
 

 

Title: Combinatorial and analytic techniques for lattice path 
enumeration 
 
Author: Vila Albacete, Mercè 
 
Advisor: Rué Perna, Juanjo 
 
Department: Department of Mathematics 
 
Academic year: 2021-2022 

Degree in Mathematics  



Universitat Politècnica de Catalunya
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Abstract

This bachelor’s degree thesis studies two type of combinatorial objects. The first ones are exact

models of which we can get exact counting formulas, whereas the second type of models are the

ones of which we don’t have enumerative exact results. The first part of the work focuses on the

exact models and two methods useful to find counting formulas are described: the Symbolic method

and the Kernel method. In the second part of this thesis, an specific type of non exact model

is addressed: self-avoiding walks. Although there are no exact counting formulas, we are going

to study its asymptotic behaviour and we will proof a theorem which states that the connective

constant of self-avoiding walks in the hexagonal lattice H equals
√

2 +
√
2.
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Introduction

Enumerative combinatorics is an area of combinatorics concerned about counting the number of

certain combinatorial objects. It is one of the most basic and important aspects of combinatorics,

since in many branches of mathematics and its applications it is necessary to know the number of

different ways of doing something and many of the problems that appear in applications can be

simply described in a combinatorial way.

Given an infinite collection of finite sets Sn indexed by the natural numbers, enumerative combi-

natorics tries to determine the number of elements of all the sets Sn, describing a method which

gives a counting function that for every n gives the number of elements of Sn. The simplest such

functions are closed formulas, expressed as a composition of elementary functions such as factorial,

powers, and so on. There are many techinques used to find this counting formulas: decomposition,

refinement, recursion, bijections methods, . . . . In this thesis we are going to learn two methods to

find counting formulas for combinatorial objects: the Symbolic method and the Kernel method. We

are going to develop them in the first part of this work and we are going to show some specific

examples to see how they work.

However, often there is no closed formula or there appear complicated formulas in such a way

that we have no idea of the behaviour of this counting formula as the number of counted objects

grows. In these cases we are happy obtaining asymptotic estimates for such numbers. We will

address it in the second part of the thesis, where we are going to study the asymptotic behaviour

of self-avoiding walks, concluding the work with the first mathematical proof that the exponential

growth (also known as connective constant) in the hexagonal lattice is equal to
√
2 +

√
2. It

is an important result first conjectured by B. Nienhuis in 1982, who saw it using Coulomb gas

approach from theoretical physics. This proof was published in the distinguished journal Annals

of Mathematics, by Hugo Duminil-Copin and Stanislav Smirnov. Such a result contributed in the

merits of Smirnov to achieve the Fields Medal in 2010.

3



Part I

Exact models
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In combinatorics there are lots of combinatorial families from which we can get exact enumerative

results. In this first part of the thesis, we are going to focus on these families, and we will see a

very useful method to find their terms: the Kernel method. In particular, we are going to focus on

the study of lattice paths.

Definition (Definition I). Let S = {(a1, b1), . . . , (ar, br)} be a finite set of vectors of Z× Z, whose
elements are called steps. A lattice path or walk relative to S is a sequence v = (v1, . . . , vn) such

that each vj is in S. The geometric realization of a lattice path v = (v1, . . . , vn) is the sequence of

points (p0, p1, . . . , pn) such that p0 = (0, 0) and −−−−→pj−1pj = vj.

The quantity n is called the size of the path.

We will identify a lattice path with the polygonal line with p0, . . . , pn as vertices. We will also

impose some restrictions to them. We are going to work with directed paths, which means that if

(a, b) ∈ S, then a > 0. Therefore, the path will live in the half plane Z≥0 × Z.
There is an extensive bibliography to study these models, but in this work we are going to focus in

[1], which talks about directed lattice paths with a = 1.

This part consists of 3 chapters. The first one is as an introduction, talking about Catalan numbers

and introducing an useful method to find generating functions for some combinatorial objects: the

Symbolic method. As an example of how it works, Catalan and Motzkin numbers are found by

using this method. However, this method does not allow us to find all the generating functions.

In Chapter 2, an example is presented and to solve it a new method is introduced: the Kernel

method. But before, some algebraic concepts have to be reviewed or defined. Finally, in Chapter

3, the Kernel method as well as the Symbolic method are used to find the generating functions of

all the possible lattice paths.



Chapter 1

Introduction. Symbolic method

1.1 Catalan numbers

Catalan numbers is a well known sequence of numbers of which we have a formula for every term

of it: it is an example of an exact model. Catalan numbers are named after the French-Belgian

mathematician Eugène Charles Catalan and a lot of enumeration problems are counted by these

numbers (see [10] for many examples of combinatorial objects counted by Catalan numbers). In

this section we are going to define this sequence, which is a particular type of lattice path, and we

are going to find the expression of its terms with two different methods.

Definition 1.1.1. A Dyck path of length 2n is a random walk on Z2 which starts at (0, 0) and

ends at (2n, 0), with only two possible steps: (1, 1) or (1,−1), and never dipping below the height

it began on, i.e. never crossing the x-axis. See Figure 1.1 for an example.

Catalan numbers is the sequence (cn)n≥0, where cn is the number of Dick paths of length 2n.

Note that the length of a Dyck path must be even, because as it has to start and end at the same

height, for every step upwards another step downwards is needed to reach the x-axis.

Figure 1.1: Example of a Dyck path of length 8.
.
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1.1. CATALAN NUMBERS 7

Proposition 1.1.1. For all n ≥ 0

cn =
1

n+ 1

(
2n

n

)
. (1.1.1)

It is easy to find the exact formula for the coefficients cn by simple arguments of recurrences.

However, we are going to use the reflection principle to prove Proposition 1.1.1.

Proof. We start counting all the walks from (0, 0) to (2n, 0) with steps ↗:= (1, 1) and ↘:= (1,−1),

without any restriction about crossing the x-axis. As the walks have to start and end at the same

height, there must be n steps ↗ and n steps ↘. All the possibilities to choose how these steps are

distributed is the number of walks without restrictions we are searching for and it is
(
2n
n

)
.

Among all these walks, there are the walks that do not cross the x-axis. To know the number of

this set of walks (cn) we need to subtract the number of walks from (0, 0) to (2n, 0) with steps

(1, 1) and (1,−1) and crossing the x-axis, i.e. with at least one point with the second coordinate

negative. If we denote this last set of paths by S, we will have

cn =

(
2n

n

)
−#{S}

It only remains to find the size of S. Now, we are going to apply the reflection principle, which is

based on the following idea: we take one walk ω ∈ S. Note that there will always be a step from

(i, 0) to (j,−1) for some 0 ≤ i < j ≤ 2n− 1. Let us define m = min{j such as ω(j) = (j,−1)}. We

keep the walk ω until m as it is originally and we reflect the rest of the walk with respect the line

y = −1; see Figure 1.2. The resulting walk will end at (2n,−2). Thus, we have shown that there

exists a bijection between S and R, where R = {walks from (0, 0) to (2n,−2) with steps (1, 1) and

(1,−1)}.

Figure 1.2: In black the original Dyck path ω ∈ S, in blue the first
step from y = 0 to y = −1 and in orange the reflection of the path
with respect the line y = −1.
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To compute the size of R it suffices to notice that walks on R must have n− 1 steps ↗ and n+ 1

↘ steps. Then, choosing where to place the n− 1 steps ↗, we obtain

#R = #S =

(
2n

n− 1

)
.

Therefore,

cn =

(
2n

n

)
−
(

2n

n− 1

)
=

(2n)!

n!n!
− (2n)!

(n+ 1)!(n− 1)!
=

(2n)!

n!(n+ 1)!

(
1

n
− 1

n+ 1

)
=

(2n)!

n!(n+ 1)!

1

n(n+ 1)
=

1

n+ 1

(2n)!

n!n!
=

1

n+ 1

(
2n

n

)
,

as we wanted to see.

1.2 Symbolic method

We have found the coefficients of the Catalan numbers’ sequence by the reflection principle. In

this section we are going to introduce the Symbolic method, a technique used in combinatorics to

count some combinatorial objects, developed in [5] by Flajolet and Sedgewick. It is based on the

translation of some internal structures of the object into formulas for their generating functions.

As an example of application, we will use this method to find Catalan and the so-called Motzkin

numbers.

First of all, let us remember some concepts and definitions:

Definition 1.2.1. A combinatorial class, or simply a class is a countable set of mathematical

objects on which there is defined a size function which satisfies:

i. the size of any element is a non-negative integer

ii. the number of elements of any size is finite

If A is a class and α an element in A, we denote by |α| its size.

Definition 1.2.2. The counting sequence of a combinatorial class A is the sequence of integers

(an)n≥0 where an = card(An) is the number of objects of class A that have size n.

Definition 1.2.3. The ordinary generating function (OGF) or simply the generating function

(GF) of a sequence (an)n≥0 is the formal power series

A(z) =
∑
n≥0

anz
n.

Therefore, the ordinary generating function of a class A is the OGF of its counting sequence. But
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it can also be written as

A(z) =
∑
α∈A

z|α|.

From this last form, we can see that generating functions are a simple representation of a class,

without considering internal structures and where elements contributing to size are represented

with the variable z.

1.2.1 Basic constructions

Let us now define the principal constructions or operations that are used to describe combinatorial

classes and we will see how these operations can be translated in terms of OGF.

First of all, we need to define the neutral class E , which consists of a single object of size 0. Any

object of size 0 is called a neutral object and it denoted by E or 1. Secondly, we also define an atomic

class Z made by a single element of size 1. Any object of size one is called an atom. Examples of

atoms could be a generic node in a tree or a graph (represented by a circle) or a generic letter in a

word (a,b,c,...), among others.

The generating function of a neutral class E is E(z) = 1 and the corresponding one to an atomic

class Z is Z(z) = z.

Now, let us defined the 3 principal operations or constructions used in combinatorial classes:

1. COMBINATORIAL SUM/DISJOINT UNION

This operation reflects the idea of a disjoint union but without the need of having the disjoint-

ness restriction. To achieve that, we use ‘markers’ such as □ and ♢ in order to differentiate

both classes and we define the disjoint union B + C of B and C as:

A = B + C := (□× B) ∪ (♢× C),

with size inherited from its size in its class of origin.

2. CARTESIAN PRODUCT

The cartesian product construction applied to two classes B and C is the set of ordered pairs:

A = B × C := {α = (β, γ) |β ∈ B, γ ∈ C},

with the size of a pair α = (β, γ) defined by:

|α|A = |β|B + |γ|C .
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3. SEQUENCE CONSTRUCTION

The sequence of a class B is defined as the infinite sum:

A = Seq(B) := ϵ+ B + (B × B) + (B × B × B) + . . .

or, alternatively:

A := {α = (β1, ..., βk) |βi ∈ B, k ≥ 0}.

From the definitions of sizes in sums and products, we deduce that for any α ∈ A:

|α|A = |β1|B + ...+ |βl|B.

We admit restrictions on the number of component in a sequence. Therefore, we will use the

notation

Seq(B)=k (or simply Seq(B)k) Seq(B)≥k Seq(B)1...k

to denote sequences with exactly k numbers of components, larger or equal than k, or in the

interval 1 . . . k, respectively.

Finally, we are going to introduce an other construction that will we useful in later moments.

It is named pointing.

4. POINTING

We know that combinatorial structures are formed of atoms (letters, nodes, etc), which de-

termine their sizes. Pointing means pointing at a distinguished atom and if A is the pointing

class of B, we will denote A = B◦
.

We are going now to see how this operation is translated on terms of the generating functions.

By definition of pointing, we have an = n · bn, because for every element of size n there are n

possible atoms to mark and there are bn elements of size n. Then,

A(z) = B
◦
(z) =

∑
n≥0

anz
n =

∑
n≥0

n · bnzn = z
∑
n≥1

n · bnzn−1 = z
d

dz
B(z).

In Table 1.1, you can see a summary of these constructions and which are the formulas for the

OGF of the resulting classes, which can be proved easily (see [5]).

Let us see some basic examples of how to use this method:

Example 1.2.1. Let A = {•}, with |•|A = 1 (• is an atom). Then B = Seq(A) = {∅, •, ••, •••, . . .}
and the corresponding OGF is B(z) = 1

1−z = 1 + z + z2 + z3 + . . ., because A(z) = z.
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OPERATION NOTATION SEMANTICS OGF

Disjoint union/
Combinatorial sum

A = B + C disjoint copies of objects from
B and C A(z) = B(z) + C(z)

Cartesian product A = B × C
ordered pairs of copies of ob-
jects, one from B and the
other from C

A(z) = B(z)C(z)

Sequence A = Seq(B) sequence of objects from B A(z) = 1
1−B(z)

Pointing A = B◦ pointing a distinguished atom
from B A(z) = z d

dzB(z)

Table 1.1: Constructions or operations with their translation into generating functions.

Example 1.2.2. Let A = {0, 1}, with |0|A = |1|A = 1. Then B = Seq(A) = {∅, 0, 1, 00, 01, 10, 11, 000, . . .}
and the corresponding OGF is B(z) = 1

1−2z =
∑

n≥0 2
nzn, because A(z) = 2z.

Example 1.2.3. We want to count the number of possible words with the alphabet {0, 1} without

two consecutive 1. We denote A(z) its generating function.

To use the symbolic method we need to imagine the words that we want to count as constructions

as the ones in Table 1.1. A type of word as the one in this example can be seen as it follows:

Seq≥0(0) 1 Seq≥1(0) 1 Seq≥1 · · · 1 Seq≥1(0) ∅/1. (1.2.1)

Note that the sequences of 0, except the first one, must have at least one element. If not, then two

consecutive 1 would be in the word. Compacting (1.2.1) and translating it into more operations, we

get

Seq≥0(0)× Seq≥0

(
{1} × Seq≥1(0)

)
× {∅, 1}.

Translating these operations in terms of the generating function (using Table 1.1):

A(z) =
1

1− z
· 1

1− z2

1−z

· (1 + z) =
1 + z

1− z − z2
.

1.2.2 Catalan numbers with the symbolic method

Our objective is to find the coefficients of the sequence of Catalan numbers, that we already know

that they are (1.1.1), by using the symbolic method that has been exposed. Therefore, we want

to find an expression for the generating function of Catalan numbers C(z) =
∑∞

n=0 cnz
n, which

encodes the expression for the coefficients cn.
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We denote D the combinatorial class of Dyck paths. We will find the expression of the generating

function of Dyck paths, D(z) =
∑

n≥0 dnz
n and we will use it to find C(z) or cn, because d2n = cn.

Hence, as there only exists Dyck path of even length we have

D(z) =
∑
n≥0

dnz
n =

∑
n≥0

d2nz
2n =

∑
k≥0

ckz
k = C(z).

First of all note that any not empty Dyck path must start with a step ↗= (1, 1) and end with one

step ↘= (1,−1). We pay attention to the first time that the path reaches the x-axis, and we define

the walk until this point as an arch. Then, we can also define A = {arches}, where A =↗ ×D× ↘;

see Figure 1.3. It is also easy to see that D = Seq≥0(A); see Figure 1.4.

Figure 1.3: In this picture you can see that an arch is the
combination of an up step, a dick path and a down step, i.e.
A =↗ ×D× ↘.

Figure 1.4: This picture visually shows that Dick paths can be seen
as a sequence of arches, i.e. D = Seq≥0(A).

Now, we have to translate these operations into operations for the generating functions, D(z) for

the Dyck paths and A(z) for arches. In order to do it, we will use Table 1.1. Thus,

D = Seq≥0(A) =⇒ D(z) =
1

1−A(z)
,

A =↗ ×D× ↘=⇒ A(z) = z2D(z).
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For D(z) we obtain the equation D(z) = 1
1−z2D(z)

⇐⇒ D(z) = 1 + z2D(z)2.

Now, remember that D(z) =
∑

n≥0 d2nz
2n. Then if we define x = z2, we have the new equation for

D(x): D(x) = 1 + xD(x)2.

D(x) =
1

1− xD(x)
⇐⇒ xD(x)2 −D(x) + 1 = 0 ⇐⇒ D(x) =

1±
√
1− 4x

2x
. (1.2.2)

We need now to choose the correct sign of D(x) from (1.2.2). We know that d0 = 1 (the empty

path), so D(0) = 1. Evaluating D(0), we get a division by zero with both the two signs. Let us

now study the limit limx→0+ D(x). With the positive sign choice:

lim
x→0+

D(x) = lim
x→0+

1 +
√
1− 4x

2x
= ∞.

Whereas, if we choose the negative choice, applying the Hôpital’s rule, we obtain the desired value:

lim
x→0+

D(x) = lim
x→0+

1−
√
1− 4x

2x

(Hôpital)
= lim

x→0+

4

4
√
1− 4x

= lim
x→0+

1√
1− 4x

= 1.

Hence, the choice is clear: D(x) = 1−
√
1−4x
2x . By Newton’s generalized binomial Theorem

D(x) =
1

2x
(1−

√
1− 4x) =

1

2x

1−
∞∑
n=0

(
1/2

n

)
(−4x)n

⇔ xD(x) = −1

2

∞∑
n=1

(
1/2

n

)
(−4x)n,

where 1
2 cancels with the first term of the summation.

If we set equal coefficients:

[xn]D(x) = −1

2

(
1/2

n+ 1

)
(−4)n+1 = −1

2

1
2

(
1
2 − 1

)
· · ·
(
1
2 − n

)
(n+ 1)!

(−4)n+1

=
�
��−1

4

(
1
2 − 1

)
· · ·
(
1
2 − n

)
(n+ 1)!

(−4)n���(−4)

=
1 · 3 · 5 · · · (2n− 1)

(n+ 1)!
2n, distributing (−2)n among the n factors

=
1 · 3 · 5 · · · (2n− 1)

(n+ 1)!

2 · 4 · 6 · · · 2n
1 · 2 · 3 · · ·n

, substituting 2n for
2

1
,
4

2
,
6

3
, . . .

=
(2n)!

(n+ 1)! n!
=

1

n+ 1

(
2n

n

)
.

Hence, cn(x) = dn(x) =
1

n+1

(
2n
n

)
, as we expected.
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1.2.3 Another example: Motzkin numbers

To conclude this section about the symbolic method, we are going to see another example of how

to use it. We are going to find the Motzkin numbers, that are closely related with Catalan numbers

and they are also associated to many counting problems.

Definition 1.2.4. A Motzkin path of size n is a lattice path in Z2 from (0, 0) to (n, 0) with steps

u := (1, 1), d := (1,−1) and h := (1, 0) and which never crosses the x-axis.

We denote by Mn the set of all Motzkin paths of length n and M0 denote the empty path.

Motzkin numbers Mn count the number of Motzkin paths of size n, i.e Mn = card(Mn).

Note that denoting by u, d and h the up, down and horizontal steps respectively, a Motzkin path of

size n can be encode as a word of length n with the alphabet {u, d, h} in such a way that, counting

from the left, the u count is always greater or equal to the d count (to ensure that the path never

passes below the x-axis) and such that the total count of u and d is equal (because the path has to

start and end on the x-axis).

The first numbers of the Motzkin numbers’ sequence are 1, 1, 2, 4, 9, 21, 52, 127, . . .. In Figure 1.5

the first cases are depicted with its representation in words with the alphabet {u, d, h}.

Figure 1.5: M0 = 1, the empty path M1 = 1 represented at the top
left side, M2 = 2 represented at top right side of the picture and
M3 = 4 represented at the bottom of the picture.

The exact formula for Motzkin numbers Mn is

Mn =

⌊n/2⌋∑
k=0

(
n

2k

)
Ck, (1.2.3)

where Ck are Catalan numbers.

For n even, n = 2r, the paths in Mn that contain only up and down steps but no horizontal steps

are precisely the Dyck paths of size r, which are counted by the Catalan numbers.
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Let us define M(z) =
∑

n≥0Mnz
n as the generating function of Motzkin paths. With the Symbolic

method we are going to find its expression. From it, doing some long and complex calculus we

could get its coefficients (1.2.3).

First of all, notice that the set of all Motzkin paths M can be divided into the empty path ϵ, the

set Mh that denotes the paths which start with an horizontal step h and the set Mu which is the

set of walks that start with an up step u. That is

M = {ϵ} ⊔Mh ⊔Mu.

If we want to write it all in function of M it would be

M = {ϵ} ⊔ hM⊔ uMdM.

Now, by the symbolic method (Table 1.1) we can translate all this constructions into operations

for the generating function M(z) and we get

M(z) = 1 + zM(z) + z2M(z)2 ⇐⇒ z2M(z)2 + (z − 1)M(z) + 1 = 0 (1.2.4)

Isolating M(z) from (1.2.4):

M(z) =
(1− z)±

√
(z − 1)2 − 4z2

2z2
=

(1− z)±
√
−3z2 − 2z + 1

2z2
.

Now we need to choose the right sign. Again, we are going to use the fact that we know M0 =

M(0) = 1. If we evaluate M(z) on z = 0, we get a division by 0 in both cases (with the positive

and the negative sign). Therefore, we are also going to study the limit limz→0+ M(z).

With the positive sign choice:

lim
z→0+

M(z) = lim
z→0+

(1− z) +
√
−3z2 − 2z + 1

2z2
= ∞.

The positive sign does not give the correct value for z = 0. Let us see what happens with the

negative sign. For the negative sign choice, using the Hôpital’s rule:

lim
z→0+

M(z) = lim
z→0+

(1− z) +
√
−3z2 − 2z + 1

2z2
(Hôpital)

= lim
z→0+

−1− −6z−2
2
√
−3z2−2z+1

4z

= lim
z→0+

−2
√
−3z2 − 2z + 1 + 6z + 2

8z
√
−3z2 − 2z + 1

(Hôpital)
= lim

z→0+

6z+2√
−3z2−2z+1

+ 6

8
√
−3z2 − 2z + 1 + 4z(−6z−2)√

−3z2−2z+1

= lim
z→0+

6z + 2 + 6
√
−3z2 − 2z + 1

−48z2 − 24z + 8
=

2 + 6

8
= 1.
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So, the correct sign for M(z) is the negative one because we have obtained the desired value of the

limit. Thus,

M(z) =
(1− z) +

√
−3z2 − 2z + 1

2z2
.



Chapter 2

Algebraic techniques for generating

functions

Since now we have seen two examples of combinatorial objects, Dyck and Motzkin paths. Via the

Symbolic method we have obtained equations for their generating functions and we have been able

to solve them. But we are going to see that it is not always that easy to solve the equations for the

generating functions and we will have to introduce another method: the Kernel method.

2.1 Motivation

We have seen two types of paths starting at (0, 0) and ending at (n, 0) which never cross the x-axis:

• Dyck paths, where n = 2k and where there are only two allowed steps: (1, 1) and (1,−1).

• Motzkin paths, where the allowed steps are (1, 1), (1,−1) and also (1, 0).

Let us now define a new set of paths.

Definition 2.1.1. A family of paths is called simple if each allowed step in S (Definition I) is of

the form (1, b) with b ∈ Z. Then we abbreviate S as S = {b1, . . . , br}.

With simple paths the size n of the path coincides with its length, its span along the horizontal

direction.

Definition 2.1.2. We are going to consider the set G consisting of all the simple walks from (0, 0)

to (n, 0) that never cross the x-axis with the set of possible steps S = {b1, b2, . . . , br}.

We want to find its generating function G(z) =
∑

n≥0 gnz
n, where gn counts the number of these

paths of length n. In order to do it we are going to use bivariate generating functions.

17
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2.1.1 Bivariate generating functions

Many times, not only will be interested in the size of elements of a combinatorial class but also in

auxiliary parameters. Multivariate generating functions allows us to encode different parameters

defined over a combinatorial object all in one structure.

In this section, we are going to define a particular case of multivariate generating functions: bivariate

generating functions, which will be so helpful in later moments to find G(z).

Definition 2.1.3. The bivariate generating function (BGFs) of a sequence of numbers (fn,k) is

the formal power series in two variables defined as

F (z, u) =
∑
n,k

fn,kz
nuk.

Usually, in our context, (fn,k) will denote the number of elements ω in some class F , such that

|ω| = n and some parameter X(ω) is equal to k.

Remark. Observe that with u = 1, we get the univariate generating function.

We can refer to the horitzontal and vertical generating functions definend by:

Definition 2.1.4. Horizontal GF: fn(u) :=
∑

k fn,ku
k (number of elements of F of size n).

Vertical GF: f ⟨k⟩(z) :=
∑

n fn,kz
n (number of elements ω ∈ F with X(ω) equal to k).

We have,

F (z, u) =
∑
k

f ⟨k⟩(z) uk =
∑
n

fn(u) z
n.

The concept of bivariate generating functions can be also extended with more variables and we

obtain multivariate generating functions, but we will not address them in this document (see [5] to

know more about multivariate generating functions).

2.1.2 Equation for the bivariate generating function

To find the generating function G(z) we define another set of paths.

Definition 2.1.5. We denote by F the set of all simple paths starting at (0, 0) without crossing

the x-axis and with possible steps S = {b1, b2, . . . , br}.

We are also going to use the bivariate generating function F (z, u) ≡ F (u) of F with z counting the

length (number of steps) of the path and u the height of the endpoint. We are going to call u as a

catalytic variable because we are not interested in the information that this variable encodes, but

it is going to help us to find our generating function G(z). Note that G(z) = F (0) ≡ F (z, 0).
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By construction or by a recurrence relation, we can find an equation for this bivariate generating

function F (u).

In instance, if the possible steps are S = {+1,−1}, in this case F (0) is the generating function of

Dyck paths, and this is going to be the resulting equation for F (u):

F (u) = 1 + zuF (u) +
z

u
(F (u)− F (0)) = 1 + zuF (u) +

z

u
(F (u)− F0), (2.1.1)

where on the right-hand side 1 counts the empty path, the second term counts the walks ending

with a +1 step and the third term counts the walks ending with a −1 step. Note that in this last

case, we need to discount the walks that in the penultimate step are at height y = 0, because if not

with the final step −1 they would cross the x-axis. F0 is a priori an unknown function and it is

F0(z) = F (0) =
∑

n≥0 fn,0z
n (in this case it is known because it is the generating function of Dyck

paths). Equation (2.1.1) can be rewritten as a polynomial equation P (F (u), F0, z, u) = 0, where

P (x0, x1, z, v) = (v − z(1 + v2))x0 − v + zx1.

Let us now study an other problem with more unknown functions. We are considering the set of

paths F with possible steps S = {−2,+3}. Here, the equation for F (u) is the following one:

F (u) = 1 + zu3F (u) +
z

u2
(F (u)− F0 − uF1). (2.1.2)

In this case, in the last term of the equation we need to discount the paths that in the penultimate

step are at height y = 0 or y = 1. F0 and F1 are unknown functions, where Fk = Fk(z) = f ⟨k⟩(z),

from Definition 2.1.4.

Equation (2.1.2) can also be written as a polynomial equation P (F (u), F0, F1, z, u) = 0 with

P (x0, x1, x2, z, v) = (v2 − z(1 + v5))x0 − v2 + zx1 + zvx2.

At this point, we have obtained equations (2.1.1) and (2.1.2) for F (u) but now we need to know

if they can be solved and how to do it. If we consider paths of F with a general set of steps

S = {s1, s2, . . . , sr}, we will obtain equations for F (u) similar to the ones of these examples and

they will also can we written as an equation of the form

P (F (u), F0, F1, . . . , Fk−1, z, u) = 0, (2.1.3)

where P (x0, x1, ..., xk, t, v) is a non-trivial polynomial in k+3 variables, with coefficients in K = C.
To answer the question of the existence of solution of these equations of the form (2.1.3), we need

to resort to some algebraic results and next we are going to describe a method to solve this type

of equations: the Kernel method.
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2.2 Algebraic preliminaries

In this section we are going to see that the equations of the form (2.1.3) have indeed solution in a

particular space. To see it we are going to expose the main concepts to understand it but we are

not going to enter into any details because the aim of this work is not an algebraic study. For more

information on the topic we are going to develop in this section you can find it in [5] and [10] .

We are going to work with the field K = C, but the results that we are going to see in this section

can be extended to other fields K.

2.2.1 Algebraic generating functions

In this section we are going to talk about algebraic functions, which are a natural generalization of

rational functions. Algebraic functions also have a natural generalization and they are the D-finite

functions. Thus we have the hierarchy

D-finite

|

algebraic

|

rational

Definition 2.2.1. A formal power series η ∈ C[[x]] is said to be algebraic if there exist polynomials

P0(x), . . . , Pd(x) ∈ C[x], not all 0, such that

P0(x) + P1(x)η + . . .+ Pd(x)η
d = 0. (2.2.1)

The smallest positive integer d for which (2.2.1) holds it is called the degree of η.

The set of all the algebraic power series over C is denoted Calg[[x]].

Remark. Note that an algebraic series η has degree one if and only if η is rational.

We are not going to address D-finite power series in this work, so we just define them and if wanted,

you can search for more information about them in Stanley’s book [10].

Definition 2.2.2. Let u ∈ C[[x]]. We say that u is a D-finite (short for differentiably finite) power

series if there exist polynomials P0(x), . . . , Pd(x) ∈ C[x], with Pd(x) ̸= 0, such that

Pd(x)u
(d) + Pd−1(x)u

(d−1) + · · ·+ P1(x)u
′ + P0(x)u = 0,

where u(j) = dju/dxj.
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Let us now focus on algebraic series, which are the power series we are interested in. When

dealing with them, it is convenient to work over fields rather than over the rings C[x] and C[[x]].
For this reason we are going to consider their quotient fields. The quotient field of C[x] is just

C(x) =
{

P (x)
Q(x) |Q(x) ̸= 0, P (x), Q(x) ∈ C[x]

}
while the quotient field of C[[x]] is given by C((x)) =

C[[x]][1/x]. The elements of C((x)) can be regarded as Laurent series. If η ∈ C((x)) then η =∑
n≥n0

anx
n for some n0 ∈ Z (depending on η) and it is easy to see that such Laurent series indeed

form a field.

Definition 2.2.3. Let D be an integral domain containing the field C(x). Then, η ∈ D is algebraic

over C(x) if there exist elements F0(x), . . . , Fd(x) ∈ C(x), not all 0, such that

F0(x) + F1(x)η + . . .+ Fd(x)η
d = 0. (2.2.2)

The smallest positive integer d for which (2.2.2) holds is the degree of η over the field C(x) and we

denote it by degC(x)(η).

The degree d = degC(x)(η) is also the dimension of the field C(x, η) as a vector space over C(x).
Equivalently, η is algebraic over C(x) if only if the C(x)-vector space spanned by {1, η, η2, . . .} is

finite-dimensional and with dimension degC(x)(η). In addition, the set of η ∈ D that are algebraic

over C(x) form a subring of D containing C(x).

We denote P (y) = F0(x)+F1(x)y+. . . Fd(x)y
d ∈ C(x)[y] (P (y) is a polynomial in the indeterminate

variable y with coefficients in C(x)). Suppose that (2.2.2) holds. Then,

d = degC(x)(η) ⇐⇒ P (y) is irreducible.

If we divide (2.2.2) by Fd(x) so that P (y) is monic and d = degC(x)(η), then the equation (2.2.2) is

unique (otherwise we could subtract two such equations and obtain one of smaller degree).

We can also multiply the equation (2.2.2) by a common denominator of the Fi’s so we can assume

that the Fi’s are polynomials, i.e. Fi ∈ C[x]. By Definition 2.2.1 we see that η ∈ C[[x]] is algebraic
if and only if it is algebraic over C(x). The same is true for η ∈ C((x)) and the set of all algebraic

Laurent series over C(x) is denoted Calg((x)). Therefore we have seen

Calg[[x]] = Calg((x)) ∩ C[[x]].

For most enummerative and combinatorial purposes which involve algebraic series it suffices to

work with Laurent series, that is to work with C((x)). However, there exist elements η in some

extension field of C(x) that are algebraic over C(x) but cannot be represented as elements of C((x)).
A simple example could be the elements µ defined by µN = x for N ≥ 2. This suggest to introduce
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an other type of formal series.

Definition 2.2.4. A fractional (Laurent) series or Puiseux series with coefficients in C is the

formal series

η =
∑
n≥n0

anx
n/N ,

where N is a positive integer and an ∈ C for each n.

If n0 = 0 then we have a fractional power series.

We denote by Cfra((x)) the ring of all Puiseux series over C and by Cfra[[x]] the set of fractional

power series over C.

Cfra((x)) = C((x))[x1/2, x1/3, x1/4, . . .], or what is the same, every η ∈ Cfra((x)) can be written as a

polynomial in x1/2, x1/3, . . . (and hence involving only a finite number of them) with coefficients in

C((x)). Conversely, every polynomial of this form is a fractional series. For example,
∑

N≥1 x
1/N

is not a Puiseux series.

It is easy to verify that Cfra[[x]] is a ring and that Cfra((x)) is the quotient field of Cfra[[x]].

The next theorem, known as Puiseuix’s theorem is an important result what we are not going to

prove it because it is a complex proof. (see [8] for the details of the proof).

Theorem 2.2.1 (Puiseux’s Theorem). The field Cfra((x)) is algebraically closed and it is the alge-

braic closure of the field of Laurent series over C, C((x)).

This theorem will allow us to work in Cfra((x) without problems when studying Puiseux’s series,

in the same way as we work in C instead of R when we study roots of polynomials.

2.2.2 Algebraic elimination

For linear algebra we are capable of solving a given lineal system of equations. Moreover, given a

polynomial system

{Pj(z, y1, y2, . . . , ym) = 0}, j = 1, . . .m, (2.2.3)

with resultants we are also capable of extracting a single equation satisfied by one of the indeter-

minates yj .

Definition 2.2.5. Consider a field K. A polynomial of degree d in K[x] has at most d roots in K

and exactly d in the algebraic closure K of K. Given two polynomials, P (x) =
∑n

i=0 aix
n−i and

Q(x) =
∑m

j=0 bjx
m−j, their resultant (with respect to the x variable) is the determinant of order

(n+m),
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R(P,Q, x) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · 0 0
0 a0 a1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an−1 an
b0 b1 b2 · · · 0 0
0 b0 b1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · bm−1 bm,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.2.4)

also called the Sylvester determinant.

By definition, the resultant is a polynomial form in the coefficients of P and Q. Let us now see the

next proposition that gathers the main properties of the resultants.

Proposition 2.2.1. Let K be a field.

i) If P (x), Q(x) ∈ K[x] have a common root in K, then R(P (x), Q(x), x) = 0.

ii) Conversely, if R(P (x), Q(x), x) = 0, then either a0 = b0 = 0 or else P (x), Q(x) have a

common root in K.

Therefore, the condition R(P,Q, x) = 0 will capture all the situations in which P and Q have a

common root, but it may also include situations where there is a reduction in degree, although the

polynomial have no common roots.

Now, to eliminate all but one indeterminate variables yj from the system (2.2.3), we take resultants

with Pm and we eliminate all occurrences of the variable function ym from the first m−1 equations,

achieving a new system with m − 1 equations in m − 1 unknown functions (y1, y2, . . . , ym−1).

Repeating the process we can eliminate ym−1, . . . , y2 and obtain the polynomial Q(y1, z) that we

wanted.

2.2.3 Singularities of algebraic functions

Let P (z, y) be an irreducible polynomial of C[z, y],

P (z, y) = p0(z)y
d + p1(z)y

d−1 + · · ·+ pd(z).

The solutions of the polynomial equation P (z, y) = 0 define a set of points (z, y) in C×C known as

a complex algebraic curve. If d is the y-degree of P , for each z there are at most d possible values

of y. In fact, there are always d different values for y unless:

• z0 is such that p0(z0) = 0 and there is a reduction in the degree in y. The points that

disappear can be seen as “points to infinity”.
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• z0 is such that P (z0, y) has a multiple root. In this case, some values of y coalesce.

Let us define a new set that will be useful to locate these exceptions, providing the set of possible

candidates for the singularities of an algebraic function.

Definition 2.2.6. We define the exceptional set of P as the set

Ξ[P ] := {z|R(z) = 0}, where R(z) := R(P (z, y), ∂yP (z, y), y).

R(z) is called the discriminant of P (z, y) and R is the resultant of Definition 2.2.5.

- If z /∈ Ξ[P ] we can assure that there exist d different solutions to P (z, y) = 0. This is because

from Proposition 2.2.1,

R(z) = 0 ⇐⇒


p0(z) = dp0(z) = 0

or

P (z, y) and ∂yP (z, y) have common roots.

As R(z) ̸= 0, neither p0(z) = dp0(z) = 0 nor P (z, y) and ∂yP (z, y) having common roots can

happen. This guarantees that there is no reduction in degree and that P (z, y) has no multiple

roots.

Knowing it, by the Implicit Function Theorem, for each solution yj we have a locally analytic

function yj(z). A branch of the algebraic curve P (z, y) = 0 is the choice of such a yj(z)

together with a simply connected region of the complex plane where this particular yj(z) is

analytic.

- If z ∈ Ξ[P ] then we may have singularities. If we are in a point z0 such that p0(z0) = 0,

some of the branches escape to infinity, stopping being analytic, whereas if we are at a point

z0 such that R(z) = 0 but p0(z0) ̸= 0, then two or more branches collide. These collision

point can be either multiple points, if two or more branches reach the same value but each

one exists as an analytic function around z0, or branch points, if some of the branches cease

to be analytic. See Figure 2.1 to see an example of multiple and branch points.

The following lemma allow us to extend an analytic function at the origin in a analytical way. We

are only going to announce it; see [5] for the proof.

Lemma 2.2.1 (Location of algebraic singularities). Let y(z) be a function analytic at the origin

such that satisfies a polynomial equation P (z, y) = 0. Then, y(z) can be analytically continued along

any simple path emanating from the origin that does not cross any point of the exceptional set Ξ[P ].
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Figure 2.1: Real section of the lemniscate of Bernoulli defined by
P (z, y) = (z2 + y2)2 − (z2 − y2) = 0. At the origin there is a multiple
point (a double point) where two analytic branches collapse,
whereas at z = ±1 there are two branch points.

Another important result is the following, that gives us the certainty that an algebraic function

have a Puiseux expansion near a singularity.

Theorem 2.2.2 (Newton-Puiseux expansions at a singularity). Let f(z) be a branch of an algebraic

function P (z, f(z)) = 0. In a circular neighbourhood of a singularity ξ, f(z) admits a fractional

series expansion (Puiseux expansion) that is locally convergent of the form

f(z) =
∑
k≥k0

ck(z − ξ)k/N ,

for a fixed determination of (z−ξ)1/N , where k0 ∈ Z and N in an integer ≥ 1, called the branching

type.

The next step is how to find this Puiseux expansion mentioned in Theorem 2.2.2. There exists a

method to do it and it is the Newton’s polygon method.

NEWTON’S POLYGON METHOD

By Lemma 2.2.1, to determine a Puiseux expansion near a point (z0, y0) we can do it near (0, 0).

If we have P (z, y) = 0 with a singularity at (z0, y0), via a translation of the variables z, y we can

write an other polynomial equation Q(Z, Y ) = 0, where now (0, 0) is the singularity. If the new

polynomial Q(Z, Y ) is

Q(Z, Y ) =
∑
j∈J

cjZ
ajY bj

we define the Newton diagram as the set formed by the finite set of point (aj , bj) in N× N.
We search for asymptotic solutions for Y of the form Y ∼ cZα, with c ̸= 0, such that satisfy

asymptotically Q(Z, Y ) = 0, it means that the main asymptotic order of Q(Z, Y ) must be 0. This

can only happen if two or more exponents of the polynomial coincide and the coefficients of their
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Figure 2.2: The real algebraic curve defined by the equation
P (z, y) = (y − z2)(y2 − z)(y2 − z3)− z3y3 near (0, 0) (left) and the
corresponding Newton diagram (right).

monomials cancel, which is an algebraic constraint on the constant c.

Therefore, the only solutions of the form Y ∼ cZα correspond to the values of α that are inverse

slopes (i.e. ∆x/∆y) of lines connecting two or more points of the Newton diagram (this expresses

the cancellation condition between two monomials of Q) and such that all other points of the

diagram are on the line or to the right of it (this assures that the other monomials are of smaller

order). For each viable α, a polynomial equation constrains the possible values of the corresponding

coefficient c. The complete expansion for Y is obtained by repeating the process, by way of the

substitution Y 7→ Y − cZα.

Example 2.2.1. Let us consider the curve P = 0 where

P (z, y) = (y − z2)(y2 − z)(y2 − z3)− z3y3 (2.2.5)

= y5 − y3z − y4z2 + y2z3 − 2z3y3 + z4y + z4y2 − z6.

In Figure 2.2 we can see an illustration of the curve near the origin as well as its Newton diagram.

From it, we find the possible exponents y ∼ czα at the origin:

α = 2, α =
1

2
, α =

3

2
,

which are the inverse slopes of the segments composing the envelope of the Newton diagram. To

determine the constant c, we have an equation for each value of α.

For α = 2,

P (z, cz2) = c5z10 − c3z7 − c4z10 + c2z7 − 2c3z9 + cz6 + c2z7 − z6.

We want cz6 − z6 = 0 =⇒ c = 1 =⇒ y ∼ z2 .
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For α = 1
2 ,

P (z, cz1/2) = c5z5/2 − c3z5/2 − c4z4 + c2z4 − 2c3z9/2 + cz9/2 + c2z6 − z6.

We need c5z5/2 − c3z5/2 = 0 =⇒ c3(c2 − 1) = 0
c ̸=0
=⇒ c = ±1 =⇒ y ∼ ±

√
z .

Finally, for α = 3
2 ,

P (z, cz3/2) = c5z15/2 − c3z11/2 − c4z8 + c2z6 − 2c3z15/2 + cz11/2 + c2z8 − z6.

In this case, we want −c3z11/2 + cz11/2 = 0 =⇒ c(1− c2) = 0
c ̸=0
=⇒ c = ±1 =⇒ y ∼ ±z3/2 .

We have obtained, as the factored part (2.2.5) suggests, that the curve locally at (0, 0) is the union

of two orthogonal parabolas (y = z2 and y = ±
√
z) and of a curve y = ±z3/2 having a cusp. The

full expansion of y can be recovered bu deflating the function from its first terms and repeating the

Newton diagram construction as we have just done.

2.3 The method

In this section, we are finally going to describe the Kernel method, developed in [1].

Definition 2.3.1. Let S = {b1, . . . , br} be a simple set of steps. the characteristic polynomial of

S is defined as the Laurent polynomial

C(u) :=

r∑
j=1

ubr .

We denote by c = −minj bj and d = maxj bj the two extreme vertical amplitudes of any step. We

assume c, d > 0. The characteristic curve of the lattice path determined by S is the plane algebraic

curve defined by the equation

1− zC(u) = 0, or equivalently uc − z(ucC(u)) = 0. (2.3.1)

The quantity N(z, u) := uc − zucC(u) is called kernel and the equation (2.3.1) is called kernel

equation.

The kernel equation is satisfied if and only if

1 = zC(u) = z
(
u−c + . . .+ ud

)
.
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The asymptotic study of the equation near z = 0, tells us that it can only be satisfied if

zu−c ∼ 1 or zud ∼ 1.

From these conditions we obtain c small branches that we will denote as u1, . . . , uc and d large

branches v1 ≡ uc+1, . . . , vd ≡ uc+d. They will be asymptotically the cth and the dth roots of z and

1/z, respectively.

Let us remember that we had an equation for the generating function F (z, u) of the form (2.1.3) and

we had two examples, (2.1.1) and (2.1.2). They can all be rewritten as the fundamental functional

equation

F (z, u) = 1 + zC(u)F (z, u)− z{u<0}(C(u)F (z, u)), (2.3.2)

where C(u) is the characteristic polynomial of the set of possible steps S (Definition 2.3.1) and

{u<l}Q(u) means the sum of all the monomials of Q that have exponent less than l. For instance,

in (2.1.1) we had S = {−1,+1}, so C(u) = u−1 + u. We verify that (2.1.1) is equal to (2.3.2):

F (z, u) = 1 + zC(u)F (z, u)− z{u<0}(C(u)F (z, u))

= 1 + zuF (z, u) +
z

u
F (z, u)− z{u<0}((u−1 + u)F (z, u)).

Now,

(u−1 + u)F (z, u) =
∑
n,k≥0

fn,kz
nuk+1 +

∑
n,k≥0

fn,kz
nuk−1.

Then we only have a term with negative exponent in u (when k = 0 in the second summation) and

we have that

F (z, u) = 1 + zuF (z, u) +
z

u
F (z, u)− zF0(z)u

−1 = 1 + zuF (z, u) +
z

u
(F (z, u)− F0(z)),

with F0(z) =
∑

n≥0 fn,0z
n. we have obtained exactly the same equation that we got in (2.1.1). We

could verify exactly the same with (2.1.2) and any other example. Therefore, it is proved that all

the equations for the generating functions F (z, u) that encode the information of the path class F
are fundamental equations (2.3.2).

Rewriting (2.3.2) we obtain

F (z, u)(1− zC(u)) = 1− z

c−1∑
k=0

rk(u)Fk(z), (2.3.3)
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with F (z, u) =
∑

k≥0 Fk(z)u
k (Fk = f ⟨k⟩(z) in Definition 2.1.4) and rk(u) the Laurent polynomials

rk(u) := {u<0}(C(u)uk) ≡
−k−1∑
j=−c

uj+k.

Looking into the fundamental equation in its form (2.3.3) is easy to see that it involves (c + 1)

unknown functions: the bivariate F (z, u) and the univariate {Fk(z)}c−1
k=0. Multiplying it all by uc

we obtain

F (z, u)(uc − zucC(u)) = uc − z

c−1∑
k=0

ucrk(u)Fk(z),

appearing the kernel term in the left-hand side. The Kernel method consists in imposing the kernel

equation. From it, we have seen that we obtain c small branches and we can restrict z to a small

neighbourhood on the origin in such a way that all the small branches are distinct and satisfy∣∣uj(z)∣∣ < 1. In this way we obtain a system of c equations in the unknown functions F0, . . . , Fc−1

uc1 − z
c−1∑
k=0

uc1rk(u1)Fk(z) = 0

...

ucc − z
c−1∑
k=0

uccrk(uc)Fk(z) = 0.

(2.3.4)

The system (2.3.4) has a solution because it have a non-zero determinant. To see it, working a

little bit with the expression of the determinant we arrive to the Vandermonde determinant, which

we know that has determinant
∏

1≤i<j≤c

(ui−uj), different of zero because the branches ui are chosen

all distinct.

Let us see how we can transform the determinant of the system into a Vandermonde determinant:∣∣∣∣∣∣∣∣∣∣∣∣

zuc1r0(u1) zu1r1(u1) · · · zuc1rc−1(u1)

zuc2r0(u2) zu2r1(u2) · · · zuc2rc−1(u2)
...

... · · ·
...

zuccr0(uc) zucr1(uc) · · · zuccrc−1(uc)

∣∣∣∣∣∣∣∣∣∣∣∣
= zc

∣∣∣∣∣∣∣∣∣∣∣∣

uc1r0(u1) uc1r1(u1) · · · uc1rc−1(u1)

uc2r0(u2) uc2r1(u2) · · · u2crc−1(u2)
...

... · · ·
...

uccr0(uc) uccr1(uc) · · · uccrc−1(uc)

∣∣∣∣∣∣∣∣∣∣∣∣
But now,

ucirk(ui) =

c−k−1∑
j=0

uj+k
i .

If we add to a column a linear combination of the other columns, the determinant of the matrix

does not change. Let us denote by Cm the mth column of the matrix.
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Doing the change C1 = C1 + (−1)C2 the coefficient of the first column and the ith line is going to

be:

ucir0(ui)− ucir1(ui) =

c−1∑
j=0

uji −
c−2∑
j=0

uj+1
i =

c−1∑
j=0

uji −
c−1∑
j=1

uji = u0i = 1.

The operation C2 = C2 + (−1)C3 leads to the following value for the coefficient of the second

column and the ith line:

ucir1(ui)− ucir2(ui) =

c−2∑
j=0

uj+1
i −

c−3∑
j=0

uj+2
i =

c−2∑
j=0

uj+1
i −

c−2∑
j=1

uj+1
i = ui.

In general, we can do the change of columns Cm = Cm + (−1)Cm+1 for 1 ≤ m ≤ c − 1 and the

coefficient in the mth column and ith line will be um−1
i . Note that the coefficients of the last

column, by definition of the rc−1 polynomial will be also uc−1
i . Therefore, the determinant of the

system (2.3.4) is equal to

zc

∣∣∣∣∣∣∣∣∣∣∣∣

1 u1 · · · uc−1
1

1 u2 · · · u2c−1
...

... · · ·
...

1 uc · · · uc−1
c

∣∣∣∣∣∣∣∣∣∣∣∣
,

which is exactly the determinant of a Vandermonde matrix.

Hence, the system (2.3.4) can be solved and we obtain an algebraic expression for the functions

Fk in terms of the ui’s, which we can rewrite to the form P0(Fk, u1, . . . , uc, z) = 0. Then, for each

function Fk, with k = 0, . . . c− 1, a following system needs to be solved:

P0(Fk, u1, . . . , uc, z) = 0

P1(Fk, u1, . . . , uc, z) = 0
...

Pc(Fk, u1, . . . , uc, z) = 0,

(2.3.5)

where for 1 ≤ i ≤ c, Pi(Fk, u1, . . . , uc, z) = uc − z(ucC(ui)), the Kernel equation.

It is a system with c + 1 equations and c + 1 unknown functions (Fk, u1, . . . , uc), which can be

solved with the algebraic elimination explained before and obtain a single polynomial equation

Q(Fk, z) = 0, where ui for Theorem 2.2.2 can be written as a Puiseux expansion found by the

Newton’s polygon method. Therefore, we can obtain an expression in terms of z for every function

Fk, with k = 0, . . . , c − 1. Finally, from (2.3.3) we obtain the solution of F (z, u) that we were

searching for.
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Instead of following the direction of determinantal calculations, we can make use of an observation

of Bousquet-Mélou: the quantity

N(z, u) := uc1 − z

c−1∑
k=0

uc1rk(u1)Fk(z). (2.3.6)

is by (2.3.4) a polynomial in u whose roots are all the ui. Hence, the polynomial can be written as

the factorization

N(z, u) =
c∏

i=1

(
u− ui(z)

)
. (2.3.7)

From (2.3.3), we know F (z, u)(1 − zC(u)) = u−cN(z, u). Now, the result for the BFG F (z, u) is

obtained using the factorization (2.3.7):

F (z, u) =
N(z, u)

uc
(
1− zC(u)

) =

∏c
i=1

(
u− ui(z)

)
uc
(
1− zC(u)

) . (2.3.8)

Remember that we were looking for the generating function G(z) of the set of walks G from

Definition 2.1.2. We know that G(z) = F (z, 0) = F0, where F (z, u) is the bivariating function of

the set F defined at Definition 2.1.5. Note that if we evaluate u = 0 in (2.3.8) the denominator

cancels. But we have another method to find G(z). We just need to match the constant terms

from (2.3.6) and (2.3.7). The constant term from the factorization is (−1)cu1 · · ·uc whereas the

constant term from (2.3.6) is −zF0. Then,

G(z) = F0 =
(−1)c−1

z

c∏
i=1

ui(z). (2.3.9)

Remember that ui are Puiseux series but surprisingly when we multiply them in formulas (2.3.8)

and (2.3.9) we simply obtain a power series, since when the exponents of the ui for each 1 ≤ i ≤ c

are multiplied they become natural numbers.

To conclude this part, let us see an specific example from [1], to see how the Kernel method works.

Lattice paths with steps S= {−2,−1,0,+1,+2}

The characteristic polynomial of this set of paths is C(u) = u−2+u−1+1+u+u2 and in this case

the Kernel equation is u2 − z(1 + u + u2 + u3 + u4). We have obtained the following formula for

the generating function G(z) of G, the class of the walks finishing at the horizontal axis and never

crossing it:

G(z) =
(−1)c−1

z

c∏
i=1

ui(z).
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In this example, c = 2 so we have two small branches which are conjugated and are given by:

u1(z) = +z1/2 +
1

2
z +

5

8
z3/2 + z2 +

231

128
z5/2 + 3z6 + · · · ,

u2(z) = −z1/2 +
1

2
z − 5

8
z3/2 + z2 − 231

128
z5/2 + 3z6 + · · · .

The first terms of G(z) are the following ones:

G(z) = −u1(z)u2(z)

z
= 1 + z + 3z2 + 9z3 + 32z4 + 120z5 + 473z6 + 1925z7 + · · · .

We have used the formula and we have not solved the system (2.3.4) from the Kernel method, that

in this case is u21 − z
(
u21r0(u1)F0(z) + u21r1(u1)F1(z)

)
= 0

u22 − z
(
u22r0(u2)F0(z) + u22r1(u2)F1(z)

)
= 0,

with r0(ui) =
∑1

j=0 u
j
i and r1(ui) = uj+1

i , for i = 1, 2.

But solving it, we would have obtained an algebraic expression for F0 and F1 in terms of u1 and u2

(P0(Fk, u1, u2, z) = 0). For instance, for F0 = G(z) the algebraic expression is P0 = zG+ u1u2, the

same that we have obtained via the formula. Moreover, we can also obtain the equation satisfied

directly for G(z), solving a system like (2.3.5) with the kernel equations for u1 and u2:
zG+ u1u2 = 0

u21 − z(1 + u1 + u21 + u31 + u41) = 0

u22 − z(1 + u2 + u22 + u32 + u42) = 0,

(2.3.10)

Solving it, it is found that G(z) satisfies a polynomial equation of degree 4:

z4y4 − z2(1 + z)y3 + z(2 + z)y2 − (1 + z)y + 1 = 0.



Chapter 3

Lattice paths: walks, bridges,

meanders and excursions

In the first chapter we have seen Dyck and Motzkin paths, of which we have been able to find

their generating functions by the Symbolic method, whereas in Chapter 2 we have developed a

new method that allows us to find lots of more generating functions, even for complicated paths.

In this chapter we are going to make use of both Symbolic and Kernel methods to determine the

generating function of four type of paths or walks in the quadrangular lattice Z2.

Definition 3.0.1. A bridge is a path whose end-point Pn lies on the x-axis. A meander is a path

that lies in the quarter plane Z≥0×Z≥0. An excursion is a path that is at the same time a meander

and a bridge, it means that it finishes on the x-axis and has no point with negative y-coordinate.

The fourth type of path is the one that has no restrictions. In Table 3.1 you can find the four types

of lattice paths with their corresponding generating functions. In this chapter we want to proof the

expression of the generating function of these 4 types of lattice paths.

Let us start for meanders and excursions, where we are going to use the Kernel method just seen

in the previous chapter.

Theorem 3.0.1. For a simple set of steps S, the generating functions of all meanders is given in

terms of the small branches of the characteristic curve of S and it is

M(z) =
1

1− zC(1)

c∏
i=1

(
1− ui(z)

)
,

where C(u) is the characteristic polynomial of the set S and ui are the small branches.

33
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ENDING ANYWHERE ENDING AT 0

UNCONSTRAINED
(ON Z)

walk/path (W)
W (z) = 1

1−zC(1)

bridge (B)

B(z) = z
c∑

i=1

u
′
i(z)

ui(z)

CONSTRAINED
(ON Z≥0)

meander(M)

M(z) = 1
1−zC(1)

c∏
i=1

(1− ui(z))

excursion (E)

E(z) = (−1)c−1

z

c∏
i=1

ui(z)

Table 3.1: The four types of lattice paths and their generating functions.

In particular, the GF of excursions, E(z), satisfies

E(z) =
(−1)c−1

z

c∏
i=1

ui(z).

Proof. In the previous chapter we found the expression (2.3.8) for the BGF F (z, u) for the set F
(Definition 2.1.5). We just need to note that F is in fact exactly the set of all possible meanders.

We also know that to recover the univariate generating function we only need to evaluate F (z, u)

at u = 1. It is

M(z) ≡ F (z, 1)
(2.3.8)
=

1

1− zC(1)
.

c∏
i=1

(
1− ui(z)

)
.

For the generating function of excursions E(z) we have also done all the work before, since E ≡ G
(from Definition 2.1.2). Therefore,

E(z) = G(z)
(2.3.9)
=

(−1)c−1

z

c∏
i=1

ui(z).

The generating functions for walks or paths can be easily obtained using the Symbolic method,

explained in Chapter 2.
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Theorem 3.0.2. The generating function of all the simple walks with a set of possible steps S is

W (z) =
1

1− zC(1)
,

with C(u) the characteristic polynomial of S.

Proof. Let be W the set of all walks with simple steps S = {b1, . . . , br}. W can be seen as a

sequence of S, i.e. W = Seq(S). Therefore, by Table 1.1 of the Symbolic method, the generating

function of W is

W (z) =
1

1− S(z)
,

where S(z) is the GF of the set of possible steps S. Each element of the combinatorial class S has

size 1, therefore S(z) = rz. It can be also expressed in terms of the characteristic polynomial C(u),

since C(1) = r. Hence, we obtain

W (z) =
1

1− zC(1)
.

Finally, let us find the generating function for all the simple bridges B. We are going to see that it

is related to the generating function of excursions.

Theorem 3.0.3. The generating function of all the possible simple bridges B with the set of possible

steps S is

B(z) = z
c∑

i=1

u
′
i(z)

ui(z)
,

with ui the small branches of the characteristic curve of S.

Proof. We first define a particular type of excursions: arches.

Definition 3.0.2. An arch is an excursion of size > 0 whose only contact with the horizontal axis

is its end-point. We denote by A the set of arches and A(z) its generating function.

We have that E = Seq(A). Therefore, by the Symbolic method (Table 1.1),

E(z) =
1

1−A(z)
⇐⇒ A(z) = 1− 1

E(z)
. (3.0.1)

Now we want to relate bridges and arches. Consider any bridge and name m (with m ≤ 0) the

minimal altitude of any vertex. Any not empty walk β decomposes uniquely into a walk ω1 of size

≥ 1 that goes from height 0 to m reaching level m only at its endpoint, followed by an excursion ϵ

from level m to m and followed by a path ω2 of size ≥ 1 from level m to 0 touching only the height
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Figure 3.1: A bridge is decomposed into a walk ω1, followed by an
excursion ϵ and followed by another walk ω2.

Figure 3.2: Walks ω2 and ω1 from the previous decomposition can
be concatenated to form an arch with a marked point (in red),
which is the union point of both walks.

m at its beginning; see Figure 3.1. Paths ω2 and ω1 can be concatenated to form an arch α with

a marked point, the union point of both walks; see Figure 3.2. Therefore, from a bridge β we have

obtained an excursion ϵ with an arch α with a marked point. Conversely, given an excursion ϵ̄ and

an arch ᾱ with a distinguished point we can obtain a unique bridge β̄. It means that there is a

bijection between the set of non-empty bridges and the product of the set of excursions by the set

of arches with a distinguished point, that is A◦
(the pointing class of arches, defined in Chapter 1).

By the Symbolic method (see Table 1.1) the set of marked arches has generating function z d
dzA(z).

Hence, by the bijection

B(z)− 1 = E(z) ·
(
z
d

dz
A(z)

)
.

Applying (3.0.1) into the previous expression, we get

B(z) = 1 + E(z) · z d

dz

(
1− 1

E(z)

)
= 1 + E(z) · z E

′(z)

E(z)2
= 1 + z

E′(z)

E(z)
.

Now we have a relation between the generating functions of bridges and excursions and by Theorem
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3.0.1 we have an expression for E(z):

E(z) =
(−1)c−1

z

c∏
i=1

ui(z). (3.0.2)

Using the rule of derivation of a product

E′(z) = (−1)c−1

− 1

z2

c∏
i=1

ui(z) +
1

z

c∑
i=1

u′i(z)

c∏
k=1
k ̸=i

uk(z)


 (3.0.3)

Therefore, it is easy now to obtain the expression for B(z).

B(z) = 1 + z
E′(z)

E(z)

(3.0.2),
(3.0.3)
= 1 +

(−1)c−1

(−1)c−1

−z2

z2

∏c
i=1 ui(z)∏c
i=1 ui(z)

+
z2

z

c∑
i=1

u′i(z)

∏c
k=1
k ̸=i

uk(z)∏c
k=0 uk(z)︸ ︷︷ ︸
= 1

ui(z)




= 1 +

−1 + z
c∑

i=1

u′i(z)

ui(z)

 = z
c∑

i=1

u′i(z)

ui(z)
.

We have obtained the generating function from the 4 types of lattice paths, which are gathered

together into Table 3.1. With this information we can know the generating function of any path in

the quadrangular lattice Z2. To conclude this part, we are going to see an example to clarify how

to apply these results. We are going to use the example in page 31 and we are going to complete

it to find the generating functions for the 4 types of lattice paths seen in this chapter.

Lattice paths with steps S= {−2,−1,0,+1,+2}.
We are now going to use the formulas in Table 3.1 to find the generating functions of walks, bridges,

meanders and excursions with simple steps S.
Let us start with walks. We know

W (z) =
1

1− zC(1)
.

As we have seen in this same example in page 31, the characteristic polynomial is C(u) = u−2 +

u−1 + 1 + u+ u2. Therefore, just evaluating C(u) at u = 1 we have the GF for walks.

C(1) = 5 =⇒ W (z) =
1

1− 5z
.
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For excursions E , we have obtained the following formula:

E(z) =
(−1)c−1

z

c∏
i=1

ui(z),

which, as we know, is the same generating function of the combinatorial class G (from Definition

2.1.2) and we have calculated its generating function before in page 31 of Chapter 2. Therefore,

we know that the two small branches are:

u1(z) = +z1/2 +
1

2
z +

5

8
z3/2 + z2 +

231

128
z5/2 + 3z6 + · · · ,

u2(z) = −z1/2 +
1

2
z − 5

8
z3/2 + z2 − 231

128
z5/2 + 3z6 + · · · .

And the first terms of E(z) are the following ones:

E(z) = −u1(z)u2(z)

z
= 1 + z + 3z2 + 9z3 + 32z4 + 120z5 + 473z6 + 1925z7 + · · · .

For meanders, with the formula M(z) = 1
1−zC(1)

c∏
i=1

(1− ui(z)), we obtain

M(z) =
(1− u1(z))(1− u2(z))

1− 5z
= 1 + 3z + 12z2 + 51z3 + 226z4 + 1025z5 + · · · .

It only remains the generating function formula for bridges B, B(z) = z
c∑

i=1

u
′
i(z)

ui(z)
.

u′1(z) =
1

2
z−1/2 +

1

2
+

15

16
z1/2 + 2z +

1155

256
z3/2 + 18z5 + · · · ,

u′2(z) = −1

2
z−1/2 +

1

2
− 15

16
z1/2 + 2z − 1155

256
z3/2 + 18z5 + · · · .

Via the formula we can compute the first terms of B(z):

B(z) = z

(
u′1(z)

u1(z)
+

u′2(z)

u2(z)

)
= 1 + z + 5z2 + 19z3 + 85z4 + 381z5 + 1751z6 + · · · .
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Non exact models
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During the first part of this thesis we have studied exact models, i.e. combinatorial objects from

whom we can extract exact counting formulas and know their entire generating function. However,

we do not have so much information for all the combinatorial classes and we can not find exact

enumerative results for them. We call these models non exact models. To find an example it suffices

to pay attention to another type of walks in the quadrangular lattice Z2 that we have not addressed

in Part I: they are the self-avoiding walks. In this second part, we are going to focus on these walks

and even though we are not going to be able to find exact counting formulas we will try to present

some asymptotic results.

In Chapter 4 we are going to compare the asymptotic behaviour of self-avoiding walks in the d-

dimensional lattice Zd with the ones of other related objects such as bridges and polygons, which

are particular types of self-avoiding walks. However, we are not going to get any asymptotic exact

result for them. Lastly, in Chapter 5 we are going to consider self-avoiding walks in the hexagonal

lattice H. Due to some interesting properties of this lattice we are going to be able to find an exact

result for the asymptotic behaviour of these type of walks and we are going to proof an important

theorem published in the journal Annals of Mathematics, which states that the connective constant

on the hexagonal lattice equals
√

2 +
√
2.



Chapter 4

Self-avoiding walks (SAWs)

Self-avoiding walks (also called SAWs) are difficult to study and many of the important problems

remain unsolved. They are a discrete model of which we are not able to obtain exact formulas of

it. We are going to focus on one of the natural questions about self-avoiding walks developed in [2]

that concern the asymptotic behaviour as the length of the path tend to infinity.

4.1 Fekete’s subadditive lemma

Our objective in this section is to prove Fekete’s Lemma, which gives us a result about the con-

vergence of a sequence that presents subadditivity, and an analogue result for sub-multiplicative

sequences. This last result, that is mentioned in a corollary, will be so useful with self-avoiding

walks. We are going to follow the proofs from [9].

First of all, we define the subadditive and sub-multiplicative sequences:

Definition 4.1.1. A sequence {an}n≥1 is called subadditive if it satisfies the inequality

an+m ≤ an + am ∀n,m ≥ 1.

A sequence {an}n≥1 is called sub-multiplicative if it satisfies the inequality

an+m ≤ anam ∀n,m ≥ 1.

Note that the positivity of the sequence, i.e. an > 0 ∀n ≥ 1, is a necessary condition for a sub-

multiplicative sequence.

To prove Fekete’s Lemma (Lemma 4.1.2) we first need an auxiliary lemma:

41
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Lemma 4.1.1. Let {an}n≥1 be a subadditive sequence. Then for any arbitrary fixed natural number

n, akn ≤ kan ∀k ≥ 1.

Proof. Fix a natural number n ≥ 1. We will prove it by induction on k. We first see some base

cases:

• k = 1: an ≤ 1 · an

• k = 2: a2n ≤ an + an = 2an, where the first inequality is due to the subadditivity of the

sequence.

We assume the claimed statement to be true for a particular value of k, i.e. akn ≤ kan. It remains

to see if the inequality is satisfied with k + 1:

a(k+1)n = akn+n ≤ akn + an ≤ kan + an = (k + 1)n,

where in the first inequality we have used the fact that {an} is a subadditive sequence and in the

second one we have applied the induction hypotesis.

Now, we can announce and prove Fekete’s Lemma:

Lemma 4.1.2 (Fekete’s lemma). Let {an}n≥1 be a subadditive sequence. Then, the limit lim
n→∞

an
n

exists and is equal to the infimum inf
n≥1

an
n
.

Proof. To prove this lemma we will use Lemma 4.1.1. We choose arbitrary n,m ≥ 1 such that

n > m. By Euclid’s Division Lemma, we can write n = km + r, with 0 ≤ r ≤ m − 1. Using the

property of subbaditivity of the sequence, it is clear that

an
n

=
akm+r

km+ r
≤ akm + ar

km+ r
=

akm
km+ r

+
ar

km+ r︸ ︷︷ ︸
=n

≤ akm
km

+
ar
n

≤ �kam

�km
+

ar
n
,

where the last inequality is a consequence of Lemma 4.1.1. So, we have

an
n

≤ am
m

+
ar
n
. (4.1.1)

Now, we fix m and define M := max{as | 0 ≤ s ≤ m− 1}. Therefore ar ≤ M ∀n ≥ 1. If we apply

this result to (4.1.1), we obtain
an
n

=
am
m

+
M

n
.
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Taking limits,

lim sup
n→∞

an
n

≤ lim sup
n→∞

(
am
m

+
M

n

)
m fixed
=⇒ lim sup

n→∞

an
n

≤ am
m

+ lim sup
n→∞

M

n
=

am
m

.

As the previous result holds for all values of m

lim sup
n→∞

an
n

≤ inf
m≥1

am
m

. (4.1.2)

Now we consider inf
n≥1

an
n
. We are going to prove the following claim:

Claim:

inf
n≥1

an
n

≤ lim inf
n→∞

an
n
. (4.1.3)

Proof of the claim. Let us assume the contrary and we will get a contradiction.

We assume

inf
n≥1

an
n

> lim inf
n→∞

an
n

=⇒ inf
n≥1

an
n

− lim inf
n→∞

an
n

:= h > 0.

By definition of limit inferior of a sequence {xn}n≥1, if α is greater than the limit inferior there

are infinitely many xn less than α. Hence, in our case it implies that there are infinitely many

terms of the sequence {an
n }n≥1 less than lim infn→∞

an
n +h. Hence there are infinite terms less than

infn≥1
an
n , which is a contradiction. ■

Changing the notation from n to m in the expression infm≥1
am
m and combining (4.1.2) and (4.1.3),

lim sup
n→∞

an
n

≤ inf
m≥1

am
m

≤ lim inf
n→∞

an
n
.

But, lim inf
n→∞

an
n

≤ lim sup
n→∞

an
n

so:

lim inf
n→∞

an
n

= lim sup
n→∞

an
n

= inf
n≥1

an
n
.

This means that the limit lim
n→∞

an
n

exists (since the limit superior and inferior agree) and it is equal

to inf
n≥1

an
n
, as we wanted to see.

As an application of Fekete’s Lemma, we have a similar result for sub-multiplicative sequences,

which is announced in the next corollary:

Corollary 4.1.1. Let {an}n≥1 be a postive sub-multiplicative sequence. Then lim
n→∞

a
1
n
n exists.

Proof. We define a new sequence {bn}n≥1 such that bn := log(an) ∀n ≥ 1. Then, using the sub-
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multiplicative property of {an}n≥1,

bn+m = log(an+m) ≤ log(anam) = log(an) + log(am) = bn + bm.

Clearly, {bn}n≥1 is a subadditive sequence and we can use the Fekete’s Lemma to conclude that

lim
n→∞

bn
n

exists. Then, lim
n→∞

log(an)

n
= lim

n→∞
log a1/nn exists as well.

Due to the continuity of the exponential function f : R −→ R, f(x) := ex: if lim
n→∞

log a1/nn exists,

then it also exists lim
n→∞

elog a
1/n
n , which is equal to lim

n→∞
a1/nn . Hence, we have proved the corollary.

4.2 Bridges and polygons

This section focus on several results for self-avoiding walks on the d-dimensional lattice Zd. In this

section we are going to relate its asymptotic behaviour with the one of bridges and polygons.

First of all we need to give a rigorous definition for self-avoiding walks and we also need to define

other concepts.

Let Ω ⊂ Zd be the set of possible steps. In this notes we are going to consider the nearest-neighbour

model : Ω := {x ∈ Zd : ∥x∥1 = 1}.

Definition 4.2.1. An n-step walk is a sequence ω = (ω(0), ω(1), . . . , ω(n)) where ω(i) is a point

of Zd for i = 0, . . . , n and ω(j)− ω(j − 1) ∈ Ω for j = 1, . . . , n. We can define the sets

Wn(0, x) = {ω : ω is an n-step walk with ω(0) = 0 and ω(n) = x}, Wn =
⋃
x∈Zd

Wn(0, x).

The strictly self-avoiding walks (or also called simply self-avoiding walks) are the main subject of

this section. They are random paths on Zd defined as follows:

Definition 4.2.2. Given an n-step walk ω ∈ Wn, and integers i, j with 0 ≤ i < j ≤ n, let

Uij = Uij(ω) = −1{ω(i)=ω(j)} =

−1 if ω(i) = ω(j),

0 if ω(i) ̸= ω(j).

Fix λ ∈ [0, 1]. We assign to each path ω ∈ Wn the weighting factor

∏
0≤i<j≤n

(1 + λUij(ω)). (4.2.1)

The choice λ = 0 is the case of simple random walks, where all walks in Wn have the same weight.

For λ ∈ (0, 1), self-intersections are penalised but not forbidden, and this model is called weakly
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self-avoiding walk. Finally, with λ = 1 returning to a previously visited site is forbidden, and this

model is the self-avoiding walk (SAW). In Figure 4.1 you can see the first numbers of the sequence

cn of the number of n-step self-avoiding walks on a square lattice and its corresponding walks.

Figure 4.1: c0 = 1 (the empty walk), c1 = 4, c2 = 12, c3 = 36, c4 = 100, . . .
and the sequence grows rapidly with n.

Observe that an n-step walk ω is a self-avoiding walk if only if (4.2.1) is non 0 for λ = 1, which

means that ω visits each site at most once, and for these walks their weight is equal to 1.

We denote

c(λ)n (x) =
∑

ω∈Wn(0,x)

∏
0≤i<j≤n

(1 + λUij(ω)), c(λ)n =
∑
x∈Zd

c(λ)n (x).

In the case λ = 1, c
(1)
n (x) counts the number of self-avoiding walks of length n ending at x, and c

(1)
n

counts the number of all n-step self-avoiding walks. In this case we can omit the superscript (1)

and we simply write cn(x) and cn.

Now, observe that for any non-negative integers n,m,

cn+m ≤ cncm. (4.2.2)



46 CHAPTER 4. SELF-AVOIDING WALKS (SAWS)

This is true as a SAW of n+m steps can be divided into two self-avoiding walks, one of length n and

the other with m steps. Conversely, if we concatenate together two different self-avoiding walks,

the union will not necessary be another self-avoiding walk (cncm denote the number of possible

unions of SAWs of lengths n and m respectively, and they are not all going to be a self-avoiding

walk of length n+m). See Figure 4.2.

Figure 4.2: The concatenation of two self-avoiding walks ω and ρ is not
necessary another self-avoiding walk.

According to Definition 4.1.1, the number of self-avoiding walks of length n, cn, is a sub-multiplicative

sequence. Therefore, Corollary 4.1.1 applies on this sequence and we can assure that µ = lim
n→∞

c1/nn

exists. This µ, which depends on d, is called connective constant.

We can find some lower and upper bounds for µ depending on d thinking some bounds for the

number of self-avoiding walks cn.

Proposition 4.2.1. For the nearest-neighbour model, we obtain

dn ≤ cn ≤ 2d(2d− 1)n−1 which implies, by definition of µ, d ≤ µ ≤ 2d− 1.

Proof. The lower bound for cn is found counting the number of walks that only make steps moving

into positive coordinate directions (for each step there are d options) and the upper bound is

obtained by counting the walks that are only restricted to prevent returning to the immediate site

that the walk have just visited (the first step is completely free, 2d options, and the other n − 1

remaining ones have one direction forbidden).
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Note, that if we denote by C(z) =

∞∑
n=0

cnz
n the generating function of the number of self-avoiding

walks, its radius of convergence is exactly µ−1 (by definition).

In particular, as the series has positive Taylor coefficients, it means that

C
(
µ−1

)
= ∞. (4.2.3)

4.2.1 Bridges

Throughout this section, we only consider the nearest-neighbour (strictly) self-avoiding walks on

the d-dimensional lattice Zd. We will introduce bridges, a particular class of SAW, and we will

show that its number grow with the same exponential rate as the number of self-avoiding walks,

namely as µn. To show this result we will need some other theorems and new concepts.

For a self-avoiding walk ω, we denote by ω1(i) the first spatial coordinate of ω(i).

First of all we define the main object of this section:

Definition 4.2.3. An n-step bridge is an n-step SAW ω such that

ω1(0) < ω1(i) ≤ ω1(n) for i = 1, . . . , n.

We denote by bn the number of bridges of length n with ω(0) = 0 for n ≥ 1 and b0 = 1 (the empty

walk). See Figure 4.3 for an example.

Figure 4.3: ω is a bridge of length n = 8 whereas ρ is not a bridge.

While the number of self-avoiding walks is a sub-multiplicative sequence (remember (4.2.2)), the

number of bridges is a super-multiplicative sequence:

bn+m ≥ bnbm ∀ n,m ∈ N (4.2.4)

This property is due to the fact that any bridges of length n and m can be concatenated to form

another bridge of length n+m , whereas not all the bridges of n+m steps can be divided into two
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different bridges of length n and m respectively, for any integers n,m ≥ 0.

We can redo the proof of Corollary 4.1.1 with the sequence − log bn and we obtain the existence of

the bridge growth constant µBridge defined by

µBridge = lim
n→∞

b1/nn = sup
n≥1

b1/nn .

As a bridge is a particular SAW we also have µBridge ≤ µ and we can conclude

bn ≤ µn
Bridge ≤ µn. (4.2.5)

The main objective of this section is to prove the equality

µBridge = µ (4.2.6)

In order to achieve it we need some more new concepts to be defined.

Definition 4.2.4. An n-step half-space walk is an n-step SAW ω with

ω1(0) < ω1(i) for i = 1, . . . , n.

For n ≥ 1, hn denote the number of n-step half-space walks with ω(0) = 0 and we define h0 = 1.

Figure 4.4: ω is a 10-step half-space walk whereas ρ is not a half space walk
because there are three points (in red) with ρ1(i) ≤ ρ1(0).

Definition 4.2.5. The span of an n-step SAW ω is

max
0≤i≤n

ω1(i)− min
0≤i≤n

ω1(i).

See Figure 4.5 for an example. We denote by bn,A the number of n-step bridges with span A.

We will also use the following result on integer partitions from Hardy and Ramanujan in [6], which
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Figure 4.5: A half-space walk with span A = 4.

we just state it.

Theorem 4.2.1. For an integer A > 1, let PD(A) denote the number of ways of writing A =

A1 + · · ·+Ak with A1 > · · · > Ak > 1, for any k ≥ 1. Then, as A → ∞

logPD(A) ∼ π

(
A

3

)1/2

.

Now, we are able to announce and prove several results that will lead us to the equality (4.2.6) that

we want to see. The next proposition gives us a relation between the number of n-step bridges bn

and the number of n-step half space walks hn.

Proposition 4.2.2. For all n ≥ 1, hn ≤ PD(n)bn.

Proof. Let ω be a half-space walk with n steps. We set n0 = 0 and inductively we define

Ai+1 = max
j>ni

(−1)i
(
ω1(j)− ω1(ni)

)
, ni+1 = max{j > ni : (−1)i

(
ω1(j)− ω1(ni)

)
= Ai+1}.

In words, j = n1 maximises ω1(j), j = n2 minimises ω1(j) for j > n1, j = n3 maximises ω1(j) for

j > n2, and so on in an alternating pattern. In addition, the ni are chosen to be the last time these

extremes are reached. Then, A1 = ω1(n1) − ω1(n0), A2 = ω1(n1) − ω1(n2), and so on (see Figure

4.6). Since the ni are chosen maximal, we have Ai+1 < Ai.

This procedure stops at some step K ≥ 1, when nK = n. Note that K = 1 if and only if ω is a

bridge, and in that case A1 = A, the span of ω. (∗)
Let Hn[a1, . . . , ak] denote the subset of n-step half-space walks with K = k,Ai = ai for i = 1, . . . , k.

and hn[a1, . . . , ak] the number of elements of this subset .We observe that

hn[a1, a2, a3, . . . , ak] ≤ hn[a1 + a2, a3, . . . , ak]. (4.2.7)
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Figure 4.6: A half-space walk ω is decomposed into bridges, which are
reflected to form a single bridge.

To see this inequality we take a half-space walk ω ∈ Hn[a1, a2, a3, . . . , ak] and we reflect the part

of the walk (ω(j))j≥n1 across the line ω1 = A1; see Figure 4.6. We obtain a new half-space walk

ω̃ ∈ Hn[a1+a2, a3, . . . , ak]. Therefore, it is clear that given a half-space walk ofHn[a1, a2, a3, . . . , ak]

we also have a half-space walk belonging to Hn[a1 + a2, a3, . . . , ak]. Hence, the inequality is true.

By induction, repeating the inequality (4.2.7) we obtain:

hn[a1, . . . , ak] ≤ hn[a1 + . . .+ ak] = bn,a1+...+ak ,

where the last equality is due to the previous observation (∗). Using this, we have

hn =
∑
k≥1

∑
a1>···>ak>0

hn[a1, . . . , ak] ≤
∑
k≥1

∑
a1>···>ak>0

bn,a1+···+ak =
n∑

A=1

PD(A)bn,A,

where we obtain the last equality realising that the double summation of the term A = a1+ · · ·+ak

is the number of ways of writing A like a partition as the described in Theorem 4.2.1, and here A

refers to the span of the bridge and its maximum value is the length n.

Finally, bounding PD(A) by PD(n) we obtain hn ≤ PD(n)
n∑

A=1

bn,A = PD(n)bn, as we wanted to

prove.

We are ready now to announce the theorem that will allow us to see the equality (4.2.6) as a

consequence of it.
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Theorem 4.2.2. Fix B > π
(
2
3

) 1
2
. Then there exists n0 = n0(B) independent of the dimension

d ≥ 2 such that

cn ≤ bn+1e
B
√
n ≤ µn+1eB

√
n, for n ≥ n0.

Proof. We will first prove the next claim:

Claim:

cn ≤
n∑

m=0

hn−mhm+1. (4.2.8)

Proof of the claim. Given an n-step SAW ω, we define

x1 = min
0≤i≤n

ω1(i), m = max{i : ω1(i) = x1}, (4.2.9)

and we denote by e1 the unit vector in the first coordinate direction of Zd.

Then, the walk (ω(m), ω(m+1), . . . , ω(n)) is an (n−m)-step half-space walk. We can assure that it

will be a half-space walk due to the choice of m: if ω1(j) ≤ ω1(m) for any j > m, then m can not be

the max{i : ω1(i) = x1}. Similarly, we see that the walk (ω(m)−e1, ω(m), ω(m−1), . . . , ω(1), ω(0))

is an (m+ 1)-step half-space walk; see Figure 4.7.

Figure 4.7: A self-avoiding walk decomposed into two half-space walks.

We have just seen that each self-avoiding walk has a unique decomposition into two half-space

walks, one of length n−m and the other one of length m+1, for a specific m, the one that satisfies

(4.2.9). Hence the inequality of the claim is proved. ■

Now, we apply Proposition 4.2.2 to the Claim (4.2.8) to get

cn ≤
n∑

m=0

PD(n−m)PD(m+ 1)bn−mbm+1 ≤ bn+1

n∑
m=0

PD(n−m)PD(m+ 1), (4.2.10)
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where in the last inequality we have used the super-multiplicative property (4.2.4) of the sequence

(bn)n: bn−mbm+1 ≤ b(n−m)+(m+1) = bn+1.

To finalise the proof, we fix B′ such that B > B′ > π
(
2
3

) 1
2
. By Theorem 4.2.1 there is a constant

K > 0 such that PD(A) ≤ Keπ(
A
3 )

1
2
= Keπ(

2
3)

1
2 (A

2 )
1
2 ≤ KeπB

′(A
2 )

1
2
. Consequently,

PD(n−m)PD(m+ 1) ≤ K2e
B′

[
(n−m

2 )
1
2+(m+1

2 )
1
2

]
. (4.2.11)

If we use the obvious inequality x
1
2 + y

1
2 ≤ (2x + 2y)

1
2 with x = n−m

2 and y = m+1
2 we obtain(

n−m
2

) 1
2 +

(
m+1
2

) 1
2 ≤ (n+ 1)

1
2 . Putting it into (4.2.11) and combining it with (4.2.10), gives us:

cn ≤ bn+1(n+ 1)K2eB
′√n+1 ≤ bn+1e

B
√
n, if n ≥ n0(B).

We have obtained the first inequality of the theorem. The second one is immediate by (4.2.5)

(bn+1 ≤ µn+1).

As a consequence of this theorem, we obtain the equality that we wanted to see:

Corollary 4.2.1. For n ≥ n0(B),

bn ≥ cn−1e
−B

√
n−1 ≥ µn−1e−B

√
n−1.

In particular, b
1/n
n → µ and so µBridge = µ.

Proof. The chain of inequalities is obtained by changing n for n−1 in Theorem (4.2.2) and isolating

bn. Then, raising all the expression to the power of 1
n and using (4.2.5) we obtain

µ ≥ b1/nn ≥ µ
n−1
n e−B

√
n−1
n .

Taking the limit when n tends to infinity in this expression we have

µ ≥ lim
n→∞

b1/nn ≥ µ.

So, µBridge = lim
n→∞

b1/nn = µ.

Finally, to conclude this section about bridges, we are going to see another property regarding their

generating functions as a consequence of Theorem 4.2.2.
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Corollary 4.2.2. If B(z) =

∞∑
n=0

bnz
n is the generating function of bridges, then

C(z) ≤ 1

z
e2(B(z)−1).

In particular B
(
µ−1

)
= ∞.

Proof. In the proof of Proposition 4.2.2, we decomposed a half-space walk into subwalks on [ni−1, ni]

for i = 1, . . . ,K. Note that in fact these subwalks were bridges of span Ai. With this information,

we conclude that

hn ≤
∞∑
k=1

∑
A1>···>Ak

∑
0=n0<n1<···<nk

k∏
i=1

bni−ni−1,Ai

The first sum fixes K, the second one fixes the spans Ai of every bridge, the third one fixes the

points ni−1 and ni where every bridge starts and the product means the concatenation of all these

bridges.

Multiplying the last expression by zn and summing for all values of n from 0 to infinite,

∞∑
n=0

hnz
n ≤

∞∏
A=1

1 +
∞∑

m=1

bm,Az
m

 .

If now we use the well known inequality 1 + z ≤ ez, we obtain for all real z

∞∑
n=0

hnz
n ≤

∞∏
A=1

exp

 ∞∑
m=1

bm,Az
m

 ≤ exp

 ∞∑
A=1

∞∑
m=1

bm,Az
m

 = eB(z)−1,

where the term −1 is because the summation does not start with m = 0.

Now, we use (4.2.8) and we obtain

C(z) =
∞∑
n=0

cnz
n ≤ 1

z

∞∑
n=0

∞∑
m=0

hn−mzn−mhm+1z
m+1

=
1

z

 ∞∑
n=0

hnz
n

 ∞∑
m=0

nmzm


≤ 1

z
e2(B(z)−1),

as we wanted to see.

Once we have proved this inequality the fact that B
(
µ−1

)
= ∞ is obvious, because from (4.2.3) at

z = µ−1, C(z) diverges.
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4.2.2 Polygons

In this last part about self-avoiding walks in Zd, we are going to see the analogous result of

the asymptotic behaviour that we have seen for bridges for another particular type of walks: self-

avoiding polygons. Although all of the results about polygons that we are going to see are applicable

for any d ≥ 2, we are going to study most of the results on the bidimensional lattice.

First of all, let us define polygons.

Definition 4.2.6. A 2n-step self-avoiding return is a walk ω ∈ W2n with ω(2n) = ω(0) = 0 and

ω(i) ̸= ω(j) for every pair i ̸= j different from 0, 2n.

Observation. Note that an even number of steps is necessary for the condition ω(2n) = ω(0) = 0:

for every step that the walk moves away from the origin, another one is needed to return to the

origin. Also we must have n ≥ 2 so that the walk can be closed and verify ω(2n) = ω(0).

Definition 4.2.7. A self-avoiding polygon is a self-avoiding return with both the orientation and

the location of the origin forgotten.

By definition, counting the number of self-avoiding polygons is equivalent to count the number of

self-avoiding returns up to orientation and translation invariance.

If we denote by q2n the number of self-avoiding polygons we have

q2n =
2dc2n−1(e1)

2 · 2n
for n ≥ 2, (4.2.12)

where e1 = (1, 0, . . . , 0) is the first standard basis vector and c2n−1(x) denote the number of self-

avoiding walks of length 2n− 1 finishing at position x.

Notice that the 2 of the denominator cancels the choice of orientation, whereas the 2n cancels the

choice of origin in the polygon.

Next, let us see some simple properties of these polygons that will be helpful later. For general

dimensions d ≥ 2 similar arguments can be done but form this point we are only going to consider

the bidimensional lattice (d = 2).

First, notice that any two self-avoiding polygons can be concatenated to form a larger self-avoiding

polygon: for the first polygon ω of length 2n we choose one edge ω(i)− ω(j) with ω1(i) = ω1(j) =

max
0≤k≤2n

ω1(k), and for the second one ω̄ of length 2m we pick an edge ω̄(s) − ω̄(t), with ω̄1(s) =

ω̄1(t) = min
0≤k≤2n

ω̄1(k). As there is translation invariance, we can put i = 0 and j = 2n − 1 and in

the same way s = 0 and t = 2m−1. Then, we join these two edges and create the new self-avoiding

polygon ω̃ of length 2(n + m) defined as it follows: with ω̃(k) = ω(k) for k = 0, . . . , j = 2n − 1,

ω̃(2n+ k) = ω̄(s+ k) = ω̄(k) for k = 0, . . . , t = 2m− 1 and ω̃(2n+ 2m) = ω(i) = ω(0); see Figure

4.8.
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Figure 4.8: Concatenation of a 10-step polygon and a 14-step polygon to
create a polygon of length 24.

So, any two self-avoiding polygons of length 2n and 2m can be concatenated to form another self-

avoiding polygon of 2(n+m) steps. Therefore, the next inequality holds for d = 2 and any n,m ≥ 2:

q2nq2m ≤ q2(n+m). (4.2.13)

If we set q2 = 1 (the void walk) and verify that q2n ≤ q2n+2 then (4.2.13) holds for every n,m ≥ 1.

Note that the inequality q2n ≤ q2n+2 is true because for any given polygon belonging to q2n we can

create a polygon of 2n+2 steps just modifying one of its corners in the way depicted in Figure 4.9.

Figure 4.9: Construction of a polygon belonging to q2n+2 (in grey) from a
given 2n-step polygon (in black).
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We define µPolygon = lim
n→∞

q
1/2n
2n . If we take out one edge from a self-avoiding polygon we obtain a

SAW, so q2n ≤ c2n−1. Taking limits:

µPolygon ≤ µ, q2n ≤ µ2n
Polygon ≤ µ2n for all n ≥ 2. (4.2.14)

Remember that our goal is to see µPolygon = µ. The following theorem will bring us closer to our

objective.

Theorem 4.2.3. In the bidimensional lattice Z2 there is a constant K such that, for all n ≥ 1,

c2n+1(e1) ≥
K

n4
b2n. (4.2.15)

Proof. First of all we show the next inequality.

Claim: ∑
x∈Z2

bn(x)
2 ≤ 4(n+ 1)2c2n+1(e1),

where bn(x) denotes the number of n-step bridges ending at x.

Proof of the claim. We are going to prove it geometrically. We are going to see that given two

different n-step bridges ω and v starting at 0 and ending at x, we can create a self-avoiding walk

ρ of length 2n+ 1 finishing at e1.

We start tracing a straight line r that connects 0 with x and we denote by v a non-zero vector with

origin at 0 and perpendicular direction to the line r that we have drawn in such a way that 0⃗x and

r make a positive base of R2. Now, we translate the line r with the direction and sense of v and we

stop when the line does not cross any more points of the bridge ω. We denote by M the point ω(i)

with the smallest index i which is last crossed by the line. We do the same with the other bridge

v but now we translate the line with the direction of v but with its contrary sense. We denote by

m the point v(j) with the smallest index j which is last crossed by the line. See Figure 4.10.

Figure 4.10: Two n-step bridges ω and v with vector the v and points M and
m marked.
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Next step consists in creating two new walks ω̄ and v̄. To create ω̄ we split ω into two pieces before

and after M and interchange them. We do the same for v, splitting the bridge before and after

m. Note that in these new walks if we trace a line connecting the origin and the end of each walk

respectively, each walk is contained in one side of the line; see Figure 4.11.

Figure 4.11: The new walks ω̄ and v̄, both contained in one side of the grey
line that connects the origin and end point of each walk.

Finally, we create the new self-avoiding walk ρ joining ω̄ and v̄. To join them we put an extra edge

or step (0, 1) between the end of both walks. The result is a self-avoiding walk with 2n + 1 steps

starting at the origin and ending at e1 = (1, 0) or any rotation of this vector and with two marked

points: the initials ω(n) and v(n). See Figure 4.12.

Figure 4.12: The resulting (2n+ 1)-step self-avoiding walk finishing at (0, 1), a
rotation of the vector e1, with two marked points in black.

The inequality of the claim is already proved, because the left side of the inequality represents the

concatenation of two n-step bridges ending at x and the right side counts the number of (2n+ 1)-

step self-avoiding walks ending at e1 with the 4 possible rotations of this vector and with the choice

of two different points of the walks (what is counted in the term (n+ 1)2). ■

To prove the theorem it only remains some inequalities. Using the claim and Cauchy-Schwarz
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inequality we obtain:

b2n =

∑
x∈Z2

bn(x)1{bn(x)̸=0}

2
(C−S)

≤
∑
x∈Z2

bn(x)
2
∑
x∈Z2

1{bn(x)̸=0}

≤ n(2n+ 1)
∑
x∈Z2

bn(x)
2
(claim)

≤ 4n(2n+ 1)(n+ 1)2c2n+1(e1),

where we say that an upper boundary for
∑
x∈Z2

1{bn(x)̸=0} (the amount of possible points x ∈ Z2

that can be reached with an n-step bridge) is n(2n+ 1) = #{x ∈ Z2, | ∥x∥1 ≤ n} .

Now, we isolate c2n+1(e1) and we have that for a constant K

c2n+1(e1) ≥ b2n
1

4n(2n+ 1)(n+ 1)2
= b2n

1

8n(n+ 1
2)(n+ 1)2

(n≥1)

≥ b2n
1

8n2n(2n)2
= b2n

K

n4
.

Finally, as a consequence of this theorem, we obtain our expected result.

Corollary 4.2.3. There is a constant C > 0 such that

µ2ne−C
√
n ≤ c2n+1(e1) ≤ (n+ 1)µ2n+2 (4.2.16)

In particular, µPolygon = µ.

Proof. We are going to prove both inequalities independently:

µ2ne−C
√
n

(1)

≤ c2n+1(e1)
(2)

≤ (n+ 1)µ2n+2

Inequality (1): Using Theorem 4.2.2 and Corollary 4.2.1 we have:

c2n+1(e1) ≥
K

n4
b2n ≥ K

n4
µ2n−2e−2B

√
n−1 ≥ µ2ne−2C

√
n, for some constant C.

Inequality (2): From (4.2.12) with d = 2 and (4.2.14) we obtain:

c2n+1(e1)
(4.2.12)
= q2n+2(n+ 1)

(4.2.14)

≤ (n+ 1)µ2n+2.

To see µPolygon = µ we first elevate all the expression (4.2.16) to the power of (2n)−1:

µ
2n
2n e−C

√
n

2n ≤ c
1/2n
2n+1(e1) ≤ (n+ 1)

1
2nµ

2n+2
2n .
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Then, c
1/2n
2n+1(e1) = q

1/2n
2n+2(n+ 1)1/2n and taking limits when n tend to ∞:

µ ≤ µPolygon ≤ µ =⇒ µPolygon = µ.



Chapter 5

The connective constant on the

hexagonal lattice

Until now, we have worked on the lattice Zd. Whereas we do not have exact results for the

asymptotic behaviour of self-avoiding walks on Zd, we have an important result about it on the

2-dimensional hexagonal lattice H and we are going to prove it in this section. We are going to

prove the following theorem from [4] , an article published in the important mathematical journal

Annals of Mathematics. This theorem was a conjecture of B. Nienhuis in 1982 and one of the

authors of this paper, Stanislav Smirnov, received the Fields Medal in 2010 partly because of this

publication. We will see that we are able to proof such a result thanks to the special “discrete

analyticity” property that the hexagonal lattice has, captured in Lemma 5.1.1.

Theorem 5.0.1. For the hexagonal lattice H,

µ =

√
2 +

√
2.

Fist of all we need to define some technical issues about the hexagonal lattice H.

For convenience we are going to consider extended walks starting and ending at mid-edges, i.e.,

centres of edges of H. We denote the set of mid-edges by H. We dispose the hexagonal lattice of

mesh size 1 in C so that there exists an horizontal edge e with mid-edge a being 0.

We now denote by cn the number of n-step SAWs on the hexagonal lattice H starting at 0 and

C(z) =
∞∑
n=0

cnz
n is the generating function.

We also need to redefine bridges.

Definition 5.0.1. A bridge on H is a SAW which never revisits the vertical line through its starting

point, never visits a vertical line to the right of the vertical line through its endpoint, and moreover

60
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starts and ends at the midpoint of an horizontal edge.

In this section, we use bn to denote the number of n-step bridges on H which start at 0 and

B(z) =
∞∑
n=0

bnz
n for z > 0.

The first step needed to prove Theorem 5.0.1 is to notice that adapting the arguments that we have

used in the previous section to prove Corollary 4.2.1 in Zd we can conclude that µBridge = µ also

on H. Thus it suffices to show that

µBridge =

√
2 +

√
2. (5.0.1)

Throughout this section we will use the following notation: zc =
1√

2+
√
2
.

Therefore, proving (5.0.1) is equivalent to see that B(zc) = ∞ and that B(z) < ∞ for any z < zc.

And this is what we are going to prove.

5.1 The holomorfic observable

The proof is based on what we call the holomorphic observable. In this section we are going to

define it and prove its discrete analyticity. We are not going into detail on it, but we will see that

the discrete analyticity has an analogous result to a classic complex analysis theorem. First, some

other definitions are required.

Definition 5.1.1. A domain Ω ∈ H is a union of all mid-edges emanating form a given connected

collection of vertices V (Ω) (see Figure 5.1). In other words, a mid-edge x belongs to Ω if at least

one end-point of its associate edge is in V (Ω). The boundary ∂Ω consists of mid-edges whose

associate edge has exactly one endpoint in Ω. We assume Ω to be simply connected (i.e. having a

connected complement).

Definition 5.1.2. The winding Wω(a, b) of a SAW ω between mid-edges a and b (not necessary

the start and end of ω) is the total rotation in radians when ω is traversed from a to b. See Figure

5.2 for an example.

We note that this definition is equivalent to say that

Wω(a, b) = #{turns to the left} × π

3
−#{turns to the right} × π

3
. (5.1.1)

Here is an example:

In Figure 5.3 there is a walk ω with winding Wω(a, b) = π, according to Definition 5.1.2. Let us
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Figure 5.1: A domain Ω, where vertices are represented with small black
points and mid-edges are represented with small black squares.

Figure 5.2: Winding of two different SAWs γ.

Figure 5.3: A walk ω from a to b with left turns denoted by L and
right ones by R.
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now check that with (5.1.1) we also obtain the winding number equal to π.

Wω(a, b) = #{turns to the left} × π

3
−#{turns to the right} × π

3

= 5× π

3
− 2× π

3
=

3π

3
= π.

Therefore, we have also obtained Wω(a, b) = π and definitions are equivalent.

Even if we not mention it, throughout this section ω will represent a self-avoiding walk on H. We

write ω : a −→ E if a walk ω starts at mid-edge a and ends at some mid-edge of E ⊂ H. In the

case where E = b we simply write ω : a −→ b.

Proposition 5.1.1. For any different SAWs ω1 and ω2 and from any mid-edge a to any mid-edge

b with at least one of them in the boundary of a domain Ω, Wω1(a, b) = Wω2(a, b).

Proof. First of all, we notice that any SAW with either the start point a or the end point b on

the boundaries of Ω can not go round any mid-edge. If it happened, then the walk would have a

self-intersection, which is forbidden in SAWs.

Consequently, locally we have:

Figure 5.4: Two different walks ω1 and ω2 from a to b round an edge
of an hexagon, with the same winding number.

For two different walks from a to b round an edge of an hexagon, like in Figure 5.4, the winding

number of both walks is exactly the same.

Wω1(a, b) = 4× π

3
− 2× π

3
=

2π

3
, Wω2(a, b) = 2× π

3
=

2π

3
.

And it happens the same with all the edges of an hexagon. Doing an induction argument on the

steps number, we see that the winding number of a walk on Ω that starts and ends in mid-edges of
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the boundary does not depend on the path followed.

Definition 5.1.3. The length ℓ(ω) of the walk ω is the number of vertices belonging to it.

We can finally define the holomorphic observable.

Definition 5.1.4. Let a be a fixed mid-edge on the boundary ∂Ω and σ ∈ R a fixed constant. For

x ∈ Ω and z ≥ 0 the holomorphic observable is defined as the following function.

Fz(x) =
∑

ω∈Ω: a→x

e−iσWω(a,x)zℓ(ω).

The following lemma shows that for the special case z = zc and σ = 5
8 , Fzc satisfies an important

relation that can be regarded as a weak form of discrete analyticity, since it bears a resemblance to

the mean value principle for harmonic functions, which states that the value of a harmonic function

at a point is equal to its average value over spheres or balls centered at that point.

Lemma 5.1.1. If z = zc and σ = 5
8 , then, for every vertex v ∈ V (Ω),

(p− v)Fzc(p) + (q − v)Fzc(q) + (r − v)Fzc(r) = 0, (5.1.2)

where p, q, r are the mid-edges of the three edges adjacent to v.

Proof. For now we consider z ≥ 0 and σ ∈ R (we are going to specialise later to z = zc and σ = 5
8).

We assume without loss of generality that p, q and r are orientated counter-clockwise around v in

this order. By definition of the holomorphic observable, (p−v)Fzc(p)+(q−v)Fzc(q)+(r−v)Fzc(r)

is a sum of contributions c(ω) over all the SAWs ω finishing at p, q or r. For example, if ω is a

self-avoiding walk ending at p, its contribution will be

c(ω) = (p− v)e−iσWω(a,p)zℓ(ω).

The set of walks ending at p, q and r can be partitioned into pairs and triplets of walks in the

following way (represented on Figure 5.5):

• If a walk ω1 visits all the three mid-edges p, q and r, then it can be seen like a SAW until one

of this mid-edges plus (up to a half-edge) a self-avoiding return from v to v. We can associate

to ω1 the walk ω2 that goes through the same edges, but traverse the return from v to v in

the opposite direction. Hence, walks visiting the three mid-edges can be grouped in pairs.

• If a walk ω1 visits only one mid-edge, it can be associated to two other walks ω2 and ω3 which

visit two mid-edges, just adding one step (there are two possibilities). The reverse is also true:



5.1. THE HOLOMORFIC OBSERVABLE 65

a walk visiting two mid-edges can be associated with a walk just visiting one mid-edge by

erasing the last step. Hence, walks visiting one or two mid-edges can be grouped in triplets.

Figure 5.5: On the left a pair of walks ω1 and ω2 visiting the three mid-egdes,
matched together. On the right a triplet of walks γ1, γ2 and γ3, one visiting
one mid-edge and the other ones visiting two mid-edges, also matched
together.

Now, we are going to verify the equation (5.1.2) for the two cases separately:

• First case: Let ω1 and ω2 be two-self avoiding walks that are grouped as in the first case.

Without loss of generality, we suppose that ω1 ends at q and ω2 ends at r. Therefore, ω1 and

ω2 coincide up to the mid-edge p, since they are associated. Then

ℓ(ω1) = ℓ(ω2) and

Wω1(a, q) = Wω1(a, p) +Wω1(p, q) = Wω1(a, p)− 4π
3

Wω2(a, r) = Wω2(a, p) +Wω2(p, r) = Wω1(a, p) + 4π
3 ,

(5.1.3)

where the winding numbers Wω1(p, q) and Wω2(p, r) have been calculated according to (5.1.1),

using Proposition 5.1.1 and having in mind that Ω is simply connected and a ∈ ∂Ω (so that

we can not go round any mid-edge):
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Writing λ = exp
(
−iσ π

3

)
and j = exp

(
−i2π3

)
we obtain

c(ω1) + c(ω2) = (q − v)e−iσWω1 (a,q)zℓ(ω1) + (r − v)e−iσWω2 (a,r)zℓ(ω2)

(5.1.3)
= (q − v)e−iσ(Wω1 (a,p)−4π

3 )zℓ(ω1) + (r − v)e−iσ(Wω1 (a,p)+4π
3 )zℓ(ω1)

= e−iσWω1 (a,p)zℓ(ω1)
(
(q − v)λ̄4 + (r − v)λ4

)
. (5.1.4)

Now, we want to relate (q−v) and (r−v) with (p−v). Thinking it as vectors in the complex

plain (see figure 5.6), we have:

Figure 5.6: Representation of (q − v) and (p− v) as vectors and its
relation on the left and the same with (r − v) and (p− v) on the
right.

(q − v) = (p− v)ei
2π
3 = (p− v)j (5.1.5)

(r − v) = (p− v)e−i 2π
3 = (p− v)j̄ (5.1.6)

Thus, (5.1.4) turns into

c(ω1) + c(ω2) = (p− v)e−iσWω1 (a,p)zℓ(ω1)
(
jλ̄4 + j̄λ4

)
.

If now we set σ = 5
8 ,

jλ̄4 + j̄λ4 = ei(
2π
3
+ 5

8
4π
3 ) + e−i( 2π

3
+ 5

8
4π
3 ) = 2 cos

(
3π

2

)
= 0.

Therefore c(ω1) + c(ω2) = 0.

• Second case: Let ω1, ω2, ω3 be three walks grouped as in the second case. Without loss

of generality, we assume that ω1 finishes at p and that ω2 and ω3 prolong ω1 to q and r

respectively. We proceed as before and in this case we obtain

ℓ(ω2) = ℓ(ω3) = ℓ(ω1) + 1 and

Wω2(a, q) = Wω2(a, p) +Wω2(p, q) = Wω1(a, p)− π
3

Wω3(a, r) = Wω3(a, p) +Wω3(p, r) = Wω1(a, p) +
π
3 .
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Now,

c(ω1) + c(ω2) + c(ω3) = (p− v)e−iσWω1 (a,p)zℓ(ω1) + (q − v)e−iσWω2 (a,q)zℓ(ω2)

+ (r − v)e−iσWω3 (a,r)zℓ(ω3)

= (p− v)e−iσWω1 (a,p)zℓ(ω1) + (q − v)e−iσ(Wω1 (a,p)−
π
3 )zℓ(ω1)+1

+ (r − v)e−iσ(Wω1 (a,p)−
π
3 )zℓ(ω1)+1

(5.1.5)
(5.1.6)
= (p− v)e−iσWω1 (a,p)zℓ(ω1)

(
1 + zjλ̄+ zj̄λ

)
.

At this point, we want 1 + zjλ̄ + zj̄λ = 0. So, let us find the value of z that verifies this

equality. Remember that we have already chosen σ = 5
8 . Then,

0 = 1 + zjλ̄+ zj̄λ = 1 + z
(
ei(

2π
3
+ 5π

24 ) + e−i( 2π
3
+ 5π

24 )
)
= 1 + 2z cos

(
7π

8

)
.

Now, using the trigonometric property cos(π−θ) = − cos θ, the value of z that we are looking

for is

zc =

(
2 cos

π

8

)−1

=

(√
2 +

√
2

)−1

.

Finally, the identity (5.1.2) that we wanted to prove follows by summing over all the pairs and

triplets of walks.

5.1.1 Proof of Theorem 5.0.1

By applying Lemma 5.1.2 we will be able to prove Theorem 5.0.1. But first, we need to define some

concepts that will be used in the proof.

We consider a vertical strip domain ST composed of the vertices of T strips of hexagons, and ST,L

is its finite version, cutting at height L at an angle of π
3 ; see Figure 5.7. We denote by α and β the

left and right boundaries of ST , respectively, and the top and bottom boundaries of ST,L by ϵ and

ϵ̄ respectively.

We consider a fixed point a ∈ α and we define the following functions:

AT,L(z) =
∑

ω⊂ST,L: a→α\{a}

zℓ(ω), (5.1.7)

BT,L(z) =
∑

ω⊂ST,L: a→β

zℓ(ω), (5.1.8)

ET,L(z) =
∑

ω⊂ST,L: a→ϵ∪ϵ̄
zℓ(ω). (5.1.9)
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Figure 5.7: Domain ST,L with boundary parts α, β, ϵ and ϵ̄.

Let us now present a lemma that shows a relation between the last three functions in the case

z = zc.

Lemma 5.1.2. For z = zc and σ = 5
8 ,

1 = cαAT,L(zc) +BT,L(zc) + cϵET,L(zc), (5.1.10)

with cα = cos
(
3π
8

)
and cϵ = cos

(
π
4

)
.

Proof. We fix z = zc, σ = 5
8 and we continue denoting j = ei

2π
3 . We sum over all vertices in

V (ST,L) the relation (5.1.2). The contributions of interior mid-edges cancel and it only remains the

contributions of the mid-edges on the boundary.

Then, if we consider the mid-edge x ∈ α and v its end-point vertex belonging to V (ST,L), (x−v) =

−1 (remember that the hexagonal lattice is a mesh of size 1). In the same way, if x ∈ β, (x−v) = 1;

if x ∈ ϵ, (x− v) = j and if x ∈ ϵ̄, (x− v) = j̄. Then

−
∑
x∈α

F (x) +
∑
x∈β

F (x) + j
∑
x∈ϵ

F (x) + j̄
∑
x∈ϵ̄

F (x) = 0. (5.1.11)

We are going now, to develop all this terms. We need to calculate the winding number of any SAW

from a to any mid-edge of every part of the boundary. As in Proposition 5.1.1 we have proved that
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Figure 5.8: The winding number of the walk ω from a point a to
another b both in ∂ST,L is the same as the winding number of the
walk ω̄ from a to b through the edges nearer to ∂ST,L.

the winding number of any SAW from a to b both in ∂ST,L does not depend on the path followed,

for any walk ω ⊂ ST,Lwe are going to calculate Wω(a, b) by calculating the winding number of the

walk that goes from a to b along the edges nearer to the boundary of ST,L; see Figure 5.8.

To calculate the winding number of any SAW on ST,L we also need to take into account the next

claim:

Claim: If a and b are mid-edges on the boundary of ST,L, then for any SAWs ω1 and ω2, any

mid-edge ã from the same boundary part of ST,L as a and any mid-edge b̃ from the same boundary

part of ST,L as b, Wω1(a, b) = Wω2(ã, b̃).

Proof of the claim. We have seen that for calculating the winding number of a walk we can restrict

to consider the walks passing through the edges nearer to ∂ST,L. Then, we only need to verify

that the winding number of a walk through these edges starting at one part of ∂ST,L to a different

part of it does not depend on the start and end mid-edges. We can prove it by considering all

the possible cases and checking all of them, which is easy to do by using (5.1.1). Note that it is

only necessary to prove the cases of adjacent parts of the boundary, i.e. from α to ϵ, from ϵ to β,

from β to ϵ̄ and from ϵ̄ to α. The reverse cases will have the same winding number but with the

opposite sign and any other walk can be considered as a concatenation of walks between contiguous

parts of the boundary and the winding number will be the sum of the winding numbers of these

concatenated walks. ■
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Now, we are ready to calculate the winding number of walks from the fixed mid-edge a ∈ α to any

other mid-edge on the boundaries and we are going to use (5.1.1) and consider the claims.

The winding of any SAW from a to the bottom part of α is −π, while the winding number to the

top part is π. Then, we can develop the first term of (5.1.11):

∑
x∈α

F (x) = F (a) +
∑

x∈α\{a}

F (x) = 1 +
e−iσπ + eiσπ

2
AT,L, (5.1.12)

where we have used that F (a) = 0 because the only SAW from a to a is the empty walk with length

0 and the 2 on the denominator is because (for symmetry) in AT,L we are counting all the walks

to α and we have that a half is to the bottom part and the other to the top part.

On the other hand, using trigonometric properties

e−iσπ + eiσπ

2
= cos(σπ) = cos

(
5π

8

)
= − cos

(
3π

8

)
:= −cα.

Gathering it with (5.1.12) we obtain

∑
x∈α

F (x) = 1− cαAT,L, with cα = cos

(
3π

8

)
. (5.1.13)

The winding number from a to a mid-edge in β is 0. Therefore

∑
x∈β

F (x) = BT,L (5.1.14)

Finally, the winding from a to any mid-edge in ϵ is 2π
3 , whereas to a mid-edge in ϵ̄ is −2π

3 . In this

case

j
∑
x∈ϵ

F (x) + j̄
∑
x∈ϵ̄

F (x) = ei
2π
3

∑
x∈ϵ

∑
ω⊂ST,L: a→x

e−iσWω(a,x)zℓ(ω)

+ e−i 2π
3

∑
x∈ϵ̄

∑
ω⊂ST,L: a→x

e−iσWω(a,x)zℓ(ω)

= ei
2π
3
(1−σ)

∑
x∈ϵ

∑
ω⊂ST,L: a→x

zℓ(ω) + e−i 2π
3
(1−σ)

∑
x∈ϵ

∑
ω⊂ST,L: a→x

zℓ(ω)

(symmetry)
=

1

2
ET,L

(
ei

2π
3
(1−σ) + e−i 2π

3
(1−σ)

) (σ= 5
8
)

=
1

2
ET,L

(
ei

π
4 + e−iπ

4

)
= cos

(
π

4

)
ET,L := cϵET,L. (5.1.15)

The proof is completed by inserting (5.1.13), (5.1.14) and (5.1.15) into (5.1.11).

By definition, the sequences
(
AT,L(z)

)
L>0

and
(
BT,L(z)

)
L>0

are increasing in L and bounded for
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z < zc, thanks to (5.1.10) and the monotonicity of z. Thus, the following limits exist

AT (z) := lim
L→∞

AT,L(z) =
∑

ω⊂ST : a→α\{a}

zℓ(ω),

BT (z) := lim
L→∞

BT,L(z) =
∑

ω⊂ST : a→β

zℓ(ω).

Again using (5.1.10), for z = zc we conclude that
(
ET,L(zc)

)
L>0

is decreasing and converges to

ET (zc) = limL>0ET,L(zc). Hence, taking limits into (5.1.10)

1 = cαAT (zc) +BT (zc) + cϵET (zc). (5.1.16)

We conclude this section by providing a complete proof of Theorem 5.0.1.

Proof of Theorem 5.0.1. Remember that to prove it, it suffices to show that B(zc) = ∞ and that

B(z) < ∞ for any z < zc, where B(z) is the generating function of bridges that we can rewrite as

B(z) =
∑∞

T=0.

We first see the case with z < zc. Since BT (z) involves only bridges of length at least T we have

(
z

zc

)T

BT (zc) = bT,T z
T + bT+1,T zcz

T + . . .
(zc>z)

≥ BT (z) = bT,T z
T + bT+1,T z

T+1 + . . . .

Then, using (5.1.16)

BT (z) ≤
(

z

zc

)T

BT (zc) ≤
(

z

zc

)T

Therefore, for z < zc, B(z) is finite since the right-hand side of the inequality is summable (it is a

geometric series with ratio z
zc

< 1).

It only remains to prove that B(zc) = ∞. To do it, we are going to consider two different cases:

ET (zc) > 0 for some T : As said before, ET,L(zc) is decreasing in L. Then, if C(z) =
∑∞

n=0 cnz
n is

the generating function of the number of self-avoiding walks

C(zc) ≥
∞∑

L=1

ET,L(zc),

since the right-hand side only takes into account the SAWs ending at one mid-edge in ϵ or ϵ̄, while

the left-hand side takes into account all the possible self-avoiding walks.
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Now, using that ET,L ↘ ET and ET (zc) > 0

C(zc) ≥
∞∑

L=1

ET,L(zc) ≥
∞∑

L=1

ET (zc) = ∞.

Finally, by Corollary 4.2.2 if C(zc) diverges, then we also have B(zc) = ∞ as we wanted to see.

ET (zc) = 0 for all T : In this case, the equality (5.1.16) simplifies to

1 = cαAT (zc) +BT (zc). (5.1.17)

Note that if ω is contributing to AT+1(zc) but not to AT (zc), then ω must visit some vertex adjacent

to β. Cutting such a walk at the first such point (and adding mid-edges to the two halves), we

obtain two bridges of span T + 1 in ST+1. Thus,

AT+1(zc)−AT (zc) ≤ zc(BT+1(zc))
2, (5.1.18)

where the term zc in the right side is because adding the two mid-edges we have added an step.

Combining (5.1.17) for T and T + 1 with (5.1.18), we obtain

0 =
(
cαAT+1(zc) +BT+1(zc)

)
−
(
cαAT (zc) +BT (zc)

)
=
(
cαAT+1(zc)− cαAT (zc)

)
+BT+1(zc)−BT (zc)

≤ cαzc(BT+1(zc))
2 +BT+1(zc)−BT (zc).

Thus,

cαzc(BT+1(zc))
2 +BT+1(zc) ≥ BT (zc) (5.1.19)

Then, for BT (zc) we have:

Claim:

BT (zc) ≥
1

T
min

{
B1(zc),

1

cαzc

}
for every T ≥ 1.

Proof of the claim. We are going to prove it by induction on T . To simplify notation we denote

c = cαzc and we are going to write just BT instead of BT (zc). We are also going to denote

m = min
{
B1,

1
c

}
. We want to see BT ≥ m

T for all values of T ≥ 1.

Base case: T = 1: We trivially have B1 ≥ 1
1m.

Induction: T → T + 1: From (5.1.19),

cB2
T+1 +BT+1 ≥ BT

(induction)

≥ m

T
=⇒ cB2

T+1 +BT+1 −
m

T
≥ 0.
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Solving the inequality and only taking the positive solution (because BT are positive terms), we

obtain

BT+1 ≥
−1 +

√
1 + 4cmT
2c

.

Now,

−1 +
√
1 + 4cmT
2c

≥ m

T + 1
⇐⇒ 1 + 4

cm

T
≥
(

2cm

T + 1
+ 1

)2

= 1 +
4cm

T + 1
+

4c2m2

(T + 1)2

⇐⇒ 1

T
≥ 1

T + 1
+

cm

(T + 1)2
⇐⇒ 1

T (T + 1)
=

1

T
− 1

T + 1
≥ cm

(T + 1)2

⇐⇒ 1

T
≥ cm

T + 1
.

Since cm = min{cB1, 1} ≤ 1 and 1
T ≥ 1

T+1 the last inequality holds and due to all the implications

we finally obtain

BT+1 ≥
m

T + 1

Hence, the claim is proved. ■

Finally, using the claim

B(zc) =

∞∑
T=0

BT (zc) ≥
∞∑

T=1

BT (zc) ≥
∞∑

T=1

cm

T
= ∞.

Therefore, we have proved that B(zc) = ∞.

We have just proved Theorem 5.0.1, which gives us an exact number for the connective constant µ

on the hexagonal lattice H. However, this proof can not be adapted to the d-dimensional lattice Zd,

due to the special property of discrete analyticity, among other characteristics, that only take place

in H. Therefore, the connective constant in the hexagonal lattice is the only one exactly known.

Nevertheless, there are numerical approximations known for some connective constants in planar

lattices, including Z2, which you can find in [7].



Conclusions

As the title of this work suggests, the goal of this bachelor’s thesis was to study different techniques

to find enumerative results for a combinatorial class. In this work, we have learned two useful

techniques: the Symbolic method and the Kernel method. These methods can be used for any

combinatorial objects but we have focused on the study of lattice paths. Using them, we have

arrived to a formula for the generating function of any walk, bridge, meander or excursion with any

simple set of steps S in the quadrangular lattice Z2. These formulas only involve small branches

of the characteristic polynomial of S, that we have also learned how to find. Therefore, given any

simple set of steps S, as complicated as you want, this thesis provides a way to find the generating

function of any of these four types of lattice paths.

We have also learned that it is not possible to find exact counting formulas for all the combinatorial

objects, but in theses cases we can still study the asymptotic behaviour of these counting numbers.

To show it, we have focused on another type of lattice paths that we can generalize into a d-

dimensional lattice, with d ≥ 2 arbitrary. They are the self-avoiding walks, of which we have seen

that have the same connective constant (or exponential growth) as the one of bridges and polygons,

two new models that we have studied.

To conclude the work we have considered SAWs into the hexagonal lattice H and, due to the special

properties of this lattice, we have proved and understood the celebrated solution by Smirnov and

Duminil-Copin of the asymptotic counting of self-avoiding walks on the honeycomb. It is a result

that, as we have seen, appeals to discrete complex analysis results, an area which has recently

become very powerful to attack both combinatoric and probability problems. As further steps it

would be interesting to investigate more about discrete complex analysis and see more applications

of it, as it has been discovered that it has an spectacular range of applications, from analysis and

mathematical physics to image processing and architecture.
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Mathématique, Geneva, 2010.

[4] Hugo Duminil-Copin and Stanislav Smirnov. The connective constant of the honeycomb lattice equals√
2 +

√
2. Ann. of Math. (2), 175(3):1653–1665, 2012.

[5] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press, Cam-

bridge, 2009.

[6] G. H. Hardy and S. Ramanujan. Asymptotic formulæfor the distribution of integers of various types

[Proc. London Math. Soc. (2) 16 (1917), 112–132]. In Collected papers of Srinivasa Ramanujan, pages

245–261. AMS Chelsea Publ., Providence, RI, 2000.

[7] I. Jensen and A. J. Guttmann. Self-avoiding walks, neighbour-avoiding walks and trails on semiregular

lattices. J. Phys. A, 31(40):8137–8145, 1998.

[8] Krzysztof Jan Nowak. Some elementary proofs of Puiseux’s theorems. Univ. Iagel. Acta Math., (38):279–

282, 2000.

[9] Paul Sounak. The strong law of large numbers and fekete’s lemma. Available at https://www.

researchgate.net/publication/308520359_The_Strong_Law_of_Large_Numbers_and_Fekete,.

[10] Richard P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, 1999.

[11] Doron Zeilberger. Enumerative and algebraic combinatorics. 2010.

75

https://www.researchgate.net/publication/308520359_The_Strong_Law_of_Large_Numbers_and_Fekete
https://www.researchgate.net/publication/308520359_The_Strong_Law_of_Large_Numbers_and_Fekete

	Introduction
	I Exact models
	Introduction. Symbolic method
	Catalan numbers
	Symbolic method
	Basic constructions
	Catalan numbers with the symbolic method
	Another example: Motzkin numbers


	Algebraic techniques for generating functions
	Motivation
	Bivariate generating functions
	Equation for the bivariate generating function

	Algebraic preliminaries
	Algebraic generating functions
	Algebraic elimination
	Singularities of algebraic functions

	The method

	Lattice paths: walks, bridges, meanders and excursions

	II Non exact models
	Self-avoiding walks (SAWs)
	Fekete's subadditive lemma
	Bridges and polygons
	Bridges
	Polygons


	The connective constant on the hexagonal lattice
	The holomorfic observable
	Proof of Theorem 5.0.1


	Conclusions
	Bibliography


