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A B S T R A C T   

This article focuses on the Mixed-Model Assembly Line Balancing single-target problem of type 2 with single- 
sided linear assembly line configurations, which is common in the industrial environment of small and 
medium-sized enterprises (SMEs). The main objective is to achieve Algorithmic Transparency (AT) when using 
Genetic Algorithms for the resolution of balancing operation times. This is done by means of a new matrix 
methodology that requires working with product functionalities instead of product references. 

The achieved AT makes it easier for process engineers to interpret the obtained solutions using Genetic Al
gorithms and the factors that influence decisions made by algorithms, thereby helping in the later decision- 
making process. Additionally, through the proposed new matrix methodology, the computational cost is 
reduced with respect to the stand-alone use of Genetic Algorithms. 

The AT produced using the new matrix methodology is validated through its application in an industry-based 
paradigmatic example.   

1. Introduction 

Mixed-Model Assembly Line Balancing (MMALB) aims for the 
simultaneous assembly of a set of functionally-related products on a 
single assembly line. They are common in the industrial environment of 
small and medium-sized enterprises (SMEs). The batch atomization 
caused by the just-in-time strategies and the increasing extension of the 
product portfolio means that when considering new assembly lines, they 
are defined according to the One-Piece-Flow principles of the Lean 
philosophy with the aim of trying to alleviate the extra costs involved in 
managing small batches of production. 

To cope with this difficult industrial situation, process engineers 
must achieve a balance of the operation times assigned to each work
station, the required manufacturing cadence and the product portfolio 
required by customers. 

AT is the principle that factors with influence on the decisions made 
by algorithms should be visible or transparent to the people who use, 

regulate and are affected by the systems that employ these algorithms. In 
the case of balancing assembly lines, AT would ease the interpretation of 
the mathematical model generated for process engineers and, with the 
obtained results, make decisions regarding the planning of a new as
sembly line (e.g. be clear about the effect of assigning an additional 
assembly task in the future to one or another workstation and consider 
the alternatives according to the specific mathematical model for its 
processes). 

In this paper, an improvement in the use of the Genetic Algorithm 
(GA) is provided by means of introducing a new matrix methodology 
when prepossessing the raw data of the problem that will confer -once 
the GA has been applied- superior AT to the solutions with respect to the 
specialized literature. This contribution represents an improvement in 
the implementation of the GA for SMEs dealing with optimisation when 
balancing assembly lines, since most of the solutions to date, although 
feasible, are difficult to interpret for process engineers, thus hindering 
subsequent work in the decision-making process. This methodology is 
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applied in an industry-based paradigmatic example. 
In addition, when using the proposed new matrix methodology, the 

computational cost is reduced when compared to the stand-alone use of 
the GA for systems with an extensive product portfolio defined by 
product references rather than product functionalities as proposed in the 
paper. In general, in a companýs product portfolio there are more 
product references than product functionalities. The reduction in 
computational cost allows implementing the methodology even in 
spreadsheets, a software widely used by SMEs, thus improving the 
accessibility for process engineers. 

The initial hypothesis is that, in an MMALB problem, all product 
references can be balanced simultaneously by minimizing the standard 
deviation of the aggregate operation times assigned to each of the 
workstations for each group of product functionalities. The minimiza
tion of this defined standard deviation is used as the objective function 
for the GA. 

The structure of the article is as follows. Section 2 reviews the 
specialized literature, Section 3 explains the new matrix methodology 
approach, along with the mathematical formulation. In Section 4, the 
methodology is applied in an industry-based paradigmatic example. 
Finally, in Section 5, the main conclusions are presented. 

2. Literature review 

The classification of the Assembly Line Balancing problems (ALB) 
according to Kamal and Martinez Lastr [9] is presented in Fig. 1: 

According to Fig. 1, ALB problems based on the objective function 
are classified as: type-F (feasibility), obtaining a feasible solution for a 
given number of workstations and a given cycle time; type-1, minimi
zation of the number of workstations for a given cycle time; type-2, 
minimization of the cycle time for a given number of workstations; 
type-E (effectiveness), minimization of both the number of workstations 

and the cycle time; finally, types-3, 4 and 5 correspond to maximization 
of the workload smoothness, maximization of the work relatedness and 
an aggregate of these two objectives that corresponds to types-3 and 4, 
respectively. Based on the problem structure, considering Scholl [1999] 
and Becker et al. [2006], ALB problems are classified as: SMALB, for 
single model ALB problems, where only one product is assembled; 
MuMALB, for multi-model ALB problems, where multiple products are 
assembled in batches on the line; and MMALB, for mixed-model ALB 
problems, where various models of a generic product are produced in 
the assembly line in a mixed situation. 

Considering the literature review dealing with MMALB problems by 
Sivasankaran et al. [21], the following techniques have been used: 
Mathematical model, simulated annealing, tabu search, ant colony 
optimization (ACO) algorithms and GA. The literature of additional 
techniques is also reviewed in this paper, specifically branch and bound 
and bee colony algorithms. 

Considering AT, the only identified study that focused on the results 
analysis is by Wei et al. [23], who studied binary linear programming 
with Excel VBA, proposing a better understanding of management 
practice thanks to the results being presented through the visual inter
face of a spreadsheet. However, it only improves the interpretation of 
the results, without becoming an exhaustive modelling that allows the 
factors that influence the solution (and how they do so) to be under
stood. Moreover, according to Fig. 1, the case studied is classified as a 
SALB problem, which is not applicable to MMALB problems as it is the 
case of the paper. 

The specific literature analysed that addresses MMALB problems, 
essentially revolves around mathematical optimization or adding func
tionalities to algorithms, such as simultaneous objectives, uncertainty 
management or variability. 

Pinarbasi et al. [16] developed an efficient resolution with mathe
matical models using constraint programming model for type-2 ALBP 

Assembly Line Balancing problem 
(ALB)

Based on objective function

Type-F

Type-1

Type-2

Type-E

Type-3

Type-4

Type-5

Based on problem structure

According to Scholl, 1999; 
Becker and Scholl, 2006

SMALB

MuMALB

MMALB

Acording to Baybars 1986a

SALB

GALB

Fig. 1. Classification of ALB problem  
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with several assignment restrictions. Michels et al. [14] also considered 
a resolution for multi-manned assembly lines, using a Mixed-Integer 
Linear Programming model to solve large and real-life instances 
optimally. 

Nazari et al. [15] consider sequence dependant setup times between 
operations, finding that simulated annealing is more effective than a 
mixed integer programming model. 

Abdeljaouad et al. [1] generalized tabu search algorithms solution 
approach to the multi-model case (MALBP) starting from the cycle time 
minimization used in single-model lines (SALBP) and showing a high 
performance. 

Kucukkoc et al. [12] developed a resolution with ACO algorithms for 
mixed-model parallel two-sided assembly line problems. The objective 
values are not as good as desired although the line is more flexible to 
demand changes; any new model sequences could be launched with no 
need for balance change. This feature is also obtained with the new 
matrix methodology proposed in this paper, also with good objective 
values. 

GA is the most extended solution approach in comparison with those 
previously mentioned. Simaria et al. [20] developed a GA model for 
optimizing mixed-model assembly lines for a defined number of posi
tions with the goal of minimizing the cycle time and balancing the 
workloads within the workstations. Su et al. [22] developed a solution 
for balancing MMALB type-2 lines which was valid for small systems, 
although they did not take into account the relationships between the 
operations and the incompatibilities between them. Barathwaj et al. [3] 
studied a multi-objective GA with ergonomic variables for MMALB 
problems, increasing the rate of production and reducing worker fa
tigue. Ramezanian et al. [19], using an evolutionary imperialist algo
rithm, proposed a mixed-model and multi-objective system where the 
cycle times are optimized along with the skills of the operators. Zhao 
et al. [25] developed a multi-objective procedure combining cycle times 
and mental loads for mixed-model assembly lines. Rabbani et al. [18] 
studied the balancing of robotic cells with mixed-model multi-objective 
optimization taking the cycle time, setup time and equipment cost into 
account. Liu et al. [13] developed a new optimization model for 
mixed-model assembly line balancing under uncertain demand, solved 
by an improved GA. Zamzam and Elakkad [24] studied the problem of 
balancing multi-manned assembly lines under time and area constraint 
using GA. None of these studies focused on the improvement of the AT 
for later use in real industrial cases. 

Considering the branch-and-bound solution approach, Li et al. 
[2014] and Yang et al. [2014] considered new heuristics for balancing 
the manual mixed model assembly lines, using overtime work in an 
environment of varying demand. Hazır et al. [8] incorporated new 
formulas for dynamically computing a lower bound on the optimal value 
of the objective function and for determining the earliest workstations 
for tasks. 

Considering the bee colony algorithms solution approach, Akpinar 
et al. [2] developed a novel multiple colony hybrid bees algorithm in 
order to improve the search capabilities of the basic bees algorithm used 
for solving MMALB problems with sequence-dependent setup times 
between tasks. Çil et al. [5] combined mathematical models and bee 
algorithms for the MMALB problem with physical human–robot 
collaboration but addressed exclusively to the improvement of the 
algorithmic performance. 

Additionally, it is observed that most of the authors base their studies 
on software which is not commonly used by SMEs. In order to improve 
the introduction of these methodologies in SMEs, the GA technique was 
chosen for this study due to its simple implementation through 
spreadsheets; there are even low-cost commercial developments 
involved with this approach. This choice of methodology is also due to 
the NP-hard nature of ALB problems, given the efficiency of the GA 
according to Pınarbaşı et al. [2020]. 

Furthermore, Eghtesadifard et al. [2020] presented a systematic re
view of research themes and hot topics in ALB between 1990–2017, 

highlighting that not enough research studies have been carried out into 
performance in real-life scenarios, which calls into question the wide
spread use of ALB within the industry. They also indicate that re
searchers can explore the literature from the perspective of whether ALB 
methods would be efficient in real industrial cases or not. Consequently, 
they require the analysis of some case studies conducted in the past, 
which should be accurately assessed in terms of production line effi
ciency, idle time or assembly-line improvement. 

Conscious of the lack of research studies centred on real industrial 
scenarios, as pointed out by Eghtesadifard et al. [6], the contribution of 
this paper is oriented in breaching the gap between all the research 
developed and its application in real SME assembly lines of. To help 
achieve this objective, a new matrix methodology is proposed, as a 
general approach to improve AT so that the contributions made in the 
field of ALB by specialized authors will arrive to real the industrial cases, 
especially in the case of SMEs. 

3. Problem description, formulation and implementation of the 
new matrix methodology 

The new matrix methodology used to improve AT is introduced with 
the aim of generalizing the usage of GA in the resolution of MMALB type- 
2 problems, especially in SMEs. First, there is a description of the 
problem studied which explains the typical approach found in the 
literature for optimizing an MMALB type-2 problem (section 3.1). Sec
ond, the mathematical formulation and the implementation strategy of 
the new matrix methodology is developed (section 3.2). 

3.1. Problem description and formulation without the new matrix 
methodology 

In general, the MMALB single-target type-2 problem for single-sided 
linear assembly line configurations aims to minimize the total cycle 
time. The general assumptions, parameters and variables of the problem 
are as follows:  

• Equivalent assembly tasks for each different product reference are 
almost identical, so it can be assumed that only a single precedence 
diagram is needed for all the product references that make up the 
product portfolio.  

• Operating times related to assembly tasks are the same for all the 
different product references. 

• The operating time for an assembly task is the same for all the op
erators because it is assumed that they have the same skill level.  

• Each operator works only on a single workstation, where they carry 
out their assigned assembly tasks.  

• Workstations and tasks are undividable.  
• Product references are assembled consecutively.  
• Assembly tasks roaming is avoided because the goal is minimal setup 

time. 

Considering the assumptions mentioned above, the parameters and 
indices of the model are: 

W: number of Workstations (obtained with the takt time explained in 
Section 3.3.3); w = 1, 2, . . ., W 

M: number of product references included in the product portfolio to 
be assembled; m = 1, 2, . . ., M 

F: number of possible functionalities to be given to the product 
portfolio; f = 1, 2,…, F 

N: number of assembly tasks; n = 1, 2, . . ., N tn: operating time of an 
individual assembly task; n = 1, 2, . . ., N 

The variables of the problem are defined as follow: dwn: possible 
assignment of assembly task n to Workstation w. dwn is binary variable 
(0,1). dwn = 1 if task n is assigned to workstation w. prs: possible pre
cedence relationship between two assembly tasks. prs is a binary variable 
(0,1). prs = 1 if assembly task r precedes assembly task s. 
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Cm: Cycle time of each product reference defined with Eq. (1) 

Cm ≥
∑N

n=1

∑W

w=1
tmn⋅dwn w = 1,…,W m = 1,…,M (1)  

Then the objective function that minimizes the sum of the cycle times of 
all the product references included in the product portfolio to be 
assembled is defined with Eq. (2) 

[MIN]
∑M

m=1
Cm (2)  

Subject to the following constraints 

∑W

w=1
dwn = 1n = 1,…,N (3)  

∑W

w=1
w⋅dsw ≥ prs⋅

∑W

w=1
w⋅drw r= 1,…,N, s= 1,…,N | r ∕= s (4)  

Eq. 3 indicates that each assembly task must be assigned to one work
station. Eq. 4 handles the precedence relations between assembly tasks. 

3.2. Problem description and formulation with the proposed new matrix 
methodology 

In contrast, the new matrix methodology is proposed for application 
with the GA to improve the AT obtained with the methodology 
described in the previous section 3.1. In order to achieve the desired AT 
in the application of GA, which will allow a better understanding of the 
obtained results and the factors that influenced in the applied algo
rithm’s decisions, it will be necessary to develop a previous pre- 
processing step for the initial data when modelling the problem. 

The modelling proposed for the new matrix methodology, takes 
advantage of the fact that functional design is common good practice in 
the industry. Functional design involves dividing product parts in a list 
of product functionalities to be assembled together to obtain the product 
references. A company’s product portfolio will usually have more 
product references than product functionalities; the new matrix meth
odology proposes taking advantage of this, while also reducing the 

Fig. 2. New matrix methodology diagram steps  
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computational cost when solving a typical MMALB type-2 problem. 
This new matrix methodology consists of five steps through which 

the process engineers will be able to solve and analyse the example in 
detail. Each of the five steps is detailed below. 

Fig 2 summarizes the procedure for modelling the assembly line 
depending on the product portfolio and balancing operation times in 
assigning tasks for MMALB type-2 problems, according to the proposed 
new matrix methodology. 

3.2.1. Collection of product data 
The first step consists in creating matrix A, which contains product 

references and product functionalities. Matrix A is given to the process 
engineers by the product development and marketing departments that 
have designed the company’s product portfolio. From this initial stage, it 
is the process engineer’s responsibility to design an optimized assembly 
line capable of assembling the complete company’s product portfolio in 
terms of quality, demand flexibility and economic viability. 

A: Matrix of product references and product functionalities. It has 
dimensions M • F, where M is the number of product references and F is 
the number of product functionalities. Values within A can be 0 or 1. If 
amf = 1, it means that the product reference m includes product func
tionality f. 

A =

⎡

⎢
⎢
⎢
⎢
⎣

a11 a12 a13 … a1F
a21 a22 a23 … a2F
a31 a32 a33 … a3F
… … … … …
aM1 aM2 aM3 … aMF

⎤

⎥
⎥
⎥
⎥
⎦

The first column of matrix A represents the common product function
ality, which includes those product components that are the common 
base of the entire portfolio of product references and found in all of 
them. Thus, usually, am1 = 1 for every m. 

3.2.2. Product functionalities matrix study 
In the second step of the methodology, the aim is to relate and group 

together the different product functionalities within matrix A. This is 
done through two sub-steps that help to interpret which product func
tionalities can be grouped together and how to do so: these sub-steps are 
the coincident vectors method and the complementary vectors method. 

3.2.2.1. Coincident vectors method. This method consists in merging 
identical columns of matrix A into single columns. For process engi
neers, this implies merging those initial product functionalities that have 
previously been defined as different, but which coincide in the same 
product references. Thus, different initial product functionalities are 
merged into a single product functionality. 

Mathematically, if i is equal to the number of occurrences of identical 
columns of matrix A for each matching occurrence, then ri is equal to the 
number of individual columns that are identical, where ri ≥ 2. Hence, 
through this substep, matrix A, originally of dimensions M⋅F, is reduced 
to dimensions M⋅(F − k), where k is calculated using Eq. (5): 

k =
∑i

1
(ri − 1) (5) 

This grouping of product functionalities facilitates an equitable dis
tribution of assembly tasks in later stages. This is because some of the 
product functionalities do not have enough operating times to achieve 
an equitable distribution of times between the Workstations. By 
grouping product functionalities, a greater number of operating times 
per product functionality can be achieved, which enables a more equi
table distribution. This behaviour is illustrated in Section 4. 

3.2.2.2. Complementary vectors method. In matrix A, the identification 
of complementary product functionalities in the column vectors (F − k)
is required. Once added together, this results in another column vector 

already existing in A. 
This aggregated vector can be the unit column vector (previously 

referred to as “common product functionality”) or another column 
vector of A. An example of complementary vectors is shown: 

A =

⎡

⎢
⎢
⎢
⎢
⎣

a11 1 0 … a1(F− k)
a21 1 0 …a2(F− k)
a31 1 0 …a3(F− k)
… … … … …
aM1 1 0 …aM(F− k)

⎤

⎥
⎥
⎥
⎥
⎦

It can be observed how product functionalities 2 and 3 are comple
mentary columns which, once aggregated, result in the common product 
functionality 1, which is a frequent case in real assembly lines. 

Another case of complementary vectors is presented, where product 
functionalities 5 and 6, if aggregated, result in product functionality 4: 

A =

⎡

⎢
⎢
⎢
⎢
⎣

a11 a12 a13 1 1 0 … a1(F− k)
a21 a22 a23 0 0 0 … a2(F− k)
a31 a32 a33 1 0 1 … a3(F− k)
… … … … … … … …
aM1 aM2 aM3 1 1 0 … aM(F− k)

⎤

⎥
⎥
⎥
⎥
⎦

Sometimes it is possible to find alternative combinations in the identi
fication of complementary vectors. In order to obtain a meaningful AT 
for process engineers, it is advisable to identify alternatives with com
plementary vectors that represent product functionalities related by 
both their utility and the necessary manufacturing tools. With the 
manual choice of the best complementary vectors alternative, the nat
ural complementarities of the system are included in the model, thereby 
implicitly defining additional restrictions to solve the problem. These 
help to improve the feasibility of the final solutions obtained with the 
optimization algorithm, without requiring their explicit programming, 
thus simplifying definition of the model made by the process engineer. 
In section 4, an example is shown of a possible infeasible complementary 
vector. 

However, this manual choice does not require a high workload for 
SME process engineers, as the number of possible complementary 
product functionalities is usually limited. 

By identifying these complementary vectors, product functionalities 
with complementary occurrence are found. When added, these will be 
compatible in the balancing with their aggregated product functionality 
in A. 

Identifying the complementary vectors leads to understanding the 
relationship between the assembly tasks associated with these comple
mentary product functionalities and how they can affect the results 
when solving a MMALB type-2 problem. Breaking down the assembly 
tasks distribution in this way, process engineers obtain more under
standing regarding the solution and consequently improve AT, as 
desired in this paper. 

When balancing operation times of assembly tasks, it is very unlikely 
that these complementary product functionalities will have identical 
operation times in each of the Workstations. Consequently, only the 
minimum operation time assigned to the assembly tasks affected by 
these complementary product functionalities can be balanced by the 
optimization algorithm together with the time of the aggregated product 
functionalities. 

This aggregate time facilitates the equitable distribution of assembly 
tasks in later stages of the new matrix methodology. The remaining time 
(debt) in the complementary product functionalities with times greater 
than the minimum, helps to identify systemic imbalances in the solution 
and thus to guide the process engineers’ decisions; for instance, modi
fying the existing manufacturing equipment, as a result of the sought- 
after improvement in the AT. 
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3.2.3. Study of the assembly tasks matrix B and definition of number of 
Workstations 

This step includes the preparation of the assembly tasks and product 
functionalities matrix B. 

3.2.3.1. Definition of assembly tasks matrix B. B is the matrix of assem
bly tasks and product functionalities, as presented. It has dimensions 
N⋅(F − k), where N is the number of assembly tasks necessary to 
assemble all the product references and (F − k) is the number of product 
functionalities left after applying the coincident vectors and comple
mentary vectors methods. 

B =

⎡

⎢
⎢
⎢
⎢
⎣

b11 b12 b13 … b1(F− k)
b21 b22 b23 … b2(F− k)
b31 b32 b33 … b3(F− k)
… … … … …
bN1 bN2 bN3 … bN(F− k)

⎤

⎥
⎥
⎥
⎥
⎦

Values within B can be 0 o 1. If bnf = 1, it means that the assembly task n 
is required to implement the product functionality f to a product refer
ence. B is defined by the process engineer based on the engineer’s tools, 
skills and previous knowledge concerning the companýs manufacturing 
processes. Assembly tasks must be defined as indivisible due to the use of 
specific assembly tools or materials. The use of the minimum operation 
times offers the possibility of obtaining better balanced assembly lines; 
the shorter the time of the disaggregated assembly tasks, the greater the 
precision when balancing. 

To obtain the operation time for each assembly task, the process 
engineer must break these down into basic tasks and calculate the 
operation times using tabulated or experimental time measurement 
systems. 

Hence, a diagonal matrix T is generated, with the diagonal con
taining individual operation times (tn) for each assembly task. These 
operation times (tn) are represented in a diagonal matrix T in order to 
conduct the next steps of the new matrix methodology. 

3.2.3.2. Calculation of the number of Workstations according to the takt 
time. Prior to running the GA for an MMALB type-2 problem, it is 
necessary to determine the number of Workstations W according to the 
takt time tt using Eq. (6) and (7). This is a very common practice in 
industry and obtains the minimum number of Workstations for the as
sembly line balancing, ensuring on-time delivery. 

tt =
tw

c
(6)  

W ≥
tcmax⋅cs

tt
(7)  

Here, tw is the available shift work time for each Workstation, c is the 
necessary daily capacity according to the client and tc max is the longest 
possible cycle time for any of the product references (MMALB problem). 
In addition, a safety coefficient cs can be applied from the historical 
efficiency values. tc max is calculated by summing up the times of all the 
product functionalities, except those that have been previously classified 
as complementary product functionalities. For these product function
alities, only the highest operation time is added (tn). 

3.2.3.3. Definition of initial chromosome. Due to the iterative nature of 
the GA, it is necessary to generate an initial chromosome vector from 
which the GA starts the resolution. 

The chromosome (chrom1⋅N) is a vector that contains the allocation of 
assembly tasks in the required Workstations (W), according to the takt 
time. For each Workstation a N-dimensional row vector dw is defined 
with Eq. (8): 

dw = [ dw1 dw2 dw3 … dwN ] (8)  

Values of dwn can be either 0 or 1. If dwn = 1, it means that the assembly 
task n is assigned to the Workstation w. If dwn = 0, it means that the 
assembly task n is not assigned to the Workstation w and must therefore 
be assigned to another Workstation. 

The sum of dw vectors multiplied by their corresponding Workstation 
number w (w being a natural number) defines the chromosome to be 
iterated by the GA and presented in Eq. (9). 

chrom1⋅N =
∑W

1
w⋅dw (9)  

The GA carries out iterations until the solution that optimizes the system 
is found, thus updating the components of the chromosome. 

3.2.3.4. Consequences of previous steps on the operation times. The allo
cation of the operation times of assembly tasks for each individual 
Workstation is obtained through Eq. (10). For each Workstation, tw is a 
row vector of dimension N: 

tww = dw⋅T (10)  

Then, the operation times of assembly tasks of all the individual 
Workstations are grouped into a single matrix. TW has as many rows as 
Workstations (W) and as many columns as assembly tasks (N) 

TW =

⎡

⎢
⎢
⎢
⎢
⎣

tw1
tw2
tw3
…
tww

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

t11 t12 t13 … t1N
t21 t22 t23 … t2N
t31 t32 t33 … t3N
… … … … …
tW1 tW2 tW3 … tWN

⎤

⎥
⎥
⎥
⎥
⎦

Then, Eq. (11) is applied to obtain matrix TWF, 

TWF = TW⋅B

=

⎡

⎢
⎢
⎢
⎢
⎣

t11 t12 t13 … t1N
t21 t22 t23 … t2N
t31 t32 t33 … t3N
… … … … …
tW1 tW2 tW3 … tWN

⎤

⎥
⎥
⎥
⎥
⎦

⋅

⎡

⎢
⎢
⎢
⎢
⎣

b11 b12 b13 … b1(F− k)
b21 b22 b23 … b2(F− k)
b31 b32 b33 … b3(F− k)
… … … … …
bN1 bN2 bN3 … bN(F− k)

⎤

⎥
⎥
⎥
⎥
⎦

(11)  

TWF is a matrix of dimensions W⋅(F − k). Each element of the matrix, 
twfwf , represents the allocation time for assembling the product func
tionality f to the Workstation w. 

To achieve an optimal modelling of the system, TWF must be cor
rected by considering the previously identified complementary product 
functionalities. For each Workstation w, the minimum sum of the allo
cation times twfwf of the complementary product functionalities will be 
added to the sum of allocation times twfwf of the added functionality. 

The twfwf value of the aggregate product functionality is increased, 
which improves the chances of obtaining a solution with better assembly 
line balancing in comparison to merely applying the GA without iden
tifying complementary vectors. The debts values, defined as the differ
ence between the minimum twfwf and the twfwf of the complementary 
product functionalities which have a twfwf greater than the minimum, 
are important for the process engineers, as they indicate and quantify 
the systemic imbalances in the assembly line. 

The debt values which differ from 0 cannot currently be solved by the 
GA, this means that process engineers require technical modifications of 
the manufacturing tools currently available for the Workstations. This is 
valuable information that provide the searched AT to the model ob
tained and indicate the way towards optimizing the system. 

An example is provided, for further clarity, where product 
functionality 2 and product functionality 3 are complementary to 
product functionality 1, which is the common product functionality. 
The times of the matrix TWF are thus modified as follows, giving rise to 
a new matrix TWF′ as shown. 
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The twfwf which are modified due to the use of the complementary 

vectors method are named twf ′

wf . For instance, twf
′

11 = twf11 +

min(twf12, twf13). 
Operation times of assembly tasks associated to product functional

ities which have not been aggregated due to the coincident or the 
complementary vectors method remain the same, twfwf . 

TWF′ is a new modelling of the system which will reflect the 
assignment of assembly tasks for each Workstation more clearly and will 
allow for systemic imbalances to be easily identified, thus providing the 
desired improvement of the AT to the application of the GA, as will be 
shown in the industry-based paradigmatic example of Section 4. 

3.2.4. Model resolution 
Once the new matrix methodology is carried out, results are obtained 

starting from Eq. (9) and an initial matrix TWF′ is obtained. The 
objective is to optimize this matrix with the value of the chromosome by 
means of a GA. 

3.2.4.1. Definition of the new objective function and constrains. The 
general assumptions, parameters and variables of the problem formu
lation for the new matrix methodology are the same as those described 
in section 3.1, with the exception of objective function of Eq. (2). 

In general, the MMALB single-target type-2 problem for single-sided 
linear assembly line configurations aims to minimize the total cycle 
time; the new matrix methodology uses the minimization of the standard 
deviation of the aggregated operation times, assigned to each of the 
workstations, for each group of product functionalities. This is due to the 
simple integration with the new methodology proposed and its proven 
efficiency by Kim et al. [10]. 

The objective function of the MILP model indicated in Eq. (2), as it is 
not based on product functionalities, it is not suitable for solving the 
problem with the new matrix methodology. 

The application of the proposed new matrix methodology has 
generated the objective variables that are to be studied, which are the 
scalars twfwf that represent the sum of all the operating times of the 
assembly tasks assigned to a single Workstation w for one of the product 
functionalities f . Then, the formulation of the objective function based 
on the standard deviation with Eq. (12) is used 

[MIN]ΔT = Min

⎛

⎜
⎜
⎜
⎜
⎝

∑F− k
f=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑W

w=1(twfwf − twfwf )
2

W

√

F − k

⎞

⎟
⎟
⎟
⎟
⎠

(12)  

The objective function aims to minimize the sum of the standard de
viations (ΔT) between the operation times assigned to each of the 
Workstations for each product functionality. The minimization of ΔT is 
obtained by means of the GA, acting as the fitness function. Fitness 
functions are used in GAs to guide simulations towards the optimal so
lution. A fitness function is a particular type of objective function that is 
used to summarize, as a single figure of merit, how close a given solution 
is to achieving the objective. In addition, the following restrictions are 
required to ensure the feasibility of the solution for the assembly line: 

3.2.4.2. Application of the GA. The stages for the application of the GA 
with the new matrix methodology are listed below:  

1 Randomly assign assembly tasks to the required Workstations in the 
spreadsheet, creating the initial chromosome.  

2 Calculate ΔT of the initial chromosome with the spreadsheet. The 
best and closest result to the objective corresponds to the Min ΔT.  

3 By using commands and programming tools defined in the GA solver 
of the spreadsheet, apply genetic operators of reproduction, crossing 
and mutation to the current generation to produce the next one.  

4 Select the most competent chromosomes of the new generation based 
on ΔT.  

5 Go back to stage 3 until the stop condition is satisfied. This condition 
can be, for example, an elapsed computational time without an 
improvement of ΔT.  

6 When the stop condition is reached, the best-fit chromosome is 
returned. This is the best achieved solution for the assembly line 
balancing. 

3.2.5. Model analysis 

3.2.5.1. GA-improved AT. Using the GA with the established re
strictions, once the chromosome that minimizes the defined fitness 
variable is found, the values of matrix TWF′ can be obtained. 

Improved AT is attained by means of analysis of these values, twfwf , 
by the process engineers, as well as obtaining the standard deviations in 
the positions of each of these product functionalities. Thus, in the 
analysis of the model, two cases of interest in TWF′ for the process en
gineers can be distinguished:  

a Non-complementary product functionalities 

The imbalances observed in these product functionalities correspond 
to an insufficient amount of assembly tasks or to excessively disparate 
operation times. Despite operation times being grouped using the 
coincident vectors method and the complementary vectors method, in 
many cases it is not feasible to find a good balance between Worksta
tions and the assigned assembly tasks of product functionalities. 

These systemic imbalances can be corrected by the process engineer 
by modifying the manufacturing tools, reducing some of the operation 
times or further atomizing the breakdown of assembly tasks, although 
the latter will not be possible if such a breakdown has already been 
implemented before. 

Any action carried out by the process engineer following the guide
lines shown by the model will contribute to an optimization, leading to a 
better balance in the system for all mixed-model products assembled in 
the line.  

a Complementary product functionalities 

In the proposed new matrix methodology, these product function
alities devote part of their assembly tasks’ operation times to increasing 
the amount of assembly tasks of the added product functionalities, 
specifically with their minimum twfwf value in each Workstation. This 
contribution helps to improve the distribution among Workstations of 
such added product functionalities. 

TWF
′

=

⎡

⎢
⎢
⎢
⎢
⎣

twf11 + min(twf12, twf13)twf12 − min(twf12, twf13)twf13 − min(twf12, twf13)…twf1⋅(F− k)
twf21 + min(twf22, twf23)twf22 − min(twf22, twf23)twf23 − min(twf22, twf23)…twf2⋅(F− k)
twf31 + min(twf32, twf33)twf32 − min(twf32, twf33)twf33 − min(twf32, twf33)…twf3(F− k)
… … … … …
twfW1 + min(twfW2, twfW3)twfw2 − min(twfW2, twfW3)twfw3 − min(twfW2, twfW3)…twfW⋅(F− k)

⎤

⎥
⎥
⎥
⎥
⎦
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However, for each product functionality and Workstation, once the 
minimum of the complementary product functionalities has been dis
counted, there is a remainder that can be 0 (for the product functionality 
that marks the minimum time) or higher. 

If twf ′

wf ∕= 0, this is a debt. These debts twf ′

wf show the undesirable 
variability of time between Workstations and clearly point out the sys

temic imbalances caused by these product functionalities, since they are 
an accurate guide for optimizing the balancing through the modification 
of the manufacturing tools. 

Fig. 4. Flexible modular vehicle from García [7]  

Table 1 
Matrix A of product references and product functionalities as described in step 3.2.1   

Product functionalities, f 
Product Reference m Common 1 Family Chassis 2 Van Chassis 3 Pick up Chassis 4 Front Doors 5 Rear Doors 6 Air cond. 7 Clima 8 
1 1 1 0 0 1 1 1 0 
2 1 0 1 0 1 0 1 0 
3 1 0 0 1 1 0 0 0 
4 1 1 0 0 1 1 0 1  

Table 2 
New matrix A after applying the coincident vectors method step   

Product functionalities, f 
Product Reference m Common + Front Doors 1,5 Family Chassis + Rear Doors 2,6 Van Chassis 3 Pick up Chassis 4 Air cond. 7 Clima 8 
1 1 1 0 0 1 0 
2 1 0 1 0 1 0 
3 1 0 0 1 0 0 
4 1 1 0 0 0 1  

Table 3 
Matrix B with the assembly tasks and their assigned product functionalities.    

Product functionalities, f 
n Assembly tasks Common + Front Doors 1,5 Family Chassis + Rear Doors 2,6 Van Chassis 3 Pick up Chassis 4 Air cond. 7 Clima 8 
1 Position chassis 1 0 0 0 0 0 
2 Assembly wheels 1 0 0 0 0 0 
3 Wire chassis 1 0 0 0 0 0 
4 Place mats 1 0 0 0 0 0 
5 Mount fam. chassis 0 1 0 0 0 0 
6 Screw fam. chassis 0 1 0 0 0 0 
7 Mount Van chassis 0 0 1 0 0 0 
8 Screw Van chassis 0 0 1 0 0 0 
9 Assembly Pickup chassis 0 0 0 1 0 0 
10 Screw Pickup chassis 0 0 0 1 0 0 
11 Assemble Front Door 1 0 0 0 0 0 
12 Front windows 1 0 0 0 0 0 
13 Assemble Rear Doors 0 1 0 0 0 0 
14 Rear windows 0 1 0 0 0 0 
15 Fit air conditioning. 0 0 0 0 1 0 
16 Check Air Conditioning 0 0 0 0 1 0 
17 Fit clima 0 0 0 0 0 1 
18 Check clima 0 0 0 0 0 1 
19 Basic Check 1 0 0 0 0 0 
20 Packing 1 0 0 0 0 0  
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4. Example 

In this section an industry-based paradigmatic example is presented 
to demonstrate the implementation of the new matrix methodology. 

4.1. Description of the problem 

The proposed new matrix methodology is not limited exclusively to 
improving the AT and the performance of a GA in a single example. It 
also proposes a complete organizational and design framework in which 
the GA is a suitable algorithm among AI algorithms (e.g., Bee colony, 
ACO, simulated annealing, etc.). Consequently, it is not possible to use a 
standard problem set to analyse its performance, as the standard prob
lems are not prepared for the application of the proposed new matrix 
methodology. Therefore, the results of the improved AT are demon
strated using an industry-based paradigmatic example, which meets the 
necessary requirements and a GA is used as an optimization algorithm to 
solve the problem. 

The choice of GA to solve the problem is due to its more common use 
among other AI algorithms, which allows its application through 
spreadsheets and guarantees accessibility to the SME process engineer. 

The industry-based example consists in designing a new assembly 
line for a product portfolio consisting in a modular vehicle like the one 
shown in Fig. 4. This industry-based example represents an MMALB 
type-2 problem paradigmatic and simplified for these SMEs to clearly 
show the improvement of the AT. 

The matrix of product references and product functionalities A is 
presented in Table 1. In order to facilitate the identification of com
plementary product functionalities, columns are grouped separately in 
Tables 1, 2 and 3. Given its relevance, the common product functionality 
has also been presented separately. 

As can be observed in Table 1, in this example there are more product 
functionalities (F=8) than product references (M=4) to facilitate the 
understanding of the implementation of the new matrix methodology. 
However, real industrial problems commonly have more product ref
erences than product functionalities. Later, in Fig. 6, it is proven using a 

larger example with more product functionalities and product refer
ences, closer to real industrial scenarios. 

Using the proposed new matrix methodology (step 3.2.2), two 
coincident vectors can be detected in Table 1: f = 5 is coincident with 
f = 1, and f = 6 is coincident with f = 2 . Therefore, these product 
functionalities are grouped together according to Eq. (2) such that k =

2 (i = 2, r1 = 2, r2 = 2). The new matrix A is presented in Table 2: 
The following complementary vectors can now be detected: product 

functionalities 2 + 3 + 4 = common product functionality 1. As was 
previously stated, the case where the addition of the complementary 
vectors is equal to the unit column corresponding to the common 
functionality is frequently found in real assembly lines. 

Other complementary product functionalities could be detected, 
such as product functionalities 4 + 7 + 8 = common product func
tionality 1. However, this complementarity, despite being mathemati
cally feasible, as explained in Section 3.2.2, is not advisable in 
manufacturing because the equipment for assembling a chassis differs 
greatly (in size, space…) from the manufacturing equipment for 
assembling an air comfort option between air conditioning or clima. 
Thus, the process engineer will discard it in favour of the one selected in 
the example, which is that product functionalities 2 + 3 + 4 = common 
product functionality 1. This is because product functionalities 2, 3 and 
4 require very similar tools. Thus, the process engineer will get tool cost 
savings if the product functionalities are defined as complementary, 
since their assembly tasks will be in nearby locations after model’s the 
resolution, without the need to include additional constraints in the 
system. This is the step in which the process engineer’s knowledge of the 
particular manufacturing resources becomes especially important, 
guiding the feasibility of the final solutions as a result. 

For this reason, in the case of SMEs, it is recommended that the 
process engineers perform this step manually, since the number of 
product functionalities is generally small enough. 

Table 3 presents the assembly tasks matrix B defined in step 3.2.3. 
The assembly tasks (N=20) are defined as being indivisible. 

The precedence diagram for assembly tasks is represented in Fig. 5. 
Its function is to restrict the possible solutions to guarantee the 

Fig. 5. Precedence diagram of assembly tasks  
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feasibility of the solutions found by the GA, according to the process 
engineer’s technical criteria. 

Table 4 illustrates the individual operation times (tn) for each as
sembly task in Table 3. The values tn are then used to define the diagonal 
of matrix T. 

To calculate the number of Workstations for the example, the 
customer requests c =1500 units/year to the manufacturing SMEs. To 
design the assembly line, the process engineer has 250 annual workdays 
in single shifts of 8 h (tw =250•8•60, in minutes). In addition, a security 
factor of cs =1,2 is assumed. Using the information from Tables 2, 3 and 
4 and Fig. 6, tc max = t1 + t2 + t3 + t4 + t5 + t6 + t11 + t12 + t13 + t14 +

t15 + t16 + t17 + t18 + t19 + t20 = 170 min as explained in step 3.2.3. 
Using Eq. (6) and (7), the required number of Workstations is W = 3. 
Therefore, there are 3 vectors dw (d1, d2, d3) that have initially been 
randomly defined using Eq. (8), as shown in Table 5. 

As a result, the evolutionary chromosome chrom1⋅20 is defined with 
values between 1 and 3, identifying the assigned Workstation for each 
assembly task. The initial chromosome is obtained through Eq. (9). It 
corresponds to the initial distribution of assembly tasks per Workstation 
and will be iteratively balanced throughout the GA in order to fulfil the 
precedence restrictions defined in Fig. 5. Then a non-optimized value of 
TWF′ is obtained with Eq. (11). 

chrom1⋅20 =(1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3)

4.2. Resolution 

Once the GA is applied to the modelling and solved the optimization 
function of Eq.(12), the solution obtained is presented with the assembly 
tasks assigned to the Workstations. 

chrom1⋅20 =(1 1 2 2 1 2 1 3 1 3 3 3 3 3 2 3 2 3 3 3)

Thanks to the new matrix methodology the following modelling TWF′ is 
obtained and presented. 

TWF′

=

⎡

⎣
45 10 5 0 0 0
30 10 0 0 10 15
35 15 2 0 10 10

⎤

⎦

The GA ran on a personal computer with 4 CPU cores and a base clock of 
2.1 GHz, requiring an average time of 84 s. with an average iteration 
number of 12.400, using Solver evolutionary tools in Microsoft Excel 
with the population-based method provided by Excel; this involves a 
population size of 100, a convergence rate of 0,0001, a mutation rate of 
0.075 and a crossover rate with these standard excel values. 

Table 6 is presented to clearly demonstrate the improved AT ach
ieved when applying the proposed new matrix methodology along with 
a GA. 

According to the allocation of assembly tasks after running the GA, 
the distribution of the aggregated operation times for each product 
functionality for each Workstation is calculated, using the modelling 
generated with the new matrix methodology. These aggregated opera
tion times have been balanced according to Eq. (12) to minimise the 
standard deviation between Workstations for each of the defined prod
uct functionalities. Starting from TWF′ , Table 6 can be developed by 
acquiring the TWF′ and illustrating the minimums of the complemen
tary product functionalities. Furthermore, the standard deviations of 
both the complementary and non-complementary functionalities are 
also calculated using Eq. (12). 

Standard deviations for common Functionality 1 with minimum time 
between functionalities 2, 3 and 4 (using Eq. (13)). 

Standard deviations for 2, 3 and 4 time debts, using Eq. (13). The GA 
also minimizes them. Time debts are the differences between 2, 3, 4 and 
the minimum value between them. 

Standard deviations for 7 and 8 time debts, using Eq. (13). The GA 
also minimizes them. Ta
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The shadowed column in grey (Min*) means the minimum time 
between product functionalities 2, 3 and 4. For instance, for workstation 
1, the values twfw2, twfw3 and twfw4 are 20, 15 and 10 min respectively, 
therefore the minimum value obtained by the GA is 10. 

Thus, this minimum value has been added to the common product 
functionality being, as a result, the obtained value with GA in twf’w1, 45 
min (t1 + t2 + 10). 

As can be seen, the new matrix methodology is not used to carry out 
the calculations of the GA but rather to build the modelling. It is this 
modelling in which the GA optimizes the chromosome until it finds the 
numerical values of the solution. 

By applying Eq (12), a final average value is obtained between the 
standard deviations of the product functionalities of [Min]ΔT = 2,56 
min, which has been minimised by the GA. 

In Table 6, columns of complementary product functionalities 
twf ′

wf illustrate the time debts of these product functionalities, repre
senting the origin of the imbalances in the assembly line, which can be 
easily analyzed. It also allows us to foresee the imbalances generated by 
future modifications, thereby facilitating their planning and avoiding 
costly changes in the location of the tools. 

Contrary to the previous methodologies analyzed in the literature 
review, a schematic modelling is obtained that shows how the balancing 
has been carried out and also shows the opportunities for improvement. 
Additionally, it is applicable even with spreadsheets. 

In this way, a methodology is proposed that can be generalized due 
to its simplicity of analysis and its low implementation costs. 

4.3. Discussion of the AT achieved and other advantages of applying the 
new matrix methodology 

4.3.1. Enhanced Algorithm Transparency for analyzing future 
modifications in the ALB problem 

Future modifications can be generated at the of assembly tasks level, 
such as modifications of the manufacturing tools, operation times or 
implementing new assembly tasks. The analysis of the effects of these 
future modifications is an immediate calculation, so process engineers 
can evaluate and understand these effects when balancing the designed 
assembly line simultaneously for the whole product portfolio. 

Considering the example of Section 4.1, a modification of product 

functionality 7 involving an additional assembly task with operation 
time of t21 = 5 s (new row in Table 3 and new column in Table 4) with 
no predecence restrictions can be implemented. The possible alterna
tives can then be quantified in Table 7: 

Table 7 allows an immediate decision: task t21 is included in w =

1 since it has the lowest standard deviation value and is therefore the 
most balanced alternative for all the product references. These alter
natives must be compared with column twf ′

w7 of Table 6. This optimi
zation is valid for any combination of product functionalities for all 
product references. 

4.3.2. Enhanced AT for intuitive diagnosis of systemic imbalances 
The modelling offers a visual interface that details the inherent im

balances due to product definition and assembly tasks, thus immediately 
showing how to correct them. Process engineers can detect the inherent 
imbalances in Table 6 in the colums for time debts by product func
tionality at each of the Workstations. The improvements carried out by 
the process engineer to minimize each of these debts can then lead to the 
perfect balance of the assembly line for the product portfolio as a whole. 

For example, considering Table 6, column twf’w4, it can be observed 
that the standard deviation is 0. Therefore, this product funcionality 
does not need to be modified from a manufacturing perspective because 
it does not bring an imbalance to the assembly line for all product ref
erences: the allocation of assembly task 9 in workstation 1 (operation 
time, t9 = 10 min) and assembly tasks 10 in workstation 3 (t10 = 5 min) 
is suitable for the whole product portfolio. 

On the other hand, considering column twf’w8, there is a large 
standard deviation (6.24 min). This product funcionality needs to be 
modified from a manufacturing perpective because it is probably 
impossible to find a more suitable balance with the current assembly 
tasks. Thanks to AT, the process engineer can detect this situation and 
study the solutions, such as improving tools to minimize operation times 
or dividing the assembly tasks 17 and 18 if possible, reassigning the new 
assembly tasks from the functional modelling of Table 6 with the criteria 
for reducing the standard deviations of the product functionalities. Any 
of these solutions will minimize imbalances in the assembly line. 

Fig. 6. Comparative computational graph with the standard genetic algorithm  
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4.3.3. Enhanced Algorithmic Transparency for the immediate balancing of 
new product references 

Once an optimal solution is achieved for the assembly line, the same 
balance is shared by any added product reference that meets the con
ditions of coincident and complementary vectors of the model. 

For instance, a new product reference is presented in Table 8 and 
added to the paradigmatic industry-inspired example, despite not being 
in the initial portfolio. It must to be assembled in the designed assembly 
line (m = 5). 

The new product reference does not modify the results presented in 
Table 6 through the proposed new matrix methodology. Hence, the 
methodology is also valid for this new product reference. Adding new 
product references does not force a rebalancing of the system. This 
lowers the industrialization costs and minimizes the delivery times of 
the new references to the customer. Note that this is a common situation 
in real cases for SMEs, where new product references can be required 
due to marketing issues (or product references may be cancelled) and it 
is not possible to redesign the planned assembly line. 

Table 9 shows the results of applying the modelling obtained in 
Table 6 to product references 1, 2, 3, 4 and to the new product reference 
5 that has been added to the assembly line. It can be seen that, thanks to 
balancing by product functionality through the proposed new matrix 
methodology, the new product reference is automatically balanced since 
it meets the conditions of the coincident and the complementary vectors 
method. 

However, if the GA is used alone, the inclusion of a new product 
reference means reapplying the GA, possibly obtaining a second solution 
unrelated to the first. For this reason, this second solution obtained may 
not be feasible to implement, due to the involved cost of modifing the 
workstations positions for the new assembly line configuration. 

4.3.4. Automated and fast resolution 
The resolution of systems of different sizes using the new matrix 

methodology compared to simply using the GA by itself is carried out 
with the aim of evaluating the computational cost. Results are presented 
in Fig. 6, solving 12 examples derived from the initial example but with 
higher M and F dimensions. These are obtained with the same personal 
computer used beforehand. Table 10 shows the dimensions of evaluated 
examples: 

Although the number of GA iterations required to find the solution is 
similar in both cases, the time per iteration of the proposed new matrix 
methodology is generally much lower and it is proportional to the 
number of product functionalities F of the model. On the other hand, the 
cycle time of the GA method by itself is proportional to the number of 
product references M in the system. 

It must be taken into account that the number of product references 
M is a consequence of the combination of the product functionalities 
present in the model, therefore the theoretical maximum number of 
product references M is larger than the number of product functional
ities F. This usually implies a very different magnitude of time per 
iteration between both methodologies. 

As shown in Fig. 6, the execution times were shorter for the new 
matrix methodology, with wide differences, which makes it advisable to 
apply a logarithmic scale to display the results correctly. Both methods 
show a similar tendency to fall into local minimums. In all cases, a very 
close result to the optimal outcome was reached, which in the example 
on the graph was a fitness value [Min]ΔT= 0,45 min. 

Table 11 compares three methods for confronting the assembly line 
balancing problem in the SMEs: 1) traditional human balance, 2) 
reference modelling plus the GA stand alone, 3) proposed new matrix 
methodology alongside the GA. 

The table summarizes the contributions, demonstrated by the 
example of Section 4 and the discussion of Section 4.3, obtained with the 
new matrix methodology proposed in this paper. 
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5. Conclusions 

To increase the use of genetic algorithm for assembly line balancing 
among SMEs, this article proposes a new matrix methodology for 
improving the AT when balancing assembly lines that can be classified 
as MMALB type-2 problems, in contrast to the AT obtained using a stand- 
alone GA. The current AT achieved with the use of stand-alone GA could 
be a crucial barrier for SMEs process engineers and little of the scientific 

literature reviewed has focussed on improving AT. 
As a consequence of applying the new matrix methodology together 

with the usage of a GA, the AT of the results is enhanced for process 
engineers as follows: opportunities for the improvement of the assembly 
line designed are clearly displayed; it offers an intuitive diagnosis of 
systemic imbalances as a consequence of placing assembly tasks in 
certain workstations; there is no need to adjust the designed assembly 
lines when adding new product references, since they are immediately 
balanced if the new product references meet the conditions of coincident 
and complementary vectors. 

This enhanced AT is demonstrated in an industry-based example, in 
order to show clearly how the GA could be widely implemented as a 
simple tool for balancing assembly lines for SMEs. 

Another advantage is that the proposed methodology using the GA is 
even applicable through spreadsheets, which are widely used among 
SMEs. Moreover, a reduction in computational cost is also demon
strated, which becomes more important as the number of product ref
erences increases, thus making the methodology not only suitable for 
many SMEs but also even for larger companies. 

As a main future research, it is proposed to carry out an accurate 
analysis in terms of the obtained assembly line balancing between 
workstations, the achieved Algorithm Transparency of the results and 
measurable improvements implemented in a real case. With the results 
obtained, another future study would involve applying the entire pro
posed approach to other types of ALB problems, such as parallel, two- 
sided and U-line set-ups. 

Table 6 
Functional modelling after the model’s resolution   

Product functionalities, f 
Common + Front Doors 1,5 Family Chassis + Rear Doors 2,6 Van Chassis 3 Pick up Chassis 4 Air cond. 7 Clima 8 

w twf’w1 Min* twf’w2 twfw2 twf’w3 twfw3 twf’w4 twfw4 twf’w7 twf’w8 

1 45 10 10 20 5 15 0 10 0 0 
2 30 0 10 10 0 0 0 0 10 15 
3 35 5 15 20 2 7 0 5 10 10 
STD Dev. 6,24  2,36  2,05  0,00  4,71 6,24  

Table 7 
Alternative effects of adding a new assembly task to product functionality 7   

Air cond. 7 Air cond. 7 (t21 in w = 1) Air cond. 7 (t21 in w = 2) Air cond. 7 (t21 in w = 3) 
w twf’w7 twf’w7 twf’w7 twf’w7 

1 0 5 0 0 
2 10 10 15 10 
3 10 10 10 15 
STD Dev. 4,71 2,35 6,23 6,23  

Table 8 
Occurrence of product functionalities for the new product reference added to the assembly line   

Product functionalities, f 
m Common 1 Family Chassis 2 Van Chassis 3 Pick up Chassis 4 Front Doors 5 Rear Doors 6 Air cond. 7 Clima 8 
5 1 0 1 0 1 1 0 1  

Table 11 
Comparison of the balancing methods found in the SMEs       

Methodology 
Support Advantage Feature Productivity 

MOD 
Productivity 
MOI 

Flexibility Traditional human 
balance 

Reference 
modelling + GA. 

New Matrix 
+ GA 

GA Automated and fast resolution - + + ☒ ☑ ☑ 
AT Enhanced transparency for analysing future 

modifications 
- + + ☒ ☒ ☑  

Enhanced transparency for intuitive 
diagnosis of systemic imbalances. 

+ + + ☒ ☒ ☑ 

Matrix 
modelling 

New default balanced product references * + + + ☒ ☒ ☑ 

* The new references must be compatible with the previously defined matrix A. 

Table 9 
Workstation times (min) per product reference after adding a new one  

w = 1 2 3 
Reference 1 55 50 60 
Reference 2 50 40 47 
Reference 3 45 30 35 
Reference 4 55 55 60 
Reference 5 50 45 47  

Table 10 
M and F dimensions of evaluated examples  

Example 1 2 3 5 6 7 9 11 12 
M 20 200 1200 20 200 1200 20 200 1200 
F 9 9 9 18 18 18 36 36 36  
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Additionally, the initial matrix methodology can also be applied 
along with other algorithms such as ACO, hybrid bees or simulated 
annealing to analyse whether the AT and performance improvement are 
similar to GA. 
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manuscript critically for important intellectual content J.I. Anel, B. 
Domenech. 

7.3. Category 3 

Approval of the version of the manuscript to be published (the names 
of all authors must be listed): 

J.I. Anel, P. Català, M. Serra, B. Domenech. 

Declaration of Competing Interests 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

The authors would like to thank the reviewers for their valuable 
comments and time in reviewing previous versions of the article. 

All persons who have made substantial contributions to the work 
reported in the manuscript (e.g., technical help, writing and editing 
assistance, general support), but who do not meet the criteria for 
authorship, are named in the Acknowledgements and have given us their 
written permission to be named. If we have not included an Acknowl
edgements, then that indicates that we have not received substantial 
contributions from non-authors. 

References 

[1] Abdeljaouad MA, Klement N. Tabu Search Algorithm for Single and Multi-model 
Line Balancing Problems. In: IFIP Advances in Information and Communication 

Technology, 630 IFIP; 2021. p. 409–15. https://doi.org/10.1007/978-3-030- 
85874-2_43. 
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