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Abstract
In this bachelor thesis we study the Network Formation Games model with attack

and immunization introduced by Goyal et al. The model consists of agents who
want to maximize their benefit by connecting with other agents, which involves the
cost of creating connections. Furthermore, an adversary will attack the network
generated by agents and the agents can decide to immunize against the attack paying
an additional cost. Different types of adversaries were proposed by Goyal et al. The
objective is to gain an understanding of the model focusing on the random attack
adversary and obtain results of connectivity, social welfare, diversity of equilibrium
networks and best response dynamics based on previous works. With respect to the
random attack adversary we prove that when cost of creating an edge CE > 1 the
resulting non-trivial equilibrium network (with at least one edge and at least one
immunized vertex) G is a connected graph, and when CE and cost of immunization
CI are constants and CE > 1 then the welfare of G is n2−O(n5/3). We also study the
diversity of equilibrium networks and we show that among the types of equilibrium
networks for the maximum carnage adversary presented by Goyal et al., empty graph,
trees, cycles, flowers and complete bipartite graph are also equilibria for the random
attack adversary with slight difference in parameters, the forest networks have a
particular case of equilibrium for the random attack adversary but in general they
are only equilibrium with respect to the maximum carnage adversary. Finally, we
study the convergence of the best response dynamics with respect to the random
attack adversary and we prove that it can cycle. We conclude our research with a
simulation of the best response dynamics, we observe that it converges rapidly to an
efficient equilibrium for the random attack adversary.

Key words: Network Formation Games, Social Welfare, Equilibrium Networks,
Best Response Dynamics
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Resumen
En esta tesis de grado estudiamos el modelo de Juegos de Formación de Red con

ataque e inmunización introducido por Goyal et al. El modelo consta de agentes
que quieren maximizar su beneficio por conectarse con otros agentes, lo que implica
el coste de crear conexiones. Además, un adversario atacará la red generada por
los agentes y los agentes pueden decidir inmunizarse contra el ataque pagando un
coste adicional. Goyal et al. propusieron diferentes tipos de adversarios. El obje-
tivo es comprender el modelo enfocándose en el adversario de ataque aleatorio y
obtener resultados de conectividad, bienestar social, diversidad de redes de equi-
librio y dinámicas de mejor respuesta basados en trabajos previos. Con respecto
al adversario de ataque aleatorio, demostramos que cuando el coste de crear una
arista CE > 1 la red de equilibrio no trivial (con al menos una arista y al menos un
vértice inmunizado) resultante G es un grafo conexo, y cuando CE y el coste de la
inmunización CI son constantes y CE > 1, entonces el bienestar de G es n2−O(n5/3).
También estudiamos la diversidad de redes de equilibrio y demostramos que entre
los tipos de redes de equilibrio para el adversario de máxima matanza presentado
por Goyal et al., grafo nulo, árboles, ciclos, flores y grafo bipartito completo también
son equilibrios para el adversario de ataque aleatorio con ligera diferencia en los
parámetros, las redes bosque tienen un caso particular de equilibrio para el adversario
de ataque aleatorio pero en general son solo equilibrio con respecto al adversario de
máxima matanza. Finalmente, estudiamos la convergencia de la dinámica de mejor
respuesta con respecto al adversario de ataque aleatorio y demostramos que puede
ciclar. Concluimos nuestra investigación con una simulación de la dinámica de mejor
respuesta, observamos que converge rápidamente a un equilibrio eficiente para el
adversario de ataque aleatorio.

Palabras clave: Juegos de Formación de Red, Bienestar Social, Redes de Equilibrio,
Dinámica de Mejor Respuesta
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Resum
En aquesta tesi de grau estudiem el model de Jocs de Formació de Xarxa amb

atac i immunització introdüıt per Goyal et al. El model consta d’agents que volen
maximitzar el benefici per connectar-se amb altres agents, fet que implica el cost
de crear connexions. A més, un adversari atacarà la xarxa generada pels agents
i els agents poden decidir immunitzar-se contra l’atac pagant un cost addicional.
Goyal et al. van proposar diferents tipus d’adversaris. L’objectiu és comprendre el
model enfocant-se a l’adversari d’atac aleatori i obtenir resultats de connectivitat,
benestar social, diversitat de xarxes d’equilibri i dinàmiques de millor resposta basats
en treballs previs. Pel que fa a l’adversari d’atac aleatori, demostrem que quan el
cost de crear una aresta CE > 1 la xarxa d’equilibri no trivial (amb almenys una
aresta i almenys un vèrtex immunitzat) resultant G és un graf connex, i quan CE i
el cost de la immunització CI són constants i CE > 1, llavors el benestar de G és
n2 −O(n5/3). També estudiem la diversitat de xarxes d’equilibri i demostrem que
entre els tipus de xarxes d’equilibri per l’adversari de màxima matança presentat per
Goyal et al., graf nul, arbres, cicles, flors i graf bipartit complet també són equilibris
per l’adversari d’atac aleatori amb lleugera diferència als paràmetres, les xarxes bosc
tenen un cas particular d’equilibri per l’adversari d’atac aleatori però en general són
només equilibri respecte a l’adversari de màxima matança. Finalment, estudiem la
convergència de la dinàmica de millor resposta pel que fa a l’adversari d’atac aleatori
i demostrem que pot ciclar. Concloem la nostra recerca amb una simulació de la
dinàmica de millor resposta, observem que convergeix ràpidament a un equilibri
eficient per l’adversari d’atac aleatori.

Paraules clau: Jocs de Formació de Xarxa, Benestar Social, Xarxes d’Equilibri,
Dinàmica de Millor Resposta
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1 Introduction

1.1 Context
In Computer Science, a problem can involve many different selfish entities, like players
who want to maximize their own benefit. A method of modeling this type of problem
is to use the concept of strategic games in Game Theory. Game Theory is the area
that studies decisions made by players in those environments and the behavior of
players following the objective of optimizing their benefit. Game Theory was first
applied in economics and is one of the standard economic analysis tools. Along
with its continuous development, the application of Game Theory has expanded
to Computer Science, Biology and many other fields. The combination of Game
Theory and Computer Science is called Algorithmic Game Theory, it focuses on
issues related to the Internet and human behavior, and investigates many problems
in Computer Science from a point of view of Game Theory.

Models in Game Theory are referred to as games. A classical model is the so-
called strategic game in which there are a set of players (agents) and players interact
between them by choosing an available action according to the rules of the model,
that define their costs and payoffs which depend upon the actions selected by all
players, and their utility as payoffs minus costs. A strategy of a player is the method
the player uses to determine which action is chosen throughout the game.

Game theory looks for states of equilibrium when no player can do better by choosing
a different action and properties in equilibrium states. We have different definitions
for states of equilibrium, with Nash Equilibrium being the most important among
them. To introduce the notion of Nash Equilibrium, first we define the best response.
The best response of a player is a strategy which maximizes the utility of the player,
assuming that all other players do not change their strategies. Then, we define Nash
Equilibrium as the state of a strategic game in which all players’ strategy is their
best response, this means that no player can reach a higher utility by changing
her strategy. Generally, computing the best response and Nash Equilibrium can be
computationally hard, as it has been shown that the problem is NP-hard. To find a
Nash Equilibrium in the case that we can compute the best response efficiently, we
often ”play” a strategic game by rounds and update strategies of players according
to their best response in each round. This method is called best response dynamics,
there exist models that their best response dynamics always converge to a Nash
Equilibrium, for example potential games[12], and models that their best response
dynamics do not always converge.

One particular subfamily of strategic games is Strategic Network Formation Model[1][13].
It consists of games that model creation and maintenance of a network. The net-
work is represented by a graph, in which each player is a node of the graph and
can buy edges to other players, paying a price per edge. The players can benefit
by forming connections with other players. This type of games can be used to an-
alyze networks in real life such as the internet and are also used in physics and biology.
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Traditionally, in Strategic Network Formation Games we want to build a low-cost
network determined by the behavior of various selfish agents that satisfies certain
properties. However, when networks like the internet evolve and increase their size,
they can be vulnerable to adversarial attack. For example, on the internet there
are connections between different computers that are vulnerable under attacks like
viruses or DDoS. All computers have the option of taking measures such as antivirus
to defend against the attack with an additional cost for it. In biology, networks can
represent social relation and contacts between humans, an attack may occur in the
form of infection of a virus that spreads to other individuals through the network.
Again, individuals can choose to immunize against the attack.[10]

To model the above situation, different variations of Network Formation Games have
been considered, in which concepts like adversary attack and immunization were
introduced. There is an enemy who can examine the network and choose a player to
attack. The attack will spread through edges of the network and destroy vertices of
players. Players have the option to pay an additional cost to be immunized against
the attack.

Bala and Goyal in [9] studied the original reachability network formation game
without attack or immunization in which players buy edges to each other and benefit
from the size of their connected component. Networks with contagion risk have been
studied previously by Cerdeiro et al. [8] and Goyal et al. [1] introduced Network
Formation Games model with attack and immunization. In the model introduced
by Goyal et al., an adversary can choose a player to start the spread of the attack,
and the players can buy edges and decide to immunize against the attack. Players
benefit from the expected size of their connected component after the adversary
attack. Different types of adversaries were proposed, such as maximum carnage
adversary, random attack adversary and maximum disruption adversary. Goyal et al.
studied the equilibria of such games focusing on the maximum carnage adversary.
The maximum carnage adversary chooses a player to attack with the objective of
maximizing the spread of the attack and the number of destroyed players. The main
results of such work can be summarized as follows:

• Diversity of equilibria: Graphs formed in equilibrium states can have different
structures: empty graphs, trees, forest, cycles, flowers, complete bipartite
graph...

• Edge density of equilibrium networks: It is shown that an equilibrium network
of n players can have at most 2n− 4 edges. This result also holds for random
attack adversary and maximum disruption adversary.

• Connectivity and social welfare of equilibrium networks: It is shown that an
equilibrium network of n players is a connected graph when the cost of buying
an edge is greater than 1 and the total utility is n2 −O(n5/3).

• Best response dynamics: Goyal et al. conjectured a fast convergence of the best
response dynamics in most cases for maximum carnage adversary. However,
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depending on tie breaking rules for multiple best responses, there are examples
in which the best response dynamics does not converge.

Our main objective in this project is to gain an understanding of the model focusing
on the random attack adversary and obtain results based on previous works. The ran-
dom attack adversary chooses randomly an unimmunized player to attack. In contrast
with the maximum carnage adversary, all unimmunized players have the possibility
of being attacked by the random attack adversary and it does not maximize the
number of destroyed players. We might think the random attack adversary is weaker
by its definition, our main questions are how it affects the structures of equilibrium
networks, social welfare and best response dynamics. To answer these questions we
will study diversity of equilibrium networks, connectivity and social welfare, compare
our results with those presented by Goyal et al. [1] to see similarities and differences
between random attack adversary and maximum carnage adversary. With respect
to the random attack adversary we prove that when the cost of creating an edge
CE > 1 the resulting non-trivial equilibrium network G is a connected graph, and
when CE and cost of immunization CI are constants and CE > 1 then the welfare
of G is n2 − O(n5/3). We show that among the types of equilibrium networks for
the maximum carnage adversary presented by Goyal et al. [1], empty graph, trees,
cycles, flowers and complete bipartite graph are also equilibria for the random attack
adversary with slight difference in parameters, the forest networks have a particular
case of equilibrium for the random attack adversary but in general they are only
equilibrium with respect to the maximum carnage adversary. Besides of that, we will
also study the convergence of the best response dynamics when all players choose
their best response until an equilibrium is reached, we will experiment it with an
implemented algorithm that calculates the best response for one player, different
from the approach of the article [1] that uses Swapstable dynamics to update the
action of a player by considering only deviations of: buying an edge, deleting an
edge, buying and deleting an edge or any of the above modifying immunization. We
show that the best response dynamics for the random attack adversary can cycle
under a certain tie breaking rule as in the case of maximum carnage adversary and
we observe that it converges rapidly to an efficient equilibrium in experiments.

Finally, this project is an introduction to scientific research for me. Variations
of Network Formation Games and their properties is an interesting problem and it
still has a lot of unanswered questions for researchers to investigate.

1.2 Scope
1.2.1 Objectives

We have the following general objectives of our project:

1. Study the model of Network Formation Games under adversary attack with
immunization in depth.

2. Study the results shown in the article Strategic Network Formation with Attack
and Immunization to have an understanding.
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3. Study the following properties focusing on the random attack adversary based
on previous studies: Diversity of equilibrium networks, Connectivity and social
welfare and Convergence of best response dynamics.

4. Compare different models of adversaries.

5. Simulate the network for the random attack adversary.

6. Obtain conclusions from results of our research.

1.2.2 Requirements

Some functional and non-functional requirements we need to meet for the quality of
our project are:

• Have good knowledge of concepts and definitions of Game Theory, Network
Formation Games, and the extended model.

• Understand the results of the article [1] and their proofs.

• Write clearly in demonstrations of properties.

• Design a correct and efficient algorithm to simulate the network.

• Use plots and graphics to represent the obtained results.

1.2.3 Potential Obstacles and Risks

There are several potential obstacles and risks that we may encounter during the
development of this project:

• The first obstacle is the timing of the project. We have three months for the
development of the project before the final delivery. This is enough to complete
the project but is not expected to leave time in case of incidents, so we have to
organize well regarding the planning.

• The lack of theoretical knowledge in the field is also an obstacle. I have
not studied subjects related to Game Theory before and I had to read books
and other materials to learn about this field.

• A risk of our project is the computation time of the simulation because
the computational cost and time complexity of the implemented algorithm can
be high.

• Mistakes in theoretical proofs and algorithm implementation is an-
other risk of our project. To prevent them, we must check our demonstrations
carefully and spend more time on code debugging.

• Mistakes in writing style used in documentations is also a risk. We have
to show our ideas to readers clearly, using a formal language free of grammar
and spelling mistakes.
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• Finally, in the time of pandemic, the meeting with the director of this project
will be online. This makes the explanation of the results harder because we do
not have a physical blackboard as in real life.

1.3 Methodology and rigour
1.3.1 Work Methodology

In order to develop the project with success, it is important to choose the right work
methodology in relation to methodologies studied in the degree and adapted to the
project.

The work methodology used in this project is the Kanban methodology. This
methodology consists of a board with tasks represented as cards. The board is
divided into columns, each column represents a status of tasks. We have in total
three columns:

• To do: contains all tasks that have not been started.

• In progress: contains all started but unfinished tasks.

• Completed: contains all finished tasks.

The Kanban methodology has the advantage of being very visual, which allows us to
quickly see the status of all tasks of the project.

To track the progress, we will use Trello, a web-based application of Kanban style in
which we can organize our tasks by putting them under different tags.

1.3.2 Monitoring Tools

An online meeting with the director of this project will be arranged every week using
Google Meet with the objective of discussing the progress of the project and the next
tasks to do. We will also use Google Jamboard for illustration in case of questions.

Due to the theoretic nature of the project, all the documents that contain demon-
strations, questions and newer results will be sent via email. For version control of
the coding part, we will use a GitHub repository because it is simple and stores
previous versions that can be easy to recover. We will use a master branch for the
functioning code and a develop branch for all the code that is in development.
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2 Preliminars

2.1 Strategic Game
A strategic game Γ is defined by:

• A finite set N of n players, {1, 2, ...n}.

• Each player i has her own nonempty set of possible strategies, Si.

• Each player chooses her action si ∈ Si once. Players choose actions simultane-
ously.

• When a player i chooses her action si ∈ Si she is not informed of the actions
chosen by others.

• S = S1× ...×Sn the set of all possible ways in which players can pick strategies
and s = (s1, ..., sn) ∈ S is a strategy profile or vector of strategies selected by
the players.

• For each player i, a preference relation (a complete, transitive, reflexive binary
relation) over the set S. Given two elements of S, the relation for player i says
which of these two outcomes i weakly prefers. We say that i weakly prefers S1
to S2 if i either prefers S1 to S2 or considers them as equally good outcomes.

• Pay-off functions ui(s1, ..., sn) to specify preferences by assigning for each player
a value to each outcome. We can also consider cost functions ci(s1, ..., sn) =
−ui(s1, ..., sn) to specify costs and each player prefers to minimize her individual
cost.[5][6]

An example of the strategic game is the Prisoner’s Dilemma. Two prisoners are held
in separate cells on trial for a crime and each one faces a choice of confessing to the
crime or remaining silent. If they both remain silent, they will be convicted for a
minor offense (2 years). If only one of them confesses, his term will be reduced to 1
year and the other will be convicted for a major offense (5 years). If both confess,
each one will be convicted for a major offense with a reward for cooperation (4 years
each).

In this example, we have two players, each player has silent, confess as the set
of possible strategies. The set of all possible actions is (silent, silent), (silent, confess),
(confess, silent), (confess, confess). The utilities of players are represented in the
Table 1 below.

2.2 Nash Equilibrium
In a strategic game, given a player i and the strategies of the rest of players
s−i = (s1, . . . , si−1, si+1, . . . , sn), the set of best responses for player i respect to s−i

are the actions that give maximum pay-off provided the other players do not change
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player/actions (silent,silent) (silent,confess) (confess,silent) (confess,confess)

player1 2 0 3 1
player2 2 3 0 1

Table 1: Utilities of players

their strategies. Formally it is the set of strategies si ∈ Si that maximizes the players’
pay-off function ui taking current strategies of other players s−i into account.

The best response dynamics is a process of game-playing that in each iteration
a player updates her strategy by making a best response move. The best response
dynamics converges if the process stops at an equilibrium in which no player can do
better by changing her strategy.

A pure Nash equilibrium is a strategy profile s∗ = (s∗1, . . . , s∗n) such that no player i
can do better choosing an action different from s∗i , given that every other player j ad-
heres to s∗j . Formally, for every player i and for every action si ui(s∗1, . . . , s∗i , . . . , s∗n) ≥
ui(s∗1, . . . , si, . . . , s

∗
n). From now on, we use the term equilibrium or Nash equilibrium

to refer to pure Nash equilibrium.[5][6]

2.3 Network Formation Games
Network Formation Games are games that:

• Model creation and maintenance of a network.

• Have n players as vertices V = {1, ..., n} in an undirected graph.

• Each player can buy/create edges to other players paying a price α > 0 per
edge.

• A strategy su of player u is a subset su ∈ V − {u} that represents the set of
nodes for which u pays for a link.

• As a result of a strategy profile s = (s1, ..., sn) an undirected graph G = (V,E)
is created with E = {(u, v)|u ∈ sv ∨ v ∈ su}.

• The goal of player u is to minimize the cost function cu(s) = creation cost +
usage cost, with creation cost = α|su|. The usage cost depends on our definition,
for example in SUM game the usage cost = sum of all distances between u and
other vertices ∑v∈V dG(u, v) and in MAX game the usage cost = maximum of
all their distances maxv∈V dG(u, v).[5][6][7]

Here we have an example of Network Formation Game:
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1 2

3

4 5

1 2

3

4 5

Figure 1: Example of Network Formation Game. Left: Strategy profile. Right:
Resulted network.

In the strategy profile graph, each arrow represents who bought the edge. We have 5
players and strategy profile s = ({2, 3}, {3}, {2, 4, 5}, {3}, {}). The creation cost is
{2, 1, 3, 1, 0} for α = 1, in the resulted network the usage cost using SUM definition
is {6, 6, 4, 7, 7} and the usage cost using MAX definition is {2, 2, 1, 2, 2}.

2.4 Graph Theory
Given a graph G = (V,E) and a subset of its vertices U ⊆ V , its induced subgraph is
defined as G[U ] = (U, {(u, v)|(u, v) ∈ E ∧ u, v ∈ U}).

1 2

3

5 4

6

1

3

5

6

Figure 2: Example of a graph G and its induced subgraph G[{1, 3, 5, 6}]
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3 Network Formation Game with Attack and Im-
munization

In this section, we define the model introduced by Goyal et al. in [1] and review
their main results:

3.1 Definition
This Network Formation Game with Attack and Immunization has n players as
vertices of a graph. Each player can buy/create edges to other players paying a price
CE > 0 per edge and each player can spend a cost CI > 0 to immunize against the
adversary attack.

A strategy si for player i is defined by a pair si = (xi, yi) where xi ⊆ {1, ...n}
represents the set of edges i has bought to a subset of players and yi ∈ {0, 1} her
decision of immunization, yi = 1 iff i immunizes.

Given a strategy profile s, the set of edges bought by all players induce an undirected
graph G = (V,E) with V = {1, ..., n} and E = {(u, v)|u ∈ xv ∨ v ∈ xu}.

The immunization choices induce a partition of V in the set of immunized players
I ⊆ V and vulnerable players U = V − I. The maximally connected components of
the induced graph G[U ] are called vulnerable regions.[8]

Given a game state (G, I), the adversary can examine the whole graph G and
choose a vulnerable vertex v ∈ U to attack. The attack will spread to all vertices
reachable from v without immunization (the vulnerable region that contains v) and
killing them. The adversary is specified a function Pr that defines the probability
of attack for each vulnerable region. T = {T1, ...Tk} is the set of vulnerable regions
with non-zero probability of attack, which are called as targeted regions. Formally,
let Pr[T ′] the probability of attack of a targeted region T ′ and CCi(T ′) the size of
connected component of player i after an attack to T ′. Then the expected utility
ui(s) of player i in strategy profile s is defined by the expected size of her connected
component after attack minus her costs of edges and immunization:[9]

ui(s) =
∑
T ′∈T

(Pr[T ′]CCi(T ′))− |xi|CE − yiCI .

The social welfare of a strategy profile s is defined by the sum of expected utilities
of all the players:

welfare(s) =
∑
i∈V

ui(s).

The adversary can use various strategies to select the vertex to attack, we considered
three examples of adversary strategy:
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• The maximum carnage adversary attacks of the vulnerable region of maximum
size to attack with the goal of maximizing the number of agents killed. If there
are more than one of such regions, the adversary selects one of them uniformly
at random.

• The random attack adversary attacks a vulnerable vertex uniformly at random.

• The maximum disruption adversary selects randomly one of the vulnerable
regions that minimizes the total utility or social welfare after attack.

3

1 4

2 5

Figure 3: We use blue nodes for I and red nodes for U . We have vulnerable regions
V1 = {1, 2}, V2 = {3} and V3 = {4, 5}. The probability of attack to V1, V2 and V3
for each adversary are: maximum carnage: 0.5,0,0.5; random attack: 0.4,0.2,0.4;
maximum disruption: 0,1,0.

We have defined previously the concept of Nash Equilibrium for the strategic game
in general. In addition to this, we also define two more types of equilibria to analyze
for our model.

Given a player i in G with strategy si, we define four possible swap deviations
for it:

1. Dropping one purchased edge.

2. Buying one unpurchased edge.

3. Dropping one purchased edge and buying one unpurchased edge.

4. Making any one of the deviations above and changing the immunization status.

A swapstable equilibrium is a strategy profile s∗ = (s∗1, . . . , s∗n) such that no player
i can do better making any of the swap deviations above, given that every other
player j adheres to s∗j . A linkstable equilibrium is a strategy profile s∗ = (s∗1, . . . , s∗n)
such that no player i can do better making deviations:

1. Dropping one purchased edge.

2. Buying one unpurchased edge.

3. Making deviation 1 or 2 above and changing the immunization status, given
that every other player j adheres to s∗j .
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As Goyal et al. stated in [1] it is easy to see that linkstable equilibria and swapstable
equilibria are both generalizations of Nash equilibria and linkstable equilibria is also
a generalization of swapstable equilibria. This implies that any Nash equilibrium
is also a swapstable and linkstable equilibrium and any swapstable equilibrium is
also a linkstable equilibrium. Furthermore, in the same article it is shown that there
exists a swapstable equilibrium which is not a Nash equilibrium and there exists a
linkstable equilibrium which is not a Nash or swapstable equilibrium, focusing on
the maximum carnage adversary.

3.2 Previous results
Goyal et al. show in [1] some results of the model focusing on the maximum carnage
adversary. Some of these results jointly with the techniques used to show them have
inspired our work.

In [1] the authors show that under a mild restriction on the adversary, the number
of edges of any Nash, swapstable or linkstable equilibrium network is at most 2n− 4
for n ≥ 4, thus proving the sparsity of the equilibrium.

With respect to maximum carnage adversary, assuming CE > 1, the authors prove
first that any Nash, swapstable or linkstable equilibrium network of our model with
at least one edge and at least one immunized vertex is a connected graph. Then,
assuming CE > 1, the authors show that if CE > 1 and CE and CI are constants (in-
dependent of the size n of G), the social welfare of any non-trivial Nash or swapstable
equilibrium network G is n2 − O(n5/3). They show that the resulting equilibrium
network has a high probability of preserving a connected component of large size
after the adversary attack, thus giving a high upper bound of social welfare.

Focusing on the maximum carnage adversary, the authors also study the diver-
sity of equilibrium networks. For each type of equilibrium networks like empty graph,
trees, forest, cycles, flowers and complete bipartite graph, they prove that there
exists a range of values for CE and CI for which such strategies are equilibrium.

Finally, they do simulations of swapstable best response dynamics to prove its
general and fast convergence to an equilibrium, although they show that an infinite
loop can happen in the best response dynamics depending on tie-breaking rules.

One year later, Friedrich et al. show in [2] that the best response computation
of our game under maximum carnage adversary and random attack adversary can
be done in polynomial time by providing an efficient algorithm. In 2021, Zhang et
al. in [3] implement this algorithm efficiently with improvements and optimizations.
This result is useful for the simulation of the best response dynamics because we can
now decide efficiently if our game state has reached Nash equilibrium. Nevertheless,
this question is still open for the maximum disruption adversary.

We use the article [1] as our main source of reference and we focus our study
on the random attack adversary. By remarks of the article, their connectivity and
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welfare results of the maximum carnage adversary are based on specific properties of
maximum carnage adversary. We extend these results to random attack adversary by
showing that it holds the same properties. We also study the diversity of equilibrium
networks to make comparison between maximum carnage adversary and random
attack adversary and see their difference in structures of equilibrium networks and
parameters. Afterwards, we show that the best response dynamics may cycle for
random attack adversary, as it also happens to the best response dynamics for
maximum carnage adversary according to [1]. Finally, we simulate the best response
dynamics with an implemented version [3] of the algorithm given recently in [2], we
observe that the best response dynamics for the random attack adversary converges
rapidly to an efficient equilibrium in experiments.
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4 Connectivity and Social Welfare for Random
Attack Adversary

One of our interests in this project is to study the connectivity of the equilibrium
networks and their social welfare considering the random adversary attack. First,
in the Section 5.1 we show that the empty graph is an equilibrium network with
respect to the random attack adversary when CE ≥ 1 and its social welfare is O(n).
Afterwards, we consider any equilibrium network that contains at least one edge and
at least one immunized vertex as a non-trivial equilibrium network. We show that
the sparsity results shown in [1] also apply to the random attack adversary because
the random attack adversary is a well-behaved adversary.

Let us review the main concepts and sparsity results of [1]:

Let G1 = (V,E1), and G2 = (V,E2) be two networks, G1 and G2 are equivalent if for
all vertices v ∈ V the connected component of v is the same in both G1 and G2 for
every possible choice of initial attack vertex in V .

An adversary is well-behaved if on any pair of equivalent networks G1 and G2
the probability that a vertex v ∈ V is chosen for attack is the same.

As it is pointed in [1], the maximum carnage, random attack and maximum disruption
adversaries are all well-behaved.

Lemma 4.1 Let G = (V,E) be a Nash, swapstable or linkstable equilibrium network.
Then all the vulnerable regions in G are trees if the adversary is well-behaved.

Theorem 4.1 Let G = (V,E) be a Nash, swapstable or linkstable equilibrium
network on n ≥ 4 vertices. Then |E| ≤ 2n− 4 for any well-behaved adversary.

As it is stated in [1], all the proofs of connectivity and welfare results with re-
spect to the maximum carnage adversary are based on the following properties:

Property 4.1 Adding an edge between any 2 vertices (at least 1 of which is immu-
nized) does not change the distribution of the attack.

Property 4.2 Breaking a link inside a targeted region does not increase the proba-
bility of attack to the targeted region while at the same time does not decrease the
probability of attack to any other vulnerable regions.

In the following paragraphs, we show that these properties also hold for the random
attack adversary.

Remind that the random attack adversary attacks a vulnerable vertex uniformly at
random (so all vulnerable regions are targeted) and we use U = V \I to denote the
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vulnerable vertices.

Lemma 4.2 Let (G, I) be a game state with I ( V . Then the game states de-
fined by (G[U ], ∅) and (G, I) have the same distribution of the attack with respect to
the random attack adversary, respectively.

Proof. If |U| > 0, the probability of attack to a vulnerable (also targeted) re-
gion T in G by the random attack adversary is Pr[T ] = |T |/|U|. Note that G with
immunized vertices I and its induced subgraph G[U ] without immunized vertices
will have the same distribution of the attack under the random attack adversary
because each connected component of G[U ] is a vulnerable/targeted region in G.
Hence, the set of vulnerable/targeted regions is unchanged and every targeted region
will have the same size. �

Using this lemma we can show that Property 4.1 and Property 4.2 also hold for the
random attack adversary as it was stated in [1]:

Proof of Property 4.1. Let G′ = (V,E ∪ (u, v)) be the graph after adding an
edge, (u, v) /∈ E, u 6= v with u ∈ I and v ∈ V to the graph G = (V,E). Hence,
G′[U ] = G[U ] by definition. By Lemma 4.2 (G′, I), (G′[U ], ∅), (G[U ], ∅) and (G, I)
have the same distribution of the attack. �

Proof of Property 4.2. Let G′ = (V,E − (u, v)) be the graph after breaking a
link (u, v) ∈ E with u, v ∈ T inside a targeted region T of G = (V,E). We have
G′[U ] = (U , {(u′, v′)|(u′, v′) ∈ E ∧ u′, v′ /∈ I} − (u, v)) graph of vulnerable/targeted
regions in G′ that by Lemma 4.2 (G′, I) and (G′[U ], ∅) have the same distribution of
the attack. After deleting (u, v), the targeted region T can be still connected or be
cut into connected components T ′ and T ′′ of smaller size. In both cases the total
probability of attack does not increase with respect to (G, I) because it is directly
proportional to the size of the targeted region. The other connected components in
G′[U ] will remain with the same size and probability of attack with respect to (G, I).
�

As Goyal et al. remark in [1], they prove the sparsity result with a rather mild restric-
tion on the adversary. Moreover, their proofs of the following lemma and subsequent
theorem of welfare results for the maximum carnage adversary essentially relay on
the properties 4.1 and 4.2 stated above. Hence, we can extend the connectivity and
welfare results of maximum carnage adversary to random attack adversary as it is
pointed in [1]:

Lemma 4.3 Let G be a non-trivial Nash or swapstable equilibrium network with
respect to the random attack adversary. Then in any component of G with at least
one immunized vertex and at least one edge, the targeted regions (if they exist) are
singletons when CE > 1.

Theorem 4.2 Let G be a non-trivial Nash, swapstable or linkstable equilibrium
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network with respect to the random attack adversary. Then, G is a connected graph
when CE > 1.

Theorem 4.3 Let G be a non-trivial Nash or swapstable equilibrium network on n
vertices with respect to the random attack adversary. If CE and CI are constants
(independent of n) and CE > 1 then the welfare of G is n2 −O(n5/3).
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5 Diversity of Equilibrium Networks for Random
Attack Adversary

In the article [1] it was shown that there exists a range of values for parameters
CE and CI for which the empty graph/tree/forest/cycles/flowers/complete bipartite
graph are (Nash, swapstable and linkstable) equilibrium network with respect to the
maximum carnage adversary.

In this section we study the equilibria for the random attack adversary. We examine
all the different examples of equilibria presented in [1] for the maximum carnage
adversary and we show that not all are equilibria for the random attack adversary.
In our figures, we use blue nodes for immunized players and red nodes for targeted
players. In our demonstrations we give the utility function of a player only if it has
changed with respect to proofs from the appendix D of [1], otherwise we will cite its
results. Some of our proofs are identical to the proofs of the mentioned appendix D
and some are inspired from them.

Remind that the expected utility ui(s) of player i in strategy profile s is defined by
the expected size of her connected component after attack minus her costs of edges
and immunization:

ui(s) =
∑
T ′∈T

(Pr[T ′]CCi(T ′))− |xi|CE − yiCI

To show that a strategy profile s is an equilibrium, we compare for every player
i her current expected utility ui(s) with her expected utility after each deviation
ui(s−i, s

′
i) = ui(s′) and show that she can not achieve a better expected utility by

making any of the deviations.

5.1 Empty Graphs
We show that an empty graph with all immunized or all targeted vertices can form
in equilibria (Nash, swapstable or linkstable) with respect to the random attack
adversary and these are the only empty equilibrium networks of our game. The ranges
of the parameters CE and CI are the same as those of the maximum carnage adversary.

Lemma 5.1 When CE ≥ 1 and CI > 0 the empty graph is a (Nash, swapstable or
linkstable) equilibrium network with respect to the random attack adversary.

Proof. When CE ≥ 1 and CI ≥ 1/n the empty network with all targeted ver-
tices is an equilibrium because no player would strictly prefer to purchase more edges.
Notice that in the empty network with all targeted vertices, the expected utility of
any player i is:

ui(s) = (1− 1
n

).
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If we assume that player i buys k > 0 edges, then her expected utility after the
deviation is:

ui(s′) =
(

1− (k + 1)
n

)
· (k + 1)− (k · CE).

And

CE ≥ 1 =⇒ ui(s′) =
(

1− (k + 1)
n

)
·(k+1)−(k·CE) ≤ 1−(k + 1)2

n
≤ ui(s) = (1− 1

n
).

Hence, player i has no incentive to buy k > 0 edges. If the player i immunizes, then
her expected utility after the deviation is:

ui(s′) = 1− CI .

And we have:
CI ≥

1
n

=⇒ ui(s′) = 1− CI ≤ ui(s) = (1− 1
n

).

Hence, player i has no incentive to immunize. If the player i buys k > 0 edges and
immunizes, then her expected utility after the deviation is:

ui(s′) =
(

1− k

(n− 1)

)
·(k+1)+

(
k

(n− 1)

)
·k−(k ·CE)−CI ≤ (k+1)−(k ·CE)−CI .

And

CE ≥ 1 ∧ CI ≥
1
n

=⇒ ui(s′) ≤ (k + 1)− (k · CE)− CI ≤ ui(s) = (1− 1
n

).

Hence, player i has no incentive to buy k > 0 edges and immunize.
Furthermore, when CE ≥ 1 and CI ≤ 1 the empty network with all immunized
vertices is an equilibrium. Notice that in the empty network with all immunized
vertices, the expected utility of any player i is :

ui(s) = 1− CI .

If we assume that player i buys k > 0 edges, then her expected utility after the
deviation is:

ui(s′) = (k + 1)− (k · CE)− CI .

We have:

CE ≥ 1 =⇒ ui(s′) = (k + 1)− (k · CE)− CI ≤ ui(s) = 1− CI .

Hence, player i has no incentive to buy k > 0 edges. Every player prefers to remain
immunized, otherwise she will be the unique targeted vertex and be killed by the
adversary and her expected utility after the deviation will be 0:

CI ≤ 1 =⇒ ui(s′) = 0 ≤ ui(s) = 1− CI .

Similarly, no player wants to buy k > 0 edges and unimmunize. This shows that
regardless of value of CI when CE ≥ 1 the empty network is an equilibrium with
respect to the random attack adversary. �
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Lemma 5.2 Let G be a (Nash, swapstable or linkstable) equilibrium network with
respect to the random attack adversary. If G is the empty network, then the vertices
in G are either all immunized or all targeted.

Proof. see proof of Lemma 7 in the section D.1 of appendix D of the article
[1], page 31 �.

5.2 Trees
We show that trees can be equilibria (Nash, swapstable or linkstable) with respect
to the random attack adversary.

We consider two types of trees, one in which all vertices are immunized and another
one in which all the vertices are immunized except for the leaves.

Figure 4: Example of tree equilibrium with respect to random attack adversary when
n = 14, k = 7, CE = 2 and CI = 2

For the tree equilibrium with all immunized vertices, the ranges of the parameters
CE and CI are the same as those of the maximum carnage adversary.

Lemma 5.3 Consider any tree on n vertices. Suppose CE ∈ (0, n/2) and CI ∈
(0, n/2). Then, there exists an edge purchasing pattern which makes that tree an
equilibrium with respect to the random attack adversary when all the vertices are
immunized.

Proof. see proof of Lemma 8 in the section D.2 of appendix D of the article
[1], page 32. �

Lemma 5.4 (Jordan[4]). Consider a graph G = (V,E) where |V | = n. If G
is a tree, then there exists a vertex v ∈ V such that rooting the tree on v, no sub-tree
has size more than n/2.

For the tree equilibrium with immunized non-leaves and vulnerable leaves, the
ranges of the parameters CE and CI are slightly different from those of the maximum
carnage adversary.
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Lemma 5.5 Consider any tree on n vertices so that k ≤ n/2 of them are im-
munized non-leaves and the remaining n − k are vulnerable leaves. Then, for
CE ∈ (0, k/2), CI ∈ [(n− 1)/(n− k),min(k/2− 1, 2(n− 1)/(n− k+ 1))), there exists
an edge purchasing pattern that makes this network an equilibrium with respect to
the random attack adversary.

Proof. Root the tree of immunized vertices as described in Proposition 2 of ap-
pendix C of the article [1], page 30. Consider the edge purchasing pattern in which
every immunized vertex buys an edge towards its parent in the tree of immunized
vertices and every unimmunized vertex buys an edge towards its immunized parent.
Notice that in this network the expected utility of any immunized player i is:

ui(s) = (n− 1)− (m · CE)− CI .

With m = 0 for the root vertex and m = 1 for the rest of the vertices. And the
expected utility of any unimmunized player j is:

uj(s) =
(

1− 1
(n− k)

)
· (n− 1)− CE.

If any immunized player i decides to unimmunize, then her expected utility after the
deviation is:

ui(s′) =
(

1− l

(n− k + 1)

)
· (n− 1)− (m · CE).

With 2 ≤ l ≤ n− k being the size of the targeted region she belongs. We have:

CI ≤
2(n− 1)

(n− k + 1) ≤
l · (n− 1)

(n− k + 1) .

=⇒ ui(s′) =
(

1− l

(n− k + 1)

)
·(n−1)−(m ·CE) ≤ ui(s) = (n−1)−(m ·CE)−CI .

Hence, player i has no incentive to unimmunize. If the player i buys more edges it
would be redundant and only decreases her expected utility, hence the player i has
no incentive to buy more edges or do both deviations above. Furthermore, player i
would not drop her only purchased edge nor unimmunize and drop her edge because
with CE < k/2 and CI < k/2− 1, the current expected utility of the player i, ui(s),
is greater than n− k, thus greater than the expected utility after the deviation as
the size of her connected component after dropping her edge does not surpass n− k
by Lemma 5.4. It is easy to see that her current purchased edge is the best one and
the player i would not drop her purchased edge and buy one unpurchased edge.
If any unimmunized player j decides to immunize, then her expected utility after
the deviation is:

uj(s′) = (n− 1)− CI − CE.

We have:

CI ≥
(n− 1)
(n− k) =⇒ uj(s′) = (n−1)−CI−CE ≤ uj(s) =

(
1− 1

(n− k)

)
·(n−1)−CE.
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Hence, player j has no incentive to immunize. If the player j buys more edges it
would be redundant and only decreases her expected utility, hence the player j has
no incentive to buy more edges or do both deviations above. It is easy to see that
her current purchased edge is the best one and the player j would not drop her
purchased edge and buy one unpurchased edge. This shows that all players have the
best current strategy and the described network is an equilibrium with respect to
the random attack adversary. �

We also show that Hub-Spoke, a particular case of tree, is an equilibrium with
respect to the random attack adversary for a wider range of parameters in compari-
son to Lemma 5.5. It consists of one immunized vertex (hub) and n−1 unimmunized
vertices (spokes) and the spokes buy the edges to the hub. The ranges of the param-
eters CE and CI are the same as those of the maximum carnage adversary.

Figure 5: Example of Hub-Spoke equilibrium with respect to random attack adversary
when CE = 2 and CI = 2

Lemma 5.6 If CE ∈ (0, n− 3] and CI ∈ [1, n− 1] then a hub-and-spoke network is
an equilibrium with respect to the random attack adversary when the hub immunizes
and the spokes buy the edges to the hub.

Proof. Notice that in this network the current expected utility of the hub ver-
tex i is ui(s) = (n− 1)−CI and the current expected utility of any spoke vertex j is
uj(s) = (1− 1/(n− 1)) · (n− 1)− CE = (n− 2)− CE. We consider all deviations
the players can make and show that they can not increase their expected utility
comparing the utilities before and after the deviation.
The hub can deviate by:

1. Changing her immunization. Then she will be the part of the unique targeted
region, with the expected utility ui(s′) = 0 ≤ ui(s) = (n−1)−CI because CI ≤ n−1.

2. Buying more edges. It is redundant and only decreases her expected utility
because she is already connected to all the rest of the vertices.

3. Changing her immunization and buying more edges. Her expected utility is
negative and worse than other deviations.

Any spoke vertex can deviate by:

1. Immunizing. Her expected utility after the deviation is uj(s′) = (n− 1)−CE−CI .
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Because the expected utilities before and after the deviation coincide for both maxi-
mum carnage adversary and random attack adversary, by Lemma 10 in the section
D.2 of appendix D of the article [1], page 33, we have uj(s′) ≤ uj(s).

2. Dropping her purchased edge. Her expected utility after the deviation is
uj(s′) = 1 − 1/(n − 1). Because the expected utilities before and after the de-
viation coincide for both maximum carnage adversary and random attack adversary,
by Lemma 10 in the section D.2 of appendix D of the article [1], page 33, we have
uj(s′) ≤ uj(s).

3. Dropping her purchased edge and immunizing. Her expected utility after the
deviation is uj(s′) = 1−CI . Because the expected utilities before and after the devi-
ation coincide for both maximum carnage adversary and random attack adversary,
by Lemma 10 in the section D.2 of appendix D of the article [1], page 33, we have
uj(s′) ≤ uj(s).

4. Dropping her purchased edge and buying new edge(s). After dropping her
bought edge and adding k ≥ 1 new edges, the size of her targeted region is k + 1
and her expected utility is:

uj(s′) =
(

1− (k + 1)
(n− 1)

)
·(n−1)−(k·CE) = (n−2−k)−(k·CE) < uj(s) = (n−2)−CE.

5. Dropping her purchased edge, buying new edge(s) and immunizing. Her expected
utility after dropping her bought edge, adding k ≥ 1 new edges and immunizing
is uj(s′) ≤ (n − 1) − (k · CE) − CI as n − 1 is the maximum expected size of her
connected component. Because the expected utilities before and after the deviation
coincide for both maximum carnage adversary and random attack adversary, by
Lemma 10 in the section D.2 of appendix D of the article [1], page 33, we have
uj(s′) ≤ uj(s).

6. Buying more edges. After adding k ≥ 1 new edges the size of her targeted
region is k + 1 and her expected utility is:

uj(s′) =
(

1− (k + 1)
(n− 1)

)
·(n−1)−(k+1)·CE = (n−2−k)−(k+1)·CE < uj(s) = (n−2)−CE.

7. Buying more edges and immunizing. Her expected utility after adding k ≥ 1 new
edges and immunizing is uj(s′) = (n − 1) − (k + 1) · CE − CI . This is worse than
the case 1 because the new edges are redundant. Thus uj(s′) ≤ uj(s) and the player
does not prefer to deviate in this case.
Hence, no player has incentive to change her current strategy and the described
network is an equilibrium with respect to the random attack adversary. �

5.3 Forest
In [1] it is shown that a forest consisting of targeted trees of equal size can form
in equilibria with respect to maximum carnage adversary. We show for random
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adversary that in general this is not true, but a particular case of forest, 2 disjoint
targeted trees of the same size, can form an equilibrium.

Lemma 5.7 Let n = kF + n′ with (k − 2)F + n′ > 1, k ≥ 2, F ≥ 2, n′ ≥ 0.
If CE > 0 and CI > 0, then k disjoint targeted trees of size F with n′ vulnerable
singleton vertices can not form an equilibrium with respect to the random attack
adversary.

Proof. For any edge purchasing pattern, in all trees of size F there exist at least one
vertex i that has bought all its incident edges, otherwise it will have at least F edges
and is not a tree. This vertex i prefers more to drop all its m ≥ 1 purchased edges
and connect to another tree. The expected utility of the player i after the deviation
is

ui(s′) =
(

1− (F + 1)
(kF + n′)

)
· (F + 1)− CE = (F + 1)− (F + 1)2

(kF + n′) − CE

= F + ((k − 2) · F + n′ − 1)
(kF + n′) − F 2

(kF + n′) − CE > F − F 2

(kF + n′) − CE.

Since

F − F 2

(kF + n′) − CE ≥
(

1− F

(kF + n′)

)
· F − (m · CE) = ui(s)

her expected utility before the deviation, thus there is at least one deviation for
vertex i with better payoff and the forest can not form an equilibrium with respect
to the random attack adversary. �

Contrasting with this, we show that 2 disjoint targeted trees of the same size
can form an equilibrium with respect to the random attack adversary. The ranges of
the parameters CE and CI are different from those of the maximum carnage adversary.

Lemma 5.8 Let n = 2F, F ≥ 4, CE ∈ (0, F/2 − 1], CI ≥ 3F/2, then 2 disjoint
targeted trees of size F can form an equilibrium with respect to the random attack
adversary.

Proof. We can fix a root for each tree and consider the edge purchasing pattern in
which every non-root vertex buys an edge towards the root of its tree. Let us analyze
all the possible deviations for any player i who bought an edge with her current
expected utility ui(s) = F/2− CE:
1. Dropping her purchased edge: After dropping her bought edge we have that

ui(s′) = 1− 1
2F < ui(s) = F

2 − CE

since CE ≤ F/2− 1.

2. Dropping her purchased edge and immunizing: Then her expected utility

ui(s′) = 1− CI < ui(s) = F

2 − CE
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since CE ≤ F/2− 1.

3. Dropping her purchased edge and buying other edges: buying other edges
to the same connected component will have at most the same expected utility as her
current strategy. Buying m ≥ 1 edge(s) to another connected component will have
the expected utility

ui(s′) =
(

1− (F + 1)
2F

)
· (F + 1)−m ·CE = (F 2 − 1)

2F −m ·CE < ui(s) = F

2 −CE.

Buying more edges to both connected components will form a unique targeted region
and be killed by the adversary, her expected utility after the deviation will be negative.

4. Dropping her purchased edge, buying other edges and immunizing: Buying
other edges to the same connected component will have at most the same expected
utility as the case 5. Buying m ≥ 1 edges to another connected component will have
the expected utility

ui(s′) = F

(2F − 1)+(F − 1)(F + 1)
(2F − 1) −(m·CE)−CI < 2F−1−CE−CI < ui(s) = F

2 −CE

since CI ≥ 3F/2. Buying other edges to the both connected components will have
at most the same expected utility as the case 7.

5. Immunizing: her expected utility will be

ui(s′) = F 2

(2F − 1) + (F − 1)
(2F − 1) − CE − CI < 2F − 1− CE − CI < ui(s) = F

2 − CE

since CI ≥ 3F/2.

6. Buying more edges: buying more edges to another component will form a
unique targeted region and be killed by the adversary, her expected utility after the
deviation will be negative. Buying more edges to the same component is redundant.

7. Buying more edges and immunizing: She would benefit the most by buying
an edge to another component. Her expected utility will be

ui(s′) = F 2

(2F − 1) + (F − 1)(F + 1)
(2F − 1) −2CE−CI < 2F−1−CE−CI < ui(s) = F

2 −CE

since CI ≥ 3F/2.

Possible deviations for the root j who did not purchase any edge with her cur-
rent expected utility uj(s) = F/2:
1. Immunizing. Her expected utility will be

uj(s′) ≤
F 2

(2F − 1) + (F − 1)2

(2F − 1) − CI < 2F − 1− CI < uj(s) = F

2

29



Network Formation Games under adversary attack with immunization: an
introduction to the scientific research

since CI ≥ 3F/2.

2. Buying more edges: buying more edges to another component will form a
unique targeted region and be killed by the adversary, her expected utility after the
deviation will be negative. Buying more edges to the same component is redundant.

3. Buying more edges and immunizing: She would benefit the most by buying
an edge to another component. Her expected utility will be

uj(s′) ≤
F 2

(2F − 1) + (F − 1)(2F − 1)
(2F − 1) − CE − CI < 2F − 1− CI < uj(s) = F

2

since CI ≥ 3F/2.

Hence, no player has incentive to change her current strategy and the described
network is an equilibrium with respect to the random attack adversary. �

5.4 Cycles
We show that an alternating cycle of immunized and targeted vertices can form
in equilibria (Nash, swapstable or linkstable) with respect to the random attack
adversary. The ranges of the parameters CE and CI are slightly different from those
of the maximum carnage adversary.

Figure 6: Example of cycle equilibrium with respect to random attack adversary
when k = 4, CE = 1.5 and CI = 2.5

Lemma 5.9 A cycle of n = 2k alternating immunized and targeted vertices can form
in equilibria with respect to the random attack adversary when every vertex buys an
edge to the vertex in her clockwise direction in the cycle and CE ∈ (1, n/2− 2), CI ∈
(2, 2(n− 1)/(n/2 + 1)), CE + CI ≤ k and k ≥ 4.

Proof. For any immunized player i her expected utility in this network is ui(s) =
(n− 1)− CE − CI . She can deviate by:
1. Dropping her purchased edge and buying other edges. After adding m ≥ 1 new
edges the expected connected component size she can achieve is at most n− 1 so her
expected utility after deviation ui(s′) can not surpass her current expected utility
ui(s):

ui(s′) ≤ (n− 1)− (m · CE)− CI ≤ ui(s) = (n− 1)− CE − CI .
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2. Dropping her purchased edge. Her expected utility after the deviation is:

ui(s′) = 1
k

(1 + 3 + . . . + (2k − 1))− CI .

Because the expected utilities before and after the deviation coincide for both maxi-
mum carnage adversary and random attack adversary, by Lemma 13 in the section
D.4 of appendix D of the article [1], page 36, we have ui(s′) ≤ ui(s).

3. Buying more edges. The m ≥ 1 new edges she purchased are redundant and only
decreases her expected utility because the expected connected component size she
can achieve is at most n− 1:

ui(s′) = (n− 1)− ((m+ 1) · CE)− CI ≤ ui(s) = (n− 1)− CE − CI .

4. Changing her immunization. She would not change her immunization because her
expected utility after the deviation is:

ui(s′) =
(

1− 3
(n/2 + 1)

)
· (n− 1)− CE < ui(s) = (n− 1)− CE − CI

since CI < 2(n− 1)/(n/2 + 1) < 3(n− 1)/(n/2 + 1).

5. Changing her immunization, dropping her purchased edge and buying other
edges. After adding m ≥ 1 new edges the expected connected component size she
can achieve is at most (1− 2/(n/2 + 1))(n− 1) so her expected utility after deviation
ui(s′) can not surpass her current expected utility ui(s):

ui(s′) ≤
(

1− 2
(n/2 + 1)

)
· (n− 1)− (m · CE) < ui(s) = (n− 1)− CE − CI

since CI < 2(n− 1)/(n/2 + 1).

6. Changing her immunization and dropping her purchased edge. Her expected
utility after the deviation is:

ui(s′) = 1
(k + 1) (3 + . . . + (2k − 1)) = k − 1 ≤ ui(s) = (n− 1)− CE − CI

since CE + CI ≤ k.

7. Changing her immunization and adding more edges. The m ≥ 1 new edges
she purchased are redundant and only decreases her expected utility. Thus her
expected utility in this case is worse than the case 4.

For any unimmunized player j her expected utility in this network is uj(s) =
(1− 1/k)(n− 1)− CE. She can deviate by:
1. Dropping her purchased edge and buying other edges. After adding m ≥ 1 new
edges the expected connected component size she can achieve is at most (1−1/k)(n−1)
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so her expected utility after deviation uj(s′) can not surpass her current expected
utility uj(s):

uj(s′) ≤ (1− 1
k

)(n− 1)− (m · CE)− CI ≤ uj(s) = (1− 1
k

)(n− 1)− CE − CI .

2. Dropping her purchased edge. Her expected utility after the deviation is:

uj(s′) = 1
k

(2 + . . . + (2k − 2)) .

3. Buying more edges.The m ≥ 1 new edges she purchased are redundant and only
decreases her expected utility because the expected connected component size she
can achieve is at most (1− 1/k)(n− 1):

uj(s′) ≤ (1− 1
k

)(n− 1)− ((m+ 1) ·CE)−CI ≤ uj(s) = (1− 1
k

)(n− 1)−CE −CI .

4. Immunizing. Her expected utility after the deviation is:

uj(s′) = (n− 1)− CE − CI .

5. Dropping her purchased edge, buying other edges and immunizing. With m ≥ 1
new edges the expected connected component size she can achieve is at most (n− 1).
Her maximum expected utility after the deviation is:

uj(s′) = (n− 1)− (m · CE)− CI .

6. Dropping her purchased edge and immunizing. Her expected utility after the
deviation is:

uj(s′) = 1
k − 1 (2 + . . . + (2k − 2))− CI .

7. Adding more edges and immunizing.With m ≥ 1 new edges the expected connected
component size she can achieve is at most (n− 1). Her maximum expected utility
after the deviation is:

uj(s′) = (n− 1)− ((m+ 1) · CE)− CI .

In cases 2,4,5,6 and 7 above, because the expected utilities before and after the
deviation coincide for both maximum carnage adversary and random attack adversary,
by Lemma 13 in the section D.4 of appendix D of the article [1], page 36, we have
uj(s′) ≤ uj(s) for all of them.
Hence, no player has incentive to change her current strategy and the described
network is an equilibrium with respect to the random attack adversary. �

5.5 Flowers
We show that multiple cycles of immunized and targeted vertices can form in equi-
libria (Nash, swapstable or linkstable) with respect to the random attack adversary.
The ranges of the parameters CE and CI are slightly different from those of the
maximum carnage adversary.
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Figure 7: Example of flower equilibrium with respect to random attack adversary
when F = 3, k = 2, CE = 0.4 and CI = 2.5

Lemma 5.10 Let n = F (2k− 1) + 1. Consider a flower network containing F petals
(cycles) of size 2k where all the cycles share exactly one vertex. Assume each petal
is composed of alternating immunized and targeted vertices, and the shared vertex
is immunized. Then the flower network can form in the equilibrium with respect to
the random attack adversary when in each petal, the targeted vertices buy both of
the edges to their immunized neighbors and CI ∈ (2, 3(F (2k − 1))/(kF + 1)), CE ∈
(0,min{(k − 1)F − 2, ((k − 1)2 + 5)/(2kF )}), k ≥ 2 and F ≥ 3.

Proof. For any immunized player i her expected utility in this network is ui(s) =
(n− 1)− CI . She would not buy any edge because she already has the maximum
expected size of connected component n− 1 and it would be redundant. She would
not change her immunization decision because her expected utility after the deviation
is:

ui(s′) ≤
(

1− 3
(kF + 1)

)
· (F (2k − 1)) < ui(s) = (n− 1)− CI

since CI < 3(F (2k − 1))/(kF + 1).

For any unimmunized player j her expected utility in this network is uj(s) = (1−
1/kF )(2k− 1)F − 2CE. She would not buy more than two edges because she already
achieves the maximum expected size of connected component (1− 1/kF )(2k − 1)F
buying only two edges. Her remaining deviations are:
1. Buying two edges and immunizing. The maximum expected size of connected
component she can achieve buying two edges and immunizing is (2k − 1)F . Her
maximum expected utility after the deviation is:

uj(s′) = (2k − 1)F − 2CE − CI .

2. Buying one edge. To maximize the expected size of connected component she has
to be the vertex with distance k − 1 with respect to the shared immunized vertex
and buy edge towards the shared immunized vertex. Her maximum expected utility
after the deviation is:

uj(s′) = (1− 1
kF

)(2k− 1)F − 1
kF

(1 + 3 + . . . + (k− 3) + 1 + 3 + . . . + (k− 1))−CE.
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3. Buying one edge and immunizing. Similar to case 2, her maximum expected
utility after the deviation is:

uj(s′) = (2k − 1)F − 1
kF

(1 + 3 + . . . + (k − 3) + 1 + 3 + . . . + (k − 1))− CE − CI .

4. Buying no edges. Her expected utility after the deviation is:

uj(s′) = (1− 1
kF

).

5. Buying no edges and immunizing. Her expected utility after the deviation is:

uj(s′) = (1− CI).

In cases 1,2,3,4 and 5 above, because the expected utilities before and after the
deviation coincide for both maximum carnage adversary and random attack adversary,
by Lemma 14 in the section D.5 of appendix D of the article [1], page 38, we have
uj(s′) ≤ uj(s) for all of them.
Hence, no player has incentive to change her current strategy and the described
network is an equilibrium with respect to the random attack adversary. �

5.6 Complete Bipartite Graph
We show that a complete bipartite graph can form in equilibria (Nash, swapstable
or linkstable) with respect to the random attack adversary. The ranges of the
parameters CE and CI are slightly different from those of the maximum carnage
adversary.

Figure 8: Example of complete bipartite graph equilibrium with respect to random
attack adversary when CE = 0.3 and CI = 3

Lemma 5.11 Consider a complete bipartite graph G = (U ∪ V,E) with |U| = 2 and
|V | ≥ 1. G can form in the equilibrium with respect to the random attack adversary
if all the vertices in U are targeted, all the vertices in V are immunized, the vertices
in U purchase all the edges in E,CE ∈ (0, 1/2] and CI ∈ ((n− 1)/2, 2(n− 1)/3).

Proof. For any immunized player i her expected utility in this network is ui(s) =
(n− 1)− CI . She would not buy any edge because she already has the maximum
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expected size of connected component n− 1 and it would be redundant. She would
not change her immunization decision because her expected utility after deviation is

ui(s′) = (n− 1)
3 < ui(s) = (n− 1)− CI

since CI < 2(n− 1)/3.

For any unimmunized player j her expected utility in this network is uj(s) =
(n− 1)/2− (n− 2)CE. Notice that she would not buy an edge to the other unim-
munized player. If she does not immunize and purchases an edge to the other
unimmunized player then she will be the part of the unique targeted region, with
negative expected utility. If she immunizes, the other unimmunized player will be the
unique targeted vertex and be killed by the adversary, so she prefers to not purchase
the edge to reduce her cost. Her remaining deviations are:
1. Buying k ∈ {0, . . . , n− 3} edges to immunized vertices. Her expected utility after
the deviation is:

uj(s′) = k + 1
2 − kCE.

2. Buying k ∈ {0, . . . , n − 3} edges to immunized vertices and immunizing. Her
expected utility after the deviation is:

uj(s′) = (k + 1)− kCE − CI .

In above cases, because the expected utilities before and after the deviation coincide
for both maximum carnage adversary and random attack adversary, by Lemma 15
in the section D.6 of appendix D of the article [1], page 39, we have uj(s′) ≤ uj(s)
for all of them.
Hence, no player has incentive to change her current strategy and the described
network is an equilibrium with respect to the random attack adversary. �
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6 Convergence of Best Response Dynamics for
Random Attack Adversary

A problem we face in the computation of equilibrium of our game is the convergence
of the best response dynamics. In the best response dynamics we ”play” a strategic
game by rounds, in each round we compute current best response for each player and
update their strategies based on their best response by a fixed order. We stop when
no player can do better by changing her strategy, by definition the game reaches to
an equilibrium and the best response dynamics converges at this point, but this does
not always happen. We suppose that this process will converge in most cases of our
game. However, under some tie breaking rules, the best response dynamics can cycle
and the process will not converge. The appendix G of the article [1], page 59 gave us
an example of cycle in the best response dynamics by tie breaking rule for maximum
carnage adversary.

We now prove that there exists a tie breaking rule which causes the best response
dynamics to cycle with respect to random attack adversary. Our example is a
subgraph of the example given by Goyal et al. [1] with n = 8.

1 2 3 4

5 6 7 8

Figure 9: Example 6.1

Example 6.1 Consider the network with n = 8 unimmunized vertices, CI = 8, CE =
1/4 and all vertex i, 1 ≤ i ≤ n purchases one edge to vertex i+ 1 except vertices 4
and 8, to be the initial configuration in running the Nash best response dynamics. If
the vertices Nash best response in the increasing order of their labels, then there exists
a tie breaking rule which causes the best response dynamics to cycle with respect to a
random attack adversary.

Proof. Since the components are symmetric, we only analyze one of the com-
ponents. Vertices 1 and 2 are best responding with utility (1− 1/2) ∗ 4− 1/4 = 7/4,
vertex 3’s best response is to drop her edge with utility (1− 3/8) ∗ 3 = 15/8 > 7/4,
vertex 4’s best response is to connect back to the same component she was a part
of before vertex 3’s best response, we break ties by forcing vertex 4 to purchase an
edge to vertex 1.
After the first round, we are in the same pattern as before, but the labels of the
vertices are different. So in the next round vertex 2 would drop her edge and vertex 3
would buy an edge to vertex 4. In the third round, vertex 1 would drop its edge. In
the fourth round, and vertex 2 would buy an edge to vertex 3. In the fourth round,
vertex 4 would drop its edge. In the fifth round, vertex 1 would buy an edge to 2,
vertex 3 would drop its edge and vertex 4 would buy an edge to vertex 1. So we are
back in the same configuration that we were at the beginning. If we break ties by
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forcing vertex 4 to purchase an edge to vertex 3 then all vertices are in their best
response and there is no cycle. �

As in the case of the maximum carnage adversary, we suspect that this phenomenon
is the result of adversary tie-breaking and the ordering of the vertices.

37



Network Formation Games under adversary attack with immunization: an
introduction to the scientific research

7 Experimentation
Goyal et al. study in [1] about swapstable best response dynamics in simulations
with different values of CE and CI . They observe a rapid convergence (a sublinear
growth of simulation rounds when the number of players increases) to the equilibrium
and thus conjecture the general and fast convergence of swapstable best response
dynamics, contrasting with the fact that they showed that best response dynamics
may cycle. Moreover, they leave whether there exists an efficient algorithm of com-
puting the (Nash) best response of the model as an open question.

In 2017, Friedrich et al. in [2] have answered this question by giving an algo-
rithm of computing the (Nash) best response of the model in polynomial time with
respect to n. We decide to use this algorithm for our experiments as recently Zhang
et al. in [3] have implemented this algorithm efficiently. In our experiments, we
will simulate the best response dynamics with respect to random attack adversary
for different values of parameters. While we know that best response dynamics can
also cycle with random attack adversary, we also experiment in order to find out if
by changing tie-breaking policy or changing the order of players, the best response
dynamics converges rapidly empirically.

Our method of simulation is described as the follow: The parameters are the number
of players n, the cost of buying an edge CE and the cost of immunization CI . We first
create a graph of n unimmunized vertices with edges generated randomly according
to an initial edge density p with the Erdős–Rényi model [11]. For each iteration, for
each player in the increasing order of their labels we compute their best response
with respect to random attack adversary in current game state fixing the strategies
of other players using the implemented algorithm in [3], then for players with better
utility after the best response we replace their strategies by their best response
modifying the graph and for players with equal utility after the best response we
do not modify their strategies. We will repeat those steps until we obtain a Nash
equilibrium or the process exceeds the limit of rounds and does not converge.

Figure 10: Average number of rounds until convergence for CE = CI = 2

The figure above shows results of our first experiment. For n = 10, 20...100, we
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generate 20 graphs for each n randomly with the Erdős–Rényi model such that their
initial average degree = 1 and the number of immunized vertices is n/10 + 1. Then
we set CE = CI = 2 and compute the average number of iterations of simulation until
convergence for each n using the generated graphs as the input of our simulation
algorithm. We have observed a fast convergence (average number of rounds until
convergence < 5) with respect to random attack adversary for all population sizes and
the convergence does not become harder (the average number of rounds approximates
to 4) when we increase n.

Figure 11: Results of Hub-Spoke and tree equilibrium. Left: n = 25, CE = CI = 1.5.
Middle: n = 50, CE = CI = 2. Right: n = 75, CE = CI = 2.5.

We have also observed that in most cases the simulation will converge to a Hub-Spoke
equilibrium which is an efficient equilibrium with one immunized vertex (hub) and
n − 1 unimmunized vertices (spokes) buying an edge towards the hub vertex, the
utility of the hub vertex is (n − 1) − CI and the utility of any spoke vertex is
(n− 2)− CE. Sometimes it will converge to a tree equilibrium with few immunized
vertices (k ≤ n/2 immunized non-leaves), the utility of any immunized vertex is
(n − 1) − CI or (n − 1) − CI − CE and the utility of any unimmunized vertex is
(1− 1/(n− k))(n− 1)− CE. The social welfare is better than examples of resulted
equilibrium networks for maximum carnage adversary presented in [1] which have
cycles and/or multiple immunized vertices. This phenomenon is explained by the
behavior of the best response algorithm. When there exist multiple disconnected
immunized vertices (potential hubs), the players will prefer to connect to the hub
with the largest connected component and the non-hub immunized players will prefer
to connect to the hub if they have enough neighbors or connect to the hub and
unimmunize if most of their neighbors have switched to the unique hub. The result
is either a Hub-Spoke equilibrium or a tree equilibrium in which the connected
immunized vertices can be seen as a single hub.

In the rest of the cases the obtained equilibrium network is an empty graph with
all unimmunized vertices, the utility of any player in this equilibrium is 1 − 1/n
so it has a low social welfare. The figure above shows results of our experiment to
estimate the probability that the resulting equilibrium network is empty for different
values of CE and CI . For CE = CI = 2, 4...22, we generate 20 graphs for n = 50,
initial average degree = 1 and the number of immunized vertices n/10 + 1. Then
we compute the percentage of empty equilibrium in convergence. The estimated
probability of empty equilibrium is higher for higher values of CE and CI because
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Figure 12: Estimated probability of empty equilibrium for different values of CE and
CI , n = 50.

the players prefer more to drop edges and unimmunize to reduce the cost.
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8 Conclusion and Future Works
The initial objective of our research was to gain an understanding of the model
focusing on the random attack adversary. Based on previous works, we studied
connectivity, social welfare, diversity of equilibrium networks and convergence of
the best response dynamics with respect to the random attack adversary. We then
concluded our research with simulations of the best response dynamics using the
algorithm that computes the (Nash) best response efficiently implemented by Zhang
et al. [3]

Goyal et al. in [1] have studied connectivity and social welfare for the maximum
carnage adversary and their results are based on properties of maximum carnage
adversary. By proving that these properties also hold for the random attack ad-
versary, we can extend their results of connectivity and social welfare to random
attack adversary: when CE > 1 the resulting non-trivial equilibrium network G is a
connected graph, when CE and CI are constants and CE > 1 then the social welfare
of non-trivial Nash or swapstable equilibrium network G is n2 −O(n5/3).

In comparison with maximum carnage adversary, random attack adversary has
similar structures of equilibrium networks, although not all equilibrium networks
with respect to the maximum carnage adversary are equilibria with respect to the
random attack adversary and vice versa. While the majority of the types of equilib-
rium networks for the maximum carnage adversary studied by Goyal et al. in [1]
(empty graph, trees, cycles, flowers, complete bipartite graph) are also equilibria for
the random attack adversary with slight difference in parameters, the forest networks
have a particular case of equilibrium (2 disjoint targeted trees of size F) with respect
to the random attack adversary but the most of the forest network can only form in
equilibria with respect to the maximum carnage adversary.

Regarding the best response dynamics for the random attack adversary, we proved
that it can cycle under a certain tie breaking rule as in the case of maximum carnage
adversary. In our experiments, we have observed a fast convergence of the best
response dynamics for the random attack adversary and in most cases it will converge
to either a Hub-Spoke equilibrium or a tree equilibrium with few immunized vertices,
which is more efficient than examples of resulted equilibria for maximum carnage
adversary in [1]. In the rest of the cases the best response dynamics will converge
to an empty equilibrium with all unimmunized vertices, the probability of empty
equilibrium increases for higher values of CE and CI .

Personally, during the development of this project I have learned to read research
articles and study their works, then combine them with knowledge obtained from
subjects of the degree to inspire my research. Moreover, I have learned to organize my
research results into a formal paper. I was able to achieve the initial objective of the
research and was satisfied with the results. Finally, this project has introduced me
to scientific research, especially in the field of Game Theory and Network Formation
Games.
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For possible future works, we enumerate some topics which can be interesting
to researchers:

• The welfare of non-trivial Nash or swapstable equilibrium network G for
maximum carnage adversary and random attack adversary is n2 − O(n5/3)
when CE and CI are constants. How it can be changed when CE and CI are
functions depending on n (CE = f(n) and CI = g(n))?

• Can the upper bound of achievable welfare of non-trivial Nash or swapstable
equilibrium network G for maximum carnage adversary and random attack
adversary, n2 −O(n5/3), be improved?

• The adversary of the model can only choose 1 player to spread the attack.
What will be the behavior of game dynamics if the adversary can attack k ≥ 1
players?

• We suppose that the immunization is always perfect and protects against
the adversary attack with 100% probability. What will be the effects of an
imperfect immunization which can fail to survive the attack with probability
p?

• The Section 7 is short due to the timing and planning of the project. We could
do experiments with more variations in order to be able to reach better-founded
conclusions.
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A Appendix - Project Management

A.1 Temporal Planning
A.1.1 Task Definition

In this section we will identify and describe all the tasks that will be done through-
out the project by order. For each task we will give its definition, duration and
dependencies. This will be summarized in the Section A.1.3.

Project management
Project management is the first group of tasks to be done because of its importance
on the planning of the final work. It defines context, scope and temporal planning
of the project and studies its budget and sustainability. The tasks of the project
management are shown below:

• Context and scope: Contextualize the thesis and describe its scope. Identify
the problem to be resolved, previous works, requirements, risks and the work
methodology.

• Time planning: Define all the tasks of the project and its dependencies,
resources and estimated hours. Propose solutions to potential obstacles and
risks.

• Budget and sustainability: Analyze the budget of the project and make a
self-assessment of the sustainability report. Describe elements and costs of the
budget. Propose mechanisms for controlling potential budget deviations.

• Final document: Integration of all the tasks above in a final document,
correcting mistakes.

• Meetings: Online meeting with the director of the project arranged every
week with the objective of discussing the progress of the project and the next
tasks to do.

Previous studies
As we have said in the title, this project is an introduction to the scientific research.
Before starting the project, we have to do research of previous studies of the past.
This will help us to familiarize with the area of the project. Some of our previous
studies are:

• Basics of Game Theory: Study of basic concepts and definitions of Game
Theory.

• Study of the model of Network Formation Games with adversary attack
and immunization.

• Study of previous works: results of maximum carnage adversary, efficient
algorithm for computing the best response, etc.
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Theoretical part
The theoretical studies are important in this project, since we need them for the
interpretation of experimental results. In the theoretical part we will focus our study
mainly on the random attack adversary and prove the following properties of it using
previous results:

• Proof of diversity of equilibrium networks regarding the random attack
adversary.

• Proof of connectivity and social welfare regarding the random attack
adversary.

• Proof of convergence of best response dynamics regarding the random
attack adversary.

Programming part
In the programming part we will implement the algorithm of simulation to prepare
the experiment of network formation for the random attack adversary. It can be
divided into two tasks:

• Design and implement the algorithm of simulation for the random attack
adversary.

• Testing: test the correct functioning of the code implemented.

Experimentation, analysis and conclusion
After the implementation of the algorithm we can start our simulation and extract
conclusions from its results. We will compare experimental results with our theoretical
studies and make comparisons between different models of adversaries. This part
has the following tasks:

• Simulation of the network formation for the random attack adversary using
the implemented code with changes in various parameters.

• Comparison of models: compare both theoretical and experimental re-
sults between different models, try to find other properties of random attack
adversary.

• Conclusion: analyze our theoretical and experimental results and obtain
conclusions of our research.

Finally, we will write the documentation of the project which contains all results
obtained in previous tasks and prepare for the oral defense, considering possible
questions regarding our work.

A.1.2 Resources

In the development of this project, various human and material resources are required:

Human resources
The human resources needed in this project are:
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1. The researcher, who works on the planning of the project, develops the
project and presents at the oral defense.

2. The director of the thesis, Carme Alvarez Faura, who will mentor the
researcher in the technical part of the project.

3. The GEP tutor who will guide the researcher to manage the project correctly.

Material resources
We will use some software and hardware resources in this project to perform ex-
periments and write documentations. We also consider material resources used for
communication.

1. Books and papers are needed for the research of the theoretical part and
previous works.

2. Google Meet is needed for online meetings with the director.

3. Google Jamboard is needed for illustration in online meetings in case of
questions.

4. Gmail will be used to communicate with the director, send documents that
contain demonstrations, questions and newer results.

5. Google Drive will be used to write documents and make backups of them.

6. Atenea and Racó where we will deliver documentations of the project.

7. Overleaf and Latex We will use Overleaf for the text formatting using Latex
in the final document because we already have some experiences with it.

8. A programming language to implement the algorithm for the experimenta-
tion part.

9. Github as the version control tool of the code since it is simple and stores
previous versions for recovery.

10. Computer. All documents and codes in this project are created with an ASUS
Zenbook computer, with 4GB of RAM and Intel(R) Core (TM) M-5Y10c CPU,
the same used to execute all experiments.

A.1.3 Summary of the Tasks

In the following table we have summarized all the tasks, with their dependencies,
required time and resources (Hx indicates human resource x, Mx indicates material
resource x).

ID Name Time(h) Dependencies Resources
T1 Project management 94
T1.1 Context and scope 28 - H1, H3, M5,

M6, M10
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T1.2 Time Planning 12 - H1, H3, M5,
M6, M10

T1.3 Budget and sustainability 12 - H1, H3, M5,
M6, M10

T1.4 Final Document 23 T1.1, T1.2, T1.3 H1, H3, M5,
M6, M10

T1.5 Meetings 19 - H1, H2, M2,
M3, M4, M10

T2 Previous studies 21
T2.1 Basics of Game Theory 5 - H1, M1, M10
T2.2 Study of the model 5 - H1, M1, M10
T2.3 Study of previous works 11 - H1, M1, M10
T3 Theoretical part 135
T3.1 Diversity of equilibrium net-

works
45 T2 H1, M1, M10

T3.2 Connectivity and social wel-
fare

45 T2 H1, M1, M10

T3.3 Convergence of best re-
sponse dynamics

45 T2 H1, M1, M10

T4 Programming part 90
T4.1 Algorithm of simulation 45 T2 H1, M8, M9,

M10
T4.2 Testing 45 T2, T4.1 H1, M8, M9,

M10
T5 Experimentation, analy-

sis and conclusion
70

T5.1 Simulation 45 T2, T4 H1, M8, M9,
M10

T5.2 Comparison of models 10 T2, T3, T4, T5.1 H1, M10
T5.3 Conclusion 15 T5.2 H1, M10
T6 Documentation 70
T6.1 Theoretical part documenta-

tion
15 T2, T3 H1, M5, M10

T6.2 Programming part documen-
tation

15 T2, T4 H1, M5, M10

T6.3 Final documentation 40 T5, T6.1, T6.2 H1, M5, M6,
M7, M10

T7 Prepare for the oral defense 20 T6.3 H1, M10

47



Network Formation Games under adversary attack with immunization: an
introduction to the scientific research

Total 500

Table 2: Summary of the tasks

A.1.4 Gantt Chart

The Gantt chart of the project is shown below. We have considered the number of
hours of each task and dependencies between tasks. We can see that T2 (previous
studies) can be done in the first week before T1 (project management), T1.5 (online
meetings) must be arranged every week and we have to start T3 (theoretical part)
concurrently with the project management to meet the deadline. The project lasts
approximately 500 hours and it is planned to work 3.75 hours approximately every
day for a total of 133 days (19 weeks).

Figure 13: Gantt chart of the project

A.1.5 Risk Management

We have presented in the Section 1.2.3 several potential obstacles and risks that we
may encounter during the development of this project. Here we will analyze their
effects, our alternatives and we will propose solutions to them.

• Timing of the project [High risk]. We have three months for the develop-
ment of the project before the final delivery. This is enough to complete the
project but is not expected to leave time for optional tasks. A risk of this is
the underestimation of the duration of some task. In this case as plan B we
have to redo the planning and re-estimate hours needed for each task. We can
also increase working hours per day if it is necessary.

• Lack of theoretical knowledge [Medium risk]. The lack of theoretical
knowledge in the field leads to the risk of getting stuck in the theoretical part
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and increases the duration of the project unexpectedly. Our solution to this
obstacle as plan B is to redo the planning, dedicate more time in theoretical
studies and increase working hours per day if it is necessary.

• Computation time of the simulation [Medium risk]. Our method of
simulation is to consider each iteration a round in which players can make moves
to improve their welfare and stop when no player can do better by making any
move. A risk of our project is that the computational cost and time complexity
of the implemented algorithm can be high. This can increase the duration of
the simulation task, our alternative for it is to stop the simulation when it
reaches a maximum number of iterations and will result in an approximate
solution of the optimum. This alternative will replace the task T5.1 Simulation
with the same time, dependencies and resources.

• Mistakes in theoretical proofs and algorithm implementation [Medium
risk]. As the proposed solution, we will work with our project director to check
our demonstrations in the theoretical part by organizing extra meetings in case
of doubts. We will spend more time on debugging if the code does not work.

• Mistakes in writing style used in documentations [High risk]. We
have to present our ideas to readers clearly and there is a high risk of making
grammar and spelling mistakes. To learn how to use formal language, we will
study examples of research works. Software resources like auto-checking tools
are also useful for avoiding grammar and spelling mistakes.

• Online meeting [Low risk]. In the time of pandemic, the meeting with
the director of this project will be online. This makes the explanation of the
results harder because we do not have a physical blackboard as in real life.
The solution of this problem is to use tools like Google Jamboard to help our
explanations and send documents to be discussed by email before the meeting
so we have time to understand it.

A.2 Budget
In this section we will discuss the budget of the project. We will include staff costs,
generic costs and costs of contingencies and incidentals. Moreover, we will propose
mechanisms for controlling potential budget deviations.

A.2.1 Staff Costs

To compute all personnel costs properly, we must define first which roles are needed
in this project and their cost per hour. The total cost for one task will be the sum
of costs of the personnel involved in the task (multiplying their cost per hour by
the number of hours of their working time). The gross salary per hour is obtained
by dividing average salary per month (average annual salary/12) by the average
number of working hours per month (160 approximately). The cost of social security
is included by multiplying the gross salary by 1.35.
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In this project 5 types of personnel are defined and their roles are going to be
performed by the researcher (myself), the director and the GEP tutor.

• Project Manager: responsible for the planning and development of the
project.

• Researcher: studies theoretical aspects of the project as the model, makes
experiments with them.

• Developer: implements the algorithm of simulation of the model for the
random attack adversary.

• Tester: verifies the correct functioning of the code implemented by the pro-
grammer.

• Analyst: analyzes theoretical and experimental results of the project and
obtains conclusions.

We will show cost per hour for each role[14][15][16], time per task, cost per task and
total personnel costs in the following tables:

Role Gross salary (€)/h Cost (€)/h
including SS

Role played by

Project Manager 16 21.6 Researcher, director,
GEP tutor

Researcher 14 18.9 Researcher
Developer 15 20.25 Researcher
Tester 11 14.85 Researcher
Analyst 10 13.5 Researcher

Table 3: Cost per hour of the different roles

Task Time
(h)

Project
Man-
ager

Re-
searcher

Devel-
oper

Tester Ana-
lyst

Cost
(€)

Project manage-
ment

94 94 19 19 19 19 3312.9

Context and scope 28 28 0 0 0 0 604.8
Time Planning 12 12 0 0 0 0 259.2
Budget and sustain-
ability

12 12 0 0 0 0 259.2

Final document 23 23 0 0 0 0 496.8
Meetings 19 19 19 19 19 19 1692.9
Previous studies 21 0 21 0 0 0 396.9
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Basics of Game
Theory

5 0 5 0 0 0 94.5

Study of the model 5 0 5 0 0 0 94.5
Study of previous
works

11 0 11 0 0 0 207.9

Theoretical part 135 0 135 0 0 0 2551.5
Diversity of equilib-
rium networks

45 0 45 0 0 0 850.5

Connectivity and
social welfare

45 0 45 0 0 0 850.5

Convergence of best
response dynamics

45 0 45 0 0 0 850.5

Programming
part

90 0 0 45 45 0 1579.5

Algorithm of simu-
lation

45 0 0 45 0 0 911.25

Testing 45 0 0 0 45 0 668.25
Experimentation,
analysis, conclu-
sion

70 0 12.5 15 15 27.5 1134

Simulation 45 0 0 15 15 15 729
Comparison of mod-
els

10 0 5 0 0 5 162

Conclusion 15 0 7.5 0 0 7.5 243
Documentation 70 0 27.5 5 5 32.5 1134
Theoretical part
documentation

15 0 7.5 0 0 7.5 243

Programming part
documentation

15 0 0 5 5 5 243

Final documenta-
tion

40 0 20 0 0 20 648

Prepare for the
oral defense

20 20 0 0 0 0 432

Total (CPA) 500 114 215 84 84 79 10540.8

Table 4: Time and cost per task

Role Hours Cost (€)

51



Network Formation Games under adversary attack with immunization: an
introduction to the scientific research

Project Manager 114 2462.4
Researcher 215 4063.5
Developer 84 1701
Tester 84 1247.4
Analyst 79 1066.5

Table 5: Total personnel costs

A.2.2 Generic Costs

Amortization costs
Due to the fact that all the software resources used for this project are free, we will
only take into account the amortization of hardware resources.

The project lasts approximately 500 hours and we planned to work 3.75 hours
per day, for a total of 133 days. We will use an ASUS Zenbook laptop to develop
100% of the project. The formula to compute the amortization is the following:

Amortization = Resource price×Hours used
Y ears of use×Days of work ×Hours per day

Hardware Price
(€)

Years of use Hours used
(h)

Amortization
(€)

ASUS Zenbook Laptop 750 5 500 150.4
Total 750 - - 150.4

Table 6: Amortization costs of hardware resources

Indirect costs
We do not have to consider travel costs in this project because during the time of
pandemic we are working from home and will only arrange online meetings. We must
take into account the following indirect costs:

• Internet cost: The internet service costs approximately 40€ per month. Thus
the total cost is 40(€/month)*133(days)*3.75(hours per day)/30(days per
month)/24(hours per day) = 27.7€.

• Electricity cost: The electricity price of the provider is 0.127003 €/kWh.[17]
The power of our ASUS laptop is 45W, we will consume in total 45(W)*133(days)*3.75(hours
per day) = 22.44kWh and the total electricity cost is 22.44(kWh)*0.127003(€/kWh)
= 2.85€.

• Rent cost: During the development of this project I will be working from my
house all the time. The rent cost of this house is 700€/month and the duration
of this project is 5 months. Hence the total rent cost is 3500€.
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Generic cost of the project
A summary of all generic costs of the project is shown in the table below:

Description Cost (€)
Amortization 150.4
Internet 27.7
Electricity 2.85
Rent 3500
Total (CG) 3680.95

Table 7: Generic cost of the project

A.2.3 Contingencies and Incidentals

Contingencies
We have to define a contingency margin for our project as a percentage of the
total value of the budget, this can be useful to cover unexpected obstacles due to
incomplete information or oversights. The contingency margin to add for CPA is
15%, because an unexpected event can delay the working time and it is necessary to
increase the worker salary. We will use this contingency margin to cover possible
cost deviations (variance in price of labour, price of resources and consumption of
time) after finishing a task. However the CG is less variant due to the deadline of
this project so its contingency margin will be 5%.

Incidentals
We have to include the incidental cost as well, which are related to the obstacles
that are identified in previous sections. The cost for each incident is calculated
by multiplying the estimated cost with the likelihood of occurrence. We have also
considered all tasks in which they may cause deviations.

Incident Estimated
cost per hour
(€)

Estimated
cost (€)

Risk
(%)

Cost
(€)

Tasks af-
fected

Timing of the
project (40h)

17.82 712.8 50 356.4 All tasks

Lack of theoret-
ical knowledge
(30h)

18.9 567 25 141.75 Previous stud-
ies, Theoreti-
cal part

Computation
time of the
simulation (10h)

17.55 175.5 25 43.88 Simulation
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Mistakes in
proofs and codes
(40h)

16.875 675 25 168.75 Theoretical
part, Pro-
gramming
part

Mistakes in writ-
ing style (20h)

18.9 378 50 189 Documentation

Online meeting
(19h)

0 0 10 0 All tasks

Total - - - 899.78 -

Table 8: Incidental cost of the project

A.2.4 Total Cost of the Project

We have computed the total cost of the project based on calculations we did in
previous sections:

Activity Cost (€)
CPA 10540.8
Project management 3312.9
Previous studies 396.9
Theoretical part 2551.5
Programming part 1579.5
Experimentation, analysis, conclusion 1134
Documentation 1134
Prepare for the oral defense 432
CG 3680.95
Amortization 150.4
Internet 27.7
Electricity 2.85
Rent 3500
Contingencies 1765.17
Incidentals 899.78
Timing of the project 356.4
Lack of theoretical knowledge 141.75
Computation time of the simulation 43.88
Mistakes in proofs and codes 168.75
Mistakes in writing style 189
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Online meeting 0
Total 16886.7

Table 9: Total cost of the project

A.2.5 Management Control

To control cost deviations during project execution, we have defined our cost control
model to compare and assess variances between the budget and the actual costs in-
curred at the end of a stage of the project. This can help us to keep our budget flexible.

We will take into account the following parameters to evaluate where, why and
how much deviations can happen during the process of a task: its actual consump-
tion in hours, its estimated consumption in hours and estimated/actual costs for
human resources, internet and electricity.

Every time we finish a task on the Gantt chart we will calculate all its cost deviations
(CPA, CG) using the following formulas:

• Variance in cost by rate: this can be caused by the variance in price of
labour (personnel salary) or price of provider (internet, electricity). For each
element we can compute its deviation with: Price deviation = (estimated
cost - actual cost) * actual consumption in hours. This determines if we have
underestimated the cost of a resource.

• Efficiency variance: this can be caused by the variance in consumption of
time (task time, hardware/internet/electricity usage hours). For each element
we can compute its deviation with: Consumption deviation = (estimated
consumption in hours - actual consumption in hours) * estimated cost. This
determines if we have underestimated the consumption time of a resource.

• Total deviation is the sum of the price deviation and the consumption
deviation. Total deviation = Price deviation + Consumption deviation.

In the following table we will show all elements of the cost deviation:

Name Variance in cost by rate Efficiency variance
Human resources (estimated cost - actual cost)

* actual consumption
(estimated consumption -
actual consumption) * es-
timated cost

Amortization No deviation (estimated consumption -
actual consumption) * es-
timated cost

Internet (estimated cost - actual cost)
* actual consumption

(estimated consumption -
actual consumption) * es-
timated cost
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Electricity (estimated cost - actual cost)
* actual consumption

(estimated consumption -
actual consumption) * es-
timated cost

Rent No deviation No deviation
Incidental (estimated cost per hour - ac-

tual cost per hour) * actual
consumption

(estimated consumption -
actual consumption) * es-
timated cost per hour

Total Human resources + Amortization + Internet + Elec-
tricity + Incidental

Table 10: Types of cost deviations

We will register all deviations in a table, in case the total deviation is positive it
means that we have overestimated the money needed for the task and can reserve this
money for future incidents. Otherwise we have to use our budget of contingencies to
cover the negative deviation. We will know where the variance occurred by looking
at each type of cost deviations.

A.3 Sustainability
In this section we will study the sustainability of the project by answering questions
of the sustainability matrix. For this project, a great part of its economic dimension
is the budget. We have to look not only at the costs of the project, but also its future
economic impacts. The application of its results in practice affects its economic and
social dimensions. In the environmental dimension the primary topic is the resources
used and reusability and we have to analyze the ecological footprint of the project.

A.3.1 Environmental Dimension

We have quantified the environmental impact of the project in the Section A.2. The
environmental impact of the project is little due to its theoretical nature. We have
avoided waste of printed paper by using online resources. We consume in total
22.44kWh of electricity and the mix of the Spanish electricity grid published by the
CNMC on April 16, 2021 [18] is 0.25 kg CO2/kWh, thus the total CO2 emission
of our project is 22.44kWh*0.25kg/kWh = 5.61kg. To minimize the environmental
impact of our project, we have reused resources like online tools and other research
results. For the experimental part we have reused implemented codes of Zhang et al.
in [3]. We could have reduced the use of paper to zero if we had only used informatic
resources. Furthermore, we could have reduced the consumption of electricity by
using a less powerful computer.

During the lifespan of this project its environmental impact will be low because
the article contains its theoretical and experimental results and does not use other
resources. Other researchers can make references of it in their works and reuse our
results. Therefore the energy consumption will be decreased as they do not have to
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recalculate theoretical results and redo experiments we have done.

There are environmental risks that can increase the ecological footprint of the
project. If we use the computer longer, we will consume more electricity and emit
more CO2. If the computer stopped working we would have used computers of FIB
labs to continue the project which increases the consume of electricity.

A.3.2 Economic Dimension

We have quantified the cost (human and material resources) of the project in the
Section A.2. We have calculated personnel costs by activity, generic costs like
amortization, internet, electricity and rent, contingencies and incidentals. The staff
cost of the project is reasonable (10540.8€) and the generic cost is small due to the
theoretical nature of the project (3680.95€). We have used free software resources to
reduce the cost of the project.

During the lifespan of this project it will not produce maintenance costs because
the article contains its theoretical and experimental results and does not use other
resources.

The economic risk of this project is that its results may not be enough for the
use of companies and society because the model it was based is simple and approxi-
mates less to the reality.

A.3.3 Social Dimension

This project is a good introduction to scientific research for me, it makes me interested
to learn more about an area in which I do not have experience. I have analyzed the
planning and the budget in the project management part and have started to study
the concept of sustainability because of the questions proposed in the sustainability
report.

Researchers, students and organizations like companies and governments can benefit
from our solution. It can be used in research works, education or practice in real
life, such as financial decisions, computer systems and epidemic control. It does not
have any social risks since its theoretical and experimental results cannot harm any
segment of the population.
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B Appendix - Code for Simulation
For simulation of best response dynamics in the Section 7, we implemented our
algorithm in the file main.py below, using packages implemented by Zhang et al.[3]:

1 from bestResponse import bestResponse
2 import networkx as nx
3 import random as rd
4

5 from utils.graph_utils import drawNetwork, utility_s, paintTarget
6 from PossibleStrategy.PossibleStrategy import getTargetRegion
7

8 # Generate a random graph using the Erdos Renyi model with
parameters n and p↪→

9 def randomGraph(n, p):
10 G = nx.generators.random_graphs.erdos_renyi_graph(n, p,

directed=True)↪→

11 immunized = rd.sample(range(0, n), int(n / 10.0 + 1))
12 dict_immunization = {node: (False if node not in immunized else

True) for node in G.nodes()}↪→

13 dict_size = {node: 1 for node in G.nodes}
14 nx.set_node_attributes(G, dict_immunization, 'immunization')
15 nx.set_node_attributes(G, dict_size, 'size')
16 return G
17

18 # Get the current utility of player v in G with strategy r, edge
cost = alpha and immunization cost = beta↪→

19 def getutility(G,v,r,alpha,beta):
20 G1 = G.copy()
21 G_undirected = G1.to_undirected()
22 G2_undirected = paintTarget(G_undirected)
23 G2_undirected.nodes[v]['immunization'] = r[1]
24 G2_undirected.nodes[v]['target'] = not r[1]
25 TR = getTargetRegion(G2_undirected, [node for node in

G2_undirected])↪→

26 return utility_s(G2_undirected, TR, v) - len(r[0]) * alpha -
r[1] * beta↪→

27

28 # Simulation of best response dynamics for G, edge cost = alpha and
immunization cost = beta↪→

29 def sim(G, alpha, beta):
30 G1 = G.copy()
31 r = [] # current strategy
32 for i in range(G1.number_of_nodes()):
33 G2 = G1.copy()
34 resp, utility = bestResponse(G2, i, alpha, beta)
35 current = []
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36 current.append(G1.edges(i))
37 current.append(G1.nodes[i]['immunization'])
38 u = getutility(G1,i,current,alpha,beta)
39 if utility > u: # compare the utility of current strategy

with best response and update graph↪→

40 G1.nodes[i]['immunization'] = resp[1]
41 current_strategy = [(i, k) for k in G1.adj[i]]
42 G1.remove_edges_from(current_strategy)
43 new_strategy = [(i, k) for k in resp[0]]
44 G1.add_edges_from(new_strategy)
45 r.append(resp)
46 else:
47 r.append(current)
48 print(i)
49 print(utility, u)
50 drawNetwork(G1)
51 rounds = 1
52 fi = False
53 while not fi:
54 fi = True
55 for i in range(G1.number_of_nodes()):
56 print('player ', i)
57 u = getutility(G1, i, r[i], alpha, beta)
58 G2 = G1.copy()
59 resp, utility = bestResponse(G2, i, alpha, beta)
60 print(utility,u)
61 if utility > u: # compare the utility of current

strategy with best response and update graph↪→

62 r[i] = resp
63 fi = False
64 G1.nodes[i]['immunization'] = resp[1]
65 current_strategy = [(i, k) for k in G1.adj[i]]
66 G1.remove_edges_from(current_strategy)
67 new_strategy = [(i, k) for k in resp[0]]
68 G1.add_edges_from(new_strategy)
69 rounds = rounds + 1
70 drawNetwork(G1)
71 return rounds, G1
72

73 if __name__ == '__main__':
74 n = 50
75 G = randomGraph(n,0.02)
76 drawNetwork(G)
77 alpha = 2
78 beta = 2
79 rounds, G1 = sim(G, alpha, beta)
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80 print("rounds:")
81 print(rounds)
82 drawNetwork(G1)
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