
Research Article

Ocul Oncol Pathol

Monte Carlo Computation of Dose-Volume 
Histograms in Structures at Risk of an Eye 
Irradiated with Heterogeneous Ruthenium-106 
Plaques

Francisco J. Zaragoza 

a    Marion Eichmann 

b    Dirk Flühs 

c    Beate Timmermann 

d–h    

Lorenzo Brualla 

d–f    
a

 Faculty of Medicine, University of Duisburg-Essen, Essen, Germany; b Fakultät Physik, Technische Universität 
Dortmund, Dortmund, Germany; c NCTeam, Strahlenklinik, Universitätsklinikum Essen, Essen, Germany; d West 
German Proton Therapy Center Essen (WPE), Essen, Germany; e West German Cancer Center (WTZ), Essen, Germany; 
f

 University Hospital Essen, Essen, Germany; g German Cancer Consortium (DKTK), Essen, Germany; h Department of 
Particle Therapy, University Hospital Essen, Essen, Germany

Received: January 2, 2020
Accepted: April 18, 2020
Published online: July 20, 2020

Lorenzo Brualla
West German Proton Therapy Center Essen (WPE)
Hufelandstrasse 55
DE–45147 Essen (Germany)
lorenzo.brualla @ uni-due.de

© 2020 S. Karger AG, Basel

karger@karger.com
www.karger.com/oop

DOI: 10.1159/000508113

Keywords
Monte Carlo · Brachytherapy · PENELOPE · Ruthenium · 
Eye plaques · β-Emitter · Treatment planning · Dosimetry · 
Dose-volume histogram

Abstract
Background/Aims: The aim of this work is to compare Monte 
Carlo simulated absorbed dose distributions obtained from 
106Ru eye plaques, whose heterogeneous emitter distribu-
tion is known, with the common homogeneous approxima-
tion. The effect of these heterogeneities on segmented struc-
tures at risk is analyzed using an anthropomorphic phantom. 
Methods: The generic CCA and CCB, with a homogeneous 
emitter map, and the specific CCA1364 and CCB1256 106Ru 
eye plaques are modeled with the Monte Carlo code PENEL-
OPE. To compare the effect of the heterogeneities in the seg-
mented volumes, cumulative dose-volume histograms are 
calculated for different rotations of the aforementioned 
plaques. Results: For the cornea, the CCA with the equatorial 
placement yields the lowest absorbed dose rate while for the 

CCA1364 in the same placement the absorbed dose rate is 
33% higher. The CCB1256 with the hot spot oriented towards 
the cornea yields the maximum dose rate per unit of activity 
while it is 44% lower for the CCB. Conclusions: Dose calcula-
tions based on a homogeneous distribution of the emitter 
substance yield the lowest absorbed dose in the analyzed 
structures for all plaque placements. Treatment planning 
based on such calculations may result in an overdose of the 
structures at risk. © 2020 S. Karger AG, Basel

Introduction

106Ru eye plaques are used to treat malignant intra-
ocular tumors, such as uveal melanomas and retino-
blastomas [1–12]. Although 106Ru eye plaques have 
been widely studied using different methods [13–20], 
Monte Carlo simulations are considered the most ac-
curate approach to compute absorbed dose distribu-
tions in radiotherapy when small fields are involved 
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[21–24]. The accuracy of the method is limited only by 
the underlying cross-section models, the radiation 
transport algorithms, and the reached statistical uncer-
tainty.

There is, in general, a lack of accurate knowledge on 
the absorbed dose distribution in the eye, especially in 
the structures at risk, and its effects on clinical outcome 
[12, 25–27]. The first works that used simulations for 
computing the dose distribution considered the eye as a 
water sphere and the radioactive substance homoge-
neously distributed in the plaque. Using Monte Carlo 
methods, Brualla et al. [28] determined the absorbed 
dose distribution inside a computerized tomography 
(CT) of an eye, while considering the radioactive sub-
stance to be homogeneously distributed in the plaque. In 
a posterior work, Zaragoza et al. [29] computed the ab-
sorbed dose distribution in a water phantom employing 
the actual distribution of the emitter substance from 2 
specific plaques, namely CCA1364 and CCB1256. More 
recently, Zaragoza et al. [30] simulated the treatment of 
uveal melanomas using CT of an eye and plaques 
CCA1364 and CCB1256. The available treatment plan-
ning system for eye plaques, called Plaque Simulator 
[15], uses approximate analytical methods for comput-
ing the absorbed dose distribution in a homogeneous wa-
ter phantom, and, until recently, it considered the emit-
ter distribution on the plaque to be homogeneous. The 
most recent version of this code uses the sparse informa-
tion on the inhomogeneity of the plaque provided in the 
certificate for computing the dose distribution. It is clear 
that a dose computation, in which a detailed emitter map 
of the plaque is employed, together with a Monte Carlo 
simulation of the radiation transport in a CT of the pa-
tient, in which the actual heterogeneous mass density is 
considered, will yield a more accurate distribution than 
that obtained with the EYEPLAN code. This is particu-
larly relevant for the computation of the absorbed dose 
outside the target volume, with emphasis on the struc-
tures at risk. European and many national laws currently 
require the appropriate computation of the dose deliv-
ered to non-target volumes (see for example article 56.1 
from the Council Directive [31]).

The present study aimed to elucidate the effect of het-
erogeneous emitter distributions on the structures at risk 
using the same eye model and plaques employed in our 
previous research. The relative position of the eye plaques 
and the heterogeneities of the emitter substance are taken 
into account to assess the effect of the latter on the struc-
tures analyzed.

Materials and Methods

Geometry of the Plaques
Plaques CCA1364 and CCB1256 from the manufacturer BE-

BIG (Eckert & Ziegler BEBIG, Berlin, Germany) are considered in 
this work. Both plaques consist of a spherical truncated cap of 12.0 
mm (inner radius) along their symmetry axis. The outer diameter 
of the cap across the rim amounts to 15.5 mm for the CCA1364 
and 20.2 mm for the CCB1256. The plaques are made of 3 silver 
layers of 0.1, 0.2, and 0.7 mm of thickness from the inner to the 
outer surface. The active layer, where the radioactive substance is 
electrolytically deposited in its inner surface, corresponds to the 
middle layer. This layer is encapsulated between the inner (or win-
dow) layer and the outer (or shielding) layer and does not cover 
the whole surface, falling short of the rim by 0.7 mm. The emitter 
substance distribution, which was measured using a device spe-
cifically developed at the Technical University of Dortmund [32], 
is heterogeneous in both plaques. 

The plaques are modeled using the constructive quadric geom-
etry package provided by the general-purpose Monte Carlo radia-
tion transport simulation code PENELOPE [33, 34]. The activities 
of the plaques, which are reported on their respective certificate, 
are 11.6 MBq for the CCA1364 and 27.3 MBq for the CCB1256, 
while the nominal activities quoted by the manufacturer are 13.7 
MBq for the generic CCA and 25.9 MBq for the generic CCB. For 
the actual plaques (CCA1364 and CCB1256), the activities report-
ed in their respective certificates, corrected by the date when they 
were measured at Dortmund, were used. For the generic CCA and 
CCB plaques, the nominal activities were employed. The accuracy 
of the simulation system was previously validated by comparison 
of the simulated results in a water phantom with experimental data 
[19, 35].

Simulation Codes
The radioactive isotope of 106Ru decays into 106Rh, producing 

a β-spectrum of a maximum energy of 39 keV and a half-life of 368 
days. Subsequently, 106Rh disintegrates into stable 106Pd, produc-
ing a β-spectrum used for therapeutic purposes, characterized by 
a maximum energy of 3.540 MeV and a half-life of 29.8 s.

Simulations were run with the PENELOPE (2008) code [33] 
using penEasy (2010-09-07) [36] as the main steering program. 
Since the employed version of penEasy/PENELOPE is not pre-
pared to simulate β-decay spectra and heterogeneous radiation 
sources, 2 modifications are needed. An adapted version of the 
EFFY code [37], which uses the Fermi theory to describe the 
β-decay, was incorporated into the penEasy code to simulate the 
decay of 106Rh into 106Pd through the 5 disintegrations with the 
highest yields, i.e., 3.540 MeV (78.6%), 3.050 MeV (8.1%), 2.410 
MeV (10.0%), 2.000 MeV (1.77%), and 1.539 MeV (0.46%). The 
second modification is aimed at using the probability distributions 
of the experimental heterogeneous emitter maps to sample pri-
mary electrons over the plaque surface.

Voxelized Geometry
The size of an emmetropic eyeball does not differ from one in-

dividual to another [38]. Therefore, the conclusions derived from 
the CT employed are general enough. This CT was also used in 
previous works [30, 39–41]. The CT scan has 256 × 256 × 59 voxels 
of 0.03125 × 0.03125 × 0.1 cm3. Hounsfield units are converted 
into mass density values using the calibration curve of the CT scan-
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ner. Three materials are considered: water, air, and bone. A dis-
tinctive feature of penEasy that allows overlapping quadric sur-
faces in a voxelized geometry is used to simulate the geometry of 
the plaques embedded in the voxelized human phantom.

Placement of the Plaques
Eye plaques are placed with its symmetry axis coplanar with the 

axial plane of the CT scan where the eyeball shows its largest di-
ameter, which corresponds to slice 21 of the CT scan. 

For the simulations of the CCA (generic plaque with a ho-
mogenous distribution of the emitter substance) and the 
CCA1364 (actual heterogeneous plaque) plaques, 3 different lo-
cations with respect to the equatorial plane of the eyeball previ-
ously defined are considered. These locations are called anterior, 
equatorial, and posterior. The anterior location is set 15° above 
the equatorial plane of the eye, that is 30° above the horizontal 
axis of the CT scan. On the equatorial location, the symmetry 
axis of the plaque coincides with the equatorial plane of the eye, 
that is 15° above the horizontal axis of the tomography scan. The 
posterior location is set 15° below the equatorial plane of the 
eyeball, that is 30º below the horizontal axis of the tomography 
scan. For the simulations of the CCB (homogeneous) and the 
CCB1256 (heterogeneous) eye plaques, only the equatorial loca-
tion is considered.

Orientation of the Plaques
The influence of the heterogeneities on the emission map of 

the plaques is studied. Rotations around the symmetry axis of 
the plaques allow to analyze the effect of the heterogeneities. De-
spite the heterogeneity of the CCA1364 plaque, it does not show 
a well-defined hot spot. Therefore, rotations are not applied to 
this plaque. Conversely, the CCB1256 has a hot spot whose ac-
tivity amounts to 25% above the average of the plaque. The effect 
of the relative position of the hot spot with respect to the seg-
mented structures is analyzed by 3 rotations. In the original ro-
tation, the hot spot is located 42° below the axial plane corre-
sponding to slice 21 of the CT scan. In the proximal rotation, the 

hot spot is oriented close to the segmented structure being ana-
lyzed, while for the distal rotation the contrary holds. In all cas-
es, the bin of the hot spot with the largest activity is placed in the 
axial plane.

Segmentation of Anatomical Structures in the Eye
The human eye is a complex organ formed by different anatomi-

cal structures. To segment the anatomical structures of the eye, 2 
methods are used. The volumes corresponding to the sclera, the cor-
nea, and the anterior and posterior chamber are defined by grouping 
quadric surfaces and then selecting the voxels included within the 
volumes. For segmenting the eye lens, the papilla, the optic disk, the 
optic nerve, and the lacrimal gland, the voxels belonging to these vol-
umes are manually identified by their coordinates.

The contour enclosing the eyeball is defined as a sphere of 1.215 
cm of radius centered at 3.825 × 3.452 × 2.100 cm3 in a cartesian co-
ordinate system whose origin is the lower left posterior vertex of the 
tomography scan. The equatorial plane of the eyeball is determined 
by a plane 15° above the horizontal CT axis that passes through the 
center of the eyeball. The contours of the sclera and the cornea are 
defined by 2 concentric spheres of the outer radius of the eyeball and 
the inner radius of 1.045 cm. The cornea is the volume of a cap with 
the outer diameter parallel to the equatorial plane of the eyeball 1.1 
cm across the rim of the external sphere. The rest of the volume con-
tained between the spheres corresponds to the sclera. 

The spheres and the plane used to segment these structures de-
fine the voxels that belong to them. This implies that a voxel di-
vided by a boundary surface needs to be assigned either to the cor-
responding structure or to the outside. The inclusion criterion is 
based on the position of the center of the voxel with respect to the 
boundary surface. An immediate consequence of this criterion is 
that the thicknesses of the sclera and the cornea are not constant. 
Both range from approximately 1.2 to 2.1 mm depending on the 
number of voxels contained between the 2 boundary spherical sur-
faces. The average thickness is in agreement with the default value 
of 1.5 mm employed in the code EYEPLAN [42, 43] and gives a 
safety margin of 0.5 mm.
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Fig. 1. Dose-volume histograms for the sclera corresponding to 
plaques in an equatorial placement. 
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Fig. 2. Dose-volume histograms for the sclera irradiated by the CCA 
and the CCA1364 plaques in an anterior and posterior placement.
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Results and Discussion

Simulated absorbed doses using Monte Carlo methods 
are expressed in terms of dose per primary particle. These 
units are converted into mGy min–1, that is, the dose rate. 
For this conversion, the activities of the plaques are re-
quired. The reached average standard statistical uncer-
tainty of the dose is in all cases < 1%. 

The analysis of the considered simulations is based on 
cumulative dose-volume histograms (DVH) of the afore-

mentioned anatomical structures. For the sclera, Figure 1 
shows DVH corresponding to the equatorial placement, 
while the anterior and posterior placements are shown in 
Figure 2. 

For the cornea, Figure 3 shows the DVH for anterior 
and equatorial placements. Notice that the posterior 
placement is not considered. The maximum absorbed 
dose rate in the cornea corresponds to the CCA1364 in 
anterior placement, while the results from the CCB1256 
are just 3% below. The absorbed dose rate using the CCB 
is 20% less than that using the CCB1256. With the CCA 
plaque in an anterior placement, the absorbed dose rate 
is 31% less than that obtained with the CCA1364 in the 
same placement. The lowest absorbed dose rate of 1.58 
mGy min–1 is achieved for the CCA with the equatorial 
placement. For the CCA1364 in the same placement, the 
absorbed dose rate is 33% higher. Figure 4 shows the com-
parison of the DVH in the cornea for the CCB and the 
CCB1256 plaque depending on the location of the hot 
spot. The maximum dose rate per unit of activity corre-
sponds to the CCB1256 with the proximal rotation. For 
the CCB and the CCB1256 in the original orientation (hot 
spot 138° away from the proximal orientation), the ab-
sorbed dose rate is 44 and 30% lower, respectively. Notice 
that the effect of the hot spot becomes evident when it is 
closer to the cornea.

Figure 5 shows the DVH in the eye lens for plaques in 
an anterior and equatorial placement. As it occurs with 
the cornea, the posterior location is not considered. The 
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Fig. 3. Dose-volume histograms for the cornea corresponding to 
plaques in an anterior and equatorial placement. The labels indi-
cate the plaque model and its placement.
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Fig. 4. Dose-volume histograms for the cornea for the CCB and the 
CCB1256 plaques taking into consideration the hot spot location. 
The label showing only the plaque model CCB1256 indicates that 
it is placed in the original orientation.
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Fig. 5. Dose-volume histograms for the eye lens corresponding to 
plaques in an anterior and equatorial placement. See caption of 
Figure 4 for an explanation of the label CCB1256.
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CCB1256 plaque yields the maximum absorbed dose rate 
in the lens. DVH for the CCA1364 and the CCB are sim-
ilar. For the CCA in an anterior placement, the absorbed 
dose is 29% lower than the CCB1256 in original orienta-
tion. The absorbed dose for the CCB is 17% less than  
the CCB1256 in original orientation. As expected, the 
 equatorial placement for the CCA and the CCA1364 re-
sults in the minimum dose with respect to the CCB1256.  

Figure 6 shows the DVH for the CCB and the CCB1256 
plaque with respect to the placement of the hot spot. The 
maximum absorbed dose rate per unit of activity corre-
sponds to the CCB1256 in the proximal orientation. For 
the CCB1256 with distal rotation and the CCB, the max-
imum absorbed dose rates are 17 and 31% lower than the 
CCB1256 in proximal rotation, respectively. As it occurs 
with the cornea, the effect of the hot spot is evident when 
it is closer to the lens.

Figure 7 shows the DVH of the papilla obtained only 
by plaques in equatorial placement. The maximum ab-
sorbed dose rate in the papilla corresponds to the ac-
tual CCB1256 plaque in the proximal rotation. The 
maximum absorbed dose rate is 48% higher than in the 
CCB plaque. For the CCB1256 in the original rotation 
(hot spot 42° away from the proximal orientation) and 
the CCB1256 with a distal rotation, the absorbed dose 
rates are 22 and 20% lower, respectively. It is also ob-
served that the CCA1364 and the CCA plaques give the 
minimum absorbed dose rate per unit of activity. The 
posterior placement of the plaques implies a 2.4-mm 
coverage of the papilla. For this reason, the doses deliv-
ered by the plaques at this placement are the highest, 
and they are compared in Figure 8. The maximum ab-
sorbed dose rate per unit of activity in posterior place-
ment corresponds to the CCA1364, and it is 25% high-
er than the CCA plaque.
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Fig. 6. Dose-volume histograms for the eye lens according to the 
CCB and CCB1256 plaques taking into consideration the hot spot 
location. See caption of Figure 4 for an explanation of the label 
CCB1256.
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Fig. 7. Dose-volume histograms for the papilla corresponding to 
plaques in an equatorial placement. The label showing only the 
plaque model CCB1256 indicates that it is placed in the original 
orientation.
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Fig. 8. Dose-volume histograms for the papilla when the CCA and 
the CCA1364 plaques are placed posteriorly.
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Conclusions

Heterogeneities on the distribution of the emitter sub-
stance in eye plaques and, particularly, the presence of hot 
spots determine the absorbed dose in the different struc-
tures at risk. Rotations of the plaques can reduce or in-
crease the absorbed dose in them.

Dose calculations based on a homogeneous distribu-
tion of the emitter substance yield the lowest absorbed 
dose of the structures analyzed for all plaque place-
ments. Treatment planning based on such calculations 
may result in an overdosage of the structures at risk. 
Thus, knowledge of the emitter map of an eye plaque is 
relevant and needs to be considered when planning a 
treatment.
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