rgn.MAM  76   19   57 

> 
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INTRODUCTION TO BINARY RESPONSE DATA. BINOMIAL MODELS 

Aggregated/grouped versus disaggregated data 

 Considering aggregated data is more efficient and consumes less memory. It makes observing the effect 

significantly simpler. 

 Aggregated data implies that the serial order is lost. If additional variables are present, only average 

values can be considered, possibly leading to ecological fallacy situations.  

 Aggregated data implies a response variable model of the binomial type, since observed positive 

responses are nn mymy ,,
11 , where kk my 0  is the number of positive responses in 

kth covariate class, the size of which is km .  

 

 The size of covariate classes in vector form is called the binomial index vector and it is denoted 

 nmm 1m .  For disaggregated data, each individual unit defines a binomial response for a 

group of size 1 and thus,  11 m . 

 



  SIM course. Master in Data Science – FIB- UPC    

Prof.  Lídia Montero                               Page 4-12      2.021-2.022 Academic Year 

4-3. BINOMIAL MODELS FOR BINARY DATA 

 

 Usually considered and 

defined in introductory courses to 

statistical analysis or theory of 

probability: 

 

Let  ,mBY   be a binomial 

variable that models the number of 

positive responses in m independent 

trials in a Bernoulli process and, thus, 

each one with a common probability 
 . 
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BINOMIAL MODELS FOR BINARY DATA 

4-3.1 Link functions 

 The goal consists in establishing a functional relationship between the probability of a positive result 

 and the vector of explanatory variables (predictors, in general; covariates if they are continuous) 

 
kpk xx 1T

kx :   x  .  

 

 In generalized linear models, the link function relates the linear predictor scale to the expected value 

of the probabilistic variable selected to model the random response. In the case of a binomial model 

concerned with the probability of positive response for a dichotomous individual response, the linear 

predictor   might be any value in the real axis for a given observation, but the probability of a 

positive answer belongs to the open interval (0, 1).  

 

 

 Vector   is related to the linear predictor   through the link function, denoted g(.),   g , 

  is nx1.  

 The canonical link for binomial data is the logit function   logit .  
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BINOMIAL MODELS FOR BINARY DATA 

 Logit link function is the most frequently used link, but it’s important to understand the role of link 

functions and not act automatically.  

 Some common link functions for binary response 

data are:  
 

1. The logit link (sometimes erroneously called 

the logistic link)

    
















1
1 loglogitg .  

and    
 
 



exp

exp


 

1

1

11 g ; this is the 

distribution function for a standard logistic 

variable, whose density function is 

   
 
  2

1

1
1 




exp

exp
'


g  with a mean of  0 

(position parameter) and variance 32  (scale 

parameter 1). This is a continuous and 

symmetric variable, quite similar to a normal 

distribution. 
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BINOMIAL MODELS FOR BINOMIAL DATA: LINK FUNCTIONS 

 Link function for binary response data 

2. Probit link or standard normal inverse:     1

2

 g  and        1

22 g . 

Standard normal (mean 0 and variance 1). 

 Logit link: 

   
 
 



exp

exp


 

1

1

11 g
            and                 

   
 
  

    



 112

1

1 1
1






exp

exp
'g

 

 

In general, 

    T

ix  ii  ,  

where P(.) indicates a distribution function for 

continuous variables and transforms real values for 

the linear predictor into the  1,0   interval. 

Transformations should depend on data 

characteristics and not be selected on a 

straightforward basis. 
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BINOMIAL MODELS FOR BINARY DATA: LINK FUNCTIONS 

 Logit and probit links are related to changes in scales: 

 

 

Probability 

  

Odds 





1
 

Log-odds   

x












1
log  

Probit 

   x 1
 

0,01 0,0101 -4,5951 -2,3263 

0,05 0,0526 -2,9444 -1,6449 

0,10 0,1111 -2,1972 -1,2816 

0,15 0,1765 -1,7346 -1,0364 

0,20 0,2500 -1,3863 -0,8416 

0,25 0,3333 -1,0986 -0,6745 

0,30 0,4286 -0,8473 -0,5244 

0,50 1,0000 0,0000 0,0000 

0,70 2,3333 0,8473 0,5244 

0,75 3,0000 1,0986 0,6745 

0,80 4,0000 1,3863 0,8416 

0,85 5,6667 1,7346 1,0364 

0,90 9,0000 2,1972 1,2816 

0,95 19,0000 2,9444 1,6449 

0,99 99,0000 4,5951 2,3263 
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BINOMIAL MODELS FOR BINARY DATA: LINK FUNCTIONS 

4-3.1.1 Comparison of common link functions  

 logit link is symmetric, 

            








 







 











 11

1
11

1
gg loglogloglogloglog

 

 probit link is symmetric, if     1

2

 g  then, 

              11111 2

11 g  

 logit link has a straightforward interpretation:  

Linear model in log-odd scale:   ippi

i

i

i xxg 



 












 111

1
log .  

Multiplicative model in odd scale: 

          ipi x

p

x

ippiippi

i

i xxxx 



expexpexpexpexp  1

11111
1


 .  A one unit 

increment in variable j, ijx  to ijx +1,  thus multiplies i  odds by  
jexp . 

Probability scale approximated interpretation for variable j: �̅�(1 − �̅�)𝛽𝑗  where �̅� is the sample positive 

outcome probability. 
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BINOMIAL MODELS FOR BINARY DATA: LINK FUNCTIONS 

 New table taking into account cloglog and loglog common links:  

Probabilidad 

  

Odds 





1
 

Log-odds   

x












1
log  

Probit 

   x 1
 

C_log-log 

x
































1
loglog  

Log-log 

x
































loglog  

0,01 0,0101 -4,5951 -2,3263 -4,60015 -1,52718 

0,05 0,0526 -2,9444 -1,6449 -2,97020 -1,09719 

0,10 0,1111 -2,1972 -1,2816 -2,25037 -0,83403 

0,15 0,1765 -1,7346 -1,0364 -1,81696 -0,64034 

0,20 0,2500 -1,3863 -0,8416 -1,49994 -0,47588 

0,25 0,3333 -1,0986 -0,6745 -1,24590 -0,32663 

0,30 0,4286 -0,8473 -0,5244 -1,03093 -0,18563 

0.3679 0.5820282 -0.5412364 -0.3374204 -0.7793422 0,0000 

0.4296 0.7532291 -0.2833858 -0.1773318 -0.5772 0,1685 

0,50 1,0000 0,0000 0,0000 -0,36651 0,36651 

0.5704 1.327747 0.2834833 0.1773926 -0.1685361 0.5772 

0.6321 1.71813 0.5412364 0.3374204 0,0000 0.7793 

0,70 2,3333 0,8473 0,5244 0,18563 1,03093 

0,75 3,0000 1,0986 0,6745 0,32663 1,24590 

0,80 4,0000 1,3863 0,8416 0,47588 1,49994 

0,85 5,6667 1,7346 1,0364 0,64034 1,81696 

0,90 9,0000 2,1972 1,2816 0,83403 2,25037 

0,95 19,0000 2,9444 1,6449 1,09719 2,97020 

0,99 99,0000 4,5951 2,3263 1,52718 4,60015 
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BINOMIAL MODELS FOR BINARY DATA: LINK FUNCTIONS 

 log-log and c-log-log link functions are also related by the following equation:  

   







 


















































 43 gg loglogloglog

 

 All link function are continuous and 

increasing functions in the open interval 

(0,1).  

 logit and probit link functions show an 

almost linear relationship between 0.1 and 

0.9.  

 For small probabilities, logit and 

complementary log-log links are rather 

similar. 

 For large probabilities near 1, 

complementary log-log has a less steepy 

increment than logit function..  

 For large probabilities near 1, logit and 

log-log link function are rather similar. 
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BINOMIAL MODELS FOR BINARY DATA: THEORY 

 Bernoulli in particular and Binomial laws belong to exponential family of one parameter. Parameters for 

binomial laws are group size, m and positive outcome probability,  , where total counts in the group is 

my, meaning   mmBY /,  
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BINOMIAL MODELS FOR BINARY DATA: THEORY 

 First and second order properties for scaled binomial distribution   mmB ,  are, 

 

   Y  ,        
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BINOMIAL MODELS FOR BINARY DATA: THEORY 

 Directly for binomial law,  ,mB , where y is the total number of positive outcomes (not observed 

probabilities) (thus, my  is a probability),  implies some minor modifications to the former expressions: 

 ,mB  → yi,
ii

ii

i

i
i

m

m
















11
loglog

  and  
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y log
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BINOMIAL MODELS FOR BINARY DATA: THEORY 

 … Scaled deviance (measure of discrepancy) for a binomial law  ,mB , where y are observations not 

probabilities, 
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4-4. ESTIMATION OF MODEL PARAMETERS 

 The estimation process relies on unconstricted maximization of the log-likelihood function, 

   



n

i

piyfMax
1

,log yβ,β  ,  
p ,,1 T

β  and  n

T yy ,,y 1 . 

 

 The iterative process to compute the estimates is called the score method, a second-order Newton-type 

method specialized for the properties of the log likelihood function. The method converges fast but is 

not globally convergent.  

 Existence and unicity for estimates under any of the aforementioned link functions, if ii my 0  for 

any covariate class/observation.  

 

 The quality of the initialization is usually not very important since the algorithm has fast convergence 

properties. It is not globally convergent, however, so an extreme initial point might lead to divergence.  
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ESTIMATION OF MODEL PARAMETERS: CODORNIU DATA 

> m0<-glm(Codorniu~1,family=binomial,data=df) 

> m1<-glm(Codorniu~Region,family=binomial,data=df) 

> summary(m1) 

 

Call: glm(formula = Codorniu ~ Region, family = binomial, data = df) 

 

… 

 

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept)   -0.34895    0.09680  -3.605 0.000312 *** 

RegionRgn.Lvn -0.66265    0.18363  -3.609 0.000308 *** 

RegionRegn.Sr -1.66202    0.27580  -6.026 1.68e-09 *** 

RegionRgn.Cnt -1.11145    0.23824  -4.665 3.08e-06 *** 

RegionRgn.NrO -0.07757    0.21104  -0.368 0.713210     

RegionRgn.NrC -0.34419    0.21871  -1.574 0.115538     

RegionR.BCNAM -0.27117    0.17616  -1.539 0.123713     

RegionRgn.MAM -0.74966    0.28204  -2.658 0.007861 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 1804.9  on 1446  degrees of freedom 

Residual deviance: 1735.3  on 1439  degrees of freedom 

AIC: 1751.3 
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4-5. GOODNESS OF FIT 

 If ̂  is an estimated model parameter, then a linear predictor for each observation i might be computed 

as  η̂i = 𝐱i
T ∙ �̂�  and, thus, through the response function (inverse of the selected link function), fitted 

values can be computed:  ii g  ˆˆ 1 .  

 Scaled deviance can be calculated from the maximum likelihood function at convergence, 

   y,ˆy)(y,ˆy,'   22 D .  

 And so, deviance under the binomial distribution is identical, since 1φ   

      ˆy,'φˆy,'ˆy, DDD    if   iii mBY ,  
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BINOMIAL MODELS FOR BINARY DATA: GOODNESS OF FIT 

 Deviance is expressed as: 
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 Sometimes, the deviance statistic is written in an alternative way: 

 



negativepostive

n

i i

i
i

e

o
oD

, 1

log2
      where 

1. Observed values for positive responses for observation i, ii yo  . 

2. Observed values for negative responses for observation i, iii ymo  . 

3. Expected positive responses for observation i, iii me ̂ . 

4. Expected negative responses for observation i, iiii mme ̂  . 
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BINOMIAL MODELS FOR BINARY DATA: GOODNESS OF FIT 

 Asymptotic distribution for model (M) with p parameters  ̂,YDDM   is 

2

pn
 (not to be 

confused with 
2

pN  ).  Asymptotic conditions are not met with individual data. 

 

Thus, a goodness of fit test can be formulated as H0 “The current model properly fits the data” and 

the p value for the test is   valuepDP Mpn _2  : 

 If pvalue <<0.05 then there is evidence to reject H0 and therefore the model (M) does not properly 

fit the data. There is statistical evidence of discrepancy between observations and fitted values 

provided by model (M). 

 If pvalue >> 0.05 then there is no evidence to reject H0 and therefore H0 is accepted, leading to 

the conclusion that model (M) does properly fit the data, since discrepancy between observed and 

fitted values is not statistically significant. 

 

 AIC (Akaike Information Criteria, 1974) is defined as a trade-off between the goodness of fit 

provided by a model (M) and the number of parameters p in the model (as an indicator for model 

complexity). Let M be a model with p parameters    pAIC MM  y,ˆ2  . Models with 

minimum AIC are preferred. 
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BINOMIAL MODELS FOR BINARY DATA: GOODNESS OF FIT 

 In order to consider sample size, another statistic known as BIC (Bayesian Information Criteria) (in 

SAS©) or Schwartz criteria is proposed   npBIC B logy,ˆ2  B . Minimum BIC models 

are preferred (AIC(model,k=log(n)).  

 AIC and BIC may be used to compare unnested models. 

 

 Following McCullagh, the test for Generalized LM equivalent to F.Test in classical linear regression 

consists in comparing differences in scaled deviance in two hierarchical models (nested models): 

Let MA be a model with q parameters nested in model MB with p > q parameters; let Â  and B̂  

be fitted probabilities for both models, such that, the set of parameters for MB are those common 

and specific to MA; i.e.,  TT

21 ,  
   and  T

1 
   with dim( A  )=q<p, then  

       y,ˆ2y,ˆ2ˆ,ˆ, ABBAAB DDD    yy
 is asymptotically distributed 

2

qp
. 

And for testing 
0 20 β:

  

 









Accepted
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0
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 ABqp DP

 

 

This is a contrast for multiple coefficients! Large values indicate non-equivalence of models. 
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BINOMIAL MODELS FOR BINARY DATA: GOODNESS OF FIT 

 In R software: Deviance test is as Fisher test for normal models 
 

anova(modelA, modelB, ...,    test = c("F", "Chisq")) # Deviance Test 

waldtest(modelA, modelB, ...,    test = c("F", "Chisq")) # Wald Test lmtest library 

glm.scoretest(modelA, x2=’additional columns’) # Scoretest statmod library,Z~N(0,1) 
 

 Rao's score test is a type of asymptotic test that is an alternative to Wald tests or likelihood ratio 

tests (LRTs) (Dunn and Smyth, 2018). All three types of tests (Wald, score and LRT) are asymptotically 

equivalent under ideal circumstances, but the score and LRT tests are invariant under-

reparametrization whereas Wald tests are not. 

o Wald tests are computed by dividing parameter estimates by their standard errors.  

o LRTs are computed from differences in the log-likihoods between the null and alternative hypotheses. 

o Score tests are computed from log-likelihood derivatives.  

 

 Deviance for a GLM plays a role similar to the residual sum of squares in classical regression. Thus, we 

can define a generalized  R2, or pseudo R2 
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> PseudoR2( model, which='all' ) # library(DescTools) 
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BINOMIAL MODELS FOR BINARY DATA: GOODNESS OF FIT 

 Goodness of fit using the generalized Pearson X2 statistic, asymptotically distributed as 

2

pn
: 
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 Hosmer-Lemeshow Goodness of Fit (GOF) Test is based on dividing the sample up according to their 

predicted probabilities. The observations in the sample are then split into g groups (usually 10) 

according to their predicted probabilities. Then the first group consists of the observations with the 

lowest 10% predicted probabilities. The second group consists of the 10% of the sample whose 

predicted probabilities are next smallest, etc etc.  

 Then,  how many  observations we would expect is calculated, by taking the average of the 

predicted probabilities in the group, and multiplies this by the number of observations in the group. 

The test also performs the same calculation for , and then calculates a Pearson goodness of fit 

statistic distributed with g – 2 degrees of freedom. 

 
hoslem.test(y, fitted(model), g=10) # ResourceSelection library 
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GOODNESS OF FIT AND MODEL SELECTION: CODORNIU DATA 

 Region has global significance: gross effect! 

 Step(model): Selection of the best model according to AIC criteria is available for glm() 
 

> anova(m0,m1,test="Chisq") 

Analysis of Deviance Table 

 

Model 1: Codorniu ~ 1 

Model 2: Codorniu ~ Region 

  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)     

1      1446     1804.9                           

2      1439     1735.3  7   69.589 1.789e-12 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

> m3aic<-step(m4gran) 

Start:  AIC=1751.8 

Codorniu ~ Region * Brandist + Age_Resp * Brandist + HH_nb 

 

                    Df Deviance    AIC 

- Region:Brandist   21   1705.8 1737.8 

- HH_nb              1   1679.2 1751.2 

<none>                   1677.8 1751.8 

- Brandist:Age_Resp  3   1687.1 1755.1 

 

Step:  AIC=1737.75 

Codorniu ~ Region + Brandist + Age_Resp + HH_nb + Brandist:Age_Resp 
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GOODNESS OF FIT AND MODEL SELECTION: CODORNIU DATA 

 

                    Df Deviance    AIC 

- HH_nb              1   1707.1 1737.1 

<none>                   1705.8 1737.8 

- Brandist:Age_Resp  3   1715.4 1741.4 

- Region             7   1763.2 1781.2 

 

Step:  AIC=1737.12 

Codorniu ~ Region + Brandist + Age_Resp + Brandist:Age_Resp 

 

                    Df Deviance    AIC 

<none>                   1707.1 1737.1 

- Brandist:Age_Resp  3   1716.6 1740.6 

- Region             7   1764.9 1780.9 

>    
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MODELS FOR BINARY DATA: GOODNESS OF FIT AND MODEL SELECTION 

4-5.1 ROC curve and confusion matrices 

ROC (Receiver Operating Characteristic) curve analysis has been widely accepted as the standard for 

describing and comparing the accuracy of predictions. 

If the ROC curve rises rapidly towards the upper right-hand corner of the graph or if the area under the 

curve is large, we can say the model performs well. If the area is close to 1.0, the model is good. If the area 

is close to 0.5, the model is bad. 

Confusion matrix for a binary model (M) shows predicted response versus observed response 

(positive/negative outcomes).  

Let the predicted response be 1ˆ iy if si ̂ , where s  is a threshold between 0 and 1. For each s, a 

confusion matrix can be built for model (M): 

 

s Y=1 Y=0 Total 

1ˆ iy  a/TP b/FP a+b 

0ˆ iy  c/FN d/TN 
c+d 

 a+c b+d n 

 

 Sensibility is the proportion of observed positive 

outcomes (Y=1) predicted to be positive ( 1ˆ iy ):          

Sn =a/(a+c). Recall or True Positive Rate (TPR). 

 Specificity is the proportion of observed negative 

outcomes (Y=0) predicted to be negative ( 0ˆ iy ):        

Sp = d/(b+d). True Negative Rate (TNR) 
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MODELS FOR BINARY DATA: GOODNESS OF FIT AND MODEL SELECTION 

 
  

Harmonic mean of precision and recall 
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MODELS FOR BINARY DATA: GOODNESS OF FIT AND MODEL SELECTION 

 ROC curves show, for each s, 1-Sp (false negative rate) on the x-axis and Sensibility - Sn (true positive 

rate) on the y-axis.  

 The point (0,1) is the perfect classifier: it classifies all positive cases and negative cases correctly. 

This is (0,1) because the false positive rate is 0 (none), and the true positive rate is 1 (all).  

 The point (0,0) is a classifier that predicts all cases to be negative. 

 The point (1,1) is a classifier that predicts every case to be positive. 

  A good online source to understand ROC curves is http://gim.unmc.edu/dxtests/ROC1.htm. 

 

Guidelines for interpreting ROC curves  

.90-1 = excellent(A)  

.80-.90 = very good (B)  

.70-.80 = good (C)  

.60-.70 = bad (D)  

.50-.60 = very bad (F) 

 

http://gim.unmc.edu/dxtests/ROC1.htm
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MODELS FOR BINARY DATA: GOODNESS OF FIT AND MODEL SELECTION 

 Goodness of fit statistics commonly used: 

 

Kendall Tau = (C-D)/H Gamma = (C-D)/(C+D) 

Sommer  D = (C-D)/(C+D+T) – Gini Coefficient C=0.5(1+ Sommer D) 

 

Good properties show statistics near 1 and c corresponds to the area under ROC curve. Calculated by 

MINITAB. 
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BINOMIAL MODELS FOR BINARY DATA: GOODNESS OF FIT – ROC CURVE 

How to compute in R, Pearson’s X2 statistic - Pearson’s residual sum of squares: 

sum( resid( model, ‘pearson’) ^2 ) 

As in the case for deviance residuals: 

sum( resid( model, ‘deviance’) ^2 )  ==  model$deviance 

Package rms contains the specific method lrm(.) for logistic regression with additional diagnostics (c, 

Naglekerke R2, and so on). NagelkerkeR2 is also in the fmsb package. 

To compute ROC curves: Install package ROCR; specific performance plots are available. 
 

 library("ROCR") 

 dadesroc<-prediction(predict(lm2_logit,type="response"),ars$resposta) 

 par(mfrow=c(1,2)) 

 plot(performance(dadesroc,"err")) 

 plot(performance(dadesroc,"tpr","fpr")) 
 abline(0,1,lty=2) 
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4-6. MODEL DIAGNOSTICS 

4-6.1 Residuals in GLMz 

Normal regression methods extended to generalized linear model: 

 Pearson residuals are casewise components of the Pearson (standardized) goodness of fit statistic for 

the model 

𝑒𝑖
𝑃 =

(𝑦𝑖−�̂�𝑖)

√𝑉[�̂�𝑖] �̂�⁄

  and 𝑒𝑖
𝑃𝑆 =

(𝑦𝑖−�̂�𝑖)

√(1−ℎ𝑖𝑖)𝑉[�̂�𝑖] �̂�⁄

  leading to 𝑋2 = ∑ (𝑒𝑖
𝑃)

2𝑛
𝑖=1   

This is a basic set of residuals for use with a GLM because of their direct analogy to linear models. For a 

model named M, the R command residuals(M, type="pearson") returns the Pearson residuals. 

 Deviance residuals, 𝑟𝑖
𝐷 = 𝑠𝑖𝑔𝑛(𝑦𝑖 − �̂�𝑖)√𝑑𝑖  are the square roots of the casewise components of the 

residual deviance    


ni Di
rD

,,1

2ˆy,


 , attaching the sign of iiy μ̂ .  

o In the linear model, the deviance residuals reduce to the Pearson residuals.  

o The deviance residuals are often the preferred form of residual for GLMs and are returned by 

the command residuals(M, type="deviance"). 

 

 Studentized Residuals have been defined by combining Deviance and Pearson residuals: use 

rstudent(model) from car library. 
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MODEL DIAGNOSTICS: RESIDUALS 

 The following functions (some in standard R and some in the car package) have methods for GLMs: 

rstudent, hatvalues, cooks.distance, dfbetas, outlierTest, avPlots, residualPlots, marginalModelPlots, 

crPlots, etc. 

 

 

 Hat matrix for generalized linear models can be defined, although it depends on Y (through W) 

and x’s values,  

  21T1T21
WXWXXXWH


  

 

H matrix is symmetric with diagonal values between 0 and 1, hii, named leverages and average value 

p/n. It corresponds to the last iteration (convergence) of the IWLS for estimating model parameters.  

 

The hii are taken from the final iteration of the iterative weighted least squares procedure for fitting 

the model and have the usual interpretation, except that, unlike in a linear model, the hat-values in a 

GLM depend on y as well as on the configuration of the xs. 
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MODEL DIAGNOSTICS: RESIDUALS 

4-6.2  Influence data in GLMz 

 

 Influence data are detected by and adapted to Cook’s statistic derived from the Wald statistic for 

multiple hypothesis testing: H0: 0  , 

         000

1

0

2

0  


ˆWXXˆˆˆˆˆ T
TT

VZ  

Let the Wald statistic be, for observation I,  
2

iZ   for testing H0:  i  ˆ
, the distance between 

̂ and  î  (  i  ˆˆd i ).  
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MODEL DIAGNOSTICS: RESIDUALS 

4-6.3 Diagnostic plots 
 

 plot( model) default diagnostic tool for normal response: DOES NOT WORK!!! 

 A scatterplot showing Pearson residuals (Y-axis) (3-5 cut-off) and leverage (hii, diagonal of H). Cut-offs 

can be included at 2p/n or 3p/n.  

 A scatterplot showing Pearson residuals versus each of the predictors in turn.  

 A scatterplot showing Pearson residuals against fitted values. However, residualPlots shows residuals 

against the estimated linear predictor, η(x).  

 Examine leverage for observations.  

 Examine Cook’s distance for observations. 

o In binary regression for disaggregated data, the plots of Pearson residuals or deviance residuals 

are strongly patterned, especially the plot against the linear predictor, where the residuals can 

take on only two values, depending on whether the response is equal to 0 or 1. 

o A suitable model requires that the conditional mean function in any residual plot be constant as we 

move across the plot; smoothers help in this purpose. 

 In R, residualPlots(M) in each panel in the graph by default includes a smooth fit; a lack-of-fit test is 

provided only for the numeric predictor 

residualPlots(mod.working, layout=c(1, 3)) 

influenceIndexPlot(mod.working, vars=c("Cook", "hat"), id.n=3) 
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MODEL DIAGNOSTICS: RESIDUALS 

Example of diagnostic plots for binary outcomes: 
> options(contrasts=c("contr.treatment","contr.treatment")) 

> bm3 <-glm( bwork~sons+income,family=binomial, data=womenlf ) 

> bm6 <-glm( bwork~sons*income, family=binomial, data=womenlf ) 

> anova(bm3,bm6,test='Chisq') 

Analysis of Deviance Table 

 

Model 1: bwork ~ sons + income 

Model 2: bwork ~ sons * income 

  Resid. Df Resid. Dev Df Deviance P(>|Chi|) 

1       260     319.73                       

2       259     319.12  1  0.60831    0.4354 

>  

> ## Diagnosi 

> library(car) 

> residualPlots(bm3, layout=c(1, 3)) 

       Test stat Pr(>|t|) 

sons          NA       NA 

income     1.226    0.268 

> influenceIndexPlot(bm3, id.n=10) 

> matplot(dfbetas(bm3),type='l') 

> abline(h=sqrt(2/(dim(womenlf)[1])),lty=3,col=6) 

> abline(h=-sqrt(2/(dim(womenlf)[1])),lty=3,col=6) 

> lines(sqrt(cooks.distance(bm3)),lwd=3,col=1) 

>legend(locator(n=1),legend=c(names(as.data.frame(dfbetas(bm3))),"Cook D"), col=c(1:3,1), 

lty=c(3,3,3,1) ) 
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MODEL DIAGNOSTICS: RESIDUALS 
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MODEL DIAGNOSTICS: RESIDUALS 
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MODEL DIAGNOSTICS: RESIDUALS 

>
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4-7. EXAMPLE 1: ACCIDENTS WITH INJURED PEOPLE ACCORDING TO 

SEAT-BELT USE – AGRESTI (2002) 

Data about 68,694 accidents at Main. Accident severity and gender, environment and seat-belt use are 

available. The presence of injured people (No, Yes) will be studied as the target. (ref. NoInjured)

genero entorno cinturon gravedad y 

Mujer Urbano No SinHeridos 7287 

Mujer Urbano Si SinHeridos 11587 

Mujer NoUrbano No SinHeridos 3246 

Mujer NoUrbano Si SinHeridos 6134 

Hombre Urbano No SinHeridos 10381 

Hombre Urbano Si SinHeridos 10969 

Hombre NoUrbano No SinHeridos 6123 

Hombre NoUrbano Si SinHeridos 6693 

Mujer Urbano No LeveSinHospital 175 

Mujer Urbano Si LeveSinHospital 126 

Mujer NoUrbano No LeveSinHospital 73 

Mujer NoUrbano Si LeveSinHospital 94 

Hombre Urbano No LeveSinHospital 136 

Hombre Urbano Si LeveSinHospital 83 

Hombre NoUrbano No LeveSinHospital 141 

Hombre NoUrbano Si LeveSinHospital 74 

Mujer Urbano No LeveConHospital 720 

Mujer Urbano Si LeveConHospital 577 

Mujer NoUrbano No LeveConHospital 710 

Mujer NoUrbano Si LeveConHospital 564 

genero entorno cinturon gravedad y 

Hombre Urbano No LeveConHospital 566 

Hombre Urbano Si LeveConHospital 259 

Hombre NoUrbano No LeveConHospital 710 

Hombre NoUrbano Si LeveConHospital 353 

Mujer Urbano No Hospitalización 91 

Mujer Urbano Si Hospitalización 48 

Mujer NoUrbano No Hospitalización 159 

Mujer NoUrbano Si Hospitalización 82 

Hombre Urbano No Hospitalización 96 

Hombre Urbano Si Hospitalización 37 

Hombre NoUrbano No Hospitalización 188 

Hombre NoUrbano Si Hospitalización 74 

Mujer Urbano No Mortal 10 

Mujer Urbano Si Mortal 8 

Mujer NoUrbano No Mortal 31 

Mujer NoUrbano Si Mortal 17 

Hombre Urbano No Mortal 14 

Hombre Urbano Si Mortal 1 

Hombre NoUrbano No Mortal 45 

Hombre NoUrbano Si Mortal 12 
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EXAMPLE 1 

Models logit(ijk) Deviance n-p AIC 
 

1  1912.5 7 1981.2 

SeatBelt – A (Cinturón) + i 1144.4 6 1215.1 

Environment – C (Entorno) + j 1192.8 6 1263.5 

Gender –D (Genero) + k 1670.7 6 1741.4 
 

A + D + i+ j 795.82 5 868.52 

A + C + i+ k 411.02 5 483.73 

D + C + j+ k 911.01 5 983.71 

A D + i+ j+ ()ij 795.32 4 870.03 

A C + i+ k+ ()ik 408.31 4 483.01 
 

A + D + C + i+ j+ k 7.4645 4 82.167 

A D + C + i+ j+ k+ ()ij 7.3826 3 84.085 

A C + D + i+ j+ k+ ()ik 3.5914 3 80.294 

A + D C + i+ j+ k+ ()jk 4.4909 3 81.193 

A D + A C + i+ j+ k+ ()ij+ ()ik 3.5624 2 82.265 

A D + D C + i+ j+ k+ ()ij+ ()jk 4.372 2 83.074 

A C + D C + i+ j+ k+ ()ik+ ()jk 1.3670 2 80.07 

A D + A C + D C + i+ j+ k+ ()ij+ ()ik+ ()jk 1.3253 1 82.028 
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EXAMPLE 1 

> summary(acc3) 
    gender   environment seatbelt            severity       y                  y.bin         ones       target      

 Male  :20   Rural:20    Yes:20   Hospitalizaci¢n:8   Min.   :    1.00   NoWounded: 8   Min.   :1   Min.   :  0.0   

 Female:20   Urban:20    No :20   LeveConHospital:8   1st Qu.:   66.75   Wounded  :32   1st Qu.:1   1st Qu.:  9.5   

                                  LeveSinHospital:8   Median :  138.50                  Median :1   Median : 74.0   

                                  Mortal         :8   Mean   : 1717.35                  Mean   :1   Mean   :156.8   

                                  SinHeridos     :8   3rd Qu.:  710.00                  3rd Qu.:1   3rd Qu.:163.0   

                                                      Max.   :11587.00                  Max.   :1   Max.   :720.0   

> tapply(acc3$y,acc3$y.bin,sum);sum(acc3$y) 

NoWounded   Wounded  

    62420      6274  

[1] 68694 

 Taking as a response variable the presence of wounded people (f.heridos), globally there are 6274 

accidents out of a total of 68694, with a probability of injured people of 0.0913. Odd is 6274/62420 

or 0.1005 to 1 and the log-odds is log (0.1005) = -2.297472. 

 It is proposed to initially compare the presence of injured people (response) according to Seat-Belt Use 

Factor (2 levels, base-line Yes). 
Seat-Belt y.bin - Wounded 

(positive outcome) 
y.bin - 

NonWounded 
 

m 

Yes (ref) 2409 35383 37792 

No 3865 27037 30902 

 6274 62420 68694 

P(‘Accident with Injured’)=0.0913=6274/68694 
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EXAMPLE 1 

There are only 2 possible models: the null model that assumes homogeneity in the Use in the two groups 

defined by the Factor (M1) and the complete model (M2) that proposes different proportions in the Use 

between the two groups:  

(M1) 















 i

i

1
log

                      (M2) 
021

1











 




,log i

i

i

 

 
> dfbelt 

  seatbelt     m ypos  yneg 

1      Yes 37792 2409 35383 

2       No 30902 3865 27037 

> prob <- sum(dfbelt$ypos)/sum(dfbelt$m);prob 

[1] 0.09133258 

> dfbelt$ypos0<-dfbelt$m*prob 

> dfbelt$yneg0<-dfbelt$m*(1-prob) 

> dfbelt 

  seatbelt     m ypos  yneg    ypos0    yneg0 

1      Yes 37792 2409 35383 3451.641 34340.36 

2       No 30902 3865 27037 2822.359 28079.64 

> m0<-glm(cbind(ypos,yneg)~1, family=binomial, data=dfbelt) 

> summary(m0) 

Call: 

glm(formula = cbind(ypos, yneg) ~ 1, family = binomial, data = dfbelt) 

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept) -2.29747    0.01324  -173.5   <2e-16 *** 
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--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 768.03  on 1  degrees of freedom 

Residual deviance: 768.03  on 1  degrees of freedom 

AIC: 789.55 

 

> m0$deviance 

[1] 768.0317 

> m1 <- glm(cbind(ypos,yneg)~seatbelt, family=binomial, data=dfbelt) 

> summary(m1) 

Call: 

glm(formula = cbind(ypos, yneg) ~ seatbelt, family = binomial,  

    data = dfbelt) 

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept) -2.68702    0.02106 -127.61   <2e-16 *** 

seatbeltNo   0.74178    0.02719   27.29   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance:  7.6803e+02  on 1  degrees of freedom 

Residual deviance: -5.7800e-12  on 0  degrees of freedom 

AIC: 23.523 

 

> m1$deviance 

[1] -5.780043e-12 

> residuals(m0,'pearson') 

       Si        No  

-18.61742  20.58856  

> xpea<-sum(residuals(m0,'pearson')^2);xpea 

[1] 770.4972 
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EXAMPLE 1 

Pearson Statistic for (M2) is 0 and for (M1): 
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Both statistics are highly significant, implying that the model does not fit the data well. 

In (M1) the estimator  ˆ , the logit of the sample proportion. 

In (M2), the estimator ̂ , is the logit of the reference level (Yes) (logit of the proportion of 

wounded in group that Uses belt, logit (2409/37792) = - 2,687) and the effect of the No level on the 

logit of the proportion of injured (difference of logits between the No level and the reference level 

Yes: logit (3865/30902) -logit (2409/37792) = 0.742. 
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The odds of having injuries among accidents that do not use seat-belt are more than twice the odds of 

having injuries among those who wear seat-belt. 

> dfbelt 

  seatbelt     m ypos  yneg 

1      Yes 37792 2409 35383 

2       No 30902 3865 27037 
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EXAMPLE 1 

Models with 2 Predictors: Seat-Belt and Environment 

There are 4 groups, the number of accidents with injuries in the i-th Seat-Belt group and the j-th 

Environment group, where the reference levels are 'Yes' for Seat-Belt (Factor A) and' Urban'for Factor C.  
> df2 

  seatbelt environment     m ypos  yneg 

1      Yes       Urban 23695 1139 22556 

2       No       Urban 19476 1808 17668 

3      Yes       Rural 14097 1270 12827 

4       No       Rural 11426 2057  9369 

There are 5 models of interest applicable to the systematic structure of the previous data (M1) to (M5), 

whose returns and details of the estimation are detailed below. 

Model n-p Deviance D  Contrast g.l. Modeo 

1 1 3 1504.1    All Significant  Constane:   

2 A 2 736.11   767.99 (M2) vs (M1) 1 Seat-belt: i   

3 C 2 784.53   719.57  (M3) vs (M1) 1 Environment: j   

4 A+C 1 2.7116 733.4 (M4) vs (M2) 1 Additive: ji    

781.8 (M4) vs (M3) 1 

5 A*C 0 0 2.7116 (M5) vs (M4) 1 Interacción Factores: 

ijji    
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EXAMPLE 1 

> sum(df2[,3]);sum(df2[,4]);sum(df2[,5]) 

[1] 68694 

[1] 6274 

[1] 62420 

> M1<-GLM(CBIND(YPOS,YNEG)~1, FAMILY=BINOMIAL, DATA=DF2) 

> SUMMARY(M1) 

CALL: 

GLM(FORMULA = CBIND(YPOS, YNEG) ~ 1, FAMILY = BINOMIAL, DATA = 

DF2) 

 

COEFFICIENTS: 

            ESTIMATE STD. ERROR Z VALUE PR(>|Z|)     
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(INTERCEPT) -2.29747    0.01324  -173.5   <2E-16 *** 

--- 

SIGNIF. CODES:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(DISPERSION PARAMETER FOR BINOMIAL FAMILY TAKEN TO BE 1) 

 

    NULL DEVIANCE: 1504.1  ON 3  DEGREES OF FREEDOM 

RESIDUAL DEVIANCE: 1504.1  ON 3  DEGREES OF FREEDOM 

AIC: 1542.4 
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NUMBER OF FISHER SCORING ITERATIONS: 4 

 

> M1$DEVIANCE 

[1] 1504.141 

> M2<-GLM(CBIND(YPOS,YNEG)~SEATBELT, FAMILY=BINOMIAL, 

DATA=DF2) 

> SUMMARY(M2) 

 

CALL: 
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GLM(FORMULA = CBIND(YPOS, YNEG) ~ SEATBELT, FAMILY = BINOMIAL, 

DATA = DF2) 

 

COEFFICIENTS: 

            ESTIMATE STD. ERROR Z VALUE PR(>|Z|)     

(INTERCEPT) -2.68702    0.02106 -127.61   <2E-16 *** 

SEATBELTNO   0.74178    0.02719   27.29   <2E-16 *** 

--- 

SIGNIF. CODES:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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(DISPERSION PARAMETER FOR BINOMIAL FAMILY TAKEN TO BE 1) 

 

    NULL DEVIANCE: 1504.14  ON 3  DEGREES OF FREEDOM 

RESIDUAL DEVIANCE:  736.11  ON 2  DEGREES OF FREEDOM 

AIC: 776.34 

 

NUMBER OF FISHER SCORING ITERATIONS: 4 

 

> M2$DEVIANCE 

[1] 736.109 
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> M3<-GLM(CBIND(YPOS,YNEG)~ENVIRONMENT, FAMILY=BINOMIAL, 

DATA=DF2) 

> SUMMARY(M3) 

CALL: 

GLM(FORMULA = CBIND(YPOS, YNEG) ~ ENVIRONMENT, FAMILY = 

BINOMIAL,  

    DATA = DF2) 

COEFFICIENTS: 

                 ESTIMATE STD. ERROR Z VALUE PR(>|Z|)     

(INTERCEPT)      -2.61368    0.01908 -136.96   <2E-16 *** 
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ENVIRONMENTRURAL  0.71584    0.02664   26.87   <2E-16 *** 

--- 

SIGNIF. CODES:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(DISPERSION PARAMETER FOR BINOMIAL FAMILY TAKEN TO BE 1) 

 

    NULL DEVIANCE: 1504.14  ON 3  DEGREES OF FREEDOM 

RESIDUAL DEVIANCE:  784.53  ON 2  DEGREES OF FREEDOM 

AIC: 824.76 
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NUMBER OF FISHER SCORING ITERATIONS: 4 

 

> M3$DEVIANCE 

[1] 784.5302 

> M4<-GLM(CBIND(YPOS,YNEG)~SEATBELT+ENVIRONMENT, 

FAMILY=BINOMIAL, DATA=DF2) 

> SUMMARY(M4) 

 

CALL: 
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GLM(FORMULA = CBIND(YPOS, YNEG) ~ SEATBELT + ENVIRONMENT, 

FAMILY = BINOMIAL,  

    DATA = DF2) 

 

COEFFICIENTS: 

                 ESTIMATE STD. ERROR Z VALUE PR(>|Z|)     

(INTERCEPT)      -3.01397    0.02544 -118.48   <2E-16 *** 

SEATBELTNO        0.75265    0.02734   27.53   <2E-16 *** 

ENVIRONMENTRURAL  0.72721    0.02682   27.12   <2E-16 *** 

--- 



  SIM course. Master in Data Science – FIB- UPC    

Prof.  Lídia Montero                               Page 4-63      2.021-2.022 Academic Year 

SIGNIF. CODES:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(DISPERSION PARAMETER FOR BINOMIAL FAMILY TAKEN TO BE 1) 

 

    NULL DEVIANCE: 1504.1407  ON 3  DEGREES OF FREEDOM 

RESIDUAL DEVIANCE:    2.7116  ON 1  DEGREES OF FREEDOM 

AIC: 44.938 

 

NUMBER OF FISHER SCORING ITERATIONS: 3 
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> M4$DEVIANCE 

[1] 2.711593 

> M5<-GLM(CBIND(YPOS,YNEG)~SEATBELT*ENVIRONMENT, 

FAMILY=BINOMIAL, DATA=DF2) 

> SUMMARY(M5) 

 

CALL: 

GLM(FORMULA = CBIND(YPOS, YNEG) ~ SEATBELT * ENVIRONMENT, 

FAMILY = BINOMIAL,  

    DATA = DF2) 



  SIM course. Master in Data Science – FIB- UPC    

Prof.  Lídia Montero                               Page 4-65      2.021-2.022 Academic Year 

 

DEVIANCE RESIDUALS:  

[1]  0  0  0  0 

 

COEFFICIENTS: 

                            ESTIMATE STD. ERROR Z VALUE PR(>|Z|)     

(INTERCEPT)                 -2.98585    0.03037 -98.318   <2E-16 *** 

SEATBELTNO                   0.70632    0.03914  18.046   <2E-16 *** 

ENVIRONMENTRURAL             0.67331    0.04228  15.925   <2E-16 *** 
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SEATBELTNO:ENVIRONMENTRURAL  0.09006    0.05468   1.647   0.0996 

.   

--- 

SIGNIF. CODES:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(DISPERSION PARAMETER FOR BINOMIAL FAMILY TAKEN TO BE 1) 

 

    NULL DEVIANCE: 1.5041E+03  ON 3  DEGREES OF FREEDOM 

RESIDUAL DEVIANCE: 6.5707E-12  ON 0  DEGREES OF FREEDOM 

AIC: 44.226 
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NUMBER OF FISHER SCORING ITERATIONS: 2 

 

> M5$DEVIANCE 

[1] 6.570744E-12 
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EXAMPLE 1 

 The additive model fits the data well, but there is still some deviance to explain: 
> summary(acc3) 

    gender   environment seatbelt       damage        y                  y.bin        target      

 Female:20   Urban:20    Yes:20   NoWounded:8   Min.   :    1.00   NoWounded: 8   Min.   :  0.0   

 Male  :20   Rural:20    No :20   Mild     :8   1st Qu.:   66.75   Wounded  :32   1st Qu.:  9.5   

                                  Severe   :8   Median :  138.50                  Median : 74.0   

                                  Hospital :8   Mean   : 1717.35                  Mean   :156.8   

                                  Death    :8   3rd Qu.:  710.00                  3rd Qu.:163.0   

                                                Max.   :11587.00                  Max.   :720.0   

> df3 

  seatbelt environment gender     m ypos  yneg 

1      Yes       Urban Female 12346  759 11587 

2       No       Urban Female  8283  996  7287 

3      Yes       Rural Female  6891  757  6134 

4       No       Rural Female  4219  973  3246 

5      Yes       Urban   Male 11349  380 10969 

6       No       Urban   Male 11193  812 10381 

7      Yes       Rural   Male  7206  513  6693 

8       No       Rural   Male  7207 1084  6123 
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EXAMPLE 1 

> summary(m1) 

Call: glm(formula = cbind(ypos, yneg) ~ 1, family = binomial, data = df3) 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept) -2.29747    0.01324  -173.5   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 1912.5  on 7  degrees of freedom 

Residual deviance: 1912.5  on 7  degrees of freedom 

AIC: 1981.2 

 

> summary(m2) 

Call: glm(formula = cbind(ypos, yneg) ~ seatbelt + environment + gender,  

    family = binomial, data = df3) 

 

 

Coefficients: 

                 Estimate Std. Error z value Pr(>|z|)     

(Intercept)      -2.03350    0.02714  -74.94   <2e-16 *** 

seatbeltNo        0.81710    0.02765   29.55   <2e-16 *** 

environmentUrban -0.75806    0.02697  -28.11   <2e-16 *** 

genderFemale     -0.54483    0.02727  -19.98   <2e-16 ***  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

    Null deviance: 1912.4532  on 7  degrees of freedom 

Residual deviance:    7.4645  on 4  degrees of freedom 

AIC: 82.167 
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EXAMPLE 1 

 The next step could be to add an interaction between 2 of the factors: A * C or A * D or C * D. 

Model n-p Deviance D  Contrast g.l. Model 

1 A+C+D 4 7.4645    Additive: kji    

2 A*C+D 3 3.5914 3.8730 (M2) vs (M1) 1 Interaction Seat.Belt-Environ. : 

ijkji    

3 A*D+B 3 7.3826 0.0818 (M3) vs (M1) 1 Interaction Seat.Belt-Gender: 

ikkji    

4 C*D+A 3 4.4909 2.9736 (M4) vs (M1) 1 Interaction Environ. - Gender: 

jkkji    

Strictly only the interaction between Seat.Belt and Environment is statistically significant, although the 

interaction between Environment and Gender has a value of 8% according to the deviance contrast with the 

additive model. The best model so far seems to have all 3 factors and 2 double interactions: one Belt Use –

Environment and the second, Belt Use –Environment. 

 
> m3<-glm(cbind(ypos,yneg)~(seatbelt+environment+gender)^2, family=binomial, data=df3) 

> summary(m3) 

 

Call: 

glm(formula = cbind(ypos, yneg) ~ (seatbelt + environment + gender)^2,  

    family = binomial, data = df3) 

 

Deviance Residuals:  
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      1        2        3        4        5        6        7        8   

 0.3861  -0.3457  -0.3938   0.3760  -0.5309   0.3754   0.4731  -0.3373   

 

Coefficients: 

                            Estimate Std. Error z value Pr(>|z|)     

(Intercept)                   -2.07710    0.03599 -57.706   <2e-16 *** 

seatbeltNo                     0.85855    0.04673  18.373   <2e-16 *** 

environmentUrban              -0.66304    0.04717 -14.056   <2e-16 *** 

genderFemale                  -0.51318    0.05071 -10.119   <2e-16 *** 

seatbeltNo:environmentUrban   -0.09685    0.05547  -1.746   0.0808 .   

seatbeltNo:genderFemale        0.01144    0.05603   0.204   0.8382     

environmentUrban:genderFemale -0.08176    0.05469  -1.495   0.1349    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 1912.4532  on 7  degrees of freedom 

Residual deviance:    1.3253  on 1  degrees of freedom 

AIC: 82.028 

 

Number of Fisher Scoring iterations: 3 

 

> Anova(m3) 

Analysis of Deviance Table (Type II tests) 

 

Response: cbind(ypos, yneg) 

                     LR Chisq Df Pr(>Chisq)     

seatbelt               901.71  1     <2e-16 *** 

environment            787.94  1     <2e-16 *** 

gender                 404.72  1     <2e-16 *** 

seatbelt:environment     3.05  1     0.0809 .   

seatbelt:gender          0.04  1     0.8382     

environment:gender       2.24  1     0.1347     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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> m4 <- step(m3) 

Start:  AIC=82.03 

cbind(ypos, yneg) ~ (seatbelt + environment + gender)^2 

 

                       Df Deviance    AIC 

- seatbelt:gender       1   1.3670 80.069 

<none>                      1.3253 82.028 

- environment:gender    1   3.5624 82.265 

- seatbelt:environment  1   4.3720 83.074 

 

Step:  AIC=80.07 

cbind(ypos, yneg) ~ seatbelt + environment + gender + seatbelt:environment +  

    environment:gender 

 

                       Df Deviance    AIC 

<none>                      1.3670 80.069 

- environment:gender    1   3.5914 80.294 

- seatbelt:environment  1   4.4909 81.193 

> summary(m4) 

 

Call: 

glm(formula = cbind(ypos, yneg) ~ seatbelt + environment + gender +  

    seatbelt:environment + environment:gender, family = binomial,  

    data = df3) 

 

Deviance Residuals:  

      1        2        3        4        5        6        7        8   

 0.4522  -0.4043  -0.3212   0.3063  -0.6204   0.4396   0.3851  -0.2750   

 

Coefficients: 

                            Estimate Std. Error z value Pr(>|z|)     

(Intercept)                   -2.07989    0.03333 -62.395   <2e-16 *** 

seatbeltNo                     0.86389    0.03872  22.310   <2e-16 *** 

environmentUrban              -0.66274    0.04718 -14.048   <2e-16 *** 

genderFemale                  -0.50634    0.03806 -13.305   <2e-16 *** 

seatbeltNo:environmentUrban   -0.09773    0.05529  -1.768   0.0771 .   
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environmentUrban:genderFemale -0.08148    0.05466  -1.491   0.1360    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 1912.453  on 7  degrees of freedom 

Residual deviance:    1.367  on 2  degrees of freedom 

AIC: 80.069 

 

Number of Fisher Scoring iterations: 3 

> xpea2<-sum(residuals(m2,'pearson')^2);xpea2 

[1] 7.487384 

> 1-pchisq( xpea2, m2$df.residual ) 

[1] 0.1122669 

> xpea3<-sum(residuals(m3,'pearson')^2);xpea3 

[1] 1.324618 

> 1-pchisq( xpea3, m3$df.residual ) 

[1] 0.249765 

> xpea4<-sum(residuals(m4,'pearson')^2);xpea4 

[1] 1.365019 

> 1-pchisq( xpea4, m4$df.residual ) 

[1] 0.5053472 

> anova(m2,m4,test="Chisq") 

Analysis of Deviance Table 

 

Model 1: cbind(ypos, yneg) ~ seatbelt + environment + gender 

Model 2: cbind(ypos, yneg) ~ seatbelt + environment + gender + seatbelt:environment +  

    environment:gender 

  Resid. Df Resid. Dev Df Deviance Pr(>Chi)   

1         4     7.4645                        

2         2     1.3670  2   6.0975  0.04742 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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EXAMPLE 1 

The next step would be to analyze the models with 2 interactions between the factors, since the A * C + D 

model fits the data well, but still leaves a 3.5914 return for explaining in 3 degrees of freedom. 

 

Modelo n-p Devianza D  Contraste g.l. Modelo 

1 A*C+A*D 2 3.562410 2.2371 (M1) vs (M4) 1 Interactions Seatbelt-Environment 

and  Seatbelt-Gender : 

jkijkji    

2 A*D+C*D 2 4.371979 3.0467 (M2) vs (M4) 1 Interactions Seatbelt-Gender and 

Environment-Gender:

jkikkji    

3 A*C+C*D 2 1.367022 0.04171 (M3) vs (M4) 1 Interactions Seatbelt-Environment 

and Environment-Gender :

jkijkji    

4 A*C+C*D+

A*D 

1 1.325317    jkikijkji    

 The model does not require further analysis, there are no significant differences between the model with 

the 3 double interactions and any of the models with 2 pairs of interactions. 
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EXAMPLE 1 

The next step would be to analyze the models with 2 interactions between the factors and compare them 

with the additive model, to see if 2 double interactions are simultaneously significant. 

 

Model n-p Deviance D  Contrast g.l. Model 

1 A*C+A*D 2 3.562410 3.9021 (M1) vs (M4) 1 Interactions Seatbelt-Environment 

and  Seatbelt-Gender : 

jkijkji    

2 A*D+C*D 2 4.371979 3.0925 (M2) vs (M4) 1 Interactions Seatbelt-Gender and 

Environment-Gender:

jkikkji    

3 A*C+C*D 2 1.367022 6.0975 (M3) vs (M4) 1 Interactions Seatbelt-Environment 

and Environment-Gender:

jkijkji    

4 A+C+D 4 7.4645    kji    

 The model does not require further analysis, since 2 interactions are simultaneously significant Belt-

Environment and Environment-Gender. 
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EXAMPLE 1 

Comparing the best model with 1 double interaction (Belt-Environment) with the model that has 2 double 

interactions (Belt-Environment and Environment-Gender) the p value of the contrast of the Environment-

Gender interaction is 0.14, therefore, not significant once Belt-Environment is in the model, but with an 

uncomfortable value. 

 
> m5 <- glm(cbind(ypos,yneg)~seatbelt + environment + gender + seatbelt:environment, 

family=binomial, data=df3) 

> anova( m5, m4, test="Chisq") 

Analysis of Deviance Table 

 

Model 1: cbind(ypos, yneg) ~ seatbelt + environment + gender + seatbelt:environment 

Model 2: cbind(ypos, yneg) ~ seatbelt + environment + gender + seatbelt:environment +  

    environment:gender 

  Resid. Df Resid. Dev Df Deviance Pr(>Chi) 

1         3     3.5914                      

2         2     1.3670  1   2.2244   0.1358 

It is proposed to finalize the analysis evaluating the model with 2 double interactions and the best model 

with 1 double interaction according to the information criterion of Akaike and the step () method in R.  

It is preferred to keep the 2 double interactions. 

 

At the beginning, a summary table is given with the residual liability and the AIC for all the models that 

have been calculated. 


