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Abstract. Three-dimensional numerical simulation of Taylor gas bubbles as primary unites of slug
flow patterns rising in non-Newtonian environments is performed in the context of Direct Numerical
Simulation (DNS) of the governing equations, where the whole physics of fluid motions will be taken
into account. State-of-the-art numerical tools are proposed to tackle the numerical challenges in the
DNS study of this problem. E.g. a coupled level-set volume-of-fluid (CLSVOF) interface capturing
method is used to solve the topological changes of the interface. Physical formulations are integrated
with moving-mesh (MM) technique to decrease the computational cost of 3D simulations and adaptive-
mesh-refinement (AMR) technique to increase the local accuracy around the interface. The governing
equations are solved using High-Performance Computing (HPC) parallel approaches. To the best of the
authors’ knowledge, this is the first work dealing with three-dimensional direct numerical simulation of
Taylor bubbles rising in non-Newtonian environments.

1 INTRODUCTION

Slug flow is a frequently found multiphase flow pattern when a system of gas bubble suspended in a
matrix fluid concurrently flow in a pipe. For example in side-stream (airlift) membrane bioreactors
(MBR), the vertical tubular membranes are located outside of the bioreactor, the sludge is pumped from
the bioreactor to the membrane modules, and the air is added at the base of the membranes to gain a
two-phase slug flow of appropriate regime. Taylor bubbles are the primary units of this pattern. Taylor
bubbles are characterised by their width which almost fills the cross-section of the tube and by their
length which is usually above 2 or 3 tube diameters long. They are separated from the tube wall by a
thin matrix film which expands when it reaches the rear end of the bubble. This expansion leads to the
formation of a wake.

Starting by the original works of Davies and Taylor [1] and White and Beardmore [2], various methods
have been used to solve the problem of Taylor bubbles rising in a Newtonian matrix, including experi-
mental research [3, 4, 5, 6], theoretical models [7, 8], in addition to numerical approaches of Volume of
Fluid (VOF) [9], Front Tracking [10], Lattice Bolzmann (LBM) [11, 12], conservative level-set [13] and
others methods [3, 14]. The dimensionless group of governing parameters could define the hydrodynam-
ics of a Taylor bubble in a Newtonian matrix as below:
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» Ratio of gravitational forces and the surface tension embedded in E6tvds number as:
Eo=g(pn—ps)D*/0 (1)

* Ratio of inertial and gravitational forces embedded in Froude number as:

Fr= UTB/\/gD(pm - Pb)/Pm (2)

* Property group combining gravitational, viscous and surface tension forces embedded in Morton
number as:

M = g1i3,(Pm — Pb) /PO° 3)
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to study the flow in negative wake of a Taylor bubble in non-Newtonian aqueous solutions of 0.8 and
1.0% carboxymethylcellulose (CMC). They have witnessed the negative wake formed downstream of the
bubble and cusp-shape rear of the bubble, a phenomena that was observed before for rising of the bubble
in viscoelastic matrices. In another work, Sousa [18] investigated the flow around an individual Taylor
bubble rising in CMC solutions with weight percentage varying from 0.1 to 1.0 wt%. They have extracted
the flow patterns and velocity profiles in different sections of the problem. They have performed similar
study for a Taylor bubble rising in stagnant polyacrylamide (PAA) solutions [19].

Despite frequent use in different applications, the area of Taylor bubbles rising in non-Newtonian ma-
trices is far from maturity. To the best of the authors knowledge, there has not been any comprehensive
three-dimensional numerical study in this field. The rest of the paper is organized as follow: mathemati-
cal formulation and numerical methods are presented in section 2, numerical experiments are discussed
in section 3 and conclusion remarks in section 4.
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2 Mathematical formulation and numerical method

Navier-Stokes equations are used to describe the conservation of mass and momentum of two incom-
pressible immiscible Generalized-Newtonian-Fluid (GNF) on a spacial domain Q with boundary 02 on
a moving domain as following [20, 21, 22, 23]:

OV oV V) = Vot V- (w() (Vv (W)T)) tpgtombr (@)
Vv = 0 (5)

where v is the velocity field, v4 the velocity of the domain, p pressure field, o the Dirac delta function
concentrated at the interface (I'), n the unit normal vector outward to interface, and K the interface
curvature. A moving mesh approach is used to minimize the size of the computational domain in the
gravitational direction, thus constantly moving the domain, so its center coincides with the mass center
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where H is the Heaviside step function taking the value one in dispersed phase and zero elsewhere [25,
26]. In this paper, a geometrical volume-of-fluid approach in the context of a finite-volume method for
unstructured grids is used, where the interface is captured implicitly using a color function scalar field
C(x,1), representing the volume fraction of a phase inside each cell of the discretized domain at a given
time:

C(x,1) = 1 cell filled with phase 1
"7 10 cell filled with phase 2

In this formulations, cells with 0 < C(x,7) < 1 are known as interface cells. For immiscible fluids
where their movement is defined by the velocity field extracted from Navier-Stokes equations, the color-
function motion is solved by an advection equation as:

X vy =0 ©)
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There are two methods widely used for solution of this equation, (i) using standard numerical convection
schemes, known as Algebraic VOF methods (ii) using geometrically reconstructed interface calculated
based on volume fraction values at interface cells, known as Geometric VOF methods. In this work, a ge-
ometric VOF approach is used to solve the advection equation of color-function by first reconstructing the
interface at the each grid cell and then using this interface to calculate the total volumetric flux of phases
across the faces of each interface cell. In this work, a point-cloud approach is being used to calculate the
normal vectors of the interface cells which are used in a piecewise linear interface calculation (PLIC) es-
timate of the interface. The resulting flux polyhedrons are constructed using the Lagrangian trajectories
of the cell-vertex velocities Jofre et al. [27]. In the classical formulation, the curvature is calculated as
divergence of the gradient of color-function: Kk =V - (VC/|VC|). However, given the fact that the color-
function in VOF is discontinues by definition, applying derivative type operations to this discontinuous
function leads to numerical errors. To circumvent this issue, a sign distance function (¢) representing
the minimum distance of each cell’s center from the PLIC interface is evaluated in a neighbouring area
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The velocity and pressure fields are calculated using a fractional-step method. A second-order implicit
Crank-Nicolson scheme is used to discretize the diffusion term of equation ?? while a second-order
Adams-Bashforth scheme is used on convective, gravity and surface tension terms. In order to increase
the calculation’s accuracy, an Adaptive Mesh Refinement (AMR) approach is used to locally refine the
mesh in the areas close to the interface with a distance of 3h with the interface cells, where h stands for
characteristic size of the cell. The numerical methods are implemented in an in-house parallel c++/MPI
code called TermoFluids [29]. Validations and verifications of the numerical methods used in this work
have been reported in [27, 20, 22, 23, 21, 25, 24].
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of Eo =~ 98 and Morton number of M =~ 0.015. No-slip boundary condition is applied on the side walls.
The simulation domain is initially divided into hexahedral cells with the edge size of =D/75. An adaptive
mesh-refinement technique is used to divide each cell in the area around the interface into four cells,
resulting in grid size of =D/150 around the interface. Figure 1 illustrates the initial configuration of the
domain and the set-up of this test case. The simulation is run for a long enough time to reach steady-
state. Figure 2 illustrates several velocity profiles extracted from different sections of the domain, i.e.
(a) normalized vertical velocity in the tube axis above the bubble nose, (b,c) normalized vertical, radial
velocity in a section at 0.111D above the bubble nose, (d,e) normalized vertical, radial velocity in the
developing film in a section at 0.504D below the bubble nose, and (f) shape of the bubble at steady-state.
The results are compared with experimental results of [5], where good agreement is seen.

Next, in a similar setup, simulation of Taylor bubble rising in non-Newtonian environments is performed.
A cylindrical domain with diameter of D= 0.032m is used and discretized into hexahedral cells with
the same size of h=D/75. An air Taylor bubble with initial diameter of d= 0.027328m and length of
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Figure 2: (a) Normalized vertical velocity in the tube axis above the bubble nose, (b,c) Normalized vertical, and
radial velocity in a section at 0.111D above the bubble nose, (d,e) Normalized vertical, radial velocity in the
developing film in a section at 0.504D below the bubble nose, (f) shape of the bubble at steady-state.




Ahmad Amani, Jesus Castro, and Assensi Oliva

Figure 3: Final shape of the tail of the Taylor bubble along with the vortical structures in the matrix environment
in (a, c) experimental results of [30], and (b, d) simulations of current study.
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contours in two planes of P2 and P3 located at 0.1725D and 0.5250D below the tail of Taylor bubble.
As can be seen, the velocity magnitude above the nose is almost unaffected by the movement of Taylor
bubble, thus the location of the upper-wall at 1D distance from the nose of Taylor bubble has a negligible
effect on the evolution of the Taylor bubble. The contours at cross-sections below the Taylor bubble also
shows a rapid reduction in the vorticity magnitude as we go further away from the tail, thus the location
of the bottom wall in a distance of 2D from the Taylor bubble has also negligible effect on the evolution
of the interface.

4 Conclusions

In this paper, a coupled level-set volume-of-fluid interface capturing approach combined with moving-
mesh and adaptive-mesh-refinement methods was developed and used in a finite-volume framework to
simulate challenging problem of Taylor bubble rising in Newtonian/non-Newtonian environments. Im-
plementing moving-mesh approach has immensely reduced the computational cost of the simulations



Ahmad Amani, Jesas Castro, and Assensi Oliva

25 T T T T T T T T T 25

20 41 20
vorticitymax

Reynolds Number

vorticitymin

Time

Figure 4: Left: time evolution of the Reynolds number, and right: vertical velocity and vorticity magnitude
contours around and inside the Taylor bubble for the case of rising Taylor bubble in CMC 0.4wt% polymeric
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Figure 5: Velocity magnitude contour at control-plane P1, 0.15275D above the nose of Taylor bubble, along with
vorticity magnitude contours in two planes of P2 and P3 located at 0.1725D and 0.5250D below the tail of Taylor

bubble.
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by reducing the required domain height, while adaptive-mesh-refinement has improved the accuracy of
the topological change of interface to a greater scale. Coupled level-set volume-of-fluid improves the
evaluation of geometrical properties of the interface. The numerical techniques were validated against
experimental results available in the literature were good agreement was seen, while the effect of vis-
coelastic environments on rising of Taylor bubbles is left for future works.
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