

BACHELOR’S DEGREE THESIS

THESIS TITLE: Blockchain based application for circular economy

DEGREE: Bachelor’s Degree in Telecommunication’s Systems
Engineering

AUTHOR: Gabriel González Campos

ADVISORS: Toni Oller Arcas

DATE: 8th February 2022

Título: Aplicación basada en blockchain para economía circular

Autor: Gabriel González Campos

Director: Toni Oller Arcas

Data: 8 de febrero de 2022

Resumen

Durante los últimos años los servicios sobre internet han evolucionado
enormemente, desde arcaicas webs con solo texto dónde solo el web máster
puede subir y actualizar contenidos, hasta las más modernas aplicaciones
como redes sociales con videollamadas y transmisiones de video en tiempo
real donde todos los usuarios interactúan y crean contenido nuevo.

Todos estos avances en la manera que se construyen los servicios y como
interactuamos con ellos han sido posibles gracias a grandes mejoras y
aportaciones tecnológicas, como la cada vez mayor velocidad de las redes de
acceso, la evolución de los ordenadores de sobremesa a ordenadores
portátiles, la aparición de dispositivos de bolsillo como los Smartphones y el
desarrollo de cada vez más potentes redes de acceso inalámbricas, como la
evolución de los estándares de telefonía móvil.

Tras toda esta evolución la tecnología no se ha estancado y sigue
evolucionando para proveernos de nuevas maneras de construir servicios e
interactuar con mundos virtuales.

En los últimos años, han aparecido nuevas tecnologías que han producido
todo un cambio de paradigma en la relación que tendremos con los servicios
basados en internet, incluso hay compañías que hablan del inicio de un
metaverso completamente inmersivo.

En esta tesis analizaremos algunas de estas tecnologías, como son las redes
blockchain, su posible implicación social y desarrollaremos una aplicación
basada en esta tecnología siguiendo un marco de trabajo de economía
circular.

Títol: Aplicació basada en blockchain per economia circular

Autor: Gabriel González Campos

Director: Toni Oller Arcas

Data: 8 de Febrer de 2022

Resum

Durant els últims anys, els serveis sobre internet han patit una forta evolució,
des de pàgines web on només es podia consumir contingut en format de text i
on només el web màster podia penjar i actualitzar continguts, fins a les últimes
aplicacions com les xarxes socials amb videotrucades i emissions en temps
real en les quals tots els usuaris interactuen i creen nous continguts.

Tots aquests avenços en la manera de construir serveis i com interactuem
amb ells han estat possibles gràcies a importants millores i aportacions
tecnològiques, com la creixent velocitat de les xarxes d'accés, l'evolució dels
ordinadors d'escriptori a ordinadors portàtils, l'aparició de dispositius de
butxaca com els Smartphones i el desenvolupament de cada cop més potents
xarxes d'accés sense fils, com l'evolució dels estàndards de telèfon mòbil.

Després de tota aquesta evolució, la tecnologia no s'ha estancat i continua
millorant per tal de proporcionar-nos noves formes de construir serveis i de
relacionar-nos amb mons virtuals.

En els darrers anys han sorgit noves tecnologies que han produït tot un canvi
de paradigma en la relació que tindrem amb els serveis basats en internet, fins
i tot algunes empreses estan parlant de l’inici d’una metavers totalment
immersiu.

En aquesta tesi analitzarem algunes d'aquestes tecnologies, com les xarxes
blockchain, la seva possible implicació social i desenvoluparem una aplicació
basada en aquesta tecnologia en un marc d'economia circular.

Title: Blockchain based application for circular economy

Author: Gabriel González Campos

Director: Toni Oller Arcas

Date: 8th February 2022

Overview

Over the last few years, web services have evolved enormously, from archaic
text-only websites where only the web master can upload and update content,
to the most modern applications such as social networks with video calls and
real-time video streaming where all users interact and create new content.

All these advances in the way services are built and how we interact with them
have been made possible by major technological improvements and
contributions, such as the increasing speed of access networks, the evolution
from desktop to laptop computers, the emergence of pocket devices such as
smartphones and the development of even more powerful wireless access
networks, such as the evolution of mobile telephony standards.

Despite all this evolution, technology has not stagnated and continues to
evolve to provide us new ways to build services and interact with virtual worlds.

In recent years, new technologies have appeared, and these technologies
have produced a paradigm shift in the relationship we will have with web-based
services, and some companies are even talking about the beginning of a fully
immersive metaverse.

In this thesis we will analyze some of these technologies, such as blockchain
networks, their possible social implications and we will develop an application
based on this technology following a circular economy framework.

Table of contents

INTRODUCTION .. 1

CHAPTER 1. PROJECT PROPOSAL ... 3

1.1. Basics of circular economy... 3

1.2. Evolution to disruptive technologies ... 5

1.3. Project Goals .. 5

CHAPTER 2. BLOCKCHAIN TECHNOLOGIES ... 7

2.1 Consensus mechanisms .. 7
2.1.1 Proof of Work (PoW) .. 8
2.1.2 Proof of Stake (PoS) ... 10
2.1.3 Delegated Proof of Stake (DPoS) .. 12
2.1.4 Proof of Elapsed Time (PoET).. 13
2.1.5 Proof of History (PoH) .. 14
2.1.6 Proof of Space (PoSpace) .. 16
2.1.7 Proof of Replication (PoRep) .. 16

2.2 Blockchain types ... 17
2.2.1 Public blockchains .. 17
2.2.2 Private blockchains ... 18
2.2.3 Hybrid blockchains ... 18
2.2.4 Consortium blockchains ... 19

2.3 Ethereum .. 19
2.3.1 Accounts ... 19
2.3.2 Transactions ... 20
2.3.3 Messages ... 21
2.3.4 Ethereum Virtual Machine (EVM) ... 21
2.3.5 Ethereum summary .. 22

2.4 Solana ... 23
2.4.1 Accounts ... 23
2.4.2 Transactions ... 24
2.4.3 Sealevel (Solana Runtime) ... 26
2.4.4 Solana’s “triforce” ... 27
2.4.5 Solana programs .. 28
2.4.6 Solana summary ... 28

2.5 Ethereum and Solana Comparison ... 29
2.5.1 Blockchain trilemma ... 30
2.5.2 Blockchain capabilities ... 31
2.5.3 Development .. 32
2.5.4 User data control .. 33
2.5.5 Comparison Results ... 33

CHAPTER 3. MULTIPLATFORM DEVELOPMENT .. 35

3.1. Use case .. 35

3.2. Native development ... 36

3.3 Angular ... 37

3.4 React ... 38

3.5 Flutter ... 39

3.6 Comparison.. 40
3.6.1 Performance ... 40
3.6.2 Development .. 41
3.6.3 Comparison Results ... 42

CHAPTER 4. DECENTRALIZED APPLICATIONS ... 43

4.1 Decentralized applications main benefits ... 43

4.2 From Traditional Apps to DApps ... 44

4.3 Divide and Rule ... 46

4.4 Architecture ... 48
4.4.1 Solana program .. 49
4.4.2 Solana accounts ... 49
4.4.3 Autonomous event validator ... 50
4.4.4 Authenticator server ... 50

4.5 User Interface (UI) ... 51

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 53

5.1. Conclusions .. 53

5.2. Future work ... 54

5.3. Environmental considerations .. 54

BIBLIOGRAPHY .. 56

GLOSSARY ... 59

LIST OF FIGURES
Fig. 1.1 The 17 SDGs, from [28] 4
Fig. 2.1 Representation of Blockchain data structure 7
Fig. 2.2 Chaining flow of Bitcoin PoW, from [4] 8
Fig. 2.3 Longest chain rule representation 9
Fig. 2.4 Representation of a Nothing-at-stake attack 11
Fig. 2.5 DPoS voting process 13
Fig. 2.6 PoH VDF operation, from [15] 14
Fig. 2.7 Diagram of how to insert data in a Proof of History system, from [15] 15
Fig. 2.8 Validation of Proof of History hash sequence 15
Fig. 2.9 EVM overview, from [22] 22
Fig. 2.10 Solana transaction structure 25
Table 2.1. Blockchain trilemma comparison between Solana and Ethereum 31
Table 2.2. Comparison between Solana and Ethereum main features 34
Table 2.3. Comparison between Solana and Ethereum results 34
Fig. 3.1 First approach of our solution’s architecture 36
Fig. 4.1 Representation of traditional App-based solutions architecture 44
Fig. 4.2 Representation of Firebase-based solutions architecture 45
Fig. 4.3 Overview of a basic DApp solution architecture 46
Fig. 4.4 Overview of a “microservice” DApp solution architecture 46
Fig. 4.5 Main view of the transaction’s application 47
Fig. 4.6: Views of the chat application 48
Fig. 4.7 Overview of our solution’s architecture 49
Fig. 4.8 Final application mockups 52

Introduction 1

INTRODUCTION
Last decades there has been a lot of growing interest in applications and web
services. Every web-based solution generation improves several limitations of
previous generations.

Starting with initial web projects, these projects were read-only sites where only
the web master could upload new content to the site. For this, this initial
scenario of web projects is known as read-only web. In this first web generation,
the web was used by general users to consume almost-static content. In this
initial web navigators, as Netscape, and initial e-commerce sites, as Amazon,
were created.

Some years later, during the second half of 2000s decade, and profiting the
benefits of faster residential networks, there appears some revolutionary
services where users are not only content consumers, but users also are
content producers, then the web social era started, with projects as Facebook,
MySpace or Wikipedia users were able to create its own content and share it
with other users, creating a social network on top of these projects.

After the first web revolution that leads from web1, the read-only web, to web2,
the social web, there came a second web revolution, but this time comes lead
by a hardware evolution, smartphones, as iPhone, and the upswing of wireless
access networks as UMTS (Universal Mobile Telecommunication System).
During this transition also appeared communication applications such as
WhatsApp. At this time users are not only connected when they are using static
devices as a computer, but they are permanently connected to different web
applications such as social applications, such as Instagram, or content
consuming applications, such as Kindle or Netflix.

Then, since last years, around 2018, a lot of new technologies have appeared
that aim to change how web solutions are built and consumed. These
technologies are blockchain technologies, augmented reality, virtual reality and
artificial intelligence algorithms. These technologies aim to build a more fair,
transparent and democratic services, where the user owns its data, with an
enhanced and more natural interaction between the user and the service and
removing human interaction for tedious tasks.

In this project, we will analyze current blockchain technologies and multi-
platform user interfaces alternatives. Then we will develop an application based
on these technologies and designed considering a circular economy approach.

To do so, we will structure this thesis in 4 main blocks:

1. Circular economy block: We will expose the circular economy concepts,
how these new technologies fit under SDG umbrella and an initial
overview to develop our solution following these guidelines (Chapter 1).

2. Analysis block: We will analyze the technologies that will be used to

develop our application. Firstly, we will analyze the most popular

2 Blockchain based application for circular economy

blockchain technologies to choose the one that better fits with SDG
guidelines to develop our project (Chapter 2). Then, we will analyze the
main multi-platform development alternatives and we will choose the one
that could provide our solution from a better user experience (Chapter 3).

3. Development block: We will describe how the development process we

had to perform to develop our solution was, focusing on the architectural
proposal and the design of the final user interface (Chapter 4).

4. Conclusion block: We will retrospectively review how the process of

building a blockchain-based application following a circular economy
approach was, and we will propose future steps for upgrading our
solution as a continuous improvement process will do in a product life
cycle (Chapter 5).

Project proposal 3

CHAPTER 1. PROJECT PROPOSAL

In this chapter we will start introducing the main concepts of circular economy
and its implications to future developments, then we will review the technology
evolution of the last decades and finally, once the main implications of these
two powerful concepts are explained, we will define the main objectives of this
thesis.

1.1. Basics of circular economy

In the last decade there have been some growing paradigms, some of them in a
technical environment, but others growing proposals from a sociological point of
view.

From the first ones, the technical ones, there are some technologies that
became feasible in the last decade and promise to solve several issues of the
current society, an example of these technologies are blockchain technologies,
that allow to have more democratic processing and storage of data, and new
techniques of artificial intelligence ad machine learning and deep learning.

The technical ones can’t solve any society issue without robust, democratic and
fair guidelines to build technologic solutions on top of, but in 2015, the United
Nations General Assembly (UN-GA) developed a framework to guide the
development of new millennium projects.

This new framework is the Sustainable Development Goals [27, 28] (SDGs), a
set of 17 goals to create a road for future developments to build a more fair,
democratic and sustainable world. These goals are no poverty; zero hunger;
good health and well-being; quality education; gender equality; clean water and
sanitation; affordable and clean energy; decent work and economic growth;
industry, innovation and infrastructure; reduced inequalities; sustainable cities
and communities; responsible consumption and production; climate action; life
below water; life on land; peace, justice and strong institutions and partnerships
for the goals, summarized at Fig.11.

4 Blockchain based application for circular economy

Fig. 1.1 The 17 SDGs, from [28]

In this project we will follow a as much as possible this SDGs framework, but we
will focus on the following goals:

• Industry, innovation and infrastructure: We will propose a solution based
0n new technologies such as blockchain that allows us to build more
resilient and democratic infrastructure. In this kind of technology
everybody has a place as people can use it or power it (discussed in
chapter 2).

• Reduced inequalities: These new technologies as the one mentioned
previously, the blockchain technology, allows us to build more
transparent and fair services and to revoke non-honest behaviors using
the power of democracy. Based on that, we will bring these technologies
closer to non-technical people.

Project proposal 5

• Responsible consumption and production: In this project we will strongly
consider the resources consumption of each possible solution, as the
hardware required or the power consumption.

1.2. Evolution to disruptive technologies

In the initial steps of the web there were small sites whose content was text-
based content and where only the web master could upload new content, the
web 1.0. In this period, users’ relation with web content was in a unidirectional
way, from the web master to users passing through its website.

Some years later, and with some technical improvements such as faster
residential access networks, an improved kind of web services appeared, the
web 2.0. These new web services provide users the ability of uploading its own
content and building social networks on top of these services, the social
networks’ era has begun. This new era allowed users to relate with web content
in a bidirectional way.

After some years where a lot of web 2.0 projects were founded and the power
of big-tech companies increased, there started to appear a new web paradigm,
the web 3.0. This new web paradigm aims to transfer the focus from enterprises
to users, allowing users to be the owners of their data and use intelligent agents
to make the web a more democratic place. Web 3.0 is supported in some
revolutionary technologies such as blockchain, artificial intelligence, virtual
reality and internet of things. A large developer’s community aims to use these
technologies to build the dreamed metaverse.

1.3. Project Goals

Nowadays, all social media is talking about technical concepts as
cryptocurrencies, blockchain, web3 and NFT, but usually these concepts are
not related with an average citizen’s everyday life.

 This project came with different main goals, each one designed to impact
people’s life in various ways.

The main goals of this project are:

• Analyze different blockchains in order to build a map of the current
blockchain alternatives. Then, find a good blockchain, from a technical
and sustainability point of view, to develop a decentralized APP (DApp)
on top of that blockchain.

• Develop a friendly DApp that could be used by the average population.
This DApp will be focused on rewarding the good practices of the
citizens, giving them some tokens when a good action is performed.

6 Blockchain based application for circular economy

• In order to get a friendly DApp, we will develop a multi-platform
application with a modern user interface (UIs) and an improved user
experience (UX).

• Provide teaching documentation and examples to develop solutions over
blockchains.

Blockchain technologies 7

CHAPTER 2. BLOCKCHAIN TECHNOLOGIES

Blockchain is a technology that has been growing in popularity in the last
decade, but the idea behind this technology is simple and elegant, it consists in
a data structure formed by a set of blocks, these blocks contain the useful data
and some metadata used to refer unequivocally to another block in that
structure, as can be seen in the Fig. 2.1., here’s where the name of this
technology comes from.

Fig. 2.1 Representation of Blockchain data structure

This idea of a set of blocks related from one to another makes this data
structure robust against modifications, as if an attacker wants to modify a block
he must modify the related block, and to modify the related block he must
modify its related block and so on, then, to modify a specific block the attacker
must modify all the related blocks chain (typically all the previous or following
blocks).

2.1 Consensus mechanisms

Another key point in blockchain technology is the consensus mechanism. This
mechanism is a set of rules that a new block must pass in order to be included
in that data structure. The consensus mechanism is a very important point in

8 Blockchain based application for circular economy

terms of decentralizing this data structure, as it defines a specific way to
validate the new blocks and agree all nodes in a network.

There are different consensus mechanisms, each one being a trade-off
between decentralization, security and scalability. The most popular consensus
mechanisms are proof of work, proof of stake and in latest blockchain solutions
as Solana, proof of history and proof of space.

2.1.1 Proof of Work (PoW)

Proof of Work was the first consensus mechanism widely used in blockchain
networks. It was previously used to mitigate denial of service (DoS) attacks in
online resources as the incoming spam into a mail server, as the proposal of
Hashcash [2, 3]. Later, a similar approach was proposed by Satoshi Nakamoto
as the consensus mechanism used in Bitcoin [4].

This mechanism is based in a computational effort and the most representative
PoW mechanisms in blockchain ecosystem are the following:

• Reusable Proof of Work (RPoW): This mechanism is the one derived
from Hashcash and proposed as the consensus mechanism of Bitcoin [5]. It
consists of looking for a number when hashed, with a specific hash algorithm,
results in a binary number starting with a specific number of zeros. In
timestamped PoW based blockchains, as Bitcoin, there a nonce is used to
provide this timestamp without using a centralized timestamp server, see Fig.
2.2. When a node computes a hash, the nonce value will be incremented, and
this action will be repeated until the correct hash is found. This both features
combined provides the PoW algorithm of Bitcoin an exponentially increasing
needed effort over the time. Alternatively to the hash algorithm used by Bitcoin,
SHA-256d, different blockchain can use different algorithms such as the Scrypt
used at Litecoin [5, 6] or Ethash used at Ethereum [7]. Each algorithm has its
own features as ASIC resistance, power consumption and memory or CPU
requirements [8].

Fig. 2.2 Chaining flow of Bitcoin PoW, from [4]

• Proof of Useful Work: During the last year the power consumption of
PoW blockchains has been a matter of discussion and a big hindrance for

Blockchain technologies 9

blockchain usage expansion. The unused compute power added to this power
consumption made researchers propose several solutions. An interesting
solution is the use of Proof of Useful Work, this means to use at least a part of
the PoW algorithm required power in order to compute results usable in other
areas, such as training AI systems [9, 10] in small steps or performing scientific
and medical computes. These proposals typically solve the problem of wasting
compute power to only compute a specific hash operation.

A common consensus rule in Proof of Work blockchains, and later applied to
different consensus mechanism blockchains, is the longest chain rule,
represented at Fig 2.3. This rule means that in a certain moment the largest
block chain is the valid one, as is the one with the major effort, this rule makes
the blockchain robust against malignant greedy nodes, but these blockchains
still vulnerable against 51% attacks, where a malignant group of nodes can
accept non-valid transactions, as double spending tokens, as long as this set of
nodes controls the 51% of compute power of the network. The non-largest
chain blocks are called orphan blocks.

Fig. 2.3 Longest chain rule representation

In general, Proof of Work systems are really good at decentralizing the approval
of new blocks without having issues of accepting invalid transactions. This
mechanism also promotes the honesty of network nodes as they are rewarded
by their effort in adding new blocks to the blockchain.

These systems also provide a high protection against data mutation attacks, but
have not a high scalability, having a hard restricted number of transactions per
second and exponential power consumption as the network grows.

10 Blockchain based application for circular economy

2.1.2 Proof of Stake (PoS)

Proof of Stake was proposed as an alternative for other consensus mechanisms
[11, 12] to avoid their large power consumption (as in PoW) or expensive
physical resources (as PoW and proof of space) [13].

Proof of Stake is based on a leader election process that appoints a validator
node as the leader of the following block. Once the leader is designed, it will
have the authority to validate the following block. The leader election process is
usually a random process that considers the stake of each validator, this stake
typically refers to the number of tokens staked, the time the validator staked the
tokens or a combination of both.

In a Proof of Stake based blockchain the key point is to use a secure and fair
leader election process, as the competitors of being the next leader or the
current leader mustn’t be able to affect in the leader election process. These
blockchains usually have punishment mechanisms in order to dissuade
validators to perform some attacks possible at Proof of Stake blockchains.
These possible attacks are:

• Grinding attack: This attack consists in the current leader node with a tiny
stake but with considerable computation power can compute modification in
block headers in order to enforce the leader election process to choose him as
the next validator. This attack can be achieved by consulting previous blocks
assigned to the stake of this validator and using this information to modify the
block metadata accordingly. There are several ways to mitigate this attack, such
as using secret sharing to generate the next leader election value in a
distributed way or using non-modifiable and verifiable data to generate that
value.

• Nothing-at-stake attack: This attack consists of that if an attacker will aim
to perform a double spend, the attacker can spend the tokens and create a fork
from the block before the spend transaction, then the attacker will decide to
stake only for that new fork. Then, as a validator takes the same profit staking in
a single fork or in both and the attacker will only stake in the recently created
fork, in the main chain there will be the rest of the network staking and in the
new branch will be the same amount of stake plus the attacker stake, the
malicious fork will eventually become the main chain as it will become longer. At
this moment, there are several researchers figuring how to prevent this kind of
attacks, as the Ethereum team developing Casper, the PoS implementation for
the Ethereum blockchain, and Versus working group claimed to be able to solve
this problem combining PoW, PoS and Proof of Delayed Work. It can be better
understood by looking at Fig 2.4 diagram.

Blockchain technologies 11

Fig. 2.4 Representation of a Nothing-at-stake attack

• Long Range Attack: This attack consists of an attacker trying to change
an already processed and validated block. As PoS does not have any
demanding compute operation, then, if the attacker has enough compute power
it is possible to modify a past block and then change all the related blocks in the
chain creating a fork that differs from the real fork in the modified block. The aim
of creating a PoS algorithm able to prevent this attack was one of the goals of
creating Ouroboros [13], the PoS algorithm used at Cardano blockchain.

In addition to previous possible attacks, there is one major concern about basic
PoS implementations, the Weak Subjectivity issue. This issue consists in the
necessity from a new node or a reconnected node of getting the current state of
the blockchain. In proof of work there is a simple solution, ask another node for
the state and if the new node gets different responses, the largest chain with a
higher compute effort will be the active state of the blockchain, in this case, the
network is objective, but in PoS blockchains an attacker can take advantage of
this situation to spread its malicious fork, at this situation, if the malicious fork
has the same length as the real fork, the new node will not be able to
distinguish which fork is the correct one. In PoS blockchains, as they are weak
subjectivity blockchains, the new node can distinguish the active fork after some
blocks were added to the chains. As with other attacks and vulnerabilities of
basic PoS implementations, there are working groups, such as Versus, that
have proposed algorithms to prevent the network from these issues and make it
more objective.

Despite all these issues and vulnerabilities of a basic implementation of PoS
consensus mechanism there are a lot of effort to build robust blockchains using
PoS as it provides a lot of advantages respectively to PoW:

12 Blockchain based application for circular economy

• Faster transactions: As the consensus mechanism is not dependent on a
very complex and time-consuming effort, the time for each block to be added to
the chain is lower than in PoW blockchains.

• Power efficient: PoS blockchains consume less electricity than PoW
ones. This is also due to the lack of a power-consuming algorithm as a key
element of the operation of PoS blockchains.

Proof of Stake has some advantages against Proof of Work, but also has some
drawbacks such as the threat of being more centralized Work and not as secure
as Proof of Work.

In real blockchains PoS is usually combined with some other methods like PoW
in order to make a system more secure and more tolerant to Byzantine faults.
These faults lead to having some different consensus in the network, such as
consensus failure, block validation or data validation failures and
communication failures.

2.1.3 Delegated Proof of Stake (DPoS)

Delegated Proof of Stake was firstly proposed to enhance PoS benefits as the
transaction velocity it also was designed to be a consensus mechanism with
Byzantine fault tolerance (BFT).

This consensus mechanism is like PoS, but with some differences. In DPoS
blockchains validators vote for a delegate validator to add a block by pointing
their stakes into the delegate validator’s staking pool, see Fig 2.5, once the
voting process is performed, the delegate validators (or witnesses) must agree
to add the new block.

Blockchain technologies 13

Fig. 2.5 DPoS voting process

This delegated version of PoS aims to be faster and more secure than PoS, but
this consensus mechanism can lead to centralized networks as most of the
stake can vote to a single validator, this validator can take advantage of this
situation to modify the block in his own profit or to not accept the block. To
mitigate this situation, DPoS blockchains usually have a concept of stolen block,
a block that has been assigned to a delegated validator to be approved, but that
validator has skipped it, in this case this block is called a stolen block, the
validator will not receive the reward of that block and the stolen block and its
reward will be assigned to the next delegated validator in order to not lose
transactions.

2.1.4 Proof of Elapsed Time (PoET)

Proof of Elapsed Time is a consensus mechanism proposed by Intel [14] to be
used in enterprise environments to automate and validate error prone tasks, an
example is the Hyperledger Sawtooth platform.

This consensus mechanism is based on the fair lottery principle and using a
trusted function running in a trusted environment, for example Intel SGX. The
validators will ask the trusted function for a wait time and each validator will
sleep until the wait time assigned to them finishes, the first validator that
awakes will be the validator that will process the block.

The key point of this consensus mechanism is that the trusted function must
distribute the leader election in a uniform way in order to provide the system the
desired fairness.

Another distinctive point is the necessity of having a centralized element, the
trusted function. This centralization is not desired in a lot of environments where
blockchains are used, but in an enterprise environment PoET network can be

14 Blockchain based application for circular economy

useful as ledger or even as infrastructure in an enterprise resource planning
(ERP) system.

2.1.5 Proof of History (PoH)

Proof of History is a consensus mechanism based on timestamps. This
consensus mechanism can place all blocks and transactions in the timeline; this
is achieved by using Verifiable Delay Functions (VDF), a function that must be
run in sequence in a single core and must be finished to get the output. The
output of this function will be its input for the following iteration [15]. Thanks to
the usage of VDF and the sequence of its outputs we can build a list of
timestamps in order, see Fig 2.6.

Fig. 2.6 PoH VDF operation, from [15]

Using this method and inserting some data, PoH blockchains can build a
sequence of events and it can place in time when each event has performed.
To do so, the event data and the previous hash can be combined using a
collision resistant function and the result is used as the input of the next VDF
iteration, represented at Fig. 2.7. Then, a specific output hash can represent the
timestamp of a specific event because that hash could not be computed if the
event is not inserted before the new has is computed, and it keeps following the

Blockchain technologies 15

timestamp order as the previous VDF output is also needed to compute that
output hash.

Fig. 2.7 Diagram of how to insert data in a Proof of History system, from [15]

Once this chain is created, the verification can be performed in significantly less
time that it took to generate. As all the output hashes have been already
computed, the validation can be performed in parallel using multiple compute
threads, example of validating PoH ticks in a multi-core processor in Fig. 2.8.

Fig. 2.8 Validation of Proof of History hash sequence

16 Blockchain based application for circular economy

With the previous operation, proof of history is still vulnerable to reordering
attacks as the attacker can reorder the events of a sub chain as long as this
attacker has access to all the events in the sub chain at once or if the attacker
can produce the sub chain faster than the current PoH generator. To prevent
that vulnerability, the data of an event combined to compute the next hash must
be signed by the current PoH generator.

2.1.6 Proof of Space (PoSpace)

Proof of Space is a consensus mechanism based on an interested node storing
some data in order to prove its real interest in participating in a blockchain
operation.

This consensus mechanism can operate in three ways:

• Proof of Capacity: It is a consensus mechanism based on compute a
PoW function and store it in disk space.

• Proof of Storage: Similar to the previous one but storing useful data
instead of a PoW function output, this kind of consensus mechanism is
typically used in blockchains dedicated to store files or act like a
database, as Arweave and Storej.

• Proof of Space-Time: this version of proof of space considers the amount
of data, but also considers the time this node stores the data.

2.1.7 Proof of Replication (PoRep)

Proof of Replication is usually used in proof of space networks to retrieve the
data stored by each node [16].

This consensus mechanism works by sending to each node some data to store
and asking them to retrieve the data some time later.

This mechanism is usually used in blockchains dedicated to store data in order
to provide high availability of the stored resources, as the same data can be
assigned to different nodes.

Another advantage of PoRep is that this mechanism provides an easy way to
calculate the cost of storing a specific piece of data [15].

Although all these advantages of PoRep mechanisms used in blockchains
dedicated to store data there is a main issue when using this mechanism, when
a new node is added to the network, this node is assigned to a replication pool,
then this node must download all the data from that replication pool, consuming
a lot of bandwidth of these nodes.

Blockchain technologies 17

 2.2 Blockchain types

Blockchains have different features depending on the consensus mechanism
each one use, but these blockchains can also be categorized depending on the
ownership of the nodes forming the blockchain peer to peer network

2.2.1 Public blockchains

Public blockchains are the ones that anyone can become a validator and send
transactions if they have an internet connection. These blockchains usually
provide an economic reward to encourage new nodes to become a part of this
network.

These kinds of network blockchains are usually used as an infrastructure to
cryptocurrencies and smart contracts execution and are based on a consensus
mechanism that provides trust between all unfamiliar nodes.

The main advantage of these networks is the transparency as the state of the
network is shared between all nodes and can be consulted by outsiders by
using tools as blocks inspector.

The most important drawback of public blockchains is that the network is as fast
and as secure as the consensus mechanism permits. For example, Bitcoin is a
public Blockchain able to currently process a block each 10 minutes, having an
average block size of 1.18MB [17] and an average transaction size of 454.48
bytes [17] we get an average transaction throughput of 4.33 transactions per
second.

18 Blockchain based application for circular economy

2.2.2 Private blockchains

Private blockchains are blockchain networks that require a granted access to
use it or to become a node, private blockchains also are blockchains that
operate in a restricted environment, as in an enterprise network.

These blockchains are used by many companies as a ledger, to certificate
internal documentation, etc.

As private blockchains typically operate in restricted environments, there is no
need to use a heavy consensus mechanism as PoW or PoS, this leads to have
lightweight blockchains with some advantages:

• High performance: as the consensus mechanism can converge faster
and there are limited nodes in the network, the transaction rate can be
higher compared to public blockchains.

• Efficient networks: usually private blockchains are not based in
computing demandant efforts as PoW.

• Scalable: as usually consensus mechanisms of private blockchain are
not power demanding nor time demanding, the blockchain can grow to
provide a high availability network without increasing drastically the
CAPEX and OPEX costs.

2.2.3 Hybrid blockchains

Hybrid blockchains are usually blockchain networks built in a controlled
environment but able to serve anybody with an internet connection. In this
blockchains a user can access and use the blockchain features but is not able
to join as a validator.

These blockchains are designed to get the benefits from public and private
blockchains as everyone can send transactions to the blockchain. But as the
validator nodes need a granted access to the network an attacker can’t access
to the network as a validator, preventing several types of attacks such as 51%
attack.

Hybrid blockchains also have the benefits of private blockchain networks as
having high performance, being power efficient and being scalable.

Although in hybrid blockchains the whole transaction history is not made public,
the transactions still are verifiable and the validator nodes can’t modify the
transactions, but these nodes can determine what transactions will be public.

A key advantage of hybrid blockchains is that the validation rules can be
modified by the organization owning the validator nodes in order to modify the
behavior of a service built on top of that blockchain.

Blockchain technologies 19

2.2.4 Consortium blockchains

Consortium blockchains are similar to hybrid blockchains, but the validator
nodes are not owned by a single organization.

These blockchains are formed by validator nodes (in some implementations,
only one validator node is present, acting more like an orchestrator), able to
create, receive and validate transactions and some member nodes able to
create and receive transactions.

2.3 Ethereum

Ethereum is a blockchain created by Vitalik Buterin [19] based on the colored
coins protocol [20] and Satoshi Nakamoto’s original Bitcoin paper [4].

The Ethereum project was first conceived to build a blockchain with more
powerful programming capabilities than the Bitcoin scripting, this project aims to
build a blockchain with a Turing-complete programming language in order to
create a blockchain infrastructure to build projects and decentralized
applications on top of it.

Ethereum uses a PoW consensus mechanism whose work function is Ethash
and its main internal crypto-fuel is Ether.

2.3.1 Accounts

To build this blockchain, Vitalik first aimed to be able to define a language able
to define a state, the transition between states, rules of ownership and
transaction formats. To do so there is a need to define a base object to build a
state, this object is the account. In Ethereum, accounts are used to build states
and are composed by a 20-byte address and 4 fields:

• Nonce: a counter used to track and manage state transitions, in order to
build a historic of transitions and to prevent running a transition twice.

• Ether balance: a field used to track the balance of an account, this
balance can be modified by state transitions.

• Contract code: The smart contract code that will define the state
transitions, rules of ownership, state structure and transaction format

• Account storage: the data state of the account whose structure will be
defined by the contract code and modifications and modified by the state
transitions of the contract code.

Ethereum blockchain also provides two kinds of accounts:

20 Blockchain based application for circular economy

• Externally owned accounts: these accounts do not contain contract code
and can send transactions by creating and signing them.

• Contract accounts: these accounts are the ones that have a contract
code. Every time this account receives a message the contract code will
be executed. This code performs CRUD operations into the account
storage, sends new messages or creates another account.

2.3.2 Transactions

Once the storage of states, balances and contracts is defined, the next step is
to define the basic communication unit, transactions. Transactions are signed
messages formed by 6 fields:

• Signature: a signature from the sender to identify it.

• Recipient: the recipient account address.

• Amount of ether: the amount of ether to be transferred from the sender to
the receiver

• Data: the data to be used by the smart contract of the recipient account if
it exists.

• Startgas: a representation of the number of computational steps allowed
to this transaction.

• Gasprice: the value per computational step that the sender will pay as a
fee.

Comparing an Ethereum transaction with a traditional bank transaction, the first
three fields are easy comprehensible, as the Ethereum blockchain needs to
know the destination of the transaction, the sender that will send the money and
the amount of money to send, but the next three fields, data, startgas and
gasprice are related to the Ethereum blockchain, as the data will be used by
Ethereum smart contract during its execution and the startgas and gasprice are
anti-denial preventions of Ethereum. The anti-denial prevention allows
Ethereum blockchain to be robust against:

• Infinite loops in smart contracts.

• Denial of Service (DoS) attacks: if an attacker performs a DoS attack, he
must pay a proportional fee as the magnitude of the attack, there is an
additional 5 gas units fee per each byte in the transaction data.

Blockchain technologies 21

2.3.3 Messages

In Ethereum, smart contracts can also send data; to do so, the Ethereum
project defines Messages. These messages are only logical representations
used to send data from a contract to another contract. Messages are similar to
transactions and formed by 5 fields:

• Sender

• Recipient

• Amount of ether

• Data

• Startgas

As messages are produced by smart contracts and smart contracts are
triggered by transactions, messages do not need a gasprice field as the
gasprice is fixed by the transaction that triggered the smart contract In the first
instance.

2.3.4 Ethereum Virtual Machine (EVM)

Ethereum Virtual Machine is the environment used to execute the contract code
of an account [21, 22]. EVM reads smart contracts as EVM code. This code is
bytecode represented as a stream of bytes that must be read sequentially until
the end of that byte stream.

EVM executes the smart contracts’ byte code using two main components:

• The Stack: A LIFO data structure where each entry is an operation.
Cleaned after each computation ends

• Memory: the memory needed to run the contract, an infinitely expandable
byte array. Cleaned after each computation ends

• Long-term storage: Storage that is not cleaned after each computation
ends. Represented as a key-value data structure.

This revolutionary way to define an execution environment goes beyond the
traditional cloud computing implementations. EVM defines a single entity made
from all the computers running an Ethereum client. This distributed computing
environment is essentially a distributed state machine able to execute arbitrary
code and modify a global state by each execution.

The approach of having a distributed state machine is an evolution from the
Bitcoin distributed ledger where the distributed data structure is used to store

22 Blockchain based application for circular economy

the evolution of a global state over the time. This global state contains the
account balances, but also each account state for a given time, representation
of the EVM state machine and its volatile and persistent components at Fig. 2.9.

Fig. 2.9 EVM overview, from [22]

There are many EVM implementations [22] that are used in Ethereum execution
clients (or ETH1 Clients) [23].

2.3.5 Ethereum summary

To get an overview of Ethereum in order to compare this blockchain proposal
with other solutions we can consider several aspects:

• Consensus mechanism: As in Bitcoin, Ethereum blockchain uses PoW
as a consensus mechanism. This approach leads to a really
decentralized and secure blockchain network but has poor energy
efficiency and big issues in terms of scalability and improving the number
of transactions per second, currently around 13 transactions per second.

• Programming resources: Ethereum adds a key and interesting feature to
blockchain networks, a Turing-complete state machine able to run code
from accounts to modify the current state. This addition causes a
revolution in blockchain technologies as it permits to build complex
applications on top of a distributed network able to compute and store
data with high availability and securely.

• Programming language: As Ethereum provides a way to execute
arbitrary code in the EVM, there is a need for a way to develop this code

Blockchain technologies 23

and add it to an account. Here comes the smart contract programming
languages such as Solidity and Vyper. The most popular programming
language in EVM based blockchains is Solidity thanks to its enhanced
features. Solidity is a high-level object-oriented language.

• Contract-data relation: In Ethereum and other EVM blockchains a
contract resides in an account and the data that this contract can modify
also resides in the account. This fact leads to a high coupling between
the logic and the stored data (state) of a decentralized application
(DApp).

Ethereum Foundation is currently developing a new version of the Ethereum
Blockchain, Ethereum 2.0. This new version of Ethereum network aims to
reduce the power consumption of the network, make it more scalable and
increase the number of transactions per second.

2.4 Solana

Solana is a new generation blockchain created by Solana Foundation [15].

This blockchain technology was conceived to be a high-performance blockchain
network able to handle hundreds of transactions per second, its aim is to
provide the features of a centralized database to a decentralized blockchain
network, combining high-performance with high availability in a public
blockchain, while keeping transaction fees low.

As Ether in Ethereum blockchain, Solana has a native token, the SOL token,
and fractional value of that token, lamports, a lamport has a value of 10-9 SOL.

2.4.1 Accounts

Like Ethereum, in Solana there is also a need to save a state between some
transactions, to do so Solana uses Accounts. An account is a data structure
formed by [24, 25]:

• Key (sometimes called address): Typically, the public key of a ed25519
key pair or its hash as a 32 characters string, but for accounts related to
a program (a Solana’s smart contract) it can be a 32B program-derived
account address.

• Owner: A reference of the program that owns this account, the program
id, only the owner program can modify the account. By default, the owner
program is the System program (whose program id is
“11111111111111111111111111111111”), the native program that is
able to create accounts, transfer native tokens, pay transaction fees,
allocate account data and assign accounts to owning programs.

24 Blockchain based application for circular economy

• Data: A byte stream of data typically serialized using borsh serializer.
Data is modifiable by the owner program

• Lamports: The number of lamports an account owns, native tokens are
always stored as lamports in order to ease transactions and program
executions.

• Executable: A Boolean flag that marks if an account holds the bytecode
of a program in its data field (an executable account) or if the data field is
data that can be used by the owner program (non-executable accounts).

• Rent_epoch: A field representing the epoch when the account must pay
rent.

In Solana, accounts need to pay a rent in order to keep alive in the blockchain.
This rent is paid every several epochs, but if the account holds at least 2 years
of rent, this account is marked as rent-exempt. When an account is marked as
rent-exempt the holded lamports of this account will not decrease by the effect
of paying rents, but the rent-exempt state will be checked every time the
account lamports amount is reduced.

2.4.2 Transactions

In order to modify the state of an account in Solana blockchain, there is need to
trigger a program execution, it can be a native program, as the system program
(ex: to send lamports to another account), or a custom program. Here is when
the transaction concept comes up, when a transaction reaches a cluster, the
Solana Runtime of this cluster starts the execution of a program.

Transactions are received in binary format, containing:

• Signatures: A compact-array of ed25519 digital signatures. These
signatures are verified by the Solana Runtime using the same index
element in the account address array of the message. Solana Runtime
also verifies that the number of signatures is equal to the fist 8-bit
unsigned integer in the message header.

• Message: The message can be seen as the payload of a first layer
protocol, as an IP packet packed inside an ethernet frame. This
“payload” has the following parts:

o Message header: Three 8-bit unsigned integers. The first one is

the number of required signatures, the second one the number of
addresses of read-only accounts and the third one is the number
of read-only addresses that does not require a signature.

o Account addresses: A compact-array of account addresses. First

are placed the ones that require signature, then the addresses
that do not require signatures. In each block, there are first placed

Blockchain technologies 25

the read-write account addresses and then the read-only account
addresses.

o Recent blockhash: This is used to place the transaction in the PoH

chain. The sender will put the recent blockhash from when he last
observed the ledger, and the Solana Runtime will reject the
transaction if the recent blockhash is too old.

o Instructions: A compact-array of instructions.

The structure of an instruction is the following:

• Program id index: 8-bit unsigned integer pointing to the program account
address in the account addresses array.

• Account addresses indexes: a compact-array of 8-bit unsigned integers,
each entry pointing to an account in the account addresses array.

• Data: In Solana instructions data is sent as an opaque 8-bit compact-
array.

Fig. 2.10 Solana transaction structure

26 Blockchain based application for circular economy

When a transaction is received by the Solana Runtime, it will execute the
transaction atomically, and in order.

2.4.3 Sealevel (Solana Runtime)

As the EVM was an incredible evolution from the Bitcoin ledger, Solana tries to
push this concept of a Turing-complete processor to a multiprocessor in order to
compute in parallel several smart contracts.

Solana blockchain proposes the Sealevel [26], the Solana Runtime capable of
running smart contracts (or programs in the Solana environment) in parallel and
verifying that this program can run an instruction for a given account (or set of
accounts).

Sealevel provides the capability to increase the number of transactions per
second this blockchain can handle.

Sealevel verifies that the program can run an instruction for a given account
following these policies:

• Only the owner can change the account owner field and if follow some
rules:

o The account is writable.

o The account is non-executable (is not a program).

o The account data is empty.

• Only the owner of the account can modify its balance.

• The balance of read-only and executable accounts must not change.

• Only the system program can resize the data and only of accounts this
program owns.

• Only the owner can change the account data and following some rules:

o Only for writable accounts.

o If the account is non-executable (is not a program).

• Only non-executable accounts can become executable and not in the
other way.

• Only the owner can make an account executable.

• The program can’t modify the rent_epoch field, only Solana Runtime can
do it

Blockchain technologies 27

2.4.4 Solana’s “triforce”

Solana has 3 interesting mechanisms in order to provide these enhanced
features.

The first one, and one of the key proposals of Solana blockchain is the usage of
PoH in order to build the chain and get a robust ledger. This mechanism
provides a way to create a timeline made of related timestamps (section 2.1.5).
This approach of using a VDF to build a timestamp chain allows the system to
combine an event with the input of the next VDF iteration (the output of the
previous iteration), in order to ensure that a certain event has been produced
before a specific VDF iteration. PoH also allows the Solana blockchain to
handle a high number of blocks per second and it is not limited to producing a
block every 10 minutes as in bitcoin or 15 seconds as in Ethereum, that use
PoW in order to build the ledger.

The second powerful mechanism is related to how data is stored, shared and
retrieved. For all these key points, Solana implements the usage of PoRep
(Section 2.1.7) an evolved mechanism from PoSpace (Section 2.1.6). This
mechanism was firstly proposed to provide the Solana network a mechanism to
measure the space taken for a given account and for the whole blockchain state
[15].

The usage of PoRep also provides Solana a mechanism to ensure a high-
availability of stored data (ex: accounts) while keeping restrained the amount of
resources needed, such as storage and bandwidth.

The last key mechanism that gives these enhanced features to Solana
blockchain is its consensus mechanism. Its consensus mechanism is a PoS
based solution (section 2.1.2). In Solana’s PoS implementation, the PoS
mechanism is used to select the next leader validator; that leader validator will
also be the next PoH generator, and the rest of the validators must vote if this
block is correct in a given time period. If this block is accepted, it will be added
to the ledger.

The leader role is rotating continuously following a leader schedule, this
schedule defines a leader validator per each slot of an epoch. The leader
schedule for epoch N is computed at the start of epoch N-1 using the last PoH
tick and ledger state of the start of epoch N-1. The leader schedule generation
follows these steps:

1. Using a seed, the last PoH tick, each validator runs the same stable
pseudo-random algorithm.

2. Each validator consults the balance of each stacking account that points

to a validator that has voted in the last cluster-configured number of ticks
(typically last epoch). This set is called the active set.

28 Blockchain based application for circular economy

3. Each validator sorts the active set by the balance of the stacking
account.

4. Using the output of the stable pseudo-random algorithm and the sorted

active set, each validator will build its own leader schedule.

Using the previous leader schedule, each validator only can vote as valid the
confirmed block of one validator per slot (the leader validator computed by itself
for a given slot). If a confirmed block doesn’t reach a minimum amount of votes
in a given time, the block is discarded.

2.4.5 Solana programs

Another remarkable point of Solana blockchain is its programming model. To
enhance Solana’s network capabilities and resource optimization, Solana
proposes a programming model based on a low-level programming language
compiled into Berkeley Packet Filter (BPF) bytecode [29].

To do so, Solana allows to develop programs to its blockchain using Rust and C
programming languages, but Rust is the one recommended by Solana
Foundation, as it is a modern low-level programming language that provides
thread-safety through all data and code and better control of memory usage,
due to these advantages, Rust as programming language for Solana blockchain
has more documentation from its community.

2.4.6 Solana summary

Once at that point, with the key points and revolutions of Solana been reviewed,
we can analyze the strengths and weaknesses of this new-generation
blockchain:

• Consensus mechanism: Solana blockchain, unlike Bitcoin or Ethereum,
use PoS as a consensus mechanism and PoH as a mechanism to build
the blockchain. This combination of mechanisms provides Solana
blockchain a fast and robust blockchain without sacrificing scalability and
power efficiency.

• Programming resources: Solana proposal goes beyond the idea of a
blockchain based Turing-complete state machine and proposes the
usage of a blockchain based “multiprocessor” as it can process multiple
transactions simultaneously.

• Programming language: To enhance the number of transactions per
second in Solana, low-level programming languages are used to develop
on top of this blockchain. This decision builds a considerable entry
barrier as these languages are not usually known by traditional
application developers. It is also much harder if we consider that the
recommended programming language for Solana programs is Rust, a

Blockchain technologies 29

modern low-level programming language in which there is not yet a large
number of developers.

• Contract-data relation: Unlike in EVM based blockchains, in Solana
network the relation between a contract and the data it can modify is not
fixed to belonging to the same account. In Solana, if a user wants to use
a program, this user only needs to create an account whose owner is the
program he wants to use. Another remarkable point is that if a user
doesn’t want to use that program anymore, he can delete its account by
sending the lamports used to maintain this account to his wallet.

Solana has been criticized by arguing that its blockchain is a centralized
network. These accusations came from some facts:

• At the moment, a great part of Solana’s main cluster (Mainnet) are
Solana Foundation’s validators.

• Currently, Solana blockchain has some features that are accepted by
Solana Foundation, but not implemented yet. This fact added that the
code is only created by a single organization and feeds these
accusations.

• Nowadays, there is only one way to set up a Solana validator, and this
way is using the Solana Foundation validator code.

These three points can be interpreted as Solana Foundation is actually building
a centralized blockchain, but as this project and its blockchain is not as mature
as other blockchain solutions and Solana Foundation is continuously
encouraging the usage and development of its blockchain, we can hope that
these restrictions can be solver in the near future.

2.5 Ethereum and Solana Comparison

To decide at which blockchain develop our solution we will compare both
blockchains in the following points:

• Blockchain trilemma: A trade-off between scalability, security and
decentralization.

• Capabilities: Runtime capabilities of each blockchain, the amount of
transactions per second each blockchain is able to manage, the delay of
transaction in each blockchain and gas fees of each blockchain.

• Development: The amount of documentation and community support for
developing in each blockchain.

• User data control: The control a user has on his data.

30 Blockchain based application for circular economy

We will discuss each point of this comparison in following sections

2.5.1 Blockchain trilemma

The blockchain trilemma consists in a trade-off between three key points of a
blockchain network: decentralization, security and scalability.

Firstly, we will compare decentralization properties of each network. Starting
with Ethereum, it uses PoW as a consensus mechanism, which leads to a very
decentralized network, as PoW is also used to build the data chain as a
distributed timestamp server.

On the other hand, we have Solana, whose blockchain proposal consists in the
usage of PoS as the consensus mechanism and PoH as a distributed
timestamp server to build the data chain. This choice of this mechanism
provides Solana blockchain a decentralized way to operate, but, as mentioned
in section 2.4.6, the software-development of this network is done in a
centralized way, as it only exists a client to build a validator and only one
organization controls its development.

Secondly, we will compare the security of each network. Starting with
Ethereum, as it uses PoW, it builds a very resilient ledger, but it is also
vulnerable to 51% attacks, this 51% attacks becomes more feasible to produce
for a big company as nowadays there are ASIC (application-specific integrated
circuit) Ethereum miners.

Following Solana, as this blockchain uses PoH to produce the data-chain, it
protects the blockchain against some PoS possible attacks such as long-range
attacks and reversal attacks. On the PoS part, Solana has an accepted version
of slashing, the solution to nothing at stake attack, but, currently, it is not
implemented yet.

Thirdly, we will compare the scalability of each blockchain technology. On the
Ethereum hand, it has a serious issue with scalability, this blockchain has a low
number of transactions per second, around 13, and has an exorbitant power
consumption, a fact that collides with the SDG goal of responsible consumption
and production, discussed at chapter 1.

On the Solana hand, it has a very high number of transactions per second,
around 3000. This solution also has a reduced power consumption compared
with the ones.

Once all these three key points have been discussed, we can decide what
blockchain proposal is better in each category and the reason of this chose, this
election is summarized in the following table:

Blockchain technologies 31

Table 2.1. Blockchain trilemma comparison between Solana and Ethereum

 Winner Reason

Decentralization Ethereum

Nowadays, with the
latest Solana version
being the 1.8.14 in
Mainnet, we cannot

affirm that Solana is a
fully decentralized

blockchain proposal.

Security Ethereum

Although Solana’s
whitepaper proposes a

really robust blockchain,
the implementation is

not complete yet,
currently having Mainnet

release 1.8.18.

Current implementation
of Solana does not

support slashing, a basic
mechanism to punish
non-honest nodes in

PoS blockchains.

Scalability Solana

Solana Is by far more
scalable than Ethereum,
decoupling consensus
mechanism and data-
chain building provide

Solana the capability of
having a robust and

scalable way to build the
ledger and achieve a

consensus between all
its nodes.

2.5.2 Blockchain capabilities

As in the previous section we did an analysis from the blockchain trilemma point
of view, in this section we will analyze the capabilities of each blockchain, and
which one has better user experience.

On one hand, there is Ethereum, a revolution compared to previous
blockchains. It enhances the power of first blockchains, such as Bitcoin, by
providing a Turing-complete state machine to the blockchain. This new feature
allows developers to build complex applications using Ethereum blockchain as
infrastructure. Although all these improvements from previous blockchains,

32 Blockchain based application for circular economy

Ethereum presents several problems when using complex applications built in
top of this proposal:

• Large gas fees: Ethereum blockchain has an issue with gas fees as they
can grow faster, as having gas fees up to 95$ in some popular
decentralized finances (DeFi) projects as SushiSwap or Crypto.com

• Low transactions throughput: Ethereum, currently, has a low number of
transactions per second and very scattered delays, going from 30
seconds to 16 minutes.

These two limitations of Ethereum blockchain are wanted to be solved by the
Ethereum community at the Ethereum 2.0 release.

On the other hand, Solana goes beyond a single Turing-complete state
machine to propose a runtime capable of processing several transactions at the
same time. This design of Solana has several benefits from the enhanced
capabilities point of view:

• Low gas fees: Solana solution has a contained power consumption and
reduced fees, in dollars at Solana’s maximum value at the moment of
259$ = 1SOL there is a fee around 0.00015$.

• High transaction throughput: Solana blockchain has a very- large number
of transactions per second compared to EVM based blockchains and
delays around 400ms.

Once the capabilities of each blockchain technology are reviewed, we can
conclude that Solana blockchain provides higher capabilities than current
Ethereum blockchain.

2.5.3 Development

Once we had analyzed the blockchain trilemma solution of each proposal and
their capabilities, we will analyze the development facilities of each proposal.

Starting with Ethereum, its most used programming language is Solidity, a
friendly object-oriented high-level language whose syntax is similar to
JavaScript. Ethereum also has a big advantage, as it has a big community,
there are a lot of documentation, tutorials and examples online. There are also
more formal courses about developing DApps over Ethereum blockchain.

Following by Solana, its more supported programming language is Rust, a
modern low-level programming language. Another withdraw of developing in
Solana is the usage of Borsh serializer to send and store transactions and
account data. Borsh serializer has some libraries in some languages to ease
the development of systems using this serialization mechanism, but some of
them are not fully-featured respective the Borsh specification [30]. As Solana

Blockchain technologies 33

project has started growing recently, there are not a huge number of complex
programs examples, tutorials or mere formal courses.

Seeing all these facts of the development on each platform, we can conclude
that, currently Ethereum has a smaller entry barrier to start developing on top of
that blockchain.

2.5.4 User data control

As we want to develop a fairer blockchain solution that the traditional application
development would provide, we will analyze the control that a user can take in
solutions based on these blockchains.

From the Ethereum side, the user data is typically stored in contract’s account
data, hard-coupling user data and the smart contract, or in third party servers,
where the data owner is the DApp organization.

From the Solana side, user data is saved in accounts holded by the users but
owned by the program that can modify this data. This relation decouples data
holding from the program. This solution allows the user to remove all its data by
transferring the lamports from his account related to the DApp program to his
wallet.

On this point, Solana provides a most fair solution for storing data, allowing
users to be owners of their data and not giving all their data to a huge
corporation.

2.5.5 Comparison Results

Following the previous mentioned results, we have built two tables, one
summarizing all technical aspects of each blockchain and another including all
the conclusions of the previous sections and choosing one as the one to be
used in this project.

34 Blockchain based application for circular economy

Table 2.2. Comparison between Solana and Ethereum main features

 Solana Ethereum

Current transactions per second 3,000 12

Theoretical maximum transactions
per second

65,000 17

Transaction fees
Around 0.00015$

Around 15$
(Up to 95$)

Transaction Delay 400ms 30s – 16min

Consensus Mechanism PoS (+ PoH) PoW

Development languages Rust, C Solidity, Vyper

Multi-threading Yes No

From the previous table, we can conclude that Solana is a faster and cheaper
blockchain to use, but Ethereum has a more tested consensus mechanism and
higher-level languages respect the Solana ones.

Table 2.3. Comparison between Solana and Ethereum results

 Solana Ethereum

Blockchain Trilemma 1/3 2/3

Capabilities 1 0

Development 0 1

User data control 1 0

Seeing both tables, we can conclude that Solana is a more interesting platform
to develop this project as it provides almost all the Ethereum features but with
some improvements. Respective to the points that Ethereum currently beats
Solana, there are accepted solutions and developments to provide these
features to Solana [15, 31].

Multiplatform development 35

CHAPTER 3. MULTIPLATFORM DEVELOPMENT

In this chapter we will expose the initial architecture proposal of our proof of
concept of an application built to reward the civic actions of a citizen and,
aligned with SDGs principles, reduce the barrier from new technologies
solutions to more underprivileged citizens.

Once the use case and our initial architecture proposal has been exposed, we
will face the technical difficulties of native developments and we will follow by
analyzing the most popular alternatives to build a multi-platform solution.

3.1. Use case

Based on the SDGs and blockchain technologies, we built a service where a
citizen with an internet connection could registry its civic actions and earn
rewards with these civic actions.

To do a project that aims to be accessible to everyone we need to build a
friendly UI with an easy UX, and in order to ease the usage of this application to
people with difficulties with common smartphones’ applications we will focus our
user interface design in having clean pages and having an auto explicative
layout.

Another key point in the success of this project is the aim to hide all blockchain
complexity below the user application.

For the technical part, we will deploy a backend and database equivalents in the
blockchain environment and enhance the fairness of the solution by adding an
autonomous event validator, architecture in Fig. 3.1.

36 Blockchain based application for circular economy

Fig. 3.1 First approach of our solution’s architecture

3.2. Native development

Once we have chosen a blockchain to build our application on top, we need to
choose a way to develop our application.

As we aim to build a multiplatform application, the intuitive way to face this
development is to build an application for each of the most popular official app
stores: Play Store (Android devices) and App Store (iOS devices). This decision
would allow us to develop an application in Kotlin, a language developed by
JetBrains that runs over the Java virtual machine; and an application using
Swift, a language developed by Apple, based in Objective-C and used to
develop applications in Apple’s operating systems (OS).

Both languages follow a multi-paradigm approach focused on providing the
features of an imperative, object-oriented and strongly-typed language.

This traditional approach has some advantages in execution time, but several
drawbacks in development time.

On one hand, the main advantage of this approach is that developing an
application in the native language of each platform produces very efficient
applications, with great performance even if the application uses complex
animations and media resources. These benefits lead to a better user
experience (UX) in each platform.

Multiplatform development 37

On the other hand, there are several drawbacks of developing an application in
different languages for different devices, but they can be resumed in two main
points:

• Version inconsistency: having an application in each platform, implies to
have a project per device. It increases the possibility of having different
bugs in different devices, increasing the effort needed by the
development team. This approach also creates the possibility of having
some features in the application of a device, but have not implemented
these features in other devices yet. These two drawbacks can be
mitigated by using application testing frameworks as Katalon, a
framework to test mobile applications, web applications and APIs, but it
increases even more the developing efforts.

• Developing times: Due to having multiple projects in different languages,
the developing team needs to have developers with knowledge of each
framework, increasing the costs of developing the application, and to split
its efforts in different projects, increasing development times and
impacting final application costs.

In order to avoid these drawbacks but without scarifying the overall user
experience, we will analyze some multiplatform development frameworks and
choose the one that better fits for this project.

3.3 Angular

We will start with one of the most used frameworks in the last 5 years, Angular.
This Google maintained framework provides an easy way to develop web based
multi-platform applications. AngularJS was initially published in 2010, but
Angular2 (currently just Angular) was published in 2016.

Angular uses a model-view-controller (MVC) to build single-page applications
(SPA), angular applications usually have good user experience as the approach
of building a SPA combined with the angular-material package of Angular
allows the development team to build fluid applications based on material-
design guidelines.

Angular framework is based on the concept of component. An Angular
component is the basic building block of Angular framework. Each component
has the following structure:

• A selector for which the component can be used in another component’s
template.

• An HTML template used to declare what is going to be rendered in this
component. In this HTML template can also be used some structural
directives (such as ngIf or ngSwitch) to dynamically render parts of a

38 Blockchain based application for circular economy

component. In the HTML template of a component, there are also
specified the connections between components.

• A TypeScript class used to define the behavior of a component and
handle the connections between components, called as data binding in
Angular framework.

• A CSS (or SCSS) file to define the component’s style and animations.

Angular has the big advantage of having only one project to produce a multi-
platform application, but it has also some drawbacks:

• Angular natively does not support state-based application architecture,
such as following the Redux architectural pattern, but it can use third
party libraries such as NgRx and JsRx to build this state-based
architecture.

• While the usage of Angular with the Ionic framework works well to
develop applications with an improved UI design and enhanced UX.
These frameworks do not have good performance in mobile devices,
having performance issues such as frame-rate drops and lag in
animations due to using JavaScript Bridges to run these applications.

Aiming to solve the previously mentioned performance issues of Angular
applications in mobile devices, such as Android or iOS devices, the JavaScript
and TypeScript community developed NativeScript, an open-source framework
to build native applications for iOS and Android devices. Although NativeScript
solves a lot of performance issues of running Angular applications using
JavaScript Bridges, this solution requires higher expertise of the developer in
using Android and iOS native APIs.

3.4 React

Once Angular has been analyzed, we will follow with one of the most used
libraries to UI development, React. This library is a JavaScript library developed
by Facebook and initially published in 2013. React, as Angular, is used to build
SPA but, without an inherited architecture, as the MVC used by Angular, but the
typical React architecture is based in Redux

React is also based in components, but React components are developed in a
declarative programming paradigm where the developer can specify how the
component should behave without writing explicitly the steps to get this
behavior. React also uses JSX, a syntax extension of JavaScript that allows
embedding UI templates in JavaScript code.

React is typically used in combination with Cordova to build mobile applications,
but this combination has similar limitations to the Angular and Ionic one, having
a huge impact on its performance due to the usage of JavaScript Bridges.

Multiplatform development 39

Similar to NativeScript in Angular, in React there is React Native, this
framework allows React applications to translate the HTML template into native
templates, but the core logic of a React application is still running in a
background JavaScript thread. This approach enhances the performance of
React applications, but it does not reach the performance of native applications.

3.5 Flutter

As we have reviewed the most popular web-based frameworks to build multi-
platform applications, we will continue by analyzing a more modern multi-
platform applications SDK, Flutter. This framework is developed by Google and
published its first alpha it 2017 and its 1.0.0 in 2018.

Flutter is an SDK and framework to build multi-platform applications in Dart, an
open-source programming language developed by Google. Dart was originally
designed to build client-side applications. This new programming language has
a functional object-oriented paradigm and modern features as an efficient
garbage collector.

Dart has three main targets to run its code [32]:

• Dart Virtual Machine: Dart VM is mostly used to develop dart code in
desktop environments, but can also be used to run non-demandant
applications

• JavaScript compiled: Dart allows to build web applications, to run these
applications, Dart SDK provides two compilers to translate Dart code to
JavaScript, dartdevc compiler for development purposes and dart2js
compiler to build production applications.

• Native code compiled: Dart SDK also brings compilers to build
applications for Android, iOS, ARM32 devices, ARM 64 devices and x86
devices. These compilers allow Dart developers to build applications
even for embedded devices.

Dart also provides another interesting feature, hot reload, this feature allows
Dart developers to just-in-time compile new changes in Dart code, accelerating
development and debugging.

From the Flutter SDK and framework part, we get a declarative paradigm to
build UIs in a framework based on providers that has support of several
development patterns as model-view-controller (MVC), model-view-view model
(MVVM) or Redux.

Flutter also provides an approach to build fluent animations using Skia as a
graphic library. This graphic library developed by Googles is able to profit from
GPU-accelerated render technologies such as Vulkan, Metal or OpenGL ES.

40 Blockchain based application for circular economy

Flutter is based on widgets, as Angular or React in components, but Flutter
widgets came with a more generic way to define these building blocks. In
Flutter, even the style of application widgets is a widget. All widgets are
immutable, but based on if a widget must change with some user actions there
are two main categories:

• Stateless widget: These widgets have no stat, once created they will not
be refreshed by user actions.

• Stateful widget: These widgets have an instance of a state. This state is
mutable and contains the mutable data needed to rebuild the widget and
the widget’s build method.

Flutter allows developers to build high performance multi-platform applications
in a fast and declarative paradigm, reducing the development costs of Flutter
applications.

3.6 Comparison

Once analyzed the pros and cons of each technology, we are able to choose
the one to develop our multi-platform application on top.

To get a conclusion we will compare the previous analyzed technologies in 4
dimensions:

• Performance in multiple devices: In this section we will compare the
performance of each technology in mobile platforms.

• Development: In this section we will compare some basic development
concerns as how fast is to develop in each technology and the online
resources available for each technology.

3.6.1 Performance

From a performance point of view, currently, there is nothing better than native
applications, but due to its development costs there are more interesting
approaches to build an application.

Angular with NativeScript has good performance compared to more traditional
approaches of this framework, such as using Angular with Ionic, but it has some
performance issues as the size of an application is quite high and it has
performance issues as frame-rate drops.

React, since React Native was released, has grown in popularity thanks to its
improved performance compared with other multi-platform approaches.
However, React Native has issues rendering animations as these animations

Multiplatform development 41

cannot be rendered at 60 FPS and also have frame-rate drops and variable
time between frames when rendering complex animations. Although React
Native is able to profit better from an isolated JavaScript thread, it also uses
JavaScript bridges that have a performance impact.

Flutter has not as big community as the previous approaches, but its community
has been growing during the last few years thanks to the performance of flutter
applications in mobile platforms. Another remarkable achievement of Flutter is
the ability of rendering animations at 60 FPS with minimal frame-rate drops and
a constant time between frames. This enhanced performance from Flutter
applications is thanks to dart-to-native code compilation and the usage of a
graphic library able to profit from modern graphic APIs and graphic dedicated
processors’ power.

In spite of all the improvements from first multi-platform frameworks to latest
ones, from the performance point of view, it is still better to develop an
application in a native language than in a multi-platform framework.

3.6.2 Development

Once we have analyzed each approach by the performance point of view, we
will continue by analyzing the development costs and online material of each
approach.

Starting by native application development, mobile platform programming
languages such as Java, Kotlin, Swift or Objective-C have a lot of
documentation online, but these languages follow an imperative paradigm and
their development times are quite long. In addition, if we want to be present in
each of the most popular official app markets, we will need to develop at least
two applications, one for Android and one for iOS, greatly increasing the
development times and costs.

Following with Angular, this framework has a lot of online documentation and a
lot of community supporting this framework, providing tutorials, examples and
even more complete courses. The approach of Angular to build a UI based on
components allows to speed up the development as, once the UX designer
builds the application mockups, the development team can break the views of
the application into components in order to reuse as maximum as possible each
building block. Once a building block is developed and tested it can be used in
many locations of an application speeding up its development.

Once Angular is reviewed, we can continue with React, this approach has
similar advantages as Angular, it has a big community that provides a lot of
tutorials, examples and professional courses. As Reacts is also based in small
building blocks, it is able to build some tested components and reuse them to
speed up the development of an application, reducing its development costs.
Respectively to Angular, React has the advantage of being designed to be used
in a declarative way, easing and accelerating even more the development of
applications. React also has a drawback compared to Angular, using React in

42 Blockchain based application for circular economy

large applications can easily lead to a non-clean code due to not having the UI
template, its logic and its style split by the framework in different files.

Finishing with Flutter, this SDK doesn’t have as huge community as Angular or
React, but its popularity is growing through the past years. Fortunately, Flutter
has a very detailed documentation where each widget has a page with
examples and with a video-tutorial of how to use the widget and use-cases. The
Flutter community also has a lot of tutorials, examples and professional
courses. In terms of development times, Flutter has an incredibly fast
development workflow, with a good analysis of the application’s mockups a
developer can face the development by building some reusable widgets and
placing them in the widget tree of the application in a very fast way, reducing
the development costs.

3.6.3 Comparison Results

After analyzing each approach from the performance and development costs
points of view, we can conclude that Flutter is the most adequate solution to
build a friendly application with a good UX.

We have chosen Flutter thanks to its enhanced performance and its
development advantages, such as the speed of development and the ease to
develop applications following the material design or Cupertino guidelines.

Decentralized applications 43

CHAPTER 4. DECENTRALIZED APPLICATIONS

In this chapter we will use the technologies chosen from previous chapters and
we will build some architectural proposals using these technologies, Solana and
Flutter.

Firstly, we will expose the main benefits of decentralized applications.

Then, we will evolve the basic architecture of almost all current applications to a
blockchain-based generic architecture.

After this, we will expose two applications that we have developed to get into
developing DApps and splitting the main features of our final proof of concept
into two smaller problems.

Once we have exposed our previous developments, we will propose the final
architecture of our proof of concept.

Last but not least, we will create the mockups of our application and its basic
features.

4.1 Decentralized applications main benefits

Traditional service developments had expensive CAPEX, but also important
OPEX to maintain the infrastructure of the service running and up-to-date.

These costs have been reduced during recent years, in major part thanks to the
introduction of cloud computing with infrastructure as a service (IaaS) platforms,
such as Microsoft Azure and Amazon web services. These platforms allow
service providers to build services without having a huge and complex data
center to serve its software solutions.

IaaS platforms are based in provide the infrastructure of project in a fast and
programmatically way, giving providers the ability to only pay for what they are
using at a given time, ex: if a provider has a load balancer with two instances of
a given service, it can set up a third instance when a peak of demand occurs
without having this third instance permanently up.

Companies using these cloud computing solutions usually need a DevOps
team, this team is responsible for developing software able to use IaaS
providers APIs and manage the resources needed to maintain the solution they
are serving.

As cloud computing came to reduce the huge amounts of investment a small
company must spend to set up and maintain a new service, small companies
and startups are moving to creating DApps, this new approach of creating
services allows companies to profit from the benefits of blockchain
technologies.

44 Blockchain based application for circular economy

4.2 From Traditional Apps to DApps

DApps are a growing alternative to build services, as the company providing the
service can forget about investing in renting and managing its IaaS needs.

Generally, DApp solutions also have some OPEX as these solutions lead the
service provider to the need of getting a wallet in the chosen blockchain and at
least an account to deploy its smart contract and store its data. This account
usually needs some tokens to be maintained by the blockchain.

As we chose Solana in section 2.5.5, we will discuss the transition from a
traditional application proposal to a Solana based DApp, this approach will
change depending on the chosen blockchain, as EVM based blockchains will
have a different approach.

In a traditional application-based service architecture, we have a frontend (the
application itself), a backend to manage all the data and ask for data to the
database, represented in Fig. 4.1.

Fig. 4.1 Representation of traditional App-based solutions architecture

Another architecture proposal can be a frontend that directly consumes a
service like Firebase, a cloud computing-based platform that provides a way to
develop authentication mechanisms, file transfer, message solutions and
database storage as services, this approach allows to develop application-
based solutions that does not have a backend properly speaking, instead, this
architecture is based in an all-in-one service solution, represented in Fig. 4.2.

Decentralized applications 45

Fig. 4.2 Representation of Firebase-based solutions architecture

DApps architecture has a mixture of both previous architectural solutions,
having the control of having a dedicated data processor entity, a decoupled
data storage entity but without having to trouble with traditional backend
solutions such as Spring or Express.js.

Having as base the traditional App-based solutions architecture, we can change
the components of this architecture without performing a big modification of the
architecture itself.

Starting with the backend component, its main features in a traditional
application architecture are acting as an authentication server, as a mediator
between the application and the database and as a mediator between different
users. All these features can be implemented in a smart contract, or program in
Solana. A program can get the request of a user and send the needed data to
the desired account, it can also verify that only some public keys with its
signatures can perform some actions.

Following the database component in the traditional App-based solutions
architecture, in this basic DApp architecture we can substitute this storage
component, typically a traditional database, by blockchain accounts. In a
Solana-based architecture each entity, ex: each user and the application
provider, can have one or more accounts to store their data and once this data
is not needed anymore, ex: a user doesn’t want to use the application, the
account storing this data can be removed by sending all its tokens to the user
wallet. This approach makes DApp solutions more transparent to users than
traditional application solutions.

The overview architecture can be seen in Fig. 4.3.

46 Blockchain based application for circular economy

Fig. 4.3 Overview of a basic DApp solution architecture

Although the previously described architecture is a basic architecture to DApp
solutions, as traditional application-based solution architecture, DApp solutions
can have a more complex architecture, the equivalent of a microservice
architecture for a traditional application. This architecture can be achieved by
splitting the features of the main program to several programs (ex: one to
manage the authorization, authentication and accounting (AAA) features,
another to manage how the data must be stored, etc.). Solana provides a
complete documented feature called cross-program invocation (CPI) to send
transactions between programs and build a “microservice” blockchain-based
architecture, represented in Fig. 4.4.

Fig. 4.4 Overview of a “microservice” DApp solution architecture

4.3 Divide and Rule

We can start analyzing the features our application should have. We are going
to develop an application whose main objective is to reward the good actions of
citizens, such as recycling thrash or warning that there is a flaw on a public

Decentralized applications 47

road. We must build an application where a user could upload an action, this
action must be processed by the program and stored into the user’s account,
once the action is accepted to have a reward the program must be able to send
lamports from the acceptor entity to the user that upload the action.

To provide our application from the previous features we have developed two
smaller applications to face each one a part of the solution:

• Transactions application [33]: An application where a user can send
tokens from its wallet to another wallet and review all the transactions its
wallet has performed. Main view of the application in Fig 4.5.

Fig. 4.5 Main view of the transaction’s application.

• Chat application [34]: An application where a user can send data
(messages) to another user’s account and retrieve the messages sent to its
account. Application screenshots at Fig 4.6.

48 Blockchain based application for circular economy

Fig. 4.6 Views of the chat application.

Based on these two applications we can start with our application final proposal.

4.4 Architecture

Based on the pre-study made at section 1.2, the architectures proposed at
section 4.1, the small applications developed at section 4.2 and the choices of
Solana blockchain at chapter 2 and Flutter as multi-platform development
framework led us to propose an architecture based on five main components: a
frontend application, a Solana program, some Solana accounts and an
autonomous event validator. See Fig. 4.7 with the overview of our architecture.

Decentralized applications 49

Fig. 4.7 Overview of our solution’s architecture.

The final UI specification will be described at section 4.4, a part of the rest of the
components, as it is the entry point of a new user to our system and should
have a good UX.

4.4.1 Solana program

Firstly, we will expose the Solana program [35], the core of our solution. The
Solana program is developed in Rust and has two main functions:

• Manage the actions uploaded by users and store them.

• Transfer a reward in tokens when an action is accepted.

To do so we had to build multiple processors (similar to traditional API
endpoints) in our Solana program, to route an incoming transaction to the
desired processor we use the Rust match command in the transaction payload.
All the incoming transactions’ payload are byte arrays serialized following Borsh
specification so we must implement the data models of our program and some
of their serialization mechanisms.

4.4.2 Solana accounts

Secondly, and related to the Solana program, we will use the data models
created in the program to format the stored data of our users’ accounts. Each
user will save its actions on its own account, this account is created using the
Flutter application. The holder of the account will be the user but the owner will
be our Solana program so our program can modify the data of the account, but

50 Blockchain based application for circular economy

the user can decide to delete the account without needing the intervention of
the service provider.

4.4.3 Autonomous event validator

Thirdly, and related to the reward process, we will discuss the autonomous
event validator. This component is designed to prevent non-honest users from
upload non-valid actions and get a reward, non-valid actions can be sending
several times an action that in the past got a reward, sending random
transactions to get rewards, etc.

To accomplish this goal of preventing reward non-valid actions, there can be
some strategies, but we had resumed in two main strategies:

• Human validator: In this strategy we should develop a second UI and get
some human validators that could use this new UI to accept or decline
incoming actions.

• Autonomous validator: In this strategy we should develop an algorithm
capable of distinguishing valid actions from non-valid actions. To do so,
and based on the success of machine learning techniques in fields such
as recognizing spam emails or fraudulent mobile calls, we could develop
a machine learning-based agent to perform this validation in an
autonomous way.

As the goals of this project were to develop a blockchain based application
following the circular economy guidelines, we had only developed a basic bot-
like algorithm to accept or decline user created actions, but we have made a
proposal of some considerations to develop the machine learning-based
autonomous validator that follows the SDG guidelines:

• No bias: Some machine learning studies have realized that if the data
used to train the model is biased, these biases will reach the final model
and its performance will not be the desired one, lowering the fairness of
the overall system.

• Open source: Following the working line of this project, as each
component is going to be open-source, the autonomous validator should
also be open-source. This approach enhances the transparency of the
project and opens several working lines to upgrade this solution.

4.4.4 Authenticator server

In order to permit users to migrate from a device to another device, we use an
authentication server.

Decentralized applications 51

This authentication server is used to securely store users’ wallets, to do so, we
encrypt wallets using AES GCM and the key will be encrypted using a key
derivation function from user credentials.

4.5 User Interface (UI)

Once the system behavior and all the non-user related components are
described, we will define the UI specifications.

The UI of this project must be an intuitive and user-friendly UI with an improved
UX that hides all the blockchain complexity under a reactive interface.

From the blockchain related logic point of view, we use the solana_dart
package to hide part of the blockchain complexity. This package is in
development by Cryptoplease, even if we use this package to face a part oof
the blockchain complexity we also had to develop our services and serializers
as the ones provided by solana_dart are not stable and some features don’t
work as expected.

From the application architectural point of view, we chose to use a combination
of Redux and MVVM paradigms to provide our application a good responsive
experience.

Last but not least, we have designed a set of mockups, see Fig. 4.8, to get a
friendly UI with a material design approach.

52 Blockchain based application for circular economy

Fig. 4.8 Final application mockups.

Conclusions and future work 53

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

During the last twenty years, there has been big development in web services
and applications, since first applications where the web master was the only
one that could produce content, passing through current social web applications
where everyone can upload its own content to these huge platforms and this in
coming new generation of application where users doesn’t only can produce its
own content, but also users own the content produced by them. This new
generation comes with several technical improvements and revolutions as
blockchain technologies and artificial intelligence. This new generation comes
with a lot of opportunities to build a better world.

Another improvement of last years, but not in technical aspects but in social
aspects, are the guidelines and the direction of several institutions, companies
and individuals to build a more democratic and fairer world, as SDG proposals.

In the development of this project, we have learned a lot about these new
technologies analyzed in this thesis, but also about how to use these
technologies to bring their benefits to everybody, and as a result, we have built
an application based on these new technologies that provides an efficient way
to reward good citizens for their actions.

5.1. Conclusions

After all the efforts put into this project, we can conclude that blockchain doesn’t
only provide technical and economic benefits as reducing the OPEX of a web
service and providing high availability to projects built on top of a blockchain
with really low compared costs. Blockchain technologies also come with a lot of
new features that allow service providers to build applications more aligned with
social-economic guidelines as SDG.

Blockchain technologies also have their drawbacks. The main drawbacks of
these technologies come for the part of being new technologies:

• There are not many official courses to develop using these new
technologies.

• Although the number of tools, as frameworks and libraries, to build
applications using these new technologies are growing, there is a lack of
some tools as stable serialization libraries.

• Even if the basic architecture of an application based in blockchain is
quite similar to the architecture of a traditional application. It is difficult to
adapt an existing solution to the blockchain environment, it can be
easier or harder depending on the chosen blockchain technology.

54 Blockchain based application for circular economy

About the development using a new generation of multi-platform development
frameworks, there has been a huge evolution from previous frameworks. Using
Flutter, we realized that having good mockups and a technology to easily build
a UI based on these mockups, the development of a mobile application can be
incredibly speeded up relative to previous framework or native development.

The overall conclusion can be achieved by analyzing the state of our initial
goals:

• Blockchain analysis: We have been able to analyze EVM-based
blockchains with new generation blockchain such as Solana and get
some comparison results between them.

• DApp development: We have developed two small applications based in
the blockchain technology and a proof of concept of our good citizen
application following SDG guidelines with a material design user
interface and an improved user experience.

• Teaching documentation: We have documented several key points of
different blockchain technologies, we have also compared these
technologies and proposed several architecture alternatives starting from
simpler to more complex architectures.

5.2. Future work

As we have exposed in section 4.3.3, this project can be upgraded by using a
machine learning-based autonomous validator instead of a bot-like autonomous
validator.

Another detected need of development is in building libraries to ease the
management of the blockchain complexity in frontend application, such as
dialoging with blockchain APIs and serializing. In our development with Dart and
Solana we detected that there are some Dart and JavaScript Borsh serializer
libraries, but there is not a really complete and stable Borsh serializer library,
the majority of them have problems serializing complex data structures as
object arrays or objects inside objects.

5.3. Environmental considerations

As this thesis’s main objective was to align new technologies, such as
blockchain, with the circular economy, we have considered environmental
effects of every choice we had made.

Conclusions and future work 55

Firstly, about power consumption, we have compared two blockchain
alternatives and, once compared, we have realized that Ethereum blockchain
has a huge power consumption due to the usage of PoW as consensus
mechanism, around 2400 times higher that PoS based blockchains [36].

Secondly, about electronic devices waste, Ethereum validators usually buy a
large number of GPUs and ASIC devices and use them 24h per day 7 days a
week at a high percentage of their capabilities, reducing considerably the useful
life of these devices.

On the other hand, Solana validators use significantly less power consumption
than Ethereum ones, but the hardware requirements to run a full Solana
validator are high [37], the good point is that Solana Validators does not run at
so high loads than the Ethereum ones, having a poor impact in the useful life of
the equipment.

56 Blockchain based application for circular economy

BIBLIOGRAPHY

[1] Sun, J., Yan, J., Zhang, K.Z.K., “Blockchain-based sharing services:
What blockchain technology can contribute to smart cities.” Financ
Innov 2, 26, 2016.

[2] Back, A., “Hashcash” 1997.
[3] Back, A., “Hashcash - A Denial of Service Counter-Measure” 2002.
[4] Nakamoto, S., “Bitcoin: A Peer-to-Peer Electronic Cash System”

2008.
[5] Kaliski, B., “Password-Based Cryptography Specification Version 2.0”

2000.
[6] Percival, C., "Stronger Key Derivation Via Sequential Memory-Hard

Functions", 2009.
[7] Buterin, V., “Ethereum Whitepaper”, 2013
[8] Dillak, R., Suchendra, D., & Hendriyanto, R., Agung, A., “Proof of

work: Energy inefficiency and profitability. Journal of Theoretical and
Applied Information Technology”, 97, 2019

[9] Lihu, A., Du, J., Barjaktarevic, I., Gerzanics, P., Harvilla, M., “A Proof
of Useful Work for Artificial Intelligence on the Blockchain”, 2020

[10] Baldominos, A:, Saez, Y., “Coin.AI: A Proof-of-Useful-Work
Scheme for Blockchain-Based Distributed Deep Learning”, 2019

[11] Saleh, F., “Blockchain without Waste: Proof-of-Stake”, The Review
of Financial Studies, Volume 34, Issue 3, March 2021, Pages 1156–
1190

[12] Bentov I., Gabizon A., Mizrahi A. “Cryptocurrencies Without Proof
of Work”, Lecture Notes in Computer Science, vol. 9604, 2016

[13] Kiayias A., Russell A., David B., Oliynykov R., “Ouroboros: A
Provably Secure Proof-of-Stake Blockchain Protocol”, Lecture Notes
in Computer Science, vol 10401, 2017

[14] Intel Corporation, “PoET 1.0 Specification”, [Online]. Available:
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/
poet.html [Accessed 20 01 2022]

[15] Solana, “Solana: A new architecture for a high performance
blockchain v0.8.13“, [Online]. Available: https://solana.com/solana-
whitepaper.pdf [Accessed 25 01 2022]

[16] Fisch, B., “PoReps: Proofs of Space on Useful Data” IACR
Cryptol. ePrint Arch. 2018, p.678.

[17] TradeBlock, “Bitcoin Historical data“, [Online]. Available:
https://tradeblock.com/bitcoin/historical/1h-f-tsize_per_avg-01101
[Accessed 26 01 2022]

[18] Chaindebrief, “Introduction to Solana”, [Online]. Available:
https://chaindebrief.com/introduction-to-solana/ [Accessed 26 01
2022]

[19] Buterin, V., “Ethereum Whitepaper”, [Online]. Available:
https://ethereum.org/en/whitepaper/ [Accessed 26 01 2022]

[20] Assia, Y., Buterin, V., Hakim, L., Rosenfeld, M., Lev, R., “The
Colored Coins Protocol”, [Online]. Available:
https://github.com/Colored-Coins/Colored-Coins-Protocol-
Specification [Accessed 26 01 2022]

https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://solana.com/solana-whitepaper.pdf
https://solana.com/solana-whitepaper.pdf
https://tradeblock.com/bitcoin/historical/1h-f-tsize_per_avg-01101
https://chaindebrief.com/introduction-to-solana/
https://ethereum.org/en/whitepaper/
https://github.com/Colored-Coins/Colored-Coins-Protocol-Specification
https://github.com/Colored-Coins/Colored-Coins-Protocol-Specification

Bibliography 57

[21] Ethereum Organization, “Community guides and resources”,
[Online]. Available: https://ethereum.org/en/learn/ [Accessed 26 01
2022]

[22] Ethereum Organization, “Ethereum Virtual Machine (EVM)”,
[Online]. Available: https://ethereum.org/en/developers/docs/evm/
[Accessed 26 01 2022]

[23] Ethereum Organization, “Nodes and Clients”, [Online]. Available:

https://ethereum.org/en/developers/docs/nodes-and-clients/
[Accessed 27 01 2022]

[24] Solana Foundation, “solana_program”, [Online]. Available:
https://docs.rs/solana-program/latest/solana_program/ [Accessed 27
01 2022]

[25] Solana Foundation, “Accounts”, [Online]. Available:
https://docs.solana.com/es/developing/programming-model/accounts
[Accessed 27 01 2022]

[26] Solana Foundation, “Runtime”
https://docs.solana.com/es/developing/programming-model/runtime
[Accessed 28 01 2022]

[27] United Nations, “THE 17 GOALS”, [Online]. Available:
https://sdgs.un.org/goals [Accessed 30 01 2022]

[28] United Nations, “Sustainable Development Goals”, [Online].
Available: https://www.un.org/sustainabledevelopment/ [Accessed 02
02 2022]

[29] The kernel development community, “BPF Documentation”,
[Online]. Available:
https://www.kernel.org/doc/html/latest/bpf/index.html [Accessed 02 02
2022]

[30] NEAR, “Borsh, binary serializer for security-critical projects”,
[Online]. Available: https://borsh.io/ [Accessed 03 02 2022]

[31] Solana Foundation, “Accepted Design Proposals”, [Online].
Available: https://docs.solana.com/proposals/accepted-design-
proposals [Accessed 04 02 2022]

[32] Google, “Dart Overview”, [Online]. Available:
https://dart.dev/overview [Accessed 05 02 2022]

[33] González Campos, G., “solana_getting_started”, [Online].
Available:
https://github.com/gabrielgonzalezcampos/solana_getting_started
[Accessed 06 02 2022]

[34] González Campos, G., “solana_chat”, [Online]. Available:
https://github.com/gabrielgonzalezcampos/solana_chat [Accessed 06
02 2022]

[35] González Campos, G., “solana_issues_manager_program”,
[Online]. Available:
https://github.com/gabrielgonzalezcampos/solana_issues_manager_p
rogram [Accessed 06 02 2022]

[36] Ethereum Organization, “Ethereum energy consumption”, [Online].
Available: https://ethereum.org/en/energy-consumption/ [Accessed
05 02 2022]

https://ethereum.org/en/learn/
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://docs.rs/solana-program/latest/solana_program/
https://docs.solana.com/es/developing/programming-model/accounts
https://docs.solana.com/es/developing/programming-model/runtime
https://sdgs.un.org/goals
https://www.un.org/sustainabledevelopment/
https://www.kernel.org/doc/html/latest/bpf/index.html
https://borsh.io/
https://docs.solana.com/proposals/accepted-design-proposals
https://docs.solana.com/proposals/accepted-design-proposals
https://dart.dev/overview
https://github.com/gabrielgonzalezcampos/solana_getting_started
https://github.com/gabrielgonzalezcampos/solana_chat
https://github.com/gabrielgonzalezcampos/solana_issues_manager_program
https://github.com/gabrielgonzalezcampos/solana_issues_manager_program
https://ethereum.org/en/energy-consumption/

58 Blockchain based application for circular economy

[37] Solana Foundation, “Validator Requirements”, [Online]. Available:
https://docs.solana.com/es/running-validator/validator-reqs [Accessed
05 02 2022]

https://docs.solana.com/es/running-validator/validator-reqs

Glossary 59

GLOSSARY
UMTS Universal Mobile Telecommunication System
UN-GA United Nations General Assembly
SDGs Sustainable Development Goals
NFT Non-Fungible Token
APP Application
DApp Decentralized Application
UI User Interface
UX User Experience
PoW Proof of Work
DoS Denial of Service
RPoW Reusable Proof of Work
PoS Proof of Stake
DPoS Delegated Proof of Stake
BFT Byzantine fault tolerance
PoET Proof of Elapsed Time
ERP Enterprise Resource Planning
VDF Verifiable Delay Functions
PoSpace Proof of Space
PoRep Proof of Replication
CAPEX Capital Expenditure
OPEX Operating Expenses
CRUD Create, Read, Update, Delete
DoS Denial of Service
EVM Ethereum Virtual Machine
LIFO Last-in-first-out
ASIC Application-Specific Integrated Circuit
DeFi Decentralized Finances
OS Operating System
MVC Model-View-Controller
SPA Single-Page Applications
HTML HyperText Markup Language
CSS Cascading Style Sheets
SCSS Syntactically Awesome Stylesheets Syntax
SDK Software Development Kit
VM Virtual Machine
MVVM Model-View-Model View
FPS Frames per Second
IaaS Infrastructure as a Service
aaS As a Service
AAA Authorization, Authentication and Accounting
CPI Cross-Program Invocation

