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Abstract: A fully automatic, non-contact method for the assessment of the respiratory function is
proposed using an RGB-D camera-based technology. The proposed algorithm relies on the depth
channel of the camera to estimate the movements of the body’s trunk during breathing. It solves in
fixed-time complexity, O(1), as the acquisition relies on the mean depth value of the target regions
only using the color channels to automatically locate them. This simplicity allows the extraction
of real-time values of the respiration, as well as the synchronous assessment on multiple body
parts. Two different experiments have been performed: a first one conducted on 10 users in a single
region and with a fixed breathing frequency, and a second one conducted on 20 users considering a
simultaneous acquisition in two regions. The breath rate has then been computed and compared with
a reference measurement. The results show a non-statistically significant bias of 0.11 breaths/min
and 96% limits of agreement of −2.21/2.34 breaths/min regarding the breath-by-breath assessment.
The overall real-time assessment shows a RMSE of 0.21 breaths/min. We have shown that this
method is suitable for applications where respiration needs to be monitored in non-ambulatory and
static environments.

Keywords: breath rate; contactless assessment; healthcare monitoring; non-contact respiratory
rate measurement

1. Introduction

Advances in healthcare are pointing towards the development of systems allowing the
remote monitoring of the person in its everyday life [1,2]. Among the different physiological
signals that can be ambulatory tracked, the respiration signal can provide an insight into a
person’s general state of health [3,4]. In addition, its continuous supervision could be used
as a method to detect future diseases due to the subtle changes in the respiratory function
that common diseases present prior to the onset of clinical symptoms [5]. The breath rate
(BR) has been found to be a more discriminating parameter between stable and unstable
patients than the heart rate (HR) [6].

The monitoring of the respiratory signal could be used to detect and control respiratory
diseases such as chronic obstructive pulmonary disease, which is considered one of the most
common long-term conditions; hypoxemia or hypercarbia; sleeping disorders; or prediction
of cardiac arrest [6]; among others. Even in the COVID-19 pandemic, the detection of
changes in the BR are of critical interest in early infections due to the severe effects that
the virus can have on the lungs. The virus causes a lower respiratory tract infection in
most cases reducing the overall efficiency of the lungs, which results in an increase in the
BR [7]. A significant increase is not as common as in other cases of viral illnesses such
as influenza or common cold, among others, as these viruses typically affect the upper
respiratory tract [8].

There are some respiratory disorders in which one needs to track the respiration signal
from different parts of the body. The most common ones need the analysis of the phase
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relation between thoracic and abdominal respiration signals [9]. The detection of this phase
is useful to identify and control, for example, sleep apnea syndrome (SAS), a very common
sleep disorder [10]. An episode of apnea occurs if someone’s breathing ceases totally during
sleep for more than 10 s [11]. Episodes of central apnea (CA) and obstructive apnea (OA)
can be distinguished by analyzing the respiration movements jointly at both the thorax
and abdomen. In the case of CA, the movements have very low amplitudes compared to
normal breathing while, during an OA, the obstruction of the airways leads to an increase
in the respiratory movements trying to overwhelm the obstruction [10]. In these cases, a
multi-point assessment of both thoracic and abdominal regions needs to be performed.

There are several ways for measuring the respiration signal that, according to the
authors of [12], could be classified as follows:

1. Methods to extract the respiratory signal from other physiological signals that are
modulated by respiration: electrocardiography, photoplethysmography, and electrical
impedance measurements have been used, among others [13–15].

2. Methods based on volume changes and body movements: during inhalation and
exhalation, there are periodic volume changes in the thoracic and abdominal areas
that are manifested by movements on the body surface. These changes could be
detected by accelerometers [16], gyrometers [17], by measuring the force applied on a
band by chest or abdominal expansion [18,19], by using acceleration and force sensing
modules, or even highly sensitive fiber optic attached to a mattress [20]. Other sensors
based on electromagnetic, piezoresistive, and piezoelectric mechanisms have been
also used [21].

3. Methods based on air flow changes, as the respiratory airflow causes various effects
around the nasal area the periodic fluctuations in temperature, humidity, the density
of carbon dioxide, and even the respiratory sounds have been used [22].

Regarding the measurements based on volume changes and body movements, all
of the aforementioned examples require direct contact with the user and additional pose
requirements, making them uncomfortable and not accessible to everyone [23]. A novel
approach to the respiratory function assessment is the non-contact measurements of the
respiratory motion. Non-contact measurements are more comfortable for the patient,
but especially in the cases where contact measurements are especially difficult to perform:
contactless monitoring of neonates is highly desired due to their fragile skin or in peo-
ple who have suffered body burns [24,25]. These new non-contact assessments are being
applied also in non-ambulatory environments. For example, the automobile industry is
calling for the improvement of road security detecting drowsiness in drivers [21], general
sleep monitoring systems [26], or even in long-term condition patients, bringing healthcare
tracking at home [27]. Rising living standards are causing people to live longer, but some-
times with more than one long-term medical condition that must be under continuous
supervision [28].

Lately, the new contactless methods for the assessment of the respiratory motion are
mainly based on video analysis with traditional color video cameras (RGB) [3], depth
cameras (RGB-D) [29], infrared (IR) cameras [30], lidars and radars [24,31,32], or even
WiFi devices [33]. Regarding the algorithms used for the recovery of the respiratory
signal, the vast majority are based on variations of the intensity of the acquired signal [34],
computations of the Power Spectral Density (PSD) [35], Principal Component Analysis
(PCA) on the RGB channels of the cameras [36,37] or by using using optical flow and the
natural pattern of the flow vectors that results in their convergence and divergence during
breathing [24,38]. However, those processing algorithms are so complex that almost none
of them can rely either on breath-by-breath monitoring in the real-time domain or in the
synchronous measurement in different parts of the body.

This article revolves around the development of an acquisition and processing algo-
rithm capable of retrieving the real-time assessment of the respiration signal from multiple
parts of the body, synchronously and without physical contact by using the depth channel
of a low-cost RGB-D camera.
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Concretely, the device used for the acquisition of the signal is the Intel RealSense Depth
Camera D435 [39] that, besides the traditional color image video, outputs an additional
video signal where each pixel value represents its depth in the real world. This type of
Intel camera has a depth accuracy below 1% of the distance to the object. Therefore, if
the camera is 1 m away from the object, the expected sensitivity for measuring changes is
between 2.5 mm and 5 mm, which gives to the user a pretty good estimation of the real-
world distances. In general, 3D cameras provide many advantages over 2D cameras—RGB
channels only—as depth information can be used for more accurate detection of the regions
of interest (ROIs) and robust motion measurements [40].

Both the real-time and multi-point assessment are achieved thanks to the simplicity of
the proposed algorithm that only relies on the mean value of the depth signal to estimate the
movement of the ROIs with respect to the camera, achieving fixed-time complexity, O(1),
and getting rid of time-consuming processing of the traditional RGB channels. Instead,
the color channels are used to automatically locate the ROIs in which the depth analysis is
lately performed. Therefore, the main contributions of this work are as follows:

• Automatic location of the body parts in which the measure is going to be performed.
• Fixed time-complexity algorithm that solves in real time providing reliable breath-by-

breath information.
• Synchronous multi-point assessment of the respiratory signal.

Although the non-contact breathing monitoring by means of the depth information
has been already proposed in other studies, the proposed method overcomes the state-of-
the-art error rates in multiple body regions that are automatically located, it targets the
acquisition of the complete respiratory function, it provides real-time assessment thanks to
the simplicity of the processing algorithm, and it has been widely validated considering
users with a wide age range and different bodies and health conditions.

2. Materials and Methods
2.1. Face Detection and ROI

As already mentioned, the proposed method relies on the RGB channels of the camera
to locate the user’s face and automatically compute the ROIs according to the physiology
of the user. This step makes the non-contact assessment even more flexible and comfortable
as the algorithm is able to locate the ROIs independently of the position of the user and
distance to the camera, within a certain range. To do so, the initial position of the user’s
face in the frames captured by the camera should be identified, without having any past
position reference. There are several techniques available to identify and segment objects in
images. In particular, for the detection of faces, the most popular ones are the Viola–Jones
algorithm [41], methods based on Histogram of Oriented Gradients (HOG) [42], and deep
learning methods mainly based on Convolutional Neural Networks (CNN) [43–45].

From these three, CNN-based methods are considered the state-of-the-art as they are
able to recognize faces in almost any condition of pose, rotation, size, and illumination.
However, they are computationally expensive unless using specialized hardware. The other
two methods are faster and relatively lightweight and they could be easily used in real-time.
Among these two, the Viola–Jones method has a higher success rate than HOG, meaning
that it is capable of correctly detecting faces more frequently than HOG [46]. However,
it is also more prone to obtain false positives [47]. In this case, the implementation of the
Viola–Jones algorithm from the OpenCV library [48] is used along with a preprocessing
routine to reduce this probability of false detection.

To reduce these probabilities of false detection from the Viola–Jones algorithm, the
regions of the color image with depth values over 1.5 m are masked. Those with null depth
value are also masked as they are noisy components. After that, a closing morphological
operation [49] is also applied on the mask to get rid of the non-masked holes that are
sometimes left in the image. This operation consists on dilating the unmasked zones
closing any interior hole and then eroding to restore the initial contour of the unmasked
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objects. As a result, all the background of the image is masked, letting the person alone in
the scene in which the face detection algorithm is applied.

The face detection is then performed using the Viola–Jones algorithm on the color
stream. If the algorithm fails to detect the face in the first frame, it searches for a face
in the following frames until the face region is detected. At this point, it is interesting
to note that the algorithm searches for the user’s face in the whole image, so there is no
strict condition on the location of the user in the image, as long as the face and the ROIs
are visible. Once the face is successfully detected, a boundary box around is obtained.
The dimensions and position of this bounding box are then used to compute the ROIs
in which the respiratory signal is going to be acquired. Therefore, the adaptation of the
detection algorithm to the physiology of the user is ensured. In order to define the ROIs, it is
important to consider the resolution of the output image. In our case, the resolution of the
frames is 640 × 480, meaning that each frame could be seen as a 640 × 480 matrix whose
upper-left vertex corresponds to the point (0, 0) while its lower-right vertex corresponds to
the point (640, 480). The detection algorithm returns the position of the face in the form of
the (x f ace, y f ace) coordinates that correspond to the upper-left vertex of the bounding box
and both the height, h f ace, and the width, w f ace, of the face. From those values, the ROIs
have been mathematically defined in coordinates as

(xthorax, ythorax) = (x f ace, 480− 2h f ace) (1)

for the upper-left vertex of the thorax, and

(xthorax, ythorax) = (x f ace + w f ace, 480−
3h f ace

2
) (2)

for its lower-right vertex. Analogously, the ROI of the abdomen has been defined as:

(xabdomen, yabdomen) = (x f ace, 480−
5h f ace

6
) (3)

for its the upper-left vertex, and

(xabdomen, yabdomen) = (x f ace + w f ace, 480−
h f ace

3
) (4)

for its lower-right vertex. Therefore, the ROIs are defined as a rectangle of area w h
2 . Figure 1

depicts a diagram of the automatic location of those regions based on the detected position
of the face. In general, we have avoided the usage of ROIs of fixed area, and independent of
the body shape, in order to make the algorithm suitable for any participant at any distance
to the camera. Once the ROIs are defined, they do not change in an entire cycle. Finally,
location changes of the users during the measurements, e.g., walking users, are out of the
scope of the present work as no face or ROI tracking is continuously performed on the
RGB channel.

The ROIs equations have been defined by taking different video samples recorded with
the same acquisition device and by checking the location of the thoracic and the abdominal
regions with respect of the position of the face. Those videos included participants with
different genders, body shapes and an age range between 23 and 52 years old. Lately,
the validation of the proposed equations was performed with the video samples of the
experiments. Note that the mean depth value of the pixels encapsulated within the ROI
is then used for the assessment of the signal and that the whole body’s trunk experiences
respiration movements. Therefore, although these equations have been proved to provide
the smallest error in the experiments, the effect of slightly modifying the ROI in size or in
position—because of both face size and body shape—has not been shown to have a direct
impact on the acquired signal. In addition, these ROIs have been shown to be adaptable
in a range distance up to 2 m with respect to the camera. Nevertheless, for the normal
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operational mode of the acquisition system, the background mask is applied at a distance
of 1.5 m with respect to the camera.

Figure 1. Automatic location of the thoracic and abdominal regions based on the position of the face.
The face of the user is detected through the Viola-Jones algorithm.

2.2. Signal Acquisition and Processing

From this point onward, once the ROIs have been selected, the mean of the depth
value of all the pixels inside each ROI is computed and saved at each frame along with
the timestamp for the current frame. This raw signal, although noisy, already reflects the
intake and outtake of air when breathing. The signal is first normalized, and its mean is set
to zero to reduce transitory states when filtering later. The filter itself is a moving-average
filter commonly used for smoothing noisy data. Equation (5) defines the moving-average
filter on our raw signal x after the normalization:

y(n) =
1

ws
· (x(n) + x(n− 1) + ... + x(n− (ws− 1))) (5)

where ws is the window size, x is the input raw data, and y is the smooth output signal.
Concretely, the averages have been computed along the data vector every 8 samples.

The length of the window applied has been adjusted considering a good trade-off between
a smooth output signal and not displacing the maximum and minimum values of the signal
along the timestamp. Finally, the slightly averaged signal is passed through a bandpass
Butterworth filter with a high cut-off frequency of 0.5 Hz and a low cut-off frequency of
0.08 Hz. The cut-off frequencies correspond to 30 bpm and 4.8 bpm, respectively. As a
reference, the normal BR for people over 7 years old ranges from 12 to 20 bpm [30]. Again,
the resulting signal is a smoother one that maintains the time location of the breathing
peaks and troughs of the original signal. At this point, the parameters of interest that are
commonly used to track the respiration signal could be computed. For example, the BR
can be computed from the acquired signal from either the time between consecutive peaks
or the time between consecutive troughs. The frame rate of the camera has been set to
15 fps as a good trade-off between a stable frame rate and a sufficient number of samples to
reproduce the signal. With the selected frame rate, the depth module of the camera resolves
one sample every 0.0667 s, on average. Note that the most time-consuming routines of
user’s face location and computation of the ROIs are performed with the RGB channels
aside from the main execution of the depth value acquisition. Therefore, the actual time
of computing the mean of the ROI and filtering (O(1)) is negligible with respect to the
intrinsic delay of 0.0667 s introduced by the frame rate.

Figure 2 displays the mean time between samples averaged in three different runs
considering an increasing number of ROIs. It shows that the addition of more mean depth
value computations in other regions of the image does not impact the time interval between
one sample and its consecutive. We have proved that increasing the number of ROIs up to
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10 regions does not impact neither in the time interval between samples nor in the time
complexity of the algorithm, but allows a synchronous multi-point assessment. In addition,
variations on the size of the ROIs do not introduce a significant delay in the acquisition
of samples.

Figure 2. Evolution of the time between consecutive samples when increasing the number of ROIs
from 1 up to 10. The results show that the computation of the mean depth value in the different
regions of the image do not introduce a significant delay in the normal time between samples. The
difference between the theoretical time and the real-time between consecutive samples is not different
from the intrinsic error of the camera.

Figure 3 shows the architecture of the proposed algorithm for the acquisition and
processing of the respiratory signal. The implementation of both the acquisition and the
processing routines have been implemented in Python 3.6 while the statistical analysis of
the results has been implemented in MATLABR_2020a.

Figure 3. Flow chart of the proposed algorithm.
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3. Results

To validate the developed software, two different experiments have been performed
on 10 and 20 different voluntary users, respectively. The first one aims to show the
performance and validity of the proposed algorithm in different scenarios, body poses,
body types (variable sizes and skin tones), physical conditions, and clothing, but always
with the user in a non-moving position. In order to maximize its potential use, users with
cerebral palsy who have uncontrolled movements have been included. The second one
aims to closely compare the obtained signal with a reference one to accurately evaluate
the performance of the algorithm. When in any of the two experiments, due to incorrect
positioning of the reference sensor on the abdomen or motion artifacts affecting the camera,
it was not possible to obtain the respiratory rate in a comparative manner, the results were
reflected with a dash. In this way, the percentage of correct functioning of the system is
also presented.

3.1. First Experiment: Single ROI

A first set of 10 users, namely, U1-10, were selected to validate the proposed algorithm
by acquiring the respiration signal in one single thoracic region. The users were told
to synchronize their breathing to a fixed—and known—frequency by using a simple
metronome. The ages of the participants ranged from 21 to 66 years old with an average
age of 34 years. All the participants provided their explicit consent. Each user was invited
to stay at a mean distance about 1 m to the acquisition device. They were asked to face the
camera—but not necessary looking directly towards it, remain still, and breathe according
to the metronome during the measurements. The respiratory frequency tested was chosen
randomly within the range of 12 to 25 bpm, making sure first that the selected rhythm
was comfortable for each user. All the measurements were carried out indoors, but in
different scenarios with a stable amount of light and during 60 s each. Nevertheless, as
the acquisition itself relies on the depth module of the camera, no specific light conditions
are required. Finally, no specific clothing requirements were asked to the users and no
pre-selection of the users was performed.

Table 1 shows the comparison of the mean BR obtained through the proposed algo-
rithm within the whole acquisition timestamp and the original forced rate. Almost all of
the user were measured twice for each of the proposed rates and three of them were asked
to repeat the measurements at a different frequency value.

As could be seen in the results, this first experiment proved the ability of the proposed
algorithm to successfully retrieve the respiratory function of the users. To quantify the
performance of the algorithm, the Root Mean Squared Error (RMSE) has been computed as

RMSE =
1
N

√√√√ N

∑
n=1

(BRn − ˆBRn)2 (6)

where ˆBRn accounts for the estimated BR obtained from the Video Signal (VS) and BRn
accounts for the one obtained from the Ground Truth (GT). In this first case, the Ground
Truth corresponds to the fixed frequency of the metronome. The acquisitions of this first
experiment gave an overall RMSE of 0.18 breath/min, which is a sufficiently small error—
according to the state-of-the-art algorithms—to first validate the algorithm and move
forward to a more accurate analysis of the acquired signal during a second experiment.

Despite the fact that all the acquisitions were carried out with static users, different
poses and acquisition environments were also considered for validation purposes. Figure 4
shows pictures of the different poses and environments tested. Finally, it is interesting to
note that different participant’s physical condition have been also considered.
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Table 1. Table of the mean breath rate of each user obtained through the proposed algorithm and the
original forced rate.

User Age Gender Forced Rate Estimation
[breaths/min] [breaths/min]

U1 66 Male 12 12.06
11.97

U2 60 Female 14 13.98
14.06

U3 21 Female 15 15.05
14.96

U4 54 Male 15 15.13
-

U5 27 Male 16 16.09
16.05

U6 24 Female 18 18.00
18.13

U7 22 Male
18 18.19

-

12 11.42
12.03

U8 23 Female 20 20.43
-

U9 22 Female
22 22.21

22.01

18 18.09
18.24

U10 21 Male
25 25.00

24.97

15 15.11
15.00

Figure 4. (a) Acquisition in a home environment with the user lying in bed. (b) Acquisition in a
home environment with the user siting in a chair. (c) Acquisition in a healthcare environment with a
disabled user. (d) Acquisition in the laboratory.
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Figure 5a shows another example of acquisition in a non-ambulatory environment
and Figure 5b shows the corresponding computer view. As could be observed, there is no
strict necessity to look directly towards the camera. The only condition is a visible face—or
even half of it—and a (quasi)-static user. Involuntary movements due to users’ physical
conditions, for example, in cerebral palsy users, have not shown a direct impact on the
acquired signal.

Figure 5. (a) Acquisition in a healthcare environment with a disabled user showing a non-standard
pose. (b) Computer view during the execution of the proposed algorithm. The masked background
could be observed as well as the ROI, which is marked in green.

3.2. Second Experiment: Multi ROI

The second experiment was meant to carefully examine the acquired signal in indi-
vidual inhalation–exhalation cycles, apart from the mean BR computation from the whole
acquisition period, and to prove that multiple body regions can be simultaneously acquired.
To do so, the respiratory signal of another set of 20 voluntary users, namely, U11-U30,
was acquired by both the developed system for the Intel RealSense Depth Camera D435
(Video Signal) and the system Biopac MP36 (Ground Truth). Afterwards, both signals
were compared in order to validate and quantify the performance of the new proposed
non-contact system. In this case, two ROIs were selected—thorax and abdomen—to be
measured simultaneously proving the multi-target ability of the proposed algorithm. The
ages of the participants ranged from 13 to 63 years old with an average age of 38.6 years.
Again, all the participants provided their explicit consent. Each user was invited to sit on
a chair at a mean distance of 1 m to the acquisition device. They were asked to face the
camera, remain still and breathe naturally during the measurements. All the measurements
were carried out indoors, but again in different scenarios, with a stable amount of light and
during 60 s each. Figure 6 shows the described setup used in each of the acquisitions.

Once the measurement starts, the algorithm computes the thoracic and abdominal
regions and starts a simultaneous acquisition. As mentioned, the developed system
measures the position of the ROIs with respect to the camera via the depth channel. The
Ground Truth signal is obtained by the Biopac MP system and it is acquired by using
a piezoelectric sensor attached to a band that is placed at the ROIs computed by the
algorithm. The principle of acquisition is mostly the same as with the camera since the
piezoelectric sensor also measures the movements of those regions, but with respect to
the band. Nevertheless, although the principle is the same, we cannot assure the same
waveform in both cases. Figure 7 shows a comparison between the waveform of the
Ground Truth and the one obtained through the Video Signal in two different body regions.
It shows that, although the waveform presents deviations in terms of amplitude, the
temporal relation regarding the peaks of the signal is maintained. Therefore, the acquired
signal could be compared to the Ground Truth via the BR that is obtained by computing
the time between the peaks of the signal. Any other parameter relying on the time-domain
information could be also computed.
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Figure 6. The user is at a distance of about 1 m to the camera and facing it. Meanwhile, the Ground
Truth signal is acquired by direct contact with a medical device.

Figure 7. Comparison of the respiratory pattern obtained through the proposed algorithm (Video
Signal) and the reference value (Ground Truth) during 30 s of continuous acquisition. The signals
have been acquired at the thoracic (top figure) and abdominal (bottom figure) regions.

Figure 8 shows a comparison of the Video Signal and the Ground Truth through the
tachogram of the BR in both cases, showing that the temporal relation between the two
signals can be compared.

In this case, the BR is computed relying on the breath-by-breath information, but also
by averaging the values within windows of 5 inhalation–exhalation cycles.

The tachograms of all the participants have been analysed and the results have been
collected into the Bland–Altman plots of Figures 9 and 10. Concretely, these representations
show the difference between the BR obtained trough the Video Signal and the Ground Truth
with respect to their mean values regarding the breath-by-breath information (Figure 9),
and also the averaged values (Figure 10).
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Figure 8. Comparison of the tachogram of the breath rate obtained through the Video Signal
(blue line) with respect to the Ground Truth signal (orange line). It shows the ability of the pro-
posed algorithm to follow sharp changes in the breath rate. In this case, from 20 breaths/min to
29 breaths/min, approximately.

By observing the Bland–Altman plots, one can easily notice that the BR estimation
of the proposed algorithm closely coincides with the reference values. The real-time val-
ues have similar biases regarding the thoracic and abdominal measures while the ±96%
limits of agreement are roughly between ±2 breaths/min. By averaging the obtained
values in 5 cycles, the limits of agreement get reduced to almost ±1 breath/min. Con-
cretely, regarding the measures at the thorax, the ±96% limits of agreement decrease from
−2.21/2.34 breaths/min with a bias of 0.07 breaths/min to −1.22/1.02 breaths/min with
a bias of −0.10 breaths/min comparing breath-by-breath information to the averaged
values. Regarding the measures at the abdomen, the limits of agreement decrease from
−2.01/2.24 breaths/min with a bias of 0.11 breaths/min to −1.07/1.18 breaths/min with
a bias of 0.06 breaths/min.

Figure 9. Bland–Altman representation of the thoracic (left image) and abdominal (right image) regions regarding the
real-time assessment of the respiratory function. The black line shows the bias of the distribution while the red lines show
the ±96% limits of agreement. Each individual pair of samples has been represented in blue.
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Figure 10. Bland–Altman representation of the thoracic (left image) and abdominal (right image) regions regarding the
averaged values in windows of 5 cycles. For the averaged values, a first window of 5 respiratory cycles has been selected,
then this window has been displaced one position with each new cycle. The black line shows the bias of the distribution
while the red lines show the ±96% limits of agreement. Each individual pair of samples has been represented in blue.

Finally, the same BR information has been compared in terms of the mean value of
each participant in the recorded periods of 60 s. Table 2 shows a comparison of the mean
BR obtained through the proposed algorithm and the one computed considering the signal
acquired by the system Biopac MP36 regarding the breath-by-breath information. Table 3
shows the same information, but for the averaged values in windows of 5 inhalation–
exhalation cycles. As could be observed in the results, two thoracic acquisitions were
discarded due to periods of no acquisition within the considered timestamp, and three
abdominal acquisitions were discarded because of a poorly acquired reference signal. We
hypothesize that the periods of no acquisition occurred because of the saturation of the
acquisition device, an unstable frame rate or even because of movement artifacts occluding
the ROIs, while the problems with the reference signal are due to the sensor’s position at
the abdomen.

Table 2. Table of the mean breath rate of each user obtained by the breath-by-breath information (in
breaths/min) of the Video Signal (VS) in comparison to the Ground Truth (GT).

User Age Gender VS GT VS GT
Thorax Thorax Abdomen Abdomen

U11 50 Male 24.49 24.44 24.18 23.99
U12 18 Male 28.44 28.19 29.00 28.46
U13 13 Male 21.88 21.34 19.70 19.81
U14 50 Female 23.22 23.32 23.51 23.44
U15 48 Female 21.84 21.72 21.54 22.32
U16 36 Male 13.98 13.80 14.70 14.83
U17 54 Male 10.91 10.68 9.03 9.13
U18 23 Female 14.37 14.37 14.38 14.45
U19 50 Male 9.66 9.51 9.80 9.72
U20 56 Male 8.27 8.27 8.21 8.17
U21 21 Male 9.48 9.53 9.54 9.60
U22 14 Male 12.71 12.68 11.24 11.26
U23 49 Male 8.35 8.18 8.41 8.42
U24 61 Male 21.66 21.58 21.88 21.74
U25 22 Female - - 17.42 17.54
U26 48 Male 20.58 20.64 - -
U27 63 Female - - 13.85 13.81
U28 23 Male 20.84 20.99 - -
U29 50 Male 14.48 14.54 - -
U30 22 Female 15.79 15.70 15.86 15.93
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Table 3. Table of the mean breath rate of each user in (breaths/min) obtained by averaging the Video
Signal (VS) in 5 inhalation-exhalation cycles in comparison to the Ground Truth (GT) also averaged.

User Age Gender VS GT VS GT
Thorax Thorax Abdomen Abdomen

U11 50 Male 24.30 24.34 24.30 24.30
U12 18 Male 28.15 28.31 28.02 28.17
U13 13 Male 20.15 20.38 19.40 19.32
U14 50 Female 23.14 23.18 23.24 23.22
U15 48 Female 21.52 21.42 21.13 21.57
U16 36 Male 12.35 12.48 14.02 14.07
U17 54 Male 9.72 9.67 9.17 8.88
U18 23 Female 13.95 14.19 14.38 14.45
U19 50 Male 9.10 9.04 9.22 9.23
U20 56 Male 8.24 8.19 8.25 8.23
U21 21 Male 9.51 9.39 9.32 9.38
U22 14 Male 11.78 11.91 10.95 10.88
U23 49 Male 8.25 8.12 8.40 8.39
U24 61 Male 22.08 21.97 21.90 21.93
U25 22 Female - - 17.01 17.01
U26 48 Male 20.59 20.65 - -
U27 63 Female - - 13.85 13.81
U28 23 Male 20.77 20.79 - -
U29 50 Male 14.41 14.55 - -
U30 22 Female 15.93 15.72 15.86 15.93

Finally, to analyze the individual mean BR values obtained, the RMSE has been
computed as in the first experiment. The acquisitions of this second experiment gave
an overall RMSE of 0.21 breath/min in the breath-by-breath assessment and an overall
RMSE of 0.13 breath/min in windows of 5 inhalation–exhalation cycles. These results
show the feasibility of applying the proposed algorithm for a reliable assessment of the
respiratory information.

4. Discussion

The experimental results obtained by the proposed non-contact assessment of the
respiratory function in different parts of the body with an algorithm achieving fixed-time
complexity O(1) are comparable to those reported in the literature. In particular, we
have found a non-statistically significant bias of 0.07 breaths/min and the 96% limits of
agreement of −2.21 to 2.34 breaths/min in the breath-by-breath assessment of the thoracic
region. Similarly, in the abdominal region, we have found a bias of 0.11 breaths/min and
the 96% limits of agreement of −2.01 to 2.24 breaths/min. Regardless of the region, the
breath-by-breath assessment shows a mean RMSE of 0.21 breaths/min. Both the presented
96% limits of agreement and the RMSE can be reduced by averaging the obtained values
in consecutive inhalation–exhalation cycles. This could be also a valid approach to obtain
smaller errors despite of losing real-time information. For example, if one considers a
normal and stable BR of 16 breaths/min, the proposed algorithm could display the breath-
by-breath information every 3.75 s approximately in real-time as it should be the time
between the last inhalation peak and its consecutive. In comparison, if one accesses the
averaged information in two inhalation–exhalation cycles, a new value update will be
resolved every 7.50 s with a smaller error. We have proved that the RMSE error could be
reduced up to 0.13 breaths/min by considering five of those cycles. The presented results
of the second experiment have been computed by comparing the acquired signal of the
proposed system to the reference values obtained through the estimation performance
of a medical device. Therefore, the accuracy has been experimentally quantified as the
difference between the signal obtained by the proposed method and the reference one.
We have found a maximum uncertainty of 2.34 breath/min in the real-time assessment, and
that it can be reduced up to 1.22 breath/min if instead of estimating it for each respiratory
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cycle, an average of five cycles is considered. Finally, although the obtained error values
in the two considered regions are similar, one should consider that some body regions
present more mechanic movement than others as a result of the respiration when selecting
the region under study, since the lack of movement will directly impact on the quality of
the obtained results.

The novelty of the proposed method is to reduce the acquisition algorithm to a simple
mean depth value computation of the target regions, getting rid of the processing of the
traditional RGB channels that are prone to be more time-consuming. Instead, the Viola–
Jones algorithm is applied to the RBG stream to locate the face of the user in the scene and
automatically compute the regions in which the measurement is going to be performed
according to the physiology of the user. Note that the main acquisition is performed just
with the information of the depth channel, aside from the detection and location of the
ROIs. Therefore, multiple ROIs can be added to the simultaneous measurement without
altering the computational flow, and real-time values can be also registered. In this article,
we have presented the results of the synchronous assessment of both the thoracic and
abdominal regions. Nevertheless, these regions could be changed by direct modification of
Equations (1)–(4) to assess the respiratory signal in any other part of the body. For example,
the comparison of the left and right movements of the chest in order to see if there is an
homogeneous expansion of the thorax could be also of medical interest. Experimental tests
have validated that the developed system works correctly if the distance from the user to
the camera is up to 1.5 m, where the background mask is applied. In fact, regardless of
the background mask, the proposed method has shown similar accuracy values up to 2 m
of distance between the user and the acquisition device. The measurements, by using the
depth sensor, are less affected by changes in light intensity, so its use is possible in non-
hospital environments. The most important factor for its operation is a correct recognition
of the user’s face, as the rest of the configuration parameters are automatically adjusted
based on this first detection.

Regarding the state-of-the-art, several non-contact approaches have been proposed in
the literature for the estimation of the respiratory function based on the movement of the
body regions when breathing. Among others, Siam et al. extracted the respiratory function
from the automatically detected chest region by using an IR camera with an averaged
RMSE of 0.464 breaths/min [30]. However, no breath-by-breath information could be
retrieved as the BR estimation was done by averaging the inhalation–exhalation cycles
of the entire recordings. In addition, one single and static ROI was considered and the
algorithm relied on the integral of the ROI instead of in the mean depth value. Massaroni
et al. used a single RGB camera to extract the respiratory pattern from intensity variations
of reflected light at the level of the collar bones and above the sternum [3]. In this case,
they extracted breath-by-breath information with an error of 0.55 breaths/min as its best
performance and 1.53 breaths/min in lower resolution, considering again one single and
static region. In addition, they processed the three RGB channels individually, not being
able to provide the assessment in real-time. Finally, Benetazzo et al. also proposed a method
for extracting the respiratory pattern by means of a depth sensor in an automatically located
chest region [29]. Nevertheless, a complex postprocessing of the signal was proposed for
the extraction of the valuable information making impossible the real-time assessment.
In addition, in this case, only one single and static ROI was considered at a time and the
algorithm could not be externally modified to select the desired region, i.e., the monitoring
could be only performed at the chest. Finally, our study overcomes by far the variety
and number of users considered. In comparison, our proposed method achieves smaller
errors and multi-point assessment due to the reduced complexity of processing one single
depth channel. To our best knowledge, the non-contact and simultaneous multi-region
estimation of the respiratory function directly implemented on the depth channel and
using the RGB channels aside to adapt the algorithm to the user has not been proposed
before. In addition, the errors obtained in both the breath-by-breath assessment and the
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averaged estimations make the proposed method suitable for remote health tracking as it
overcomes the performance of the state-of-the-art algorithms.

5. Conclusions

In this paper, we present a non-contact system to simultaneously estimate the respira-
tory function in multiple parts of the body. The respiratory function is estimated based
on the breathing movement of those target regions with respect to the camera. Concretely,
these movements are captured by the depth channel of an Intel Real Sense D435 camera.
However, any other RGB-D camera-based technology with a depth module of the same
characteristics and separate RGB channels could also be used. The non-contact and si-
multaneous multi-region estimation, up to 10 ROIs, of the respiratory function directly
implemented on the depth channel, using the RGB channels aside to adapt the algorithm
to the user is newly proposed in this work. A first experiment has been conducted for
validation purposes considering different scenarios, different body poses and body types
(body sizes and skin tones), physical conditions and clothing, already giving competent
results regarding the state-of-the-art. In addition, a more accurate second experiment has
been performed to closely compare the acquired signal to the reference one regarding both
breath-by-breath and averaged assessments. The errors obtained in both the breath-by-
breath assessment, from −2.21 to 2.34 breaths/min in the worst case, and the averaged
estimations, from −1.22 to 1.18 breaths/min in the worst case, make the proposed method
suitable for remote health tracking. The overall RMSE errors of 0.21 breaths/min in the
breath-by-breath assessment and 0.13 breaths/min in the averaged estimation also over-
come the state-of-the-art performances. The proposed system enables breath monitoring in
static situations using a highly accurate and low-cost system, which makes it suitable for
non-hospital applications and periodic monitoring of respiratory function.
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