
V2X communications performance
analysis using open-source simulators

Degree Thesis
In partial fulfilment of the requirements for the degree in

Telecommunications Engineering

Author
Eudald Llagostera Brugarola

Advisors
Jordi Casademont Serra

Jordi Contreras Suñé

Barcelona, June 2021

Contents

Abstract vii

Resum viii

Acknowledgements ix

Revision history and approval record x

1 Introduction 1
1.1 Scope . 1
1.2 Work Plan . 2
1.3 Budget . 3

2 State of Art 4
2.1 V2X Protocol Architecture . 4

2.1.1 Applications . 5
2.1.2 Facilities . 5
2.1.3 Networking and Transport . 6
2.1.4 Access . 7

2.2 Simulator framework overview . 9
2.2.1 SUMO . 9
2.2.2 OMNeT++ . 10
2.2.3 CARLA . 12

3 Simulator Enhancement 13
3.1 Sumo Scenarios . 13

3.1.1 Sumo Files . 13
3.1.2 Physical topologies . 14

3.2 Simulation Parameters . 15
3.3 Statistical Recording . 17

3.3.1 SQLite . 17
3.3.2 Pandas . 18

4 EVI Ego-vehicle Interface 19
4.1 Connection between simulators (TraCI) 19

4.1.1 TraCI Protocol . 19
4.1.2 Multiple simulator connection 21

4.2 EVI . 22
4.2.1 Interceptor . 22
4.2.2 EVI architecture . 23

5 Results 24
5.1 Simulated scenarios . 24

ii

5.2 Packet Error Rate . 24
5.2.1 Effect of Vehicle Density . 25
5.2.2 Effect of CAM’s length . 27

6 Conclusions and future work 30

Appendices 31

A TraCI analysis with Wireshark 32
A.1 OMNeT++ and SUMO . 32

A.1.1 Command List . 32
A.1.2 Communication flow . 33

A.2 OMNeT++ CARLA and SUMO . 34
A.2.1 Command List . 34
A.2.2 Communication flow . 35

B Complete Set of Figures 37

C Interceptor Code 44
C.1 Interceptor.py . 44
C.2 Globals.py . 48

Acronyms 53

iii

iv

List of Figures

1.1 Gantt diagram . 2

2.1 ITS-S reference architecture . 4
2.2 GeoNetworking routing schemes . 7
2.3 Highway scenario . 9
2.4 Simulation Framework Overview . 10
2.5 Artery Simulation Framework . 11
2.6 Carla Simulator . 12

3.1 Highway routes file 400 vehicles . 14
3.2 Simulation scenarios . 14
3.3 Packets Error Rate table with SQLite 18

4.1 TraCI SUMO connection . 20
4.2 OMNeT++, CARLA and SUMO communication flow 21
4.3 Schema of three simulator interceptor 22
4.4 Desired output in Carla simulator . 23

5.1 PER Histograms, with variation of vehicles density. 25
5.2 Highway Packets Received Histogram, with variation of vehicles density. 26
5.3 Manhattan Total and LOS packets received Histogram 26
5.4 100 m Intersection effect . 27
5.5 Highway PER Histogram, with variation of CAM’s length. 28
5.6 Manhattan PER Histograms, with variation of CAM’s length. 28
5.7 Total Packets received CAM length varying 29

A.1 OMNeT++ and SUMO communication flow 1 33
A.2 OMNeT++ and SUMO communication flow 2 33
A.3 OMNeT++, CARLA and SUMO communication flow 1 35
A.4 OMNeT++, CARLA and SUMO communication flow 2 35

B.1 Highway PER Histogram vehicle density 37
B.2 Highway Packets Received Histogram vehicle density 38
B.3 Manhattan PER Histogram vehicle density 38
B.4 Manhattan Packets Received Histogram vehicle density 39
B.5 Highway PER Histogram CAM’s length 39
B.6 Highway Packets Received Histogram CAM’s length 40
B.7 Manhattan PER Histogram CAM’s length 40
B.8 Manhattan Packets Received Histogram CAM’s length 41
B.9 Manhattan LOS Packets Received Histogram density varying 41
B.10 Manhattan LOS PER Histogram density varying 42
B.11 Manhattan LOS Packets Received Histogram CAM’s length 42
B.12 Manhattan LOS PER Histogram CAM’s length 43

v

List of Tables

1.1 Summary of total budget . 3

2.1 Mapping between ITS-S reference architecture and OSI model 5
2.2 ITS-G5 Traffic classes . 8

3.1 Simulation parameter values . 15
3.2 Highway Level of Service . 16

4.1 TCP message container . 20

5.1 Density of vehicles . 24

A.1 OMNeT++ and SUMO commands 32
A.2 OMNeT++, CARLA and SUMO commands 35

vi

Abstract

A key aspect of Vehicle-to-Everything (V2X) communication is the concept of
cooperative awareness, wherein the periodic exchange of status information allows
vehicles to become aware of their surroundings for increased traffic safety and
efficiency. This project aimed to implement and design an interface to communicate
the Objective Modular Network Tested in C++ (OMNeT++, a network simulator
simulating V2X scenarios) , with the Car Learning to Act (CARLA, an autonomous
driver simulator), feeding the messages received from the OMNeT++ simulation
to CARLA. This way, being the Ego vehicle more aware of their surroundings.
This project also aimed to evaluate the effectiveness of the Cooperative awareness
(CA) basic service through the development of an IEEE 802.11p-based V2X system
simulator. The simulations were executed varying the density of vehicles and
Cooperative Awareness Message (CAM)’s length in two different scenarios: the
highway scenario and the Manhattan grid scenario. The performance was then
assessed by analyzing the Packet Error Rate (PER), the number of messages received,
and also, in the Manhattan scenario, differentiating the Line of Sight (LOS) cases.
The presence of more vehicles caused higher packet losses due to increased interference
and collisions probability, leading to higher PER values. When the CAM’s length
increased, the PER as well as the interference in the scenario increased. In the
Manhattan scenarios a peak of more packets received and more interference was
present in the intersections, leading to a higher PER values.

vii

Resum

Un dels aspectes claus de la comunicació entre Vehicles cap a Tot (V2X) és el concepte
de la consciència cooperativa, on l’intercanvi periòdic de l’estat de les informacions
permet als vehicles ser conscients del seu entorn augmentant aix́ı la seguretat i
l’eficàcia del trànsit. Aquest projecte consta de dos objectius, el primer ha estat
implementar i dissenyar una interf́ıcie per comunicar l’ Objective Modular Network
Tested in C++ (OMNeT++, un simulador de xarxes que permet simular escenaris
V2X) amb el Car Learning to Act (CARLA, un simulador de conducció autònoma),
transmetent els missatges simulats amb l’OMNeT++ cap al CARLA. D’aquesta
manera el vehicle egocèntric és més conscient del seu entorn. El segon objectiu ha
estat avaluar l’efectivitat del servei bàsic de Conciència cooperativa (CA) mitjançant
un simulador IEEE 802.11p V2X. Les simulacions s’han executat variant la densitat
de vehicles i les mides dels Missatges de Concència Cooperativa (CAM) en dos
escenaris diferents: una autopista i una quadŕıcula de Manhattan. El rendiment ha
estat avaluat analitzant la Tassa de Paquets Erronis (PER) i el nombre de missatges
rebuts en els dos escenaris. En el cas de la quadŕıcula de Manhattan també s’ha
diferenciat el cas de Vista Directa (LOS). La presència de més vehicles ha causat
més pèrdues de paquets a causa de l’increment de la interferència i la probabilitat
de col·lisions de paquets, incrementant aix́ı els valors de la PER. En el moment que
s’ha augmentat la mida dels missatges CAM, la PER també ha augmentat, ja que
les interferències dels escenaris han augmentant. A l’escenari de Manhattan hi ha
un pic de més paquets rebuts i més interferències a les interseccions, la qual cosa
comporta un increment de la PER.

viii

Acknowledgements

I would like to express my sincere gratitude to my advisors, Dr. Jordi Casademont
Serra and Mr. Jordi Contreras Suñé, for the guidance and for giving me the
opportunity to learn a lot through this project. I would also like to thank Jordi
Marias Parella, Dr. Juan-Luis Gorricho Moreno, for all the help they provided.
Finally, I would like to thank to my family and friends for their continuous support
and encouragement.

ix

Revision history and approval record

Revision Date Purpose

0 30/03/2021 Document creation

1 14/06/2021 Document revision

Document Distribution List

Name e-mail

Eudald Llagostera Brugarola eudald.llagostera@estudiantat.upc.edu

Jordi Casademont i Serra jordi.casademont@upc.edu

Written by: Reviewed and approved by:

Date 14/06/2021 Date 14/06/2021

Name Eudald Llagostera Brugarola Name Jordi Casademont i Serra

Position Project Author Position Project Supervisor

x

Chapter 1

Introduction

Safety still remains one of the biggest concerns in the traffic infrastructure and
automobile technology. Road accidents are one of the leading causes of death with
an estimated total of 1.35 million each year [1]. Vehicle-to-Everything (V2X) commu-
nications is considered to be a revolutionary technology which would revolutionize
road safety. Moreover, V2X aims to increase traffic efficiency, reduce environmental
impact (with efficient driving), and improving the overall transport experience.

The project was performed in the framework of the foundation i2CAT, concretely
enrolled with H2020 CPSOSaware, an European project. The project works with
three open-source simulators, which simulates V2X architectures and autonomous
driving in different scenarios. Working with these simulators, the project aims to the
development of an external interface to control the communication between the three
simulators, which was a new part started from scratch. And to perform an evaluation
of the performance of the Cooperative Awareness (CA) services in different scenarios,
what has been done before, but not with the actual version of the simulators. Due to
the new versions, the anterior work has been outdated and it’s not functional with
the new versions of the simulators.

1.1 Scope

This project had two main goals. One was to implement the CA basic service and
evaluate its effectiveness in enabling cooperative awareness among vehicles, and the
other, was to connect existing system-level simulators from the V2X and autonomous
driving.

For the evaluation of the CA basic service an existing system-level IEEE 802.11p
simulator was used as the foundation in this project. The simulator was then modified
to enable the variation of important parameters (density, CAM’s length) in order to
deduce the impact on system performance, and to perform more realistic simulations
under different road topologies (highway, Manhattan grid). Moreover, different
metrics were designed to asses the CA basic performance.

For the simulators connection, three simulators had been connected between them
and an analysis of the protocol used for connecting all simulators was performed.
Then, a design of an interface to connect all the simulators was depicted and a first
version to control and synchronize them was developed.

1

It is important to note that the experiments carried out only with the IEEE 802.11p
standard, and comparisons of the different V2X technologies were out of scope of
the project.

1.2 Work Plan

The project was carried out form February 2021 to June 2021, and it was divided in
five work packages, as can be seen in Figure 1.1. The first month was dedicated to
studying the concepts that were necessary for the implementations of the project.
This included both generic topics, such as C++ programming and the C-ITS protocol
stack, and more specific ones, including understanding existing source codes of the
simulators.

The next months were allocated to work on the two tasks. In the case of the evaluation
of the CA basic service, the development of the road scenarios, and adjusting the
simulator parameters to make the simulations as realistic as possible. As well as,
preparing the statistical results. On the other hand, a deep analysis of the TraCI
protocol with Wireshak was performed together with the design and implementation
of a first version of an interceptor between the simulators.

In order to develop all the tasks, the usage of new tools was needed. A great
part of the time was invested in learning programming languages as C++ for the
enhancements in the Objective Modular Network Tested in C++ (OMNeT++)
simulator, Python for the implementation of the interceptor and analysis of the
Traffic Control Interface (TraCI) protocol, Python modules as Pandas or Matplotlib
to prepare the statistic results, and SQLite to acquire basic knowledge of databases
to manipulate the data that the simulations were outputting.

Towards the end of the project, simulations had to be carried out multiple times. this
was because it was often necessary to make adjustments to the simulation parameters
when unexpected results were observed. This phase was relatively time-consuming
since a single batch of simulations took a few days to complete.

Figure 1.1: Gantt diagram

2

1.3 Budget

As explained in the introduction, this project was performed in the framework of the
foundation i2CAT, concretely enrolled in an European project, CPSOSaware. As
such, and in-depth study of its financial is out of scope. However, a very simple cost
analysis can be provided.

The duration of this project has been 20 weeks, requiring one person to spend an
average of 40 hours a week. This thesis has been developed with a cooperation
agreement between the Polytechnic University of Catalonia (UPC) and i2CAT, with
a cost of 9€/h for a total of 7200€.

Besides form man-power the basic expected hardware for a software project was
needed. Including two desktop computers provided by UPC with a estimated price
of 1000€ each, all the other software used was free and open source (Ubuntu 20.04
LTS, OMNeT++ 5.6.2, SUMO 1.9.2, CARLA 0.9.9, etc.).

The summary of the total budget is depicted in Table 1.1.

Concept Cost

Equipment 2000€
Personal 7200€
TOTAL 9200€

Table 1.1: Summary of total budget

3

Chapter 2

State of Art

2.1 V2X Protocol Architecture

The C-ITS network architecture consists of different entities, or ITS station (ITS-S),
communicating with each other. These are:

• Personal ITS-S – handheld devices of pedestrians

• Vehicle ITS-S – On-board Unit(OBU) mounted on vehicles

• Central ITS-S – traffic management centres

• Roadside ITS-S – Roadside Unit (RSU) or fixed traffic infrastructures

The combination of any of these entities results to different communication modes.

The ITS-S reference architecture defines the protocol stack implemented on each
station. It comprises four horizontal layers along with two vertical entities [2] , as it
can be seen in Figure 2.1. It is analogous to the Open System Interconnection (OSI)
model, except that it extends the model to include the ITS applications, as shown in
Table 2.1.

Figure 2.1: ITS-S reference architecture

4

ITS-S Referemce Architecture OSI Model

Applications -

Application

PresentationFacilities

Session

Transport
Networking and Transport

Network

Data Link
Access

Physical

Table 2.1: Mapping between ITS-S reference architecture and OSI model

2.1.1 Applications

ITS applications are formed by complementary ITS-S applications. A group of
applications and use cases is known as the Basic Set of Applications (BSA). These
use cases are categorized into the following three classes [3].

1. Active road safety: The goal of this class is to improve traffic safety by
preventing road casualties.

2. Cooperative traffic efficiency: The goal of this class is to improve road traf-
fic management, and increase traffic efficiency in terms of travel times, fuel
consumption, emissions, etc.

3. Other applications: These include applications providing other services such as
those for infotainment.

2.1.2 Facilities

The ITS facilities layer maps to layers 5, 6 and 7 of the OSI reference model. As
such, it exhibits the corresponding functionalities of those three layers combined
with ITS-specific ones. Its key role is to provide service to the ITS applications in
the upper layer, and thus, the facilities are also referred to as basic service. Facilities
can be grouped in two ways, according to: type of support and scope of support
provided to the ITS BSA[3].

Classification of facilities according to the type of support provided:

1. Application support facilities - provide application support functionalities.

2. Information support facilities - provide common data and database management
functionalities.

5

3. Communication support facilities - provide services for communication and
session management.

Classification of facilities according to the scope of support provided:

1. Common facilities - provide basic core services and functions for all applications
and for the operation of the ITS stations.

2. Domain - provide specific services and functions for one or several applications.

On this layer, there can be found the so-known Cooperative Awareness Messages
(CAM) and Decentralized Environmental Notification Message (DENM) which were
proposed under the European Standardization.

2.1.3 Networking and Transport

The Basic Transport Protocol (BTP) provides and end-to-end, unreliable, and con-
nectionless transport service. It is responsible for multiplexing the messages from the
different processes at the ITS facilities layer, and at the other end, demultiplexing of
messages received through the GeoNetworking protocol. The way multiplexing/de-
multiplexing works is based on ports, which act as identifiers to distinguish different
processes running on the ITS station. In the case of CAM and DENM facilities
the BTP port corresponding to them are 2001 and 2002 respectively. Moreover,
BTP allows the facilities layer to access the services provided by the GeoNetworking
protocol, as well as the exchange of protocol control information between those two
entities [4].

There are two types of BTP headers, which is indicated in the Next Header (NH)
field of the GeoNetworking Common header. BTP-A is for interactive packets
transport, while BTP-B signals non-interactive. Moreover, they differ in packet
structure, with BTP-A containing both: source and destinations ports, and BTP-B
specifying only the destination port with the addition of destination port information
in case of well-known ports, making clear that the BTP-B is designed for broadcast
communications.

The GeoNetworking protocol is a network-layer protocol that uses geographical
positions and areas to route packets across the ITS ad hoc network. It enables
infrastructure-less communication, and meets the vehicle networking requirements,
such as support for high node mobility and continuously changing network topology
[5].

The GeoNetworking protocol has de following main functions:

1. Geographical addressing: A packet is sent to a destination node with a specific
geographical position or to several destination nodes belonging to a geographical
area.

2. Geographical forwarding: Each node maintains knowledge of the network

6

topology. When a node receives a packet, it examines the destination field, and
compares the indicated geographical address to its knowledge of the network
topology to make forwarding decisions.

The GeoNetworking routing employs different packet forwarding schemes depicted in
Figure 2.2:

1. GeoUnicast: The packet is continuously forwarded by intermediate nodes until
it reaches its destination.

2. GeoBroadcast: The packet is continuously forwarded until it reaches its desti-
nation geographical area. The nodes inside the area re-broadcast the packet,
unlike the GeoAnycast.

3. Topologically-scoped broadcast: The packet is continuously re-forwarded until
the n-hop node.

Figure 2.2: GeoNetworking routing schemes

2.1.4 Access

The ITS access layer maps to the data link and physical layers of the OSI reference
model. The data link layer consists of the Medium Access Control (MAC) and the
Logical Link Control (LLC) sublayers. The ITS access layer technology is termed
ITS-G5. Wich is based on the Institute of Electrical and Electronics Engineers (IEEE)
802.11 Wireless Local Area Network (WLAN) standard. IEEE 802.11p corresponds
to the Physical Layer (PHY) and MAC layers and is a modification of IEEE 802.11a.

IEEE 802.11p employs an almost identical physical layer as the IEEE 802.11a.

7

However, some differences are needed to be introduced for it to be able to handle the
high node mobility and steadily changing vehicular environments. For one, IEEE
802.11p utilizes the 10 MHz frequency channel bandwidth and works on the 5.9 GHz
band, as opposed to the 20 MHz of IEEE 802.11a and 5 GHz band, to make the
signal more robust to fading and other propagation effects.

ITS-G5 frequencies are allocated depending on their purpose of use, which also
differ on performance requirements. To enable various ITS applications, one control
channel (CCH) and seven services channels (SSH) are allocated [6].

IEEE 802.11p uses a MAC algorithm known as the Enhanced Distributed Coordina-
tion Access (EDCA). It works like the Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) algorithm but allows the prioritization of data traffic. It
defines separate queues corresponding to different access categories (ACs), as shown
in Table 2.2.

AC TC ID CW (min) CW (max) AIFS Intended Use

AC VO 0 3 7 58 µs High priority DENM

AC VI 1 7 15 71 µs DENM

AC BE 2 15 1023 110 µs CAM

AC BK 3 15 1023 149 µs Multi-hop DENM, other data traffic

Table 2.2: ITS-G5 Traffic classes

In an ITS ad hoc network, the network topology varies constantly, and the number of
vehicles within the communication range is unpredictable. In the case of high-density
scenarios, the communicating vehicles may require a number of resources beyond the
channel capacity. As such, the Decentralized Congestion Control (DCC) mechanism
is necessary to avoid channel congestion and allow a fairer access to the limited
resources. The way DCC works is that the vehicle adapts its transmission parameters
according to the measured channel load. The different DCC access techniques used
to control the channel load is:

1. Transmit Power Control (TPC): adjust the output power to reduce the resulting
interference.

2. Transmit Rate Control (TRC): adjust the time between consecutive packets,
such as is increased in high density scenarios.

3. Transmit Data rate Control (TDC): adjust the transfer rate, such that it is
lowered at high load scenarios.

8

2.2 Simulator framework overview

For the development of this project, three simulators were used: SUMO for road
traffic simulations, OMNeT++ for a network simulations and CARLA for validating
of autonomous driving systems.

2.2.1 SUMO

Simulation of Urban Mobility (SUMO) is an open-source, portable simulator which
handles vehicular traffic simulations and its characterizations. It allows the creation
of different road topologies for the simulation, such as Highway and Manhattan grid
scenarios, as well as the experimentation of various mobility models. A representation
of Highway scenario can be seen in Figure 2.3. Moreover, it is microscopic, as vehicles
are individually modelled, and move independently through the network.

The road topologies generated for the study of the behavior of CAMs messages in
Highway and Manhattan scenarios were generated through (SUMO).

To perform a simulation in SUMO mainly three kind of configuration files are needed.

Figure 2.3: Highway scenario

Sumo Files

Each scenario is created using three SUMO files [7]. The basic files to run a simulation
are the network file, the routes file and the configuration file.

The Network File contains the description of the physical topology of the scenario.
This may include the roads, intersections, traffic logics and even roundabouts. Using
the sumo naming convention, the roads or streets are referred to as edges, and the
intersections as junctions or nodes. Two edges are connected by junctions.

The routes file specifies the vehicle types and routes for the vehicles in the simulation.
The vehicles type field includes the physical properties of the vehicle, such as shape,
color, maximum speed and minimum gap for the vehicle ahead. Different routes are

9

identified by their road id, and each of them defines the relevant edges and direction
of movement of vehicles. Moreover, a flow contains the information to control the
vehicles inserted in the scenario and how they behave during the simulation.

The configuration file specifies the associated network and routes files for a given
scenario. Moreover, it is possible to configure the step-length, which is the granularity
of the simulation and has a minimum value of 1ms. It also corresponds to the time
interval with which vehicle positions are updated.

Besides these files a SUMO simulation may have additional-files. These files can
include a wide range of network elements such as traffic light programs, detector
definitions, variable speed signs, or they can also be used to configure simulation
outputs as edge-based traffic measures or traffic light switching information.

For the creation or manipulation of SUMO XML description files, SUMO provides
the following tools among others:

• Netconvert: imports digital road networks from different sources and generates
road networks that can be used by other tools form the package.

• Netgenerate: generates abstract road networks that may be used by other
SUMO-applications

• Netedit: a visual net editor. It can be used to create networks form scratch
and to modify all aspects of existing networks.

• jtrouter: computes routes that may be used by SUMO based on traffic volumes
and junction turning rations.

2.2.2 OMNeT++

The IEEE 802.11p based simulator is composed of several simulation frameworks of
different functionality, as depicted in Figure 2.4.

Figure 2.4: Simulation Framework Overview

10

The Objective Modular Network Testbed in C++ (OMNeT++) is an extensible
and modular simulation library and framework for the research and development of
complex distributed systems. Countless simulation models and model frameworks
have been written in top of OMNeT++ by researchers in diverse areas, and vehicular
networks is one of it. OMNeT++ works by assembling individual components/models
to larger ones. This modularity makes it easy for the models to be reused and
incorporated to different applications. Moreover, although OMNeT++ is mainly
used for building network simulators, it is also considered a network simulator
platform by its growing number of users. Model frameworks are often used in
conjunction with OMNeT++ to implement more specific functionalities.

The INET simulation framework is an open-source library containing various models
to simulate communication networks, and in particularly written for the OMNeT++
environment. Some of its features include models for the Internet stack (IPv4,
IPv6, Transmission Control Protocol (TCP), User Datagram Protocol (UDP)) and
wired/wireless interfaces (Ethernet, IEEE 802.11), and support for physical environ-
ment modelling (propagation model, presence of obstacles). Moreover, INET could
be used as a base for creating other simulation frameworks.

Artery was originally developed as an extension of Veins, although, it could now
be used independently. Artery corresponds to the application and facilities layers,
which enable the generation of CAMs and DENMs. Moreover, Artery’s middle ware
provides common facilities to the multiple ITS-G5 services running on individual
vehicles. The architecture of Artery is depicted in Figure 2.5.

Figure 2.5: Artery Simulation Framework

Usually, two programs are running hand in hand when a simulation is running. On
the left hand, there is the traffic simulator SUMO, and on the right-hand, we have
the OMNeT++ runtime environment. The interaction of these simulators is made
possible using a TCP socket and a standardized protocol known as the Traffic Control

11

Interface (TraCI). As such the movement of vehicles in SUMO is represented as the
movement of nodes in OMNeT++.

In this project OMNeT++ was used for the simulation and evaluation of CA basic
service. It calculates the propagation of the packets according to the parameters
specified in the configuration files, and also, with the help of other tools, it computes
the packets received rate in different scenarios.

2.2.3 CARLA

Car Learning to Act (CARLA) is an open simulator for urban driving. CARLA has
been developed from the ground up to support training, prototyping, and validation
of autonomous driving models, including both perception and control. The simulation
platform supports flexible setup of sensor suites and provides signals that can be
used to train driving strategies, such as GPS coordinates, speed, acceleration, and
detailed data on collisions and other infractions. A wide range of environmental
conditions can be specified, including weather and time of day[8]. An example of
CARLA simulator is shown in Figure 2.6.

Figure 2.6: Carla Simulator

12

Chapter 3

Simulator Enhancement

This chapter provides an explanation of the usage of the simulators for the acquisition
of statistics, including details extending its functionality and using tools for data
analysis and databases manipulation.

This chapter starts with the development of the SUMO scenarios, followed by the
parameters for the OMNeT++ to characterize the simulations to extract valid data.
And ending with the collection of statistics with tools like SQLite and Pandas.

3.1 Sumo Scenarios

For the performance of the simulations of this project two kinds of road topologies
have been used and developed with the SUMO simulator: highway and a Manhattan
grid.

3.1.1 Sumo Files

Each scenario was created using three SUMO files, which are located in artery/sce-
narios/i2cat2.

Each scenario has been created using different set of tools. For the Highway scenario
network file netedit has been used. The routes file has been created manually adding
as many cars as needed for the simulation. Besides, the basic files for a simulation an
additional file has been used. The additional-file reroutes the vehicles routes making
them drive in circles throw the highway and never exiting the simulation. This way
the density of vehicles in the simulation can be controlled.

For the Manhattan grid scenario, the Network file has been created automatically
with the usage of netgenerate. This tool allows to specify the grid format and the
number of cells for the grid scenario. Once the network file is generated, it can
be used to generate the routes file with the tool jtrouter, being able to specify the
number of vehicles in the simulations and the turning ratios that were set to 25-50-25.
Moreover, and additional file has been added for the Manhattan grid scenario adding
polygons/buildings for every cell.

The configuration of all the simulations has been done for the vehicles to enter in
the simulation as soon as possible, making them depart from any free position in
the simulation, at any lane, with the maximum speed allowed, as can be seen in

13

Figure 3.1. This way the warm-up period from the simulation is very low, with the
densest scenarios taking at most 10 seconds. The measures are valid after this period
because the vehicles are already at the desired conditions for the simulation. This
was a critical issue taking into account the time taken to throw a simulation.

Figure 3.1: Highway routes file 400 vehicles

3.1.2 Physical topologies

Different road topologies were used in this project. One of which was the highway
scenario, which simulate direct line-of-sight (LOS) conditions and non-stop driving.
The other one was the Manhattan grid scenario, which help in understanding the
effects of walls and buildings, as well as intersections. Moreover, the project defined
a statistical region in the scenarios, highlighted in red below, as shown in Figure 3.2.
Statistics were only recorded in this area to eliminate border effects. For instance,
less vehicles may be present at either end of the highway scenario compared to its
central region, and this consequently affects the carrier sense mechanism employed
by IEEE 802.11p.

Highway Scenario

The Highway scenario measured 2000m x 25m, with the statistical area bounded by
500m < x < 1500m, which corresponds to the central region of the highway. Each
direction had 4 lanes for a total of 8 lanes. The end of one circulatory direction is
connected with the beginning of the other direction, making a loop for the vehicles
loaded in the simulation. This way the density of vehicles in the simulation is
controlled.

Manhattan Grid Scenario

The Manhattan grid scenario measured 800m x 800m, with the statistical area
bounded by 200m < x < 600m and 200m < y < 600m, which corresponds to the
central region of the grid. The presence of walls is configured in the file walls.xml
and imported into the omnetpp.ini.

(a) Highway Scenario (b) Manhattan grid scenario

Figure 3.2: Simulation scenarios

14

3.2 Simulation Parameters

Table 3.1 provides a summary of the parameters used in the simulations:

Category Parameter Value

Operation mode 802.11p

Carrier frequency 5.9 GHz

Bandwidth 10 MHz

Channel number 180

Modulation QPSK

Bitrate 6 Mbps

Transmitter power 200 mW

Receiver sensitivity -85 dBm

Energy detection -85 dBm

Node

SNIR threshold 4 dB

Obstacle’s loss type DialectricObstacleLoss

Path loss type {Nakagami Fading, Rayleigh Fading}
Path loss factor 3

Background noise type IsotropicScalarbackgoundNoise

Medium

Background noise power -110 dBm

Topology {Bidirectional Highway, Manhattan grid}
Maximum vehicle speed 33.33 m/s

CAM message period 100 – 1000 ms

CAM message length 250 - 500 - 750 - 1000 bytes

Simulation time limit 200 - 300 s

Density of vehicles {100-200-300-400}

Scenario

Warm-up period 0-10 s

Table 3.1: Simulation parameter values

The parameter values, used to model the individual nodes, were selected based in
those specified in the standards. A control channel (CCH) was used, with 10 MHz
of bandwidth cantered at 5.9 GHz, channel number of 180 and default data rate of 6
Mbps. The nodes were configured to transmit with a power of 200mW or 23 dBm,
which was below the 33 dBm power limit. The receiver sensitivity was set to -85
dBm, with reference to [9] tables.

The road topologies were the bidirectional highway scenario and Manhattan grid
scenario. Depending on the scenario the warm-up period and the simulation time
differed. With the simulations the density of vehicles varies for low density (e.g., 100

15

vehicles) with high density (e.g., 400 vehicles). For the Highway scenario the radio
medium was modelled using the Nakagami fading profile, adapting the shape factor
m with equation 3.1 which is a good approximation of the signal fading in highway
scenarios [10]. The corresponding path loss factor value for highway areas ranged
between 2 and 3.5, from which a value of 3 was arbitrarily chosen to be used in the
simulations.

m(d) = 2.7 · e−0.01(d−1.0) + 1.0 (3.1)

Moreover, the different density of vehicles in the highway scenarios has been chosen
according to different levels of service of a motorway. From a low level of service A
(100 vehicles) to high level of service E (400 vehicles) in the simulation at the same
time [11].

Level of

Service

Maximum

Density

(pc/km/lane)

A 7

B 11

C 16

D 22

E 28

F >28

Table 3.2: Highway Level of Service

In Table 3.2 the density of vehicles is characterized with the pc/km/lane, where
pc is passenger cars, per kilometer, and per lane. The low levels of service (A ,
B) describes a free flow operations, vehicles are almost completely unimpeded in
their ability to maneuver. Increasing the Level of service the vehicles have more
constraints and less freedom to maneuver, until they reach the last level of services
(E, F), where the vehicles don’t have usable gaps in the traffic stream, and they can
not drive at maximum speed.

For the Manhattan grid scenario, the radio medium was modelled using the Rayleigh
fading profile, which allowed simulating highly dense urban environments without
direct LOS between the communicating nodes. The corresponding path loss factor
value for urban areas, ranged from 2.5 to 3.5, from which a value of 3 was arbitrarily
chosen to be used in the simulations. The physical environment allowed more realistic
simulations by enabling the walls/buildings in the scenario. The properties of the
walls could be configured in the walls.xml file and how the walls behave can be
adjusted with the DialectricObstacleLoss or IdealObstacleLoss parameter in the
omnetpp.ini. In the simulations the DialectricObstaclesLoss was used.

16

The performance of DCC was out of scope of this project. The simulation has been
set with the DCC disabled in omentpp.ini. The other parameter tested in this project
is the length of CAMs. To do so, the length of the message vary between 250 and
1000 bytes.

3.3 Statistical Recording

In order to make statistics form the data recorded with the simulations, tools for
data analysis were used: SQLite to manipulate the database, Python Pandas to
compute some values needed for the histograms and Matplotlib to represent all the
graphics correctly.

After a simulation, OMNeT++ stores all the results of the simulations in output
files in form of scalar results and vector results. To analyse these results OMNeT++
has an IDE able to represent this results. However, the statistics desired for this
project are not easily made with it. In order to make the desired statistics with
only OMNeT++ a modification in the source code of the simulator would have
been needed. Moreover, for computing another statistic for the same simulation, the
simulation would have to be set and thrown again.

Instead of only working with OMNeT++ other tools were used to manipulate the
data stored in the output-files of the simulation. The data was organized in new
tables and stored in a database. This way, the data was correctly organized for
computing statistics and it can be used as many times as needed.

3.3.1 SQLite

SQLite is an in-process library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine. SQLite reads and writes directly
to ordinary disk files, and a complete database is stored in a single disk file [12].

OMNeT++ allows to store the data in an SQLite file disk format. With the data
stored from the simulation the desired statistics could not be made for the need
of some parameters, for this reason, SQLite is used. With SQLite data from the
simulation can be queried and stored in a new table with all the needed parameters
to compute the statistics. Moreover, once the data is stored in the new table it can
be queried filtering any parameters, which allows us, for example to query only the
messages received in the center of the scenarios.

For example, as can be seen in Figure 3.3, a table to compute the Packet Error Rate
in function of the distance can be obtained.

17

3.3.2 Pandas

Pandas is an open-source Python package that is most widely used for data science/-
data analysis and machine learning tasks. It is built on top of another package named
Numpy, which provides support for multi-dimensional arrays. As one of the most
popular data wrangling packages, Pandas works well with many other data science
modules inside the Python ecosystem, and is typically included in every Python
distribution [13].

Moreover, Pandas makes simple to do many of the time consuming, repetitive tasks
associated with working with data. Including: data cleaning, data fill, data normal-
ization, merges and joins, data visualizations, statistical analysis, data inspection,
etc.

Pandas is a useful tool for this project, it enables to fill the tables of the databases
with the missing data, and to compute the desired statistics with an easy and efficient
way, and at the same time it allows to represent and visualize the desired statistics.
Moreover, Pandas supports the integration with many file formats or data sources,
and one of them is SQLite, which were used in the project.

For plotting the data Pandas uses the power of Matplotlib, a powerful python
library for creating static, animated and interactive visualization. Matplotlib is a
cross-platform, data visualization and graphical plotting library for python and its
numerical extension Numpy. It offers a viable open-source alternative to MATrix
LABoratory (MATLAB).

With the usage of this tools and with the data provided form OMNeT++: the
position of all the vehicles every 100 ms, the time of the received packets as well
as the source and destination vehicles, a linear interpolation to calculate the actual
position in the moment of receiving the packet was performed with Pandas. Having
the new data computed, the distance between cars was calculated for the statistic
results.

Figure 3.3: Packets Error Rate table with SQLite

18

Chapter 4

EVI Ego-vehicle Interface

This chapter provides an overview of the communication flow between simulators via
the TraCI protocol. Depicting the communication between OMNeT++, CARLA
and SUMO simulators.

Moreover, this chapter presents a design and development of an Ego-vehicle Interface
(EVI).

4.1 Connection between simulators (TraCI)

Traffic Control Interface (TraCI) gives access to a running road traffic simulation
allowing to retrieve values of simulated objects and to manipulate their behaviour
on-line.

This tool, provided from SUMO, is used for the other simulators: OMNeT++ and
CARLA. They use it to communicate with SUMO and send information as the
position, velocity or heading angle of the vehicles. When the three simulators are
working together, SUMO is the one controlling and synchronizing the three simulators
via the TraCI Protocol.

4.1.1 TraCI Protocol

TraCI uses a TCP based client/server architecture to provide access to SUMO.
Thereby, SUMO acts as a server that is started with additional command-line
options: –remote-port < INT > where < INT > is the specified port where SUMO
is listening on for incoming connections [14].

When started with the –remote-port option, SUMO only prepares the simulation
and walls and waits for all the external applications to connect and take over the
control as shown in figure 4.1a.

After starting SUMO, clients connect to it by setting up a TCP connection to the
appointed SUMO port. TraCI supports multiple clients and executes all commands
of a client in a sequence until it issues the Simulation Step command.

The client applications send commands to SUMO to control the simulation run, to
influence single vehicle’s behavior or to ask for environmental details. SUMO answers
with a Status-response and additional results depending on the given command.

19

The client has to trigger each simulation step in SUMO using the Simulation step
command. The simulation will advance to the next step once all clients have sent
the Simulation Step command.

The client is responsible for shutting down the connection using the Close command.
When all the clients issued a Close command, the simulation will end, freeing all
resources as shown in figure 4.1b.

(a) establishing connection (b) closing connection

Figure 4.1: TraCI SUMO connection

A TCP message acts a as a container for a list of commands or results. Therefore,
each TCP message consists of a small header, that gives the overall message size,
and a set of commands that are put behind it. The length and identifier of each
command is placed in front of the command as shown in Table 4.1.

0 7 8 15

Message Length Including this header

(Message Length, continued)

Length Identifier

Command 0 content

...

Length Identifier

Command n-1 content

Table 4.1: TCP message container

20

4.1.2 Multiple simulator connection

TraCI allows multiple clients connections. One SUMO simulation can be accessed
and modified by multiple clients. In the case of this project, a SUMO simulation is
shared at the same time with OMNeT++ and CARLA.

The number of clients which can connect is given as an additional option –num-clients
for a SUMO simulation. In order to have a predefined execution order, every client
should issue a Set Order command before the first Simulation Step command. The
Set Order command assigns a number to the client, the lower number having the
preference.

The way that TraCI handles the multiple clients commands is one at a time. The
client with the lowest number in the Set Order list is the one that TraCI handles first.
Once the first client has sent all the commands until the Simulation Step command,
TraCI is only responding to its commands. When TraCI receives the Simulation Step
command it handles the next client of the Set Order list, until it sends the simulation
step command. It works this way until clients close the connection. In figure 4.2 a
chart depicting the communication flow between the three simulators is shown. This
chart was created using the information of packets captured with Wireshark.

SYN

Omnet ++

SUMO

Carla
0x00

SYN/ACK

0x03

response 0x00

0x03

response 0x03

0x00

response 0x03

0xaa 0x00

response 0x0aa 0x00

0xc6 0x80

response 0xc6 0x80

0xa2 0x00

response 0x0a2 0x00

0x02

0xdb 64 74 76 7a 7b

response 0x00

0xa4 0x00

response 0xdb

0xab 0x7c

response 0xa4 0x00

0xa4 0x00

response 0xab 0x7c

response 0xa4 0x00

Figure 4.2: OMNeT++, CARLA and SUMO communication flow

A more accurate analysis of how TraCI works with a multiple client connection can
be seen in Appendix A.

21

4.2 EVI

One of the purposes of this project was to develop an Ego-Vehilce interface (EVI).
Being able to pass the information received in OMNeT++, of V2X simulations, to
the Ego-Vehicle allocated in CARLA. For this thesis, the complete development of
the EVI is out of scope. The final development will be performed with work hours
in i2CAT.

The first approach to design the EVI was to design and interceptor between the
simulators, controlling the flow of messages passed between them.

Subsequently, and architecture design is explained and an overview of the desired
output is shown.

4.2.1 Interceptor

The interceptor was aimed to intercept the communication between three simulators:
OMNeT++, CARLA and SUMO. OMNeT++ and CARLA communicate with
SUMO via TraCI, as seen previously in 4.1.2. SUMO controls the communication
flow, via TraCI protocol depending on the Set Order command. An schema of the
architecture of the interceptor is depicted in Figure 4.3.

Omnet ++

Sumo

Interceptor

Carla

Figure 4.3: Schema of three simulator interceptor

The development of this interceptor has been done using Python, with the help
of multi-threading. One thread for each of the communications channels: two for
OMNeT++ and SUMO and two more for CARLA and SUMO. The synchronization
of the threads has been done with events.

Moreover, a new class, Globals, has been created to store the global variables and
assure the correct access to these variables. This class stores the global variables and
provides the getters and setters to modify these safely.

With this interceptor the communication between the simulators was captured and
with it, the first step to develop the EVI was accomplished. The code can be seen in
Appendix C.

22

4.2.2 EVI architecture

The following step in the development of this project is designing the EVI architecture.
Based on the Interceptor approach explained before, an enchantment to communicate
OMNeT++ and CARLA is needed. The project aims for OMNeT++ to feed CARLA
with information received form the V2X protocols. Only a one-direct communication
flow is needed from OMNeT++ to CARLA.

On one hand, the OMNeT++ simulator needs to be able to identify the EGO vehicle
that CARLA controls. Once the vehilce has been identified, every time it receives a
packet correctly in OMNeT++ it needs to pass the information to CARLA simulator
using the interceptor.

On the other hand, CARLA simulator receives the information passed by the
interceptor and deals with it as any other sensor in CARLA. This way the EGO
vehicle has the information provided by V2X protocols. For example, the positions
broadcasted by the CAMs messages of the neighbour vehicles.

Taking this approach, the information fed to CARLA can be controlled to optimize
the simulators performance, and the synchronization between them.

The development of this architecture will be performed in the future work hours in
i2CAT. It is still in process by the time to deliver this document. The desired output
of this architecture can be seen in figure 4.4.

Neighbour Vehicles: 13
- 1 (28.5, 17.1)
- 2 (37.7, 9.1)
- 3 (15.2, 23.9)
- 4 (17.3, 4.5)
- 6 (14.2, 9.4)
- 7 (45.2, 24.0)
- 8 (16.9, 21.6)
- 9 (78.3, 15.4)
- 10 (12.3, 79.6)
- 11 (1.1, 31.5)
- 12 (58.6, 14.6)

Figure 4.4: Desired output in Carla simulator

A real time position of the neighbour vehicles can be seen for the EGO vehicle thanks
to the CAM’s received correctly.

23

Chapter 5

Results

This section presents the results for the experimental evaluation of CA basic service
using the modified IEEE 802.11p simulator. Its performance is studied by varying
different parameters such as vehicle density, packet length. The plots were made
according to the Tx-Rx distance, defined as the euclidean distance between two
communicating nodes. In the case of the Manhattan grid scenario, the propagation
model applied for the presence of buildings is the Dielectric Obstacle Loss, which
attenuates the signal as it passes through the building. All the graphics shown in
this chapter and others can be seen in Appendix B.

5.1 Simulated scenarios

This section compares a Highway scenario with Manhattan grid scenario. Different
simulations, varying the number of vehicles (100-200-300-400) in each scenario, have
been run. Nevertheless, in order to compare both scenarios, the road surface should
be taken into account. The highway scenario has a surface of 48000m2 and the
Manhattan grid scenario has a surface of 83458m2. Taking this into account, the
density of vehicles in both scenarios can be computed, as shown in Table 5.1.

Number of Vehilces
Density Highway scenario

(pc/km/lane)

Density Manhattan grid scenario

(pc/km/lane)

100 6.25 3.6

200 12.5 7.2

300 18.75 10.8

400 25 14.4

Table 5.1: Density of vehicles

5.2 Packet Error Rate

Before explaining how the Packet Error Rate (PER) is computed, an explanation of
how OMNeT++ computes the received packets is needed. OMNeT++ computes
the received packets in the following way: first, it checks if the power of the packet
is above the receiver sensitivity, discarding all the packets below. Afterward, it

24

considers as erroneous all the packets which didn’t pass the Signal to Noise Ratio
(SNR) threshold, it does it in a deterministic way. For the last step, it computes the
probability of receiving the packet correctly, depending on the values of the Signal
to Noise and Interference Ratio (SNIR). The packets are considered to be received
when they have passed the sensitivity threshold. After this, they can be an erroneous
one or a correct one depending on SNR and SNIR values.

Packet Error Rate (PER) is used to test the performance of an access terminal’s
receiver. PER is the ratio, in percent, of the number of packets not successfully
received by the access terminal. The resulting PERs of the different scenarios are
used to better understand the behavior of the CA basic service. In this project the
PER is defined as follows:

PER =
Erroneous received packets

Total received packets
· 100 (5.1)

A packet is considered to be correctly received if it successfully arrived at the MAC
layer. The Total packets in the denominator of Equation 5.1, refer to the packets
which passed the sensitivity threshold of the receiver, and the Erroneous received
packets refer to the ones which didn’t pass SNR and SNIR thresholds.

5.2.1 Effect of Vehicle Density

The length of the highway was fixed to be 2 km, and as such, increasing the number
of vehicles makes them closer together. This resulting in an increase in interference,
packet collisions, and more CAM’s being lost, which consequently increases the PER,
as can be observed in 5.1a. It can be observed an increase in the PER when the
vehicles in the simulation or the distance between vehicles increases because more
packet collisions can occur.

0 20 40 60 80 100 120 140 160
Distance (m)

0

1

2

3

4

5

6

7

8

Er
ro

ne
ou

s p
ac

ke
ts

 %

PER Histogram vehicle's density
100 vehicles
200 vehicles
300 vehicles
400 vehicles

(a) Highway PER Histogram

0 20 40 60 80 100 120 140
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

ne
ou

s p
ac

ke
ts

 %

PER Histogram vehicle's density
100 vehicles
200 vehicles
300 vehicles
400 vehicles

(b) Manhattan PER Histogram

Figure 5.1: PER Histograms, with variation of vehicles density.

CAM’s length: 250 bytes. Simulation time: 200 s (Highway), 300 s (Manhattan).

25

The same effect can be seen in the Manhattan grid scenario in Figure 5.1b. As more
vehicles are loaded in the simulation the PER increases, but not as clean and regular
as the Highway scenario, due to the presence of buildings and intersections, which
are located every 100 m in the street.

In order to observe this effect with more detail, Figures 5.2 and 5.3a can be observed.
In these charts, it can be observed that the packets received in the Manhattan
scenario don’t decrease fluidly with the distance. In the distance of 100 m, it holds
receiving the same packets as the anterior distances and then, at 110 m, it has a
drop of packets received.

0 25 50 75 100 125 150 175
Distance (m)

0

100000

200000

300000

400000

500000

600000

Pa
ck

et
s

Total packets received Histogram
100 vehicles
200 vehicles
300 vehicles
400 vehicles

Figure 5.2: Highway Packets Received Histogram, with variation of vehicles density.

CAM’s length: 250 bytes. Simulation time: 200s.

0 25 50 75 100 125 150 175
Distance (m)

0

20000

40000

60000

80000

100000

120000

140000

Pa
ck

et
s

Total packets received Histogram
100 vehicles
200 vehicles
300 vehicles
400 vehicles

(a) Manhattan total packets received

0 25 50 75 100 125 150 175
Distance (m)

0

20000

40000

60000

80000

100000

120000

140000

Pa
ck

et
s

Total packets received Histogram
100 vehicles
200 vehicles
300 vehicles
400 vehicles

(b) Manhattan LOS packets received

Figure 5.3: Manhattan Total and LOS packets received Histogram

CAM’s length: 250 bytes. Simulation time: 300 s.

Besides this effect, it’s observable that the messages received decrease as the distance
between cars increases, and the number of messages received is higher if more vehicles
are in the simulation, as more nodes are broadcasting CAM’s messages. Nonetheless,

26

having the same number of vehicles in the Manhattan and Highway scenarios, the
number of packets, which passed the sensitivity of the receiver, is much lower in the
Manhattan grid scenario, although the simulation time is higher (300s instead of
200s). This fact is because of the presence of buildings, which attenuates the signal
in the Manhattan grid scenario.

As noticed before, in the Manhattan grid scenario, effects of the buildings and
intersections can be observed in every chart. The buildings attenuate the signal,
discarding the majority of packets for not reaching the sensitivity threshold of the
receiver. However, some packets, which pass throw buildings, can reach it , as can be
seen comparing Figures 5.3a and 5.3b. These charts are from the same simulation
results: one with all the packets received, and the other filtering only the packets
received in Line of Sight (LOS). The graphics follow the same pattern having the
chart with all the packets received an offset of the packets received in Non Line of
Sight (NLOS).

However, another effect can be noticed. The presence of intersections in the Man-
hattan grid scenario triggers an effect of having some peaks in the 100 m distance:
more packets received (shown in Figure 5.3a) and higher PER (shown in Figure
5.1b). When a vehicle is situated in an intersection, it receives more packets in
LOS from every distance. Concretely, in the distance of 100 m, the vehicle receives
messages from vehicles which are not in LOS and are close to an intersection, as
shown in Figure 5.4. These packets use to have bad transmitting conditions, as
if they were at 140 m, because of being behind a building. This effect disappears
when the distance increases, because the vehicles behind the building have a higher
attenuation, therefore they don’t reach the sensitivity threshold of the receiver.

10
0 m

110 m

Figure 5.4: 100 m Intersection effect

With the filter of the LOS, the effect of the intersection disappears as well. Because
all the packets received from behind the buildings are not considered.

5.2.2 Effect of CAM’s length

The length of the CAM’s message has a significant impact on the resulting PER.
Given a higher length for the CAM the time to have an interference is higher as well,

27

resulting in an increase in packet collisions, which consequently causes an increase in
erroneous packets as can be seen in Figure 5.5. It can also be observed an increment
in the PER as the distance increases.

For the Manhattan grid scenario, the length of the messages affects the same way,
the longest the packet is more erroneous packets appear, as shown in Figure 5.6a.
Although, it differs from the Highway scenario because the graphic does not increase
uniformly. This is due to the presence of intersections and buildings, which generates
the same effects as before.

0 20 40 60 80 100 120 140 160
Distance (m)

0

2

4

6

8

10

12

14

16

Er
ro

ne
ou

s p
ac

ke
ts

 %

PER Histogram CAM's length
250 bytes
500 bytes
750 bytes
1000 bytes

Figure 5.5: Highway PER Histogram, with variation of CAM’s length.

Total vehicles: 200. Simulation time: 200 s. Density of vehicles: 12.5 pc/km/lane.

0 20 40 60 80 100 120 140 160
Distance (m)

0.0

0.5

1.0

1.5

2.0

2.5

Er
ro

ne
ou

s p
ac

ke
ts

 %

PER Histogram CAM's length
250 bytes
500 bytes
750 bytes
1000 bytes

(a) Manhattan PER

0 20 40 60 80 100 120 140 160
Distance (m)

0.0

0.5

1.0

1.5

2.0

2.5

Er
ro

ne
ou

s p
ac

ke
ts

 %

PER Histogram CAM's length
250 bytes
500 bytes
750 bytes
1000 bytes

(b) Manhattan LOS PER

Figure 5.6: Manhattan PER Histograms, with variation of CAM’s length.

Total vehicles: 200. Simulation time: 200 s. Density of vehicles: 7.2 pc/km/lane.

Observing the PER Histograms in Figures 5.6a and 5.6b, it is shown that the peaks
of PER in the 100 m distance are reduced when the vehicles behind the buildings are

28

filtered. However, due to the width of intersections a minimum effect of irregularity
in the chart is still present, is not as uniform as the Highway scenario yet.

The number of packets that passed the sensitivity threshold of the receivers is really
similar independently of the length of the CAM’s as can be seen in Figure 5.7a. The
first 10 m have fewer packets received, as the vehicle size and the security distance
between vehicles takes the first meters of space, resulting in fewer cars close to the
receiver. The range where more packets passed sensitivity is between 10 m and 70 m.
Afterwards, it decreases exponentially with the distance according to the propagation
effects.

In the Manhattan grid scenario, the same effect happens, but because of the presence
of walls and intersections the number of packets is much lower and there is a
discontinuous jump at 100 m distance, as shown in Figure 5.7b. It occurs form the
same effect explained in section 5.2.1.

0 25 50 75 100 125 150 175
Distance (m)

0

20000

40000

60000

80000

100000

Pa
ck

et
s

Total packets received Histogram
250 bytes
500 bytes
750 bytes
1000 bytes

(a) Highway scenario

0 25 50 75 100 125 150 175
Distance (m)

0

5000

10000

15000

20000

25000

30000

35000

Pa
ck

et
s

Total packets received Histogram
250 bytes
500 bytes
750 bytes
1000 bytes

(b) Manhattan grid scenario

Figure 5.7: Total Packets received CAM length varying

Total vehicles: 200. Simulation time: 200 s (Highway), 300 s (Manhattan). Density

of vehicles: 12.5 pc/km/lane (Highway), 16.9 pc/km/lane.

29

Chapter 6

Conclusions and future work

An existing IEEE 802.11p-based simulator was modified to perform simulations in
different scenarios, varying critical parameters as vehicle density or packet lengths in
order to evaluate the CA basic service.

The presence of more vehicles resulted in higher interference and collision probability
as more nodes attempt to access the channel to send their periodic CAMs, ultimately
increasing PER values. The packets arrived up to 175 m of distance with the
simulation parameters set in Section 3.2. As more distance between vehicles higher
the PER values and fewer packets passed the sensitivity threshold. In the Manhattan
grid scenario, the presence of intersections and buildings was reflected, with fewer
packets received being the majority in LOS, and the appearance of peaks in the 100
m distance corresponding to the distance between intersections.

The length of the CAMs affected significantly the PER values, due to the higher inter-
ference generated for each packet and therefore the collision probability incremented.
As longer the CAM higher the PER.

A design and first implementation of an EVI was successfully developed. Starting
with an analysis with Wireshark of the TraCI protocol which interconnects the
simulators, and following with the implementation of an interceptor, which captures
the messages passed between simulators. Finishing with a design of the following
steps to follow in the implementation of the EVI.

There are several recommendations for continuing with this research study. For one,
continue with the development of the EVI, which will be performed in the following
months.

In the case of the system simulators, other road topologies could be tested, since
the project only dealt with highway and grid scenarios. For instance, SUMO allows
importing real-world maps. Or testing new metrics with OMNeT++ simulator, as
Neighborhood Awareness Ratio.

30

Appendices

31

Appendix A

TraCI analysis with Wireshark

A.1 OMNeT++ and SUMO

A.1.1 Command List

Command Description

0x02 Simulation step

0xab Simulation value retrieval

0xab 0x7c Network bounding box

0xab 0x7b delta T, length of simulation step

0xab 0x82 Position conversion

0xab 0x7d Number of vehicles in the network, plus the ones waiting to start.

0xa4 Vehicle value retrieval

0xa4 0x00 Id list, list of vehicles in the simulation

0xa4 0x4f Type id

0xa4 0x40 Speed

0xa4 0x42 Position

0xa4 0x43 Angle

0xa4 0x49 vClass, permissions of the class

0xd4 Subscription vehicle value

0xd4 0x40 Subscribe speed

0xd4 0x42 Subscribe position

0xd4 0x43 Subscribe angle

0xdb Subscription simulation value

0xdb 0x66 Current simulation time

0xdb 0x74 Ids of departed vehicles

0xdb 0x76 Ids of vehicles starting to teleport

0xdb 0x7a Ids of arrived vehicles

0xdb 0x7b Delta T, returns the length of the simulation step

Table A.1: OMNeT++ and SUMO commands

32

A.1.2 Communication flow

The communication flow commands between the two simulators was the following:

0x00

0xdb 66 74 76 7a 7b

0xa4 0x00

0xab 0x7c

Omnet ++

SUMO

0xa4 0x00

0xab 0x7b

0x02

0xd4 40 42 43

0xab 0x7c

0xa4 0x4f

0xa4 0x40

0xa4 0x42

0xa4 0x43

0xa4 0x49

Retrieving
variables from a
new vehicle

Figure A.1: OMNeT++ and SUMO communication flow 1

0xab 0x82

0xab 0x82

0xab 0x82

0xab 0x82

Omnet ++

SUMO

0xab 0x82

0xab 0x82

0xab 0x7d

0x02

.

.

.

It repeats
always

Figure A.2: OMNeT++ and SUMO communication flow 2

The figures show the command flow of the simulators, as we can see when a new

33

vehicle enters the simulation a list of commands is passed every time. This commands
consists in subscribing the new vehicle in order to retrieve the desired values in every
simulation step and after that, acquire values that only are need once, (e.g., the
vehicle type, vehicle permissions).

A.2 OMNeT++ CARLA and SUMO

A.2.1 Command List

Command Description
0x02 Simulation step
0x03 Set Order
0xaa Edge value retrieval
0xaa 0x00 Id list, list of edges in the simulation
0xab Simulation value retrieval
0xab 0x7c Network bounding box
0xab 0x7b Delta T, length of Simulation step
0xab 0x82 Position conversion
0xab 0x7d Number of vehicles in the network, plus the ones waiting to start.
0xa2 Get traffic lights variable
0xa2 0x00 Id list, returns a list of all traffic light id’s in the scenario
0xa4 Vehicle value retrieval
0xa4 0x00 Id list, list of vehicles in the simulation
0xa4 0x4f Type id
0xa4 0x40 Speed
0xa4 0x42 Position
0xa4 0x43 Angle
0xa4 0x49 vClass, permissions of the class
0xc6 Change route state
0xc6 0x80 Add a new route
0xd4 Subscription vehicle value
0xd4 0x32 Lateral speed
0xd4 0x36 Slope in degrees
0xd4 0x39 Position 3D
0xd4 0x40 Subscribe speed
0xd4 0x42 Subscribe position
0xd4 0x43 Subscribe angle
0xd4 0x44 Length of the vehicle
0xd4 0x45 Vehicle color
0xd4 0x49 vClass, permissions class of this vehicle
0xd4 0x4d Width of the vehicle
0xd4 0x4f Type of vehicle id
0xd4 0x5b Signal states
0xd4 0xbc Height of the vehicle

34

Command Description
0xdb Subscription simulation value
0xdb 0x66 Current simulation time
0xdb 0x74 Ids of departed vehicles
0xdb 0x76 Ids of vehicles starting to teleport
0xdb 0x7a Ids of arrived vehicles
0xdb 0x7b Delta T, returns the length of the simulation step

Table A.2: OMNeT++, CARLA and SUMO commands

A.2.2 Communication flow

SYN

Omnet ++

SUMO

Carla
0x00

SYN/ACK

0x03

response 0x00

0x03

response 0x03

0x00

response 0x03

0xaa 0x00

response 0x0aa 0x00

0xc6 0x80

response 0xc6 0x80

0xa2 0x00

response 0x0a2 0x00

0x02

0xdb 64 74 76 7a 7b

response 0x00

0xa4 0x00

response 0xdb

0xab 0x7c

response 0xa4 0x00

0xa4 0x00

response 0xab 0x7c

response 0xa4 0x00

Figure A.3: OMNeT++, CARLA and SUMO communication flow 1

0xab 0x7b
Omnet ++

SUMO

Carla

response 0xab 0x7b
0x02

response 0x02

0xab 0x74

response 0xab 0x74

0xdb 40 42 43

response 0x02

0xab 0x7a

response 0x0ab 0x7a
0xd4 4f 49 45 44 4d bc 39 43 36 40 32 5b

response 0xd4

0x02

0xab 0x7c

response 0xd4

0xa4 0x4f

response 0xab 0x7c

0xa4 0x40

response 0xa4 0x4f

0xa4 0x43

response 0xa4 0x40

0xa4 0x42

response 0xa4 0x43

response 0xa4 0x42

0xa4 0x49

0xab 0x82

response 0xa4 0x49

0xab 0x7d

response 0xab 0x82

0x02

response 0xab 0x7d

x6

new
car

Repeats
continuously

Figure A.4: OMNeT++, CARLA and SUMO communication flow 2

35

This example differs from the other one because a new simulator was added to the
communication. SUMO is communicating with OMNeT++ and CARLA at the same
time. To do so, there is a preference order to communicate, which is settled with the
command 0x03 Set Order. In this case, CARLA has the preference.

Once the connection is done to both simulators and the order is set, the communica-
tion follows doing all the CARLA commands until it sends a 0x02 Simulation Step. At
this moment the communication with OMNeT++ starts. When OMNeT++ finishes
his first list of commands and sends the 0x02 Simulation Step command SUMO sends
the response to this command to both simulators and starts communicating with
CARLA again, until the simulation step is sent. This communication flow persists
until the communication is finished.

In the first part of the communication before the first simulation step, both simulators:
CARLA and OMNeT++, are asking for variables to configure their simulation. The
OMNeT++ simulator asks for the same parameters as in the previous example.
CARLA asks for the edges, the traffic lights, and it sets a new route for the simulation.

After the first simulation step, OMNeT++ and CARLA ask for the needed variables
of the new vehicles in the simulations, and after retrieving this variables they subscribe
the new vehicles. OMNeT++ sends the same commands explained in the previous
example and CARLA asks for ID’s of arrived and departed vehicles and subscribes a
list of variables of the new vehicles.

36

Appendix B

Complete Set of Figures

0 20 40 60 80 100 120 140 160
Distance (m)

0

1

2

3

4

5

6

7

8

Er
ro

ne
ou

s p
ac

ke
ts

 %

PER Histogram vehicle's density
100 vehicles
200 vehicles
300 vehicles
400 vehicles

Figure B.1: Highway PER Histogram vehicle density

37

0 25 50 75 100 125 150 175
Distance (m)

0

100000

200000

300000

400000

500000

600000
Pa

ck
et

s
Total packets received Histogram

100 vehicles
200 vehicles
300 vehicles
400 vehicles

Figure B.2: Highway Packets Received Histogram vehicle density

0 20 40 60 80 100 120 140
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

ne
ou

s p
ac

ke
ts

 %

PER Histogram vehicle's density
100 vehicles
200 vehicles
300 vehicles
400 vehicles

Figure B.3: Manhattan PER Histogram vehicle density

38

0 25 50 75 100 125 150 175
Distance (m)

0

20000

40000

60000

80000

100000

120000

140000

Pa
ck

et
s

Total packets received Histogram
100 vehicles
200 vehicles
300 vehicles
400 vehicles

Figure B.4: Manhattan Packets Received Histogram vehicle density

0 20 40 60 80 100 120 140 160
Distance (m)

0

2

4

6

8

10

12

14

16

Er
ro

ne
ou

s p
ac

ke
ts

 %

PER Histogram CAM's length
250 bytes
500 bytes
750 bytes
1000 bytes

Figure B.5: Highway PER Histogram CAM’s length

39

0 25 50 75 100 125 150 175
Distance (m)

0

20000

40000

60000

80000

100000

Pa
ck

et
s

Total packets received Histogram
250 bytes
500 bytes
750 bytes
1000 bytes

Figure B.6: Highway Packets Received Histogram CAM’s length

0 20 40 60 80 100 120 140 160
Distance (m)

0.0

0.5

1.0

1.5

2.0

2.5

Er
ro

ne
ou

s p
ac

ke
ts

 %

PER Histogram CAM's length
250 bytes
500 bytes
750 bytes
1000 bytes

Figure B.7: Manhattan PER Histogram CAM’s length

40

0 25 50 75 100 125 150 175
Distance (m)

0

5000

10000

15000

20000

25000

30000

35000

Pa
ck

et
s

Total packets received Histogram
250 bytes
500 bytes
750 bytes
1000 bytes

Figure B.8: Manhattan Packets Received Histogram CAM’s length

0 25 50 75 100 125 150 175
Distance (m)

0

20000

40000

60000

80000

100000

120000

140000

Pa
ck

et
s

Total packets received Histogram
100 vehicles
200 vehicles
300 vehicles
400 vehicles

Figure B.9: Manhattan LOS Packets Received Histogram density varying

41

0 20 40 60 80 100 120 140
Distance (m)

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
ne

ou
s p

ac
ke

ts
 %

PER Histogram vehicle's density
100 vehicles
200 vehicles
300 vehicles
400 vehicles

Figure B.10: Manhattan LOS PER Histogram density varying

0 20 40 60 80 100 120 140
Distance (m)

0

5000

10000

15000

20000

25000

Pa
ck

et
s

Total packets received Histogram
250 bytes
500 bytes
750 bytes
1000 bytes

Figure B.11: Manhattan LOS Packets Received Histogram CAM’s length

42

0 20 40 60 80 100 120 140 160
Distance (m)

0.0

0.5

1.0

1.5

2.0

2.5
Er

ro
ne

ou
s p

ac
ke

ts
 %

PER Histogram CAM's length
250 bytes
500 bytes
750 bytes
1000 bytes

Figure B.12: Manhattan LOS PER Histogram CAM’s length

43

Appendix C

Interceptor Code

C.1 Interceptor.py

import thread ing

import socke t

import g l o b a l v a r i a b l e s

import argparse

class MyThread(thread ing . Thread) :

’ ’ ’ Extends Thread to be used with soc k e t s ’ ’ ’

def i n i t (s e l f , name , funct ion , host , port , event1 , event2 , g l v a r) :

super () . i n i t ()

s e l f . name = name

s e l f . f unc t i on = func t i on

s e l f . host = host

s e l f . port = port

s e l f . event1 = event1

s e l f . event2 = event2

s e l f . g l v a r = g l v a r

def run (s e l f) :

s e l f . f unc t i on (s e l f . host , s e l f . port , s e l f . event1 , s e l f . event2 , s e l f . g l v a r)

def omnet s e rve r socke t (host , port , event o , event s , g l v a r) :

’ ’ ’ L i s t ens f o r connect ions and c r ea t e s a socke t to maintain a communication ’ ’ ’

Creates a se rve r socke t and l i s t e n s

with socket . socke t (socke t .AF INET , socke t .SOCK STREAM) as s :

s . bind ((host , port))

s . l i s t e n ()

conn , addr = s . accept ()

Receives the command form Oment++ and wai t s f o r the response .

Trigegrs the corresponding event s to manitain the threads synchronized

with conn :

print (’ Connected to ’ , addr)

while True :

try :

g l v a r . command omnet = conn . recv (g l v a r .mtu)

event o . set ()

Closes the socke t when no data i s r e ce i v ed

i f not g l v a r . command omnet :

break

Waits u n t i l Sumo responds to the command .

44

even t s . wait ()

conn . s e nda l l (g l v a r . command sumo omnet)

even t s . c l e a r ()

except KeyboardInterrupt :

conn . c l o s e ()

def c a r l a s e r v e r s o c k e t (host , port , event c , event s , g l v a r) :

’ ’ ’ L i s t ens f o r connect ions and c r ea t e s a socke t to maintain a communication ’ ’ ’

Creates a se rve r socke t and l i s t e n s

with socket . socke t (socke t .AF INET , socke t .SOCK STREAM) as s :

s . bind ((host , port))

s . l i s t e n ()

conn , addr = s . accept ()

Receives the command form Carla and wai t s f o r the response .

Triggers the corresponding event s to maintain the threads synchronized

with conn :

print (’ Connected to ’ , addr)

while True :

try :

g l v a r . command carla = conn . recv (g l v a r .mtu)

event c . set ()

Closes the socke t when no data i s r e ce i v ed

i f not g l v a r . command carla :

break

Waits u n t i l the Sumo responses the command

even t s . wait ()

conn . s e nda l l (g l v a r . command sumo carla)

even t s . c l e a r ()

except KeyboardInterrupt :

conn . c l o s e ()

def sumo omnet c l i en t socke t (host , port , event o , event s , g l v a r) :

’ ’ ’ C l i en t socke t t ha t connects to Sumo ’ ’ ’

Connects to Sumo

with socket . socke t (socke t .AF INET , socke t .SOCK STREAM) as s :

s . connect ((host , port))

Waits to r e c e i v e the command from Omnet++ and sends i t to Sumo.

Receives the response from Sumo and t r i g g e r s an event .

while True :

try :

Waits u n t i l a command form Oment++ i s rece i v ed

event o . wait ()

s . s e nda l l (g l v a r . command omnet)

g l v a r . command sumo omnet = s . recv (g l v a r .mtu)

Triggers the event s f o r proceed the communication

event o . c l e a r ()

even t s . set ()

45

Close the connect ion i f no data i s r ece i v ed

i f not g l v a r . command sumo omnet :

break

except KeyboardInterrupt :

s . c l o s e ()

def s umo c a r l a c l i e n t s o c k e t (host , port , event c , event s , g l v a r) :

’ ’ ’ C l i en t socke t t ha t connects to Sumo ’ ’ ’

Connects to Sumo

with socket . socke t (socke t .AF INET , socke t .SOCK STREAM) as s :

s . connect ((host , port))

Waits to r e c e i v e the command from Carla and sends i t to Sumo.

Receives the response from Sumo and t r i g g e r s an event .

while True :

try :

Waits u n t i l a command form Carla i s r e ce i v ed

event c . wait ()

s . s e nda l l (g l v a r . command carla)

g l v a r . command sumo carla = s . recv (g l v a r .mtu)

Triggers the event s f o r proceed the communication

event c . c l e a r ()

even t s . set ()

Close the connect ion i f no data i s r ece i v ed

i f not g l v a r . command sumo carla :

break

except KeyboardInterrupt :

s . c l o s e ()

i f name == ’ ma in ’ :

Parses the g l o b a l v a r i a b l e s to be mod i f i a b l e s from the user

par s e r = argparse . ArgumentParser (

d e s c r i p t i o n = ’ I n t e r c ep t s the communication between 3 s imu la to r s ’)

pa r s e r . add argument (

’−−host ’ , type = str ,

help = ’Host where you try to connect (d e f au l t = 1 2 7 . 0 . 0 . 1) ’ ,

d e f au l t = ’ 1 2 7 . 0 . 0 . 1 ’)

pa r s e r . add argument (

’−−port omnet ’ , type = int ,

help = ’ Port where Omnet++ c l i e n t i s t ry ing to connect (d e f au l t = 8998) ’ ,

d e f au l t = 8998)

par s e r . add argument (

’−−port sumo ’ , type = int ,

help = ’ Port where Sumo i s wa i t ing f o r a connect ion (d e f au l t = 9889) ’ ,

d e f au l t = 9889)

par s e r . add argument (

’−−po r t c a r l a ’ , type = int ,

help = ’ Port where Carla c l i e n t i s t ry ing to connect (d e f au l t = 9999) ’ ,

d e f au l t = 9999)

par s e r . add argument (

’−−mtu ’ , type = int ,

help = ’ S i z e o f the MTU of the p ro to co l (d e f au l t = 66000) ’ ,

46

de f au l t = 66000)

args = par s e r . p a r s e a r g s ()

I n i t i a l i z e the g l o b a l v a r i a b l e s

g l v a r = g l o b a l v a r i a b l e s . Globals (args . host ,

a rgs . port omnet , args . port sumo , args . po r t c a r l a , args .mtu)

Creates the synchron i za t ion event s

e omnet = thread ing . Event ()

e sumo o = thread ing . Event ()

e c a r l a = thread ing . Event ()

e sumo c = thread ing . Event ()

Creates the threads

t omnet = MyThread(’Omnet socke t ’ , omnet se rve r socket , g l v a r . host ,

g l v a r . port omnet , e omnet , e sumo o , g l v a r)

t c a r l a = MyThread(’ Carla socke t ’ , c a r l a s e r v e r s o c k e t , g l v a r . host ,

g l v a r . po r t c a r l a , e c a r l a , e sumo c , g l v a r)

t sumo o = MyThread(’Sumo socket from omnet ’ , sumo omnet c l i ent socket ,

g l v a r . host , g l v a r . port sumo , e omnet , e sumo o , g l v a r)

t sumo c = MyThread(’SUmo socket from ca r l a ’ , s umo ca r l a c l i e n t s o c k e t ,

g l v a r . host , g l v a r . port sumo , e c a r l a , e sumo c , g l v a r)

Sta r t s the threads

t omnet . s t a r t ()

t c a r l a . s t a r t ()

t sumo o . s t a r t ()

t sumo c . s t a r t ()

t omnet . j o i n ()

t c a r l a . j o i n ()

t sumo o . j o i n ()

t sumo c . j o i n ()

47

C.2 Globals.py

from thread ing import Lock

class Globals :

def i n i t (s e l f , host , port omnet , port sumo , po r t c a r l a , mtu) :

s e l f . command sumo omnet = b ’ ’

s e l f . command omnet = b ’ ’

s e l f . command carla = b ’ ’

s e l f . command sumo carla = b ’ ’

s e l f . mtu = mtu

s e l f . ho s t = host

s e l f . port omnet = port omnet

s e l f . port sumo = port sumo

s e l f . p o r t c a r l a = po r t c a r l a

s e l f . l o ck = Lock ()

@property

def command omnet (s e l f) :

return s e l f . command omnet

@property

def command carla (s e l f) :

return s e l f . command carla

@property

def command sumo omnet (s e l f) :

return s e l f . command sumo omnet

@property

def command sumo carla (s e l f) :

return s e l f . command sumo carla

@property

def mtu(s e l f) :

return s e l f . mtu

@property

def host (s e l f) :

return s e l f . ho s t

@property

def port omnet (s e l f) :

return s e l f . port omnet

@property

def port sumo (s e l f) :

return s e l f . port sumo

@property

def po r t c a r l a (s e l f) :

return s e l f . p o r t c a r l a

@command omnet . s e t t e r

def command omnet (s e l f , r e c e i v ed) :

48

s e l f . l o ck . a cqu i r e ()

s e l f . command omnet = re c e i v ed

s e l f . l o ck . r e l e a s e ()

@command carla . s e t t e r

def command carla (s e l f , r e c e i v ed) :

s e l f . l o ck . a cqu i r e ()

s e l f . command carla = re c e i v ed

s e l f . l o ck . r e l e a s e ()

@command sumo omnet . s e t t e r

def command sumo omnet (s e l f , r e c e i v ed) :

s e l f . l o ck . a cqu i r e ()

s e l f . command sumo omnet = re c e i v ed

s e l f . l o ck . r e l e a s e ()

@command sumo carla . s e t t e r

def command sumo carla (s e l f , r e c e i v ed) :

s e l f . l o ck . a cqu i r e ()

s e l f . command sumo carla = r e c e i v ed

s e l f . l o ck . r e l e a s e ()

@mtu . s e t t e r

def mtu(s e l f , va lue) :

s e l f . mtu = value

@host . s e t t e r

def host (s e l f , host) :

s e l f . ho s t = host

@port omnet . s e t t e r

def port omnet (s e l f , port) :

s e l f . port omnet = port

@port sumo . s e t t e r

def port sumo (s e l f , port) :

s e l f . port sumo = port

@port car la . s e t t e r

def po r t c a r l a (s e l f , port) :

s e l f . p o r t c a r l a = port

def s t r (s e l f) :

return f ’ ’ ’Command omnet i s { s e l f . command omnet } .
Command carla i s { s e l f . command carla } .
Command sumo omnet i s { s e l f . command sumo omnet } .
Command sumo carla i s { s e l f . command sumo carla } .
MTU i s { s e l f .mtu } .
HOST i s { s e l f . hos t } .
PORTOMNET i s { s e l f . port omnet } .
PORT SUMO i s { s e l f . port sumo } .
PORTCARLA i s { s e l f . p o r t c a r l a } . ’ ’ ’

i f name == ’ ma in ’ :

Test o f f u n c t i o n a l i t y

49

va r i a b l e s = Globals (’ 1 2 7 . 0 . 0 . 1 ’ , 8998 , 9889 , 9999 , 66000)

print (v a r i a b l e s)

v a r i a b l e s . command omnet = b ’ \x00\x00\x02 ’

v a r i a b l e s . command carla = b ’ \x01\x02 ’

v a r i a b l e s . command sumo omnet = b ’ \x00\x12 ’

v a r i a b l e s . command sumo carla = b ’ \x00\xab ’

v a r i a b l e s .mtu = 1500

print (v a r i a b l e s)

50

Bibliography

[1] World Health Organization. Road traffic injuries. url: https://www.who.

int/news-room/fact-sheets/detail/road-traffic-injuries. (accessed:

03.06.2021).

[2] European Telecommunications Standards Institute (ETSI). “Intelligent Trans-

port Systems (ITS); Communications Architecture”. In: ETSI EN 302 665

V1.1.1 (2010).

[3] European Telecommunications Standards Institute (ETSI). “Intelligent Trans-

port Systems (ITS); Part1: Functional Requirements”. In: ETSI TS 102 637-1

V1.1.1 (2010).

[4] European Telecommunications Standards Institute (ETSI). “Intelligent Trans-

port Systems (ITS); GeoNetworking; Part 5: Transport Protocols; Sub-part 1:

Basic Transport Protocol”. In: ETSI EN 302 636-5-1 V1.2.1 (2014).

[5] European Telecommunications Standards Institute (ETSI). “Intelligent Trans-

port Systems (ITS); GeoNetworking; Part 1: Requirements”. In: ETSI EN 302

636-5-1 V1.2.1 (2014).

[6] European Telecommunications Standards Institute (ETSI). “Intelligent Trans-

port Systems (ITS); Access layer specification for Intelligent Transportation

Systems operating in the 5 GHz frequency band”. In: ETSI EN 302 663 V1.2.1

(2013).

[7] German Aerospace Center (DLR). SUMO - Wiki. url: https://sumo.dlr.

de/docs/. (accessed: 20.05.2021).

[8] Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”. In:

Proceedings of the 1st Annual Conference on Robot Learning. 2017, pp. 1–16.

[9] Alessandro Bazzi et al. “Survey and Perspectives of Vehicular Wi-Fi versus

Sidelink Cellular-V2X in the 5G Era”. In: Future Internet 11.6 (2019). issn:

1999-5903. doi: 10.3390/fi11060122. url: https://www.mdpi.com/1999-

5903/11/6/122.

[10] Henrik Schumacher and Tchouankem Hugues Narcisse. “Highway Propagation

Modeling in VANETs and Its Impact on Performance Evaluation”. In: Mar.

2013. doi: 10.1109/WONS.2013.6578344.

51

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://sumo.dlr.de/docs/
https://sumo.dlr.de/docs/
https://doi.org/10.3390/fi11060122
https://www.mdpi.com/1999-5903/11/6/122
https://www.mdpi.com/1999-5903/11/6/122
https://doi.org/10.1109/WONS.2013.6578344

[11] Marco Morgante. “Motorway design guide: Capacity and flow analysis”. In:

(2017).

[12] SQLite - Wiki. url: https://www.sqlite.org/about.html. (accessed:

30.04.2021).

[13] Pandas - Wiki. url: https://pandas.pydata.org/docs/index.html.

(accessed: 10.05.2021).

[14] German Aerospace Center (DLR). SUMO - Wiki - TraCI Protocol. url: https:

//sumo.dlr.de/docs/TraCI/Protocol.html. (accessed: 20.05.2021).

52

https://www.sqlite.org/about.html
https://pandas.pydata.org/docs/index.html
https://sumo.dlr.de/docs/TraCI/Protocol.html
https://sumo.dlr.de/docs/TraCI/Protocol.html

Acronyms

AC Access Category. 8

BSA Basic Set of Applications. 5

BTP Basic Transport Protocol. 6

C-ITS Cooperative Intelligent Transport Systems. 4

CA Cooperative Awareness. vii, viii, 1, 2, 12, 24, 25, 30

CAM Cooperative Awareness Message. v, vii, viii, 1, 6, 8, 9, 11, 15, 17, 23, 25–27,
29, 30

CARLA Car Learning to Act. v–viii, 3, 9, 12, 19, 21–23, 35, 36

CCH Control Channel. 8, 15

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance. 8

DCC Decentralyzed Congestion Control. 8, 17

DENM Decentralized Environmental Notification Message. 6, 8, 11

EDCA Enhanced Distributed Coordination Access. 8

EVI Ego-Vehicle Interface. 19, 22, 23, 30

GPS Global Positioning System. 12

IDE Integrated Development Environment. 17

IEEE Institute of Electrical and Electronics Engineers. 7, 8, 10, 11, 24, 30

ITS Intelligent Transport Systems. 4–8

ITS-S ITS station. v, vi, 4, 5

LLC Logical Link Control. 7

LOS Line-Of-Sight. vii, viii, 14, 16, 27, 30

53

MAC Medium Access Control. 7, 8

MATLAB MATrix LABoratory. 18

NLOS Non Line of Sight. 27

OBU On-Board Unit. 4

OMNeT++ Objective Modular Network Testbed in C++. v–viii, 2, 3, 9, 11–13,
17–19, 21–24, 30, 32, 33, 35, 36

OSI Open System Interconnection. vi, 4, 5, 7

PER Packet Error Rate. vii, viii, 24–28, 30

PHY Physical Layer. 7

RSU Roadside Unit. 4

SNIR Signal to Noise and Interference Ratio. 25

SNR Signal to Noise Ratio. 25

SQL Structured Query Language. 17, 18

SUMO Simulation of Urban Mobility. v, vi, 3, 9–13, 19–22, 30, 32, 33, 35, 36

TCP Transmission Control Protocol. vi, 11, 19, 20

TDC Transmit Data rate Control. 8

TPC Transmit Power Control. 8

TraCI Traffic Control Interface. v, 2, 12, 19–22, 30

TRC Transmit Rate Control. 8

UDP User Datagram Protocol. 11

UPC Polytechnic University of Catalonia. 3

V2X Vehicle to Everything. vii, viii, 1, 2, 22, 23

WLAN Wireless Local Area Network. 7

54

	Abstract
	Resum
	Acknowledgements
	Revision history and approval record
	Introduction
	Scope
	Work Plan
	Budget

	State of Art
	V2X Protocol Architecture
	Applications
	Facilities
	Networking and Transport
	Access

	Simulator framework overview
	SUMO
	OMNeT++
	CARLA

	Simulator Enhancement
	Sumo Scenarios
	Sumo Files
	Physical topologies

	Simulation Parameters
	Statistical Recording
	SQLite
	Pandas

	EVI Ego-vehicle Interface
	Connection between simulators (TraCI)
	TraCI Protocol
	Multiple simulator connection

	EVI
	Interceptor
	EVI architecture

	Results
	Simulated scenarios
	Packet Error Rate
	Effect of Vehicle Density
	Effect of CAM's length

	Conclusions and future work
	Appendices
	TraCI analysis with Wireshark
	OMNeT++ and SUMO
	Command List
	Communication flow

	OMNeT++ CARLA and SUMO
	Command List
	Communication flow

	Complete Set of Figures
	Interceptor Code
	Interceptor.py
	Globals.py

	Acronyms

