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Computing Graph Neural Networks: A Survey from
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Graph Neural Networks (GNNs) have exploded onto the machine learning scene in recent years owing to their

capability to model and learn from graph-structured data. Such an ability has strong implications in a wide

variety of fields whose data are inherently relational, for which conventional neural networks do not perform

well. Indeed, as recent reviews can attest, research in the area of GNNs has grown rapidly and has lead to

the development of a variety of GNN algorithm variants as well as to the exploration of ground-breaking

applications in chemistry, neurology, electronics, or communication networks, among others. At the current

stage research, however, the efficient processing of GNNs is still an open challenge for several reasons. Besides

of their novelty, GNNs are hard to compute due to their dependence on the input graph, their combination

of dense and very sparse operations, or the need to scale to huge graphs in some applications. In this context,

this article aims to make two main contributions. On the one hand, a review of the field of GNNs is presented

from the perspective of computing. This includes a brief tutorial on the GNN fundamentals, an overview of

the evolution of the field in the last decade, and a summary of operations carried out in the multiple phases of

different GNN algorithm variants. On the other hand, an in-depth analysis of current software and hardware

acceleration schemes is provided, from which a hardware-software, graph-aware, and communication-centric

vision for GNN accelerators is distilled.
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1 INTRODUCTION

Machine Learning (ML) has taken the world by storm and has become a fundamental pil-
lar of engineering due to its capacity to solve extremely complex problems, to detect intricate
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Fig. 1. GNNs as enablers of a plethora of applications in fields that hinge on graph-structured data.

features in oceans of data, or to automatically generate alternatives that outperform well-
engineered, well-known, carefully optimized solutions. As a result, the last decade has witnessed
an explosive growth in the use of Deep Neural Networks (DNNs) in pursuit of exploiting the
advantages of ML in virtually every aspect of our lives [92]: computer vision [67], natural language
processing [171], medicine [43], or economics [62] are just a few examples.

However, and in spite of its all-pervasive applicability and potential, it is well known that not
all neural network architectures fit to all problems [11]. DNNs take the input data and attempt
to extract knowledge taking into account the inductive bias that the connection architecture of
the DNN generates. This, in essence, means that the number of DNN layers and their pre-assumed
connections determines its suitability to certain tasks. For instance, by not making any assumption
on the structure of the data, conventional fully connected neural networks are able to master a
wide range of tasks at the cost of being less efficient in general than other DNNs [14]. In contrast,
techniques such as Convolutional Neural Networks (CNNs) or Recursive Neural Networks

(RNNs) are biased toward extracting knowledge from the locality and temporal sequentiality of
data. This makes them a better fit for specific tasks such as image recognition or treatment of
temporal signals, yet incapable of efficiently handling data with arbitrary structures [149].

In light of the above, there has been a recent interest in deep learning techniques able to model
graph-structured data [2, 11, 16, 49, 54, 181]. This structure is inherent to a plethora of problems in
the field of complex systems in general, and applicable to particular fields such as communication
networks where the topology and routing decisions determine its performance [126], synthetic
chemistry where molecular structures determine the compound properties [56], social networks
where emergent behavior can arise through personal relations [116], or neuroscience where spe-
cific connections between neuron types and brain areas determine brain function [100], among
many others.

Graph Neural Networks (GNNs) are a set of connectivity-driven models that, since the late
2000s, have been addressing the need for geometric deep learning [57, 130]. In essence, GNN adapt
their structure to that of an input graph and, through an iterative process of aggregation of infor-
mation across vertices, capture the complex dependencies of the underlying system. This allows
to predict properties for specific nodes, connections, or the graph as a whole, and generalize to
unseen graphs. Due to these powerful features, many relevant applications such as molecule prop-
erty prediction [47], recommender systems [44], natural language processing [171], traffic speed
prediction [161], critical data classification [170], computer vision [152], particle physics [80], and
resource allocation in computer networks [125] already utilize GNNs to accomplish their tasks.

For all these reasons, recent years have seen a rapid increase in research activity in the field
of GNNs (see Figure 6). Intense efforts are being directed toward improving the efficiency of
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Table 1. Background Literature: Surveys about GNNs (First Block) and Including GNNs (Second Block)

Study [Reference] (Year) Contributions

Relational Inductive Biases,
Deep Learning, and Graph
Networks [11] (2018)

• Presents the idea of a graph network as a generalization of GNNs with
building blocks
• Encompasses well-known models, such as fully connected, convolu-

tional and recurrent networks.

Graph Neural Networks: A
Review of Methods and
Applications [185] (2018)

• Presents a survey of the various GNN models
• Discusses the applications where GNNs can be utilized and provides a

taxonomy
• Proposes open research problems, such as dynamicity and scalability in

GNNs

A Comprehensive Survey
on Graph Neural
Networks [160] (2021)

• Overviews of GNNs in data mining and machine learning areas
• Provisions a taxonomy for GNN models
• Details the application areas of GNNs
• Presents potential research directions, such as in scalability, dynamicity

of GNNs, and so on.

Deep Learning on Graphs:
A Survey [181] (2020)

• Provides a discussion on graph versions of recurrent and convolutional
networks, autoencoders, reinforcement-learning and adversarial meth-
ods
• Presents the application areas and future research directions for deep

learning on graphs

Machine Learning on
Graphs: A Model and
Comprehensive Taxonomy
[19] (2020)

• Presents a taxonomy to classify graph learning methods, from graph em-
beddings to GNNs
• Proposes an encoder-decoder model that unifies all methods in a single

approach
• Expresses 30+ graph learning techniques using the proposed model

Graph Neural Networks
Meet Neural-Symbolic
Computing: A Survey and
Perspective [91] (2020)

• Elaborates the relationship between GNNs and Neural-Symbolic Com-
puting
• Develops multiple GNN models with the perspective of being applied to

Neural-Symbolic computing

Geometric Deep Learning:
Going beyond Euclidean
data [16] (2017)

• Proposes Geometric Deep Learning as an umbrella term for models that
operate on non-euclidean dataset representations, including GNNs.
• Within GNNs, provides a thorough review of convolutional models

Representation Learning
on Graphs: Methods and
Applications [66] (2017)

• Reviews the advancements in the area of representation learning on
graphs
• Primary focus is on the network embedding methods

algorithms, especially for large graphs, and toward demonstrating their efficacy for the aforemen-
tioned application areas. The interested reader will find multiple reviews of the state of the art in
GNN algorithms and applications in the literature [11, 16, 19, 66, 91, 160, 181, 185], most of which
we briefly analyze in Table 1. Other key aspects relevant or adjacent to GNNs such as network em-
bedding [31], graph attention models [93], or network structure inference [17] have also received
a comprehensive review.

As we will see along this article, however, less attention has been placed on the efficient process-
ing of such new type of neural networks. While the issue has already been investigated in signifi-
cant depth for CNNs or RNNs [24, 25, 39, 68, 90, 111], GNN processing remains largely unexplored.
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Fig. 2. Graphical abstract of this survey from the GNN fundamentals (Section 2) to the proposed architec-
tural vision (Section 5).

This is because GNNs are relatively novel and pose unique computing challenges, including the
need to (i) support both dense and extremely sparse operations, (ii) adapt the computation to the
specific GNN algorithm variant and the structure of the graph at hand, and (iii) scale to very large
graphs to realize its potential in certain applications. Even though advances in sparse/irregular
tensor processing [34] and graph processing [63, 154] may prove useful in accelerating GNNs, ad-
dressing their unique computing challenges requires more specialized proposals. Some attempts
have been done from a software perspective, i.e., adapting the GNN operations to better match
the capabilities of CPUs or GPUs [106, 144, 155]; and from a hardware perspective, i.e., designing
custom processors tailored to the demands of GNNs [7, 53, 103, 164]. However, recent surveys and
reviews [11, 16, 19, 66, 91, 160, 181, 185] lack a comprehensive analysis of such advances.

This article aims to bridge this gap by presenting, for the first time, a review of the field of
GNNs from the perspective of computing. To that end, we make the following contributions as
summarized in Figure 2: We start by providing a comprehensive and tutorial-like description of
the fundamentals of GNNs, trying to unify notation. Then, using a Knowledge Graph (KG) ap-
proach, we chart the evolution of the field from its inception to the time of this writing, delving
into the duality between GNN algorithms (seeing them as learning systems) and their associated
computation (seeing them as sets of matrix multiplications and non-linear operations). From that
analysis, we identify GNN computing as a nascent field. We finally focus on the computation as-
pect and provide an in-depth analysis of current software and hardware acceleration schemes,
from which we also outline new potential research lines in GNN computing. To the best of the
authors’ knowledge, this is the first work providing a thorough review of GNN research from the
perspective of computation, charting the evolution of the research area and analyzing existing
libraries and accelerators.

The rest of this article is organized as follows: In Section 2, we discuss the basics of the GNNs.
Section 3 presents the evolution of the research area from multiple perspectives. In Section 4,
we expose the emergent area of GNN accelerators, summarizing recent works and elaborating
upon the existing challenges and opportunities. Next, in Section 5, we present our vision for the
architectural design of GNN accelerators with a focus on internal communication requirements.
We conclude this article in Section 6.

2 FUNDAMENTALS OF GRAPH NEURAL NETWORKS

In this section, we discuss the basics of GNNs through a description of their building blocks and
their role during the computation, both in inference and training.
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Table 2. Graph Representation Notations

V Set of vertices of the graph hv ,h
(l )
v ,h

L
v Input, hidden, output feature vector of vertex v

E Set of edges of the graph дe ,д
(l )
e ,д

L
e Input, hidden, output feature vector of edge e

N (v ) Set of neigbours of vertex v ρ (l )
V

, ρ (l )
E

Node and edge aggregation functions of layer l

L Number of GNN layers ϕ (l )
V

, ϕ (l )
E

Node and edge combination functions of layer l

y Output global vector W (l )
V

,W (l )
E

Node and edge weight matrices of layer l

2.1 Notation

We first describe the main notation for GNNs as summarized in Table 2. Let a graph G = (V ,E)
be defined by a set of vertices V , and a set of edges E that connect some of the vertices in V to-
gether. In particular, each vertex v ∈ V has a neighbourhood set N (v ) determined by the edges
connecting it to other vertices or the sampling set imposed by the GNN algorithm. Further, each
vertexv contains a vertex feature representation hv , and each edge e ∈ E contains an edge feature
representation дe . The vertex or edge feature representations are generally one-dimensional vec-
tors containing the scalar attributes that define them. Similarly, the graph may be associated to a
global feature representation y containing graphwide attributes. For example, in a social network-
ing graph, vertices might be users with attributes such as encoded name or location, whereas the
edges might be the interaction between two users such as comments/likes on a picture. Graphwide
features may be the number of users living a certain area or voting a certain political party.

GNNs essentially calculate a set of output feature representations for the vertices hv , edges дe ,
and complete graphy, respectively. Following with the example above, for targeting ads in a social
network, output features of a vertex could be the probability of being interested in cars. It can thus
be observed that, as in any other neural network, the dimensionality of the output feature vectors
will be generally different than that of the input.

As we will see in Section 2.2, a GNN is divided in multiple layers. In each layer l ∈ [1,L],

there is an edge aggregation function ρ (l )
E

and a node aggregation function ρ (l )
V

, as well as an edge

combination function ϕ (l )
E

and a node combination function ϕ (l )
V

. The combination functions may

be neural networks involving matrices of weights W (l )
E

and W (l )
V

that are generally common to
all edges and nodes, respectively. The outputs of an arbitrary intermediate layer l , given by its

combination function, are hidden feature vectors h (l )
v and д(l )

e . At the end of the GNN, besides
obtaining the output node and edge feature vectors, hL

v and дL
e , there are global aggregation and

combination functions ρG and ϕG , respectively, that provide final global output vector ŷ. Although
most works assume that the graph is static, the computation may be repeated several times with
evolving weight matrices to adapt to dynamic graphs [120].

We finally note that, due to the emergence of GNNs, aggregation and combination functions
have taken different names in the literature. In an attempt to unify the notation, some equivalences
are listed in Table 3.

2.2 General Structure

Fundamentally, a GNN is an algorithm that leverages the graph connectivity to learn and model the
relationships between nodes. Through an iterative process that depends on the graph structure, the
GNN takes the input edge, vertex, and graph feature vectors (representing their known attributes)
and transforms them into output feature vectors (representing the target predictions). In general,
the GNN operation contains the steps illustrated in Figure 3:
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Table 3. Homogenized Nomenclature for Aggregate and Combine
Functions in the Literature

Aggregation Combination Reference

Local transition Local output [130]

Aggregators [65]

Aggregation Update [11]

Message + Aggregate Update [104]

Message Update [45, 56]

Message, reduce Update [151]

Scatter + ApplyEdge + Gather ApplyVertex [106]

Aggregation Feature extraction + update [103]

Gather + Reduce Transform + Activate [84]

Aggregation DNN computation [7]

Aggregation Embedding [53]

Aggregation Combination [163, 164]

(1) Pre-processing: This is an initial and optional step generally done offline that can transform
the input feature vectors and graph structure representation through a precoding process.
This may be used to sample the graph, to re-order the graph toward reducing the algorithm
complexity and its processing, or to encode the feature vectors, among others [23, 28, 65, 77,
141, 176, 181].

(2) Iterative updates: After the pre-processing, the feature vectors of each edge and vertex
are updated via the aggregate–combine functions iteratively. To update the edges, attributes
from the edge itself, the connected vertices, and the graph are aggregated into a single set
and combined to yield a new edge feature vector. Similarly, updating the vertices implies
aggregating the feature vectors from neighboring vertices N (v ) and combining them to ob-
tain a new feature vector. Note that each step or layer updates each edge and vertex with
information coming from neighbours located at a single hop. Thus, the iterative process
allows to gradually account for relations of increasingly distant nodes and edges. Addition-
ally, in each successive layer, the graph may be coarsened by means of pooling [168] or the
neighbourhood set changed by means of layer sampling [65].

(3) Decoding or readout: If the graph has a global feature vector, then it is updated once after
the edge and node updates are completed. The final output is either an edge/node embedding,
which is a low-dimensional feature vector that represents edge- or node-specific information,
or a graph embedding summarizing the information about the entire output graph instead.

As in any other neural network, the GNN processing depends on its architecture. GNNs are
basically divided into layers, with each layer corresponding to one of the iterations in the update
process described above. This means that each layer allows information from nodes to propagate
further away from it. Hence, the precise number of required layers will depend on how relevant
are the relations among distant nodes in a given application. The most widespread GNN algo-
rithms have 1–5 layers [65, 87, 124, 146, 162] as an excessive amount of layers typically lead to
the problems of feature oversmoothing, vanishing gradients, or overfitting [97]. A few works have
proposed techniques to alleviate these issues and enable deep GNNs of up to 100 layers [22, 95],
yet these proposals are in their infancy.

In each of the layers, information flows between vertices using an aggregation function and
feature vectors are updated via the combination function after aggregation in a process similar
to that of the classic Weisfeiler-Lehman (WL) test for graph isomorphism [157]. The size of
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Fig. 3. GNN execution stages during inference: pre-coding, iterative process, and readout.

aggregation depends on the number of vertices and edges (ranging from hundreds to billions)
whereas the size of combination depends on the length of the feature vectors (ranging from dozens
of features to tens of thousands). The aggregation and combination functions for both edges and
vertices are crucial design decisions as they determine the expressive power of the GNN, which
has been demonstrated to be at most equal to the WL test in distinguishing graph structures [162].
As we will see in Section 3.2, Table 6, there is a wide variety of such functions ranging from
simple averaging to weighted sums with learnable attention coefficients, different types of neural
networks, from MLPs to LSTMs with their own weighted sums and non-linear activations, whose
suitability depends on the relation to be learnt. The operations may vary across layers and differ
between edges, vertices, or global updates. However, the structure is often simplified by (i) sharing
the same operation across layers and (ii) removing or considering trivial combination functions
for the updates of edges or nodes.

The fundamental structure here explained and depicted in Figure 3 can be complemented with
sampling and pooling operations that help to reduce the computational complexity of GNNs [65,
168, 176], and/or augmented with support for dynamic graphs [120]. Sampling refers to the pruning
of either the graph or the neighbourhood set of each node, and it is used to limit or harmonize the
resources and runtime of the aggregation process, whereas pooling refers to the coarsening of the
graph from one layer to the next, thus reducing the amount of nodes to process in both aggregation
and combination. To add support for dynamic graphs, whose structure and input feature vectors
may evolve over time, recurrent units are generally used to adapt the weight matrices in each
timestep.

In summary, we can understand GNNs as a collection of neural networks working over a graph’s
connectivity. In the scope of each layer, we have up to two neural networks with learnable weights
that determine the combination of edges and vertices, respectively. In the scope of the whole GNN,
we have a neural network with learnable weights that determines the global update. The way these
operations take place for inference and training is depicted next.

2.3 Computing GNN Inference

Algorithm 1 shows a pseudo-code describing GNN inference. The algorithm may take as inputs the
feature vectors of the edges, vertices, and graph or initialize them. We can see how the execution
is divided into layers (line 9) and, within each layer, each and every edge is updated in parallel
by aggregating its own feature vector with those of the connected vertices (line 11). Each and
every vertex is also updated in parallel by aggregating the feature vectors of its neighbours with
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ALGORITHM 1: GNN Operations in Inference

1: procedure GNNOperator
2: L ← Number of layers in the GNN
3: V ← Set of nodes in graph G (assumed static)
4: E ← Set of edges in graph G (assumed static)

Initialize Nodes and Edges:

5: for v ∈ V do

6: h0
v ← [xv , 0, . . . , 0]

7: for e ∈ E do

8: д0
e ← [zv , 0, . . . , 0]

GNN Layered processing:

9: for l = 1 to L do

Edge processing: // Order of edge and node processing may be interchanged or even
interspersed.

10: for e ∈ E do // Order of aggregation and combination may be interchanged if
aggregation is linear.

11: b (l )
e = ρ (l )

E

({
д(l−1)

e ,h (l−1)
u : u ∈ N (e )

})

12: д(l )
e = ϕ (l )

E

({
b (l )

e

})

Node processing: // Order of edge and node processing may be interchanged or even
interspersed.

13: for v ∈ V do // Order of aggregation and combination may be interchanged if
aggregation is linear.

14: a (l )
v = ρ (l )

V

({
h (l−1)

v ,h (l−1)
u : u ∈ N (v )

})

15: h (l )
v = ϕ (l )

V

({
a (l )

v

})

Readout:

16: ŷ = ϕG

(
ρG

({
hL

v ,д
L
e : v, e ∈ G

}))

itself (line 15). The aggregated edges and vertices are transformed via combination functions (lines
13 and 17), which can be neural networks as we see in Section 3.2. Following the completion of
the iterative process, a readout is performed using the corresponding function, which may again
possibly be a neural network (line 18).

For an arbitrary layer l ∈ [1,L], edge transformation occurs as

AGGREGATION: b (l )
e = ρ (l )

E

({
д(l−1)

e ,h (l−1)
u : u ∈ N (e )

})
, (1)

COMBINATION: д(l )
e = ϕ (l )

E

({
b (l )

e

})
, (2)

so that the aggregation of edges ρE takes the feature vector дe of the edge itself e , as well as the
feature vectors of the vertices at its endpoints, hu with u ∈ N (e ), for the previous layer l − 1. The
combinationϕE uses this aggregation as input [162]. A similar reasoning applies to the aggregation
and combination of vertices

AGGREGATION: a (l )
v = ρ (l )

V

({
h (l−1)

v ,h (l−1)
u : u ∈ N (v )

})
, (3)

COMBINATION: h (l )
v = ϕ (l )

V

({
a (l )

v

})
. (4)

The equations describe how a (l )
v is calculated as the aggregation of the feature vectors from the

nodes that are neighbours to v , from the previous layer l − 1, and how the feature vector of layer
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Fig. 4. Example of computation in a sample GNN with node-level aggregation in inference (top left to top
right) and training (bottom right to bottom left). The GNN has two layers, mean as the aggregration operator,
and weighted ReLu for the combination. We show operations for node 1 only.

l is calculated using the aggregation a (l )
v as input. Last, a final readout function is applied, which

may involve the aggregation and combination of feature vectors from edges and vertices of the
entire graph, and from the last iteration L, hence obtaining the output feature vector ŷ as

READOUT: ŷ = ϕG

(
ρG

({
hL

v ,д
L
e : v, e ∈ G

}))
. (5)

Algorithm 1 hinges on the general assumption that aggregation and combination functions are
(i) invariant to permutation of nodes and edges, since there does not exist any implicit order in a
graph structure, unless some node feature indicates such an order, and (ii) invariant to the number
of input nodes, since the degree of nodes may vary widely across the graph [11]. This implies that
the functions within a layer can be applied to all edges and all vertices in parallel, following any
order. Further, the order between aggregation and combination can be switched if the aggregation
function is linear [103]. However, it is important that the order of layers is preserved to avoid
violating data dependencies, which implies that all edge and node operations of layer l shall finish
before starting those of l + 1.

To exemplify the computation occurring in inference, top charts of Figure 4 represent the layers
of a simple GNN with vertex aggregation and combination only. We show the operations from the
perspective of node 1, although all nodes would be realizing the same computations concurrently.
We illustrate how the graph connectivity drives the aggregation from nodes 2, 3, and 6 into node

1, and that combination reduces the length of the feature vector through the weight matricesW (1) .
We note, however, that combination functions do not necessarily reduce the length of the feature
vectors; that depends on the actual GNN architecture. The second layer repeats the exact same
sequence, again reducing the length of the feature vector, this time through a different weight

matrixW (2) .
Extended notation for sampling, pooling, and dynamic graphs: As described above, sam-

pling and pooling might impact the length aggregation and combination stages, whereas dealing
with evolving graphs may require extra computation steps. Following the notation above, sam-
pling essentially modifies either the input graph,Gs [176], or the neighbourhood operator making

it dependent on the layer being computed N (l )
s (v ). Pooling can be seen as a graph transformation

across layers, thus making the set of nodes and edges to vary as well E (l ) , V (l ) . Finally, support
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Table 4. Equivalence between General and MPNN Formulations

General MPNN Comments
l t Layer, timestep, or epoch
v v Node or vertex of interest
u ∈ N (v ) w ∈ N (v ) Node within the neighboring set N (v ) of node v

h
(l )
u ht

w Feature vector of vertex u at layer l or epoch t

ρ (l ) ({h(l−1)
u : u ∈ N (v )}) ∑w ∈N (v )

Mt (ht−1
v ,ht−1

w , evw )

Aggregation at a layer or epoch with Mt (·) and

ρ (l ) (·) as aggregation functions

a
(l )
v mt

v Aggregated feature vector

ϕ (l ) ({a(l )
v }) ht+1

v = Ut (ht
v ,m

t+1
v ) Combination with functions Ut (·) and ϕ (l ) (·) in a

given layer or epoch

for dynamic graphs Gt requires the entire GNN to be time-dependent, introducing time in the no-
tation. Neighbourhood sets, feature vectors, and most importantly, weight matrices would evolve

over time, Nt (·), h (l )
v,t , д(l )

e,t ,W (l )
E,t ,W (l )

V ,t .

Message passing equivalence: We note that notation relative to GNN algorithms is diverse
in the literature. A notable example is that of Message Passing Neural Network (MPNN) [11],
which describes the aggregations as message passing functions M (·), the combinations as update
functions U (·), or the layers as time steps. Table 4 illustrates the equivalence between the MPNN
formulations and the corresponding generic formulations from Equations (1)–(5).

Matrix multiplication notation: GNNs are typically expressed in matrix notation that helps
understanding the underlying computation. An example for node classification with sum aggre-

gation function is as follows. Let A be the normalized adjacency matrix of the input graph, H (l )

the matrix of features for layer l , and W (l ) = W (l )
V

the weight matrix for the vertex combination
function. Then, the forward propagation to layer l + 1 can be expressed as

H (l+1) = σ (AH (l )W (l ) ), (6)

where σ (·) is the non-linear activation function, e.g., a ReLU. For more complex GNNs and
aggregation-combination functions, the forward propagation equation may change.

2.4 Computing GNN Training

Aggregation, combination, and readout functions can be neural networks that may need to be
trained before deployment. Training is performed via modifications of the traditional backpropa-
gation algorithms, which take into account the unique traits of a GNN. Since a GNN unfolds into
L layers similarly to a RNN, most GNNs employ Back-Propagation-Through-Time (BPTT)
schemes or variants of it. A popular variant of BPTT is the Pineda-Almeida algorithm [5, 122],
which relaxes the memory requirements as already mentioned in the seminal work by Scarselli
et al. [130].

Specifically, in BPTT, a forward pass is first performed on the unfolded version of the GNN with
its L layers. The loss function ε is then computed and the necessary gradient is backpropagated
across layers. Since the weights are shared among all L layers, they are updated accordingly. This
process is carried out recurrently with multiple samples, often grouped in batches, until some
target accuracy is reached. Depending on the problem, a sample can refer to the entire graph (e.g.,
representing a specific molecule) or a portion of it (e.g., a set of users in a recommendation system).

To exemplify the computation occurring during training, bottom charts of Figure 4 represent
backpropagation in a two-layer GNN. Again, we show the operations from the perspective of node
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1, although all nodes would be realizing similar computations at the same time. The backward pass
implies calculating the gradient of the loss function with respect to the weights first, via partial

derivative overW (2) , and then with respect to each vertex’s feature vector. The operation is then

repeated for the first layer, via its own weight matrix W (1) and each vertex’s feature vector. The
derivatives of the loss function are, eventually, used to update the weight matrices.

The computation of the loss function depends on the type of learning. While graph-centric ap-
proaches tend to be trained using supervised learning, node-centric approaches are usually trained
by means of semi-supervised learning, wherein information of the node features from a portion of
the graph, and not the whole graph, is utilized. An example of the former method can be learning
if a specific new molecule (graph) has a certain property, using a GNN trained with molecules
(graphs) whose properties are known beforehand and used as ground truth [56]. For the latter
method, an example can be a recommender system. In such a system, a graph represents a store
with nodes being shopping items and their features, and edges being relations among items. The
output feature vector could describe how likely a given user will be satisfied with a particular item.
In this case, a priori complete information is not available and semi-supervised learning from past
purchases by this and other users (a subgraph) is used instead [167].

Matrix multiplication notation: To express backpropagation in a compact manner, we
adapt the formulation in Reference [144] to the notation introduced in the previous section. Let

Z (l ) = AH (l )W (l ) so that H (l+1) = σ (Z (l ) ). Then, the backpropagation starts by calculating the
gradient of the loss function ε , which we denote as Y , with respect to the weight matrix of the last
layer. For an arbitrary layer l , this operation yields

Y (l−1) =
∂ε

∂W (l )
= (H (l−1) )TAG (l ), (7)

where G (l ) is the gradient with respect to Z (l ) and T denotes a transpose matrix. Therefore, G (l )

refers to the propagation of the error back to each particular aggregated feature vector, yielding

G (l−1) = AG (l ) (W (l ) )T � σ ′(Z (l−1) ), with GL =
∂ε

∂Z (L)
=
∂ε

∂H (L)
σ ′(Z (L) ), (8)

where σ ′ is the derivative of the non-linear activation function.

3 THE EVOLUTION OF THE GNN FIELD

In this section, we aim to demonstrate that GNN computing is in an early yet rising stage as
compared to the rest of GNN disciplines. We also observe that there is a wide variety of GNN
algorithms that, as we will see in Section 4, complicate the task of designing accelerators. To these
ends, we present the evolution of the body of knowledge in the area of GNNs from a general
perspective in Section 3.1 and from an algorithm perspective in Section 3.2.

The study uses a KG approach that naturally exposes the confluence of multiple interrelated
sub-fields in the GNN landscape. To generate the KG, a repository of annotated papers has been
created. The papers are classified by their year of publication and are manually given a single tag
using the title and keywords as main reference. Further, the references of each paper are extracted
by means of the CERMINE library [142]. The generated database is introduced into the Neo4j graph
tool [156], which allows to visualize the KG with nodes and edges representing papers and their
citation relations, respectively. To highlight the category and importance of papers, vertices are
color-coded depending on the paper category and sized proportionally to the number of citations.
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Table 5. The Different Categories for the Classification of the State of the Art in GNNs

Tag Name Meaning Origins References Fraction

GNN
modeling

This category includes the papers that
encompass the topics of design and
mathematical formulation of GNNs. Other
salient design formalisms related to GNNs
have been also categorized in this tag.

2005. While the most important paper in GNN
modeling is from Scarselli et al. in 2009, it extends a
seminal work from 2005. It defines the mathematical
foundation of these GNNs, and thus becomes a
fundamental paper in this category.

[40, 42, 57, 64, 65,
69, 79, 87, 118, 119,
130, 133]

13.19%

GNN
applications

Papers with this tag elaborate upon the
various applications of GNNs, regardless of
the field.

2005. Given the ubiquity of graphs in real-world data,
this is one of the first sub-fields to have emerged. In
their seminal work, Scarselli et al. presented the first
possible applications together with the first GNN
model [132]. Since then, many other applications
have appeared.

[12, 32, 41, 44, 47,
61, 83, 98, 108, 112,
114, 123, 126, 128,
129, 132, 136, 147,
167, 174, 180, 186]

24.17%

GNN
complexity

This tag encompasses the papers that
explore the complexity within the GNN
structure and its operations.

2009. The exploration of the complexity of GNN
execution may have started with Reference [131] in
2009, which analyzed the complexity for the most
common GNNs at that moment. After this, we have
to wait until 2017 to find more works that take into
account complexity, as datasets become more
resource demanding and large-scale applications
become apparent.

[13, 18, 21, 26, 38,
82, 117, 122, 131,
148, 159, 169, 188]

14.29%

GNN
algorithms

This tag refers to papers that introduce new
algorithm variants to the GNN family,
including aspects such as attention,
isomorphism, sampling, or new operations
at the aggregate–combine phases.

2009. We consider [130] as the first unification of
multiple similar prior approaches. Others have
attempted to do similar generalizations, such as the
MPNN from Gilmer et al. [56] or the GN from
Battaglia et al. [11].

[9, 11, 20, 35, 50, 56,
66, 86, 101, 102, 107,
113, 121, 125, 135,
140, 146, 152, 160,
162, 166, 179, 185]

25.27%

GNN
accelerators

Under this tag, we gather papers that target
the acceleration of GNNs either via software
or hardware.

2017. The earliest paper to tackle the problem of
GNN acceleration is Reference [65], in 2017, through
a simplification of the algorithm via sampling. More
recent works on software in CPUs and GPUs, and
hardware acceleration in custom architectures, have
also been considered.

[7, 23, 53, 85, 103,
155, 164, 175, 177,
187]

10.99%

GNN HW/SW

require-

ments

This tag gathers works that, with the
increasing popularity of GNNs as well as the
complexity of the data-sets, analyzed the
actual computational needs required to
address these challenges.

2018. This specific sub-field started to gain traction
in 2018, with the first work leading to Reference [106]
where the hardware and software efficiencies in
executing GNNs were studied.

[8, 76, 77, 106, 141,
144, 163, 182]

8.79%

GNN dataflow

Dataflow refers to the movement of data
within the processing engine, which
becomes crucial for the design of custom
accelerators. Hence, under this tag we
categorize the papers that formally describe
possible dataflow solutions.

2018. Two primary works, i.e., Reference [106],
which covers scalability in the training, and
Reference [104], which covers efficiency for
partitioning of the graph data, emerged.

[84, 104, 106] 3.30%

3.1 A General Perspective

Our first treatment of the GNN literature consists in classifying the papers by discipline. Con-
cretely, we define the following taxonomy with topics ranging from formal mathematical aspects,
to the algorithms, applications, and computing aspects: GNN modeling, GNN applications, GNN

complexity, GNN algorithms, GNN accelerators, GNN HW/SW requirements, and GNN dataflow. The
description of each topic, together with a discussion of its first works and the list of its references
is given in Table 5. We also show the percentage of papers that pertain to a given category.

An important finding from our analysis is that the percentage of papers being categorized for
GNN accelerators, GNN HW/SW requirements, and GNN dataflow are 10.99%, 8.79%, and 3.30%, re-
spectively. These categories mostly relate to the computing side of GNNs as they concern the
analysis of computational requirements of GNNs, optimization of GNNs via software, and devel-
opment of hardware accelerators. We thus observe that a very small percentage of the existing
research has approached GNNs from the perspective of computing. We further note that the first
works to deal with these topics date back from 2017, when the very first specific paper on GNN
acceleration was published. It can be therefore concluded that GNN processing is in its nascent
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Fig. 5. Full knowledge graph representation as of October 2020.

stages of development. This is the main reason for computing aspects not being analyzed in depth
in recent GNN surveys [11, 16, 19, 66, 91, 160, 181, 185], which we aim to address in this work, and
also represents an opportunity to make an early impact in the GNN research field.

A second order analysis stems from the careful observation of the KG, which we show in
Figure 5. In the left plot, the size of the node represents the aggregated number of papers in a
category, whereas the thickness of the edge between two nodes illustrates the relative amount of
citations between the papers of a given pair of categories. In the right plot, we can also analyze
the connections between the papers within the same category. Several observations can be made:

(i) The categories related to computing are small yet well connected to the theoretical side of
GNNs, corroborating our earlier observation from Table 5.

(ii) The algorithms sub-field is large as many papers have appeared implementing multiple vari-
ants in the heterogeneous group of methods that GNN is. We review the evolution of GNN
algorithms later in Section 3.2.

(iii) The applications sub-field is large but sparsely connected internally, which means that ap-
plication papers are generally not aware of other applications, unless reusing some specific
common mechanism. This may be due to the wide variety of application fields for GNNs,
ranging from social networks to chemistry, computer networks, or even material science as
analyzed in previous sections.

(iv) The algorithm and application categories have a strong inter-connectivity, as each applica-
tion paper shall at least mention the algorithms used to implement the proposed system.

(v) The connection from application papers to computing papers is weak. This may be due to
the relative immaturity of the GNN computing field and this may change in upcoming years,
especially if applications clearly benefiting from specialized accelerators arise (akin to the
appearance of CNN accelerators for computer vision).

To further understand the state of things in GNNs, we visualize the evolution of the field over
time. Specifically, we plot the growth of the KG and of the amount of published papers over the
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Fig. 6. Evolution of the GNN knowledge graph over the years 2009, 2012, 2015, 2018, and 2020 (with the
color code from Figure 5) and cumulative number of papers published in GNN in general and computing in
particular.

years in Figure 6. First works started to appear as soon as 2005 [57] and, at that point, most research
efforts were centered around new algorithms and possible applications. Evolution was rather slow
for a decade, which we attribute to the lack of a killer application and the modest popularity of
deep learning methods at that time. The field exploded around 2016, when CNNs and RNNs were
already well established. Such a dramatic growth coincides with the introduction of the Graph

Convolutional Networks (GCN) [86], one of the first and most popular models for GNNs, later
followed by the introduction of the message passing notation and quantum chemistry application
in Reference [56]. We further observe that research on GNN computing started in 2017 and, since
then, attained a similar growth to that of the field. This trend may be an indicator of a strong
increase of related works in the near future. Hence, it can be concluded that the area of GNN
accelerator design and development is emerging and, thus, necessitates deeper insights that we
provide in upcoming sections.

3.2 An Algorithm Perspective

GNNs are a set of models with a vast amount of possible configurations and design decisions that
allow to modulate the inductive bias of the algorithm. We have seen how, due to their flexibility
and potential applicability, the family of GNN algorithms has grown rapidly in recent years. Since
different algorithms may be more or less amenable to certain acceleration techniques, here we
briefly summarize the progress in this sub-field from graph kernels to modern GNN algorithms.
Note that a deep review of existing GNN algorithms is not the main focus of this work. For such
an analysis, we refer the reader to more specific surveys [11, 19, 160, 181, 185].

Pre-GNN techniques. Prior to the advent of GNNs, relational information extraction from graphs
was based on graph embeddings, i.e., the pre-processing of the graph to condense the information
in a low-dimensional space thus making it amenable to traditional ML algorithms [16, 31]. Simi-
larly, Graph Kernels (GK) are a family of methods that, after extracting graph-level embeddings
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Fig. 7. GNN algorithm taxonomy based on model architectures and training strategies, adapted from [181]
and [160].

of two or more graphs, compare them for classification tasks [55, 70]. An example of such approach
is the random walk kernel, wherein random walks are performed on the graphs while simultane-
ously counting the matching walks [52]. As compared to GNNs, GKs are easier to train, because
they have less hyperparameters, which on the other hand limits their performance. The main rea-
son stems in the loss of potential information incurred by the process of graph embedding. Thus, to
achieve acceptable performance, GKs require handcrafted (not learned) feature maps, whilst GNNs
do not. GNNs retain the inherent graph structure as a powerful and expressive form of defining
the neural network, instead of distilling the essence of the graph to feed a conventional neural
network.

GNN algorithm classifications. Since the seminal work by Scarselli et al. [130], multiple ap-
proaches have been published with the aim of elaborating and complementing the GNN concept
[6, 37, 69, 118] and many classifications can be carried out. A common distinction relates to the
fundamental model upon which the GNN is built, for which a few taxonomies can be found in ex-
isting surveys [11, 19, 160, 181, 185]. As a reference, Figure 7 reproduces the classification made in
Reference [185], which mostly differentiates between recurrent-based GNNs, convolutional-based
GNNs, graph autoencoders, graph reinforcement learning, and graph adversarial networks. We
added the remark made in Reference [160], where combinations of recurrent and convolutional
approaches are termed as spatial-temporal.

On the one hand, recurrent-based GNNs refer to the initial GNN models including that of
Scarselli [130], which employ recurrent units as the combination function. Other examples are
CommNet [137], which operates over simple aggregations without edge transformations, or Gated

Graph Neural Networks (GG-NN) [102], which use gated recurrent units [30] as the update func-
tion to improve convergence. On the other hand, convolutional-based GNNs expand the idea of
convolution in the graph space [27] and can be divided into spectral-based [69] and spatial-based
GNNs [186]. On the one hand, spectral-based models are built on spectral graph theory using graph
signal processing techniques such as eigenvalue decomposition and filtering. However, they are
computationally expensive methods, since the entire graph must be considered at once. On the
other hand, spatial-based GNNs are much more computationally affordable, flexible, and scalable,
since they only need to perform convolutions to the aggregation of features from neighbouring
vertices [186]. Finally, spatial-temporal GNNs use both the spatial approach of the convolutions
with the temporal approach of the recurrent units. An example is the network in gated graph

convolutional network (G-GCN) from Reference [15].
Due to their flexibility and scalability, spatial-based convolutional GNNs are arguably the most

popular model [20, 29, 48, 71, 99, 133, 143, 158, 165, 172]. In this paradigm, basic algorithms use a
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mean function as aggregation, sometimes also taking the degree of neighboring into account [87],
after which many variants followed. GraphSAGE incorporated information of self-node features
from previous layers in the update function and also pioneered the concept of sampling in GNNs
to reduce the computational cost of aggregation [65]. FastGCN [20] also uses the sampling idea
and integrates other strategies to speed up computations, such as evaluating integral formulations
using Monte Carlo sampling. Another simplifying operation is the differential pooling of DiffPool
[168], which forms hierarchical clusters so that later layers operate on coarser graphs. On a differ-
ent approach, Graph Isomorphism Network (GIN) [159, 162] proved that the conditions needed
for a GNN to achieve the maximum expressive power in capturing the structure of a graph are to
emulate a WL test [157]. The particularity occurs at the graph output feature vector, which is ob-
tained by concatenating the readout vectors of all layers. We finally highlight Graph Attention

Networks (GAT) as the enabler of multiple works in Natural Language Processing [145] and a
particular case of the popular transformers approach. GATs update the node features through a
pairwise function between the nodes with learnable weights [146]. This allows to operate with a
learnt attention mechanism that describes the utility of the edges.

Another branch of GNNs are the so-called Graph Autoencoders (GAE) [86]. These GNNs are
generative, which means that they convert a graph into a latent representation (i.e., encoding)
that can be later expanded to generate to a new graph close in structure to the original one (i.e.,
decoding). What make these techniques unique in the graph domain is that GCNs may be used
to generate the low-dimensional vectors in the encoding process [127]. GAEs are also typically
trained using adversarial techniques, giving rise to graph adversarial networks such as NetRA
[173].

We finally highlight that GNNs can be combined with reinforcement learning to give rise to
novel graph learning techniques. For instance, MolGAN [35] generates molecular graphs with a
certain end goal (reward). Another example is MINERVA, where reinforcement learning helps to
predict the next node in the reasoning path of a KG [33].

Comprehensive frameworks. An aspect worth mentioning is that, within this multitude of al-
gorithms, several groups have attempted to unify methods. One of the most popular ones is the
message passing scheme [56, 183], whose operation and description are amenable to convolutional
networks for learning molecular fingerprints [41], the classification methodology with GCN from
[87], the interactive networks utilized for learning relationships and features [12], or also differ-
ent flavours of Gated GNNs, to name a few. A further approach is that of the Non-Local Neural

Networks (NLNN) [152] aimed at unifying various attention approaches including GATs. These
generally do not include edges features or aggregations and, instead, just involve pairwise scalar
attention weights between nodes. Both MPNN and NLNN are also included into a further approach
to unification referred to as Graph Networks and proposed in Reference [11]. There, update func-
tions applied to nodes, edges, or the complete graph are treated as differentiated blocks. The com-
bination or repetition of several of these blocks gives rise to the different types of GNN found in
the literature. Finally, Chami et al. propose an encoder-decoder model to express different graph
embedding, graph regularization, graph auto-encoder, and GNN techniques [19].

Programming models. From the perspective of computation, several programming abstractions
are considered to support all possible operations within any GNN, generally compatible with the
aggregate-combine model. These models are useful when the matrix multiplication notation can-
not be employed, because the aggregation or combination operations are not amenable to it or
because the adjacency matrix is extremely sparse and suggests the use of other representations
such as compressed sparse row or column. In fact, as we will see in the next section, multiple
accelerators implement GNN-oriented programming models.
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Among the different possible models, we highlight the Scatter-ApplyEdge-Gather-

ApplyVertex with Neural Networks (SAGA-NN) from Reference [106], which is followed im-
plicitly in most modern libraries [182]. SAGA-NN augments classical scatter-gather approaches
with two operations and works as follows: Scatter sends the nodes’ feature vectors through their
edges and ApplyEdge performs edge combination with the scattered vectors. Then, Gather allows
each vertex to aggregate the vectors from its neighbours, and ApplyVertex performs the ver-
tex combination after the gather operation. Another proposed model is that of Gather-Reduce-

Transform-Activate (GReTA) from Reference [84]. In this case, the four operations are user-
defined and can be modified to implement any GNN. Aggregation is performed through gather
and reduce, which allow each vertex to obtain the features from their neighbours and accumu-
late them into a single value. Combination is then performed through transform and activate,
which typically do the matrix multiplication and non-linear activation of the aggregated data. More
recently, Wang et al. proposed the NeighborSelection-Aggregation-Update model, which adds a flex-
ible neighbor selection layer to the more conventional aggregate-update [150].

4 THE REVOLUTION OF GNN ACCELERATION

The optimization of ML algorithms and the building of custom hardware for high performance
and efficiency has experienced an explosive growth in recent years [25, 67]. This has come shortly
after academia and industry have unveiled the outstanding potential of DNN algorithms and their
all-pervasive applicability. As evidenced in previous sections, the field of GNNs is arriving at a
similar turning point. At the time of this writing, research in GNN methods is already extensive
and keeps refining the algorithms and investigating new applications with high potential impact.
Therefore, a key research aspect in the years ahead will be how to compute GNNs efficiently to
realize their full potential.

GNN computing presents a set of unique challenges [163, 182] that have rendered existing li-
braries and hardware platforms inefficient, including:

(i) The existence of multiple GNN variants, which may include edge, vertex, and graph-

wide updates, with a variety of aggregation and combination functions as illustrated in
Table 6, and possibly incorporating pooling and graph/layer sampling operations as well
[28, 176]. These functions affect aspects such as the choice of operations to accelerate, the rel-
ative computational complexity of aggregation and combination, or the ordering constraints
among them and across layers. Hence, instead of using a single general acceleration tech-
nique, GNN may require finding the right combination of techniques that works for a par-
ticular GNN variant.

(ii) The dependence of computation on the characteristics of the input graph in terms of
size, sparsity, clustering, or the length of the associated feature vectors. Graph connectivity
may follow a power-law distribution, be evenly distributed, or be bipartite. Since the com-
putation fundamentally depends on the input graph, decisions such as the use of dense or
sparse logic, the dataflow to implement, the partitioning strategy, or the partitions’ mapping
and scheduling may need to be changed within and across graphs to maximize performance
[51, 77, 141]. The challenge is, therefore, to develop accelerators that can dynamically adapt
to the graph characteristics.

(iii) A unique combination of computing characteristics from deep learning and

graph processing, leading to alternate execution patterns. More specifically, combi-
nation often implies MLP-like operations over a dense weight matrix, which is generally
computation-bound [138]. In contrast, aggregation involves, among other operations, fetch-
ing groups of vertices that often lead to irregular memory patterns [59]. Optimizations in
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Table 6. Operations in Popular GNN Algorithms

Algorithm Aggregation (a) Combination (hl+1)

GCN [87] mean(N (hl )) ReLU (Wl · a)

GIN [162] mean(N (hl )) MLP (W · ((1+ϵ l ) ·hl +a)

GS-mean [65] mean(N (hl )) σ (Wl ·Concat (a,hl ))

GS-max [65] max j ∈N (hl )σ (W 1
l
·hl

j ) σ (W 2
l
·Concat (a,hl ))

GS-LSTM [65] LSTM (rand (N (hl ))) σ (Wl ·Concat (a,hl ))

GAT [146]
∑

j ∈N (hl ) α jWhl
j σ (a)

HighwayGCN [124] σ (W l · hl + bl ) hl+1 � a + hl � (1 − a)

GRN [103] mean(N (hl )) GRU (hl ,W l · a)

Notation: σ is a nonlinear function, α j is the attention coefficient, b is the bias, � is a

dot-product, Concat is matrix concatenation, MLP is a multi-layer perceptron, GRU a

gated recurrent unit, and LST M is Long short-term memory.

aggregation can be done via sparse GEMM of the adjacency matrix [163], but they are not
generalizable to all graphs/GNNs and typically not enough to combat the extreme sparsity
of adjacency matrices. Therefore, the challenge is to develop architectures that accelerate
such distinct phases and their intertwining at runtime.

(iv) A wide pool of applications with not only different graph characteristics, but also

different performance targets. For example, recommendation systems need to scale to
extremely large graphs of up to billions of edges and target high computational throughput.
In contrast, applications such as object detection in point clouds [134] or fraud detection
[153] rather need to focus on latency and energy efficiency. This highlights the need for
acceleration techniques that address not only the challenging GNN computation at relatively
small scales and in real time, but also the storage and multi-GPU coordination issues at larger
scales.

A direct consequence of the aforementioned aspects is that the bottleneck or the critical opera-
tion/kernel may vary across GNNs or applications, as shown in References [10, 163, 182]. In light
of these challenges, GNNs call for new solutions both in software and hardware. On the software
side, several libraries have been proposed to improve the support for GNNs and efficiently com-
pute its multiple variants both in inference and training. The extensions of popular libraries such
as PyTorch or Tensorflow (TF) [1, 45, 58] are clear examples of this. On the hardware side, new
accelerator architectures have been surfacing recently [53, 85, 103] that attempt to deal with the
flexibility and scalability challenges of GNNs mostly in inference thus far. In the next subsections,
we provide an exhaustive overview of existing techniques.

4.1 Software Frameworks and Accelerators

The challenges of GNN processing rendered both traditional DNN libraries and graph processing
frameworks [63, 154] inefficient. The reason is the alternating computing phases of GNNs. DNN
libraries would be good at speeding up combination operations within vertices and edges, but per-
form poorly during aggregation. Graph processing libraries, instead, do a good job at managing
irregular memory accesses when traversing the graph. However, these libraries assume trivial oper-
ations at the vertices, which is not the case in GNNs. To bridge this gap, recent works have started
investigating how to adapt the libraries to (i) provide easy to program interfaces to implement
multiple GNN variants, (ii) handle the variety of potentially sparse GNN operations efficiently in
widespread GPU hardware, and (iii) scale computations to large-scale graphs and multiple GPUs.
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In the following, we review a comprehensive selection of software frameworks and accelerators,
listed in Table 7. The analysis does not include GunRock [154] or GE-SpMM [74] for different
reasons. GunRock, despite implementing GraphSAGE in its latest versions, is a graph processing
library that does not exploit intra-vertex parallelism. In fact, two works detailed below [73, 155]
achieve speedups of 30–200×with respect to GunRock. GE-SpMM, although claiming to be tailored
to GNNs, is an acceleration method for general-purpose sparse matrix multiplication in GPUs.

A first observation from Table 7 is that software frameworks have been tested for a wide variety
of GNN algorithms and relevant datasets. Around 20 different GNN variants have been evalu-
ated, being GCN, GS, and GIN the most common. Even though Amazon, Reddit, Protein, Cora,
or CiteSeer datasets are popular in the community, a lack of a widely adopted benchmark suite
[72] makes the datasets to vary widely. It is worth noting, however, that graphs can range from
hundreds of edges in chemistry applications to billions of edges in large-scale recommendation
systems. As we see next, performance comparisons are scarce, but generally take PyTorch Geo-

metric (PyG), TF, and Deep Graph Library (DGL) as baselines and often report between one and
two orders of magnitude improvement typically in CPU+GPU platforms, with some exceptions on
multi-GPU systems [76, 106] or distributed computing clusters with up to 32K cores [150, 178].
Most of the tested frameworks provide optimizations that could work for both acceleration of
both training and inference, yet the evaluation is unequal. Training is evaluated in References
[45, 73, 76, 105, 106, 141, 150, 151, 178, 187], whereas inference time is only measured in Refer-
ences [73, 76, 77, 84, 155, 178].

PyTorch Geometric. PyG [45] is a widespread library that is built upon PyTorch and that pro-

vides support for relational learning, illustrated in a myriad of algorithms. The key aspect is the
definition of a message passing interface with definition of message and update functions for
neighbourhood aggregation and combination, respectively, and multiple pooling operations. To
accelerate GNN processing, PyG handles sparsity via dedicated GPU scatter and gather kernels
that operate in all edges and nodes in parallel, instead of using sparse matrix multiplication kernels.
Relevantly, Facebook released Pytorch-BigGraph [94], a library that allows to process arbitrarily
large graphs by introducing partitioning and distributed processing and that could complement
PyG.

Deep Graph Library. DGL [151] is a recent library that works on top of TF, PyTorch, or MXNet,

and provides plenty of examples and code for multiple GNNs. The library defines three functions:
message for edge aggregation and update and reduce and update for aggregation and combina-
tion at the nodes. To boost performance, DGL takes a matrix multiplication approach and leverages
specialized kernels for GPUs or TPUs. In particular, both sampled dense-dense and sparse matrix
multiplications are considered together with node, edge or feature parallelization. As discussed in
their work [151], DGL uses heuristics to choose among the different options as the optimal paral-
lelization scheme depends on multiple factors including the input graph. Thanks to this approach,
DGL claims to achieve an order of magnitude faster training than PyG. Recently, researchers at
Amazon have released a DistDGL, a system based on DGL for distributed mini-batch training scal-
able to billion-edge graphs [184]. To achieve it, DistDGL uses min-cut graph partitioning via a
lightweight algorithm.

NeuGraph. Microsoft Research led one of the first specialized frameworks for parallel process-

ing of GNNs in GPUs, NeuGraph [106]. Although it is built on top of TF, NeuGraph is not open
source at the time of this writing. The framework implements a programming model, SAGA-NN,
based on the functions Scatter for edge aggregation, ApplyEdge for edge combination, Gather for
node aggregation, and ApplyVertex for node combination. Scatter-gather kernels are used in the
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Table 7. State of the Art in Software Frameworks and Accelerators for GNNs (GS = GraphSAGE)

Name Main Features
Evaluation

Algorithms Datasets Baselines

PyG [45]

• Leverages widespread adoption of PyTorch.
• Wide variety of example codes available.
• Use of scatter-gather kernels + node/edge parallelism.
• Evaluated in GPU. Compatible with BigGraph [94] to scale.

GCN, GAT,
SGC, GS, GIN,

and so on...

Cora, CiteSeer, PubMed,
MUTAG, Proteins, Collab,

IMDB, Reddit
DGL

DGL [151]

• Library compatible with TF, PyTorch and MXNet.
• Deep documentation and support, tutorials.
• Based on matrix-mul kernels. Evaluation in CPU and GPU.
• Augmented with DistDGL [184] for distributed computing.

GCN, GAT,
SGC, GS, GIN,

R-GCN, GCMC

Reddit, OGB (Arxiv,
Protein, Product, Citation,

PPA), Movielens
PyG

NeuGraph
[106]

• Implementation and evaluation for scaling to multiple GPUs.
• Four-function model allowing for updates at edges and nodes.
• Optimized partitioning, scheduling, pipelining, transfers.
• Built on TF, not open sourced.

GCN,
CommNet,

GG-NN

Pubmed, Blog, Reddit,
Enwiki, Amazon

DGL, TF

AliGraph
[187]

• Targeting large-scale graphs and distributed systems.
• Emphasis on distributed storage and partitioning
• Only work with heterogeneous and dynamic GNNs, and huge

datasets (up to 483M edges, 6.5B edges). Built on top of TF.

GS, six
in-house

algorithms
Amazon, Taobao N/A

FlexGraph
[150]

• Uses NAU programming model for flexible aggregation.
• Hierarchical aggregation with dynamic sparse-dense logic.
• Supports distributed computing, tested in 1500-core system.-

GCN, PinSage,
MAGNN

Reddit, FB91, Twitter, IMDB
PyG, DGL,
DistDGL,

Euler

AGL [178] • Aiming for scalability, fault tolerance, and integrality.
• Uses MapReduce to scale, tested in 32000-core system.

GCN, GS, GAT Cora, PPI, UUG, PyG, DGL

ROC [76]
• Implemented on top of FlexFlow [78].
• Optimizations: dynamic partitioning, memory management.
• Evaluated with single and multiple GPUs via NVLink.

GCN, GS,
CommNet, GIN,

FastGCN

Pubmed, PPI, Reddit,
Amazon

TF, DGL,
PyG,

NeuGraph

GNN
Advisor

[155]

• Unique runtime profiling of graph information (degree, feature size,
communities) to guide GPU processing

• Extensive comparison with similar frameworks in single GPU

GCN, GIN
CiteSeer, Cora, Pubmed,
PPI, Prot, Yeast, DD,twit,
SW620H, amazon, artist

DGL, PyG,
GunRock,
NeuGraph

PCGCN
[141]

• Motivated by power-law distribution of node degrees.
• Optimized partitioning to generate dense matrices.
• Dual execution mode depending on sparsity of each partition.
• Built on top of TF, evaluated in single GPU.

GCN
Pubmed, Blog, Youtube,

C1000-9, MANN-a81,
Reddit, synthetic (RMAT)

TF, DGL,
PyG

HAG [77]

• Removes redundant sums in aggregation by fusing nodes.
• Runtime algorithm to fuse nodes only if predicted beneficial.
• The impact on operation reduction is independent of hardware, but

the impact on execution speed is not.

GCN, GIN, SGC
BZR, PPI, Reddit, IMDB,

COLLAB
N/A

FeatGraph
[73]

• Optimized matmul kernels for aggregation and combination.
• User-defined combination functions and optimizations.

GCN, GS, GAT
OGB (Proteins), Reedit,

sythetic graphs
GunRock

G3 [105]
• Brings together graph processing frameworks and GNNs.
• Offers APIs over C/C++ for ease of programming.
• Uses GunRock [154] to provide GPU runtime optimizations.

GCN, SGC PubMed, Reddit PyG, TF

GReTA [84]
• Programming abstraction with user-defined functions, similar to

SAGA, targeting accelerators and any GNN variant.
• Evaluation based on GRIP (see Table 8) in ASIC.

GCN, GS,
G-GCN, GIN

Youtube, Livejournal,
Pokec, Reddit

N/A

functions of the same name, whereas matrix multiplication primitives are used in the combination
functions. NeuGraph also features a number of optimizations to accelerate GNN computing. First,
the partitioning of large graphs performed via the Kernighan-Lin algorithm to make partitions
denser and minimize the transfers between partitions, which harm performance. Second, schedul-
ing of partitions to the GPU is optimized by batching together small sparse partitions that can be
computed together [115], and also profiling transfer and computation times in first GNN layer to
later pipeline different chunks perfectly. Third, NeuGraph also eliminates redundant computation
by fusing multiple edges together. Finally, it allow to scale GNN to multiple GPUs by distributing
the computation, and optimizes the transfer of information by using a ring-based dataflow that
minimizes contention at the interconnect.
AliGraph. Developed by the AliBaba group and open-sourced with the name of graph-learn,

AliGraph is a GNN framework built on top of TF [187]. The framework is thought for the pro-
cessing of very large and dynamic graphs in large-scale computing systems, and is currently used
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in recommendation services at AliBaba. It implements three layers, namely storage, which imple-
ments partitioning with four different algorithms, but in this case to store the graph in a distributed
way; sampling, which, unlike other frameworks, allows us to define custom sampling of a nodes’
neighbourhood relevant to algorithms such as GraphSAGE; and operator, which implements the
aggregation and combination functions. In overall, the AliGraph is unique due to its distributed
approach and the many optimizations made at the storage layer to minimize data movement, such
as the use of four different partitioning algorithms depending on the characteristics of the graph,
or caching important vertices in multiple machines to reduce long misses.

FlexGraph. The AliBaba group also leads the development of FlexGraph [150], a distributed frame-

work for GNN training whose distinct features are their flexible definitions of neighbourhood and
the hierarchical aggregation schemes. To this end, FlexGraph uses the NAU programming model
described in Section 3.2. To speedup training, FlexGraph combines hierarchical aggregation with a
hybrid execution strategy combining sparse and dense logic. It also accelerates distributed execu-
tion through an application-driven workload balancing strategy and a pipeline processing strategy
to overlap computations and communications.

AGL. AGL [178] is a framework created specifically for industral deployments of massive GNNs.
To that end, the authors emphasize their scalability, fault tolerance, and use of existing widespread
methods for distributing the computation. In particular, AGL uses MapReduce [36] to that end and
tests the proposed system in CPU clusters. The framework has three modules: one for creating
independent neighbourhoods that can be processed in parallel, one for optimizing training, and
one for the slicing of the graph and calculation of inference. Numerous optimizations are proposed
in the sampling and indexing of the graph, partitioning and pruning, and pipelining of computation
during training.

ROC. ROC [76] is another GNN framework targeting multi-GPU systems, in this case built on
top of FlexFlow [78]. Similarly to AliGraph or AGL, ROC is able to distribute large graphs to
multiple machines. However, this framework differs from others in that the partitioning method
and memory management is performed with dynamic methods providing extra acceleration. First,
ROC uses an online linear regression model to approach partitioning optimally. This model uses
the training iterations to learn the best strategy of a specific graph, outperforming static methods
significantly. Second, memory management is treated as a cost minimization problem and solved
via an online algorithm that finds where to best store each partition. The authors demonstrate that
such acceleration methods provide better scalability than DGL and PyG in single GPUs, and better
scaling to multiple GPUs than NeuGraph.

GNNAdvisor. The work by Wang et al. [155] presents a runtime system that aims to sys-
tematically accelerate GNNs on GPUs. Instead of treating this problem via abstract models as
done in ROC, GNNAdvisor does an online profiling of the input graph and GNN operations to
guide the memory and workload management agents at the GPU. In particular, it leverages
(i) the node degree to fine-tune the group-based workload management of the GPU, (ii) the size
of the node embedding to optimize workload sharing, and (iii) the existing of communities within
the graph to guide partitioning and scheduling. While the two first features are trivial to obtain,
community detection is generally harder. In this case, the authors use a combination of node renum-
bering and Reverse Cuthill–McKee algorithm to reorder the adjacency matrix in a way that dense
partitions are available. Thanks to all these techniques, the authors claim 3–4× speedup over DGL,
PyG, and NeuGraph in a high-end GPU.
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PCGCN. The paper by Tian and co-authors [141] present a partition-centric approach to accel-
eration of GNNs in GPUs, which they implement on top of TF. The contribution is motivated
by the power-law distribution of the node degrees in a graph, which largely affects partitioning.
PCGCN applies a locality-aware partitioning, METIS [81], that helps obtaining dense sub-matrices.
That, however, does not prevent sparse partitions to appear. To combat this, PCGCN profiles the
partitions at runtime and applies a dual-mode of operation: dense matrix representation and multi-
plication kernels when dense, and column-sparse representation and sparse kernels otherwise. In
the paper, the authors compare their implementation with vanilla TF, and also DGL and PyG, and
report the lowest speedup across libraries. Even in this case, PCGCN always speeds up execution
and achieves up to 8.8× in highly clustered graphs.

HAG. This work presents the concept of Hierarchically Aggregated computation Graph

(HAG) [77]. The authors make the observation that many of the operations made during the aggre-
gation stage are repeated multiple times when nodes share similar neighbourhoods. In response
to this, HAGs are presented as an alternative representation that proactively “fuses” nodes with
common neighbourhoods, removing redundant aggregations during the execution of any GNN.
Since the search of similarly connected nodes can be expensive, HAG employs a cost function to
estimate the cost of certain node fusions, to then adopt a search algortihm affordable for runtime.
With only 0.1% of memory overhead, HAG reduces the amount of aggregations by 6.3×.

FeatGraph. Developed in collaboration with Amazon, FeatGraph [73] proposes to optimize ker-

nels of aggregation and combination separately. Different from other frameworks, here the user
can define the combination function and ways to parallelize it, so that the scheduler can take it
into account. As optimizations, FeatGraph also proposes to combine graph partitioning with fea-
ture dimension tiling and to adopt a hybrid partitioning scheme for GPUs.

G3. Liu et al. [105] propose a framework for the training of GNNs in GPU systems. G3 facilitates
the task of GNN creation by providing a set of flexible APIs over C/C++ code that implement
widespread layers and models. G3 also incorporates a set of graph-centric optimizations based on
GunRock for aggregation [154] dealing with memory management, workload mapping, and load
balancing. In training, G3 shows up to 100× speedup over PyG and TF in a high-end GPU.

GReTA GReTA [84] is a processing abstraction for GNNs aiming at simplifying their represen-
tation for hardware implementations. To this end, GReTA consists of four user-defined functions:
Gather and Reduce to describe the aggregation, and Transform and Activate to describe the com-
bination. These functions enable certain flexibility to accommodate different GNN types. GReTA
also discusses partitioning briefly and exemplifies it in a hardware accelerator called GRIP [85],
which is described in the next section.

Paddle Graph Learning. Developed by Baidu Research, Paddle Graph Learning [3] is a graph

learning framework based on PaddlePaddle [109] that supports both walk-based and message pass-
ing models in heterogeneous graphs. Moreover, it integrates a Model Zoo supporting many GNN
models to foster adoption, as well as support for distributed computing.

Tripathy et al. In this work, the authors compare multiple parallelization algorithms that parti-

tion and distribute the GNN in multiple GPU clusters, i.e., 1D, 1.5D, 2D, and 3D algorithms, and
model the tradeoff between inter-GPU communication and memory requirements of these setups
analytically and for training. The model takes a large adjacency matrix and breaks it down to a
fixed amount of processes depending on the algorithm. Then, an analysis is made on the amount of
effectual operations and results to be communicated across the GPUs. Their implementation over
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Fig. 8. Qualitative classification and schematic representation of hardware accelerators for GNN inference.
Green, blue, and red squares represent processors, memory, and control units, respectively.

PyG shows promising scalability and nominates the 1.5D algorithm as a promising and balanced
alternative, although the best algorithm depends on the characteristics of the input graph.

4.2 Hardware Accelerators

We have seen above that software accelerators streamline the execution of GNNs in CPU-GPU
platforms present in most computing systems, achieving significant speedups both in inference
and training. Fewer works [8, 182] have tested GNN training in the TPUs typically used in dense

DNNs, showing similar performance than in GPUs.
In this context, a pertinent question is whether custom hardware accelerators can tackle the

unique challenges of GNN computing and live up to the promise of order-of-magnitude improve-
ments that, to cite an example, have been already achieved in CNNs [25]. Pursuing this goal, several
hardware accelerators have emerged that attempt to handle the extreme density and alternating
computing requirements of GNNs. We next discuss all the designs published to date, using as
reference the schematic diagrams of their architecture shown in Figure 8. The figure also tries to
classify the architectures in two axes: unified versus tiled (to assess whether the computing phases
are physically separated and how tightly coupled they are) and general (to specific to assess how
easy is to adapt the accelerator to multiple GNN variants).

A summary of the main features of the accelerators and evaluated algorithms and datasets is
given in Table 8. We observe that most works revolve around the GCN algorithm, which is popular
and easy to illustrate. Datasets are generally smaller than in software acceleration works, mainly
because of the memory limitations of hardware accelerators in inference and the cost of simulating
hardware architectures. Cora, CiteSeer, and Reddit are the most common ones. While performance
comparisons are difficult due to the many variables involved, most works use CPUs and GPUs as
baselines and, in some cases, even HyGCN [164] and Autotuning-Workload-Balancing GCN
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Table 8. State of the Art in Hardware Accelerators for GNNs

Name Main Features
Evaluation

Algorithms Datasets Baselines

EnGN [103]

• Unified architecture with dense hardware, single dataflow, general-
izable to many GNN variants.

• Aggregation via RER.
• Optimizations: edge reordering, degree-aware vertex cache, schedul-

ing.

GCN, GS,
GG-NN, GRN,
R-GCN

Cora, PubMed, Nell,
Reddit, Enwiki,
Amazon, synthetic
(RMAT), AIFB,
MUTAG, BGS, AM

CPU-DGL,
GPU-DGL,
CPU-PyG,
GPU-PyG,
HyGCN

HyGCN [164]

• Hybrid architecture with separate aggregate/combine phases.
• Fine-grained pipelining via inter-phase coordinator.
• Eliminates sparsity with window sliding/shrinking approach.
• Focused on GCNs, unclear how to generalize (no edge updates).

GCN, GSC,
GIN, DiffPool

IMDB, Cora, CiteSeer,
COLLAB, PubMed,
Reddit

CPU-PyG,
GPU-PyG

AWB-GCN
[53]

• Adapts to varying GNN workloads via three load balancing tech-
niques, chosen based on the sparsity of each partition.

• Processes combination first to reduce the number of operations.
• Fine-grained pipelining of aggregation and combination.
• Focused on GCNs, unclear how to generalize.

GCN
Cora, CiteSeer,
PubMed, Reddit, Nell

CPU-PyG,
GPU-PyG,
FPGA, HyGCN

GRIP [85] • Uses the GReTA abstraction [84], generalizable to any GNN.
• Actual implementation with techniques similar to HyGCN.

GCN, GIN,
G-GCN, GS

Youtube, Livejournal,
Pokec, Reddit

CPU-TF,
GPU-TF, TPU,
HyGCN

Auten et al.
[7]

• Tiled architecture, ready for scale-out via Network-on-Chip.
• Similar to HyGCN, less specialized but easier to generalize.

GCN, MPNN,
GAT, PGNN

Cora, CiteSeer, DBLP,
PubMed, QM9_1000

CPU, GPU

Zhang et al.
[177]

• Combination of offline software acceleration (redundancy elimina-
tion + node reordering) and hardware acceleration in FPGA.

• Optimizations: double buffering, node+feature parallelism, dual
pipelining mode depending of order of matrix multiplications.

GCN Flickr, Reddit, Yelp

CPU-TF,
GPU-TF,
CPU-C++,
GPU-C++

Rubik [23]
• Hierarchical and unified PE array design
• Includes small caches to eliminate redundant aggregations
• Adds graph reordering in software to improve cache utilization

GIN, GS
Collab, BZR, IMDB,
DD, CiteSeer, Reddit

Eyeriss-like,
GPU-PyG

GCNAX [96]
• Architecture with reconfigurable loop ordering and fusion.
• Choice is made after an offline design space exploration.
• Uses outer product to mitigate unbalanced presence of zeros.

GCN
Cora, CiteSeer,
Pubmed, Nell, Reddit

HyGCN,
AWB-GCN,
SpArch

GraphACT
[175]

• Only accelerator evaluating training and memory footprint.
• CPU+FPGA. Optimizations rely on load balancing, scheduling,

batching, removal of redundant aggregation operations.

GCN PPI, Reddit, Yelp CPU, GPU

(AWB-GCN) [53] as early works on hardware acceleration. In general, the proposed accelerators
are around two and three orders of magnitude faster and more energy efficient than GPU and CPU
platforms, respectively, often occupying less than 10 mm2. There is no consensus on which soft-
ware framework shall be used in the baselines. Finally, all accelerator proposals except GraphACT
are designed and evaluated for inference.

EnGN. Among the first accelerators to appear, EnGN [103] presents a unified architecture heavily
inspired by CNN accelerators. The GNN is fundamentally treated as concatenated matrix multipli-
cation of feature vectors, adjacency matrices, and weights—all scheduled in a single dataflow. An
array of clustered Processing Elements (PEs) is fed by independent banks for the features, edges,
and weights to compute the combination function. To perform the aggregation, each column of
PEs is interconnected through a ring and results are passed along and added according to the ad-
jacency matrix in a process the authors call Ring-Edge Reduce (RER). Within this architecture,
sparsity is handled with several optimizations. First, the RER aggregation may lead to multiple
ineffectual computations for sparsely connected nodes. To avoid this, EnGN reorders edges on the
fly in each step of the RER. Second, PE clusters are attached to a degree-aware vertex cache that
holds data regarding high-degree vertices. The reasoning is that well-connected vertices will ap-
pear multiple times during the computation and caching them will provide high benefit at modest
cost. Other optimized design decisions relate to the order of the matrix multiplications when the
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aggregation function is sum, which affects the total number of operations, or the tiling strategy,
which affects data reuse and I/O cost.

HyGCN. The authors of HyGCN [164] build upon the observation that GNNs present two main

alternating phases of opposed computation needs and introduce a hybrid architecture for GCNs.
HyGCN is composed of separate dedicated engines for the aggregation and the combination stages,
plus a control mechanism that coordinates the pipelined execution of both functions. Being dense,
the combination stage is computed via a conventional systolic array approach. The aggregation
stage has a more elaborated architecture featuring a sampler, an edge scheduler, and a sparsity elim-
inator that feeds a set of SIMD cores. Within this architecture, sparsity is handled at the aggregation
engine thanks to efficient scheduling and the sparsity eliminator. The latter takes a window-based
sliding and shrinking approach to dynamically adapt to varying degrees of sparse multiplications.
To further adapt to the workloads, HyGCN allows to group the SIMD cores in aggregation and
the PEs in combination in different ways depending on the size of feature vectors. Finally, special
attention is placed to the design of the inter-engine coordinator to optimize memory accesses and
allow fine-grained pipelining of the execution toward maximizing parallelism dynamically.

AWB-GCN. The AWB-GCN accelerator [53] advocates for an aggressive adaptation to the struc-
tural sparsity of the GNN. The authors motivate their design by analyzing the power-law dis-
tribution of most graphs, arguing that some parts of the computation will be dense and others
extraordinarily sparse, creating unbalances. To address the imbalance, the architecture develops
a custom matrix multiplication engine with efficient support of skipping zeros. To that end, data
from memory is fed via a task distributor and queue (TDQ) to a set of PEs and accumulators.
The TDQ takes two designs adapted to when sparsity is moderate or high. Since AWB-GCN focuses
on GCNs that have linear aggregation functions, the authors propose to process combination first
as this generally reduces the amount of features and, thus, the amount of operations performed
in aggregation. Furthermore, AWB-GCN provides a fine-grained pipelining mechanism to overlap
the execution of combination and aggregation even within the same layer. However, the key of
AWB-GCN are its three workload balancing functions. The first one is local and tries to balance
the load among neighboring PEs. The second one is remote and attempts to pour overflowing
computation from a busy PE to a single remote underutilized PE. The third one takes the load of
extremely busy PEs processing very dense node clusters and divides across multiple idle PEs. To
support that, AWB-GCN provisions hardware at the TDQ and the connections to the PEs to allow
the remapping of nodes to remote PEs and to take them back for coherent aggregation. Moreover,
all decisions are taken based on information extracted from simple counting at the queues.

GRIP. A key aspect of most existing accelerators is that they focus on GCNs as a relevant GNN
algorithm. In contrast, the GRIP accelerator [85] leverages the abstraction of GReTA [84] to de-
velop a general accelerator for any GNN variant, allowing to perform edge and node updates with
user-defined functions. The GRIP architecture reflects this by having separated and custom units
and accumulators for both edges (gather, reduce) and vertices (transform, activate). A control unit
orchestrates data movement between the different units and respective buffers. In the sample im-
plementation, GRIP divides the edge update unit into lanes to execute vertices simultaneously and
takes an input-stationary dataflow for the vertex update unit. Among the optimizations made, we
found pipelining and tiling adapted to the particularities of the implemented dataflows, similar to
that of other accelerators.
Auten et al. Unlike most other accelerators, this work [7] proposes a modular architecture for
convolutional GNNs. The basic unit of the accelerator is a tile composed by an aggregator mod-

ule (AGG), a DNN accelerator module (DNA), a DNN queue (DNQ), and a graph PE (GPE),
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all of them connected to an on-chip router. Thus, the architecture can be scaled out by intercon-
necting multiple tiles among them and with memory. Within each tile, the architecture has a sim-
ilar structure than HyGCN, with the DNA being an array for dense multiplication, the AGG an
edge-controlled adder, the DNQ taking the role of inter-engine buffer, and the GPE controlling
execution. In this case, however, the GPE is a lightweight CPU managing multiple threads rather
than an optimized controller.

Zhang et al. The work by Zhang and co-authors [177] presents a combination of software and

hardware acceleration for GCNs. On the one hand, the graph is pre-processed via a redundancy
elimination mechanism similar to that of Reference [77] and a node reordering similar to that of
Reference [155]. Pre-processing is done offline and is justified for the repeated benefits that it can
provide to multiple inferences to static graphs. The processed graph is then fed to a hardware
accelerator implemented in a FPGA consisting of differentiated pipelined modules for aggrega-
tion (sparse array) and combination (dense systolic array and non-linear activation module). As
differentiating elements with respect to other designs, we find that the aggregator module uses a
double-buffering technique to hide latency of additions and exploits both node-level and feature-
level parallelism. We also observe that the accelerator implements two modes of operation depend-
ing on the order of the matrix multiplications, which leads to different strategies for pipelining. To
accommodate them, the modules are interconnected both from the aggregate module to the com-
bination modules and vice versa.

Rubik. Similarly to the case above, Rubik [23] proposes a hardware accelerator assisted by some
pre-processing in software. On the hardware side, Rubik presents a hierarchical PE array design,
wherein each PE contains a number of MAC units plus instruction and data queues to feed them.
The design is unified because aggregations and combinations are scheduled across all PEs. More-
over, each PE includes two small private caches that store recently accessed vertices and partial
aggregations. Each PE is connected to the rest of PEs and two memory controllers placed on the
side via a meshed NoC. On the software side, Rubik proposes lightweight graph reordering (once
per graph) to put together nodes that are connected with each other, similarly to Reference [155],
but here to improve the performance of the private PE caches.

GCNAX. The work in Reference [96] points out the load imbalance, execution order, and loop opti-
mization inefficiencies from other accelerators, whose impact varies across workloads. To address
them, the authors propose GCNAX as a flexible accelerator whose dataflow is reconfigurable in
terms of loop order and loop fusion strategy. To find the most effective dataflows for each particu-
lar dataset, the authors perform a design space exploration of dataflow design decisions. Therefore,
in inference, GCNAX is reconfigured based on the characteristics of the problem at hand. Finally,
GCNAX uses the outer product to mitigate the effect of unbalanced presence of zeros, unlike other
accelerators. Thanks to these techniques, GCNAX is around 10× and 2× faster and more efficient
than HyGCN and AWB-GCN, respectively.

GraphACT. While all other accelerators focused on inference, GraphACT [175] explores how to

efficiently perform GNN training in an heterogeneous CPU+FPGA platform. The main design deci-
sion relates to determining which parts are computed where and which data to store in memory. To
address these questions, the authors argue that CPU performs graph sampling and the calculation
of the loss gradients, while and the FPGA does forward and backward propagation passes. The
FPGA, thus implements aggregation and combination. The authors present optimizations based
on the scheduling of the different operations taking into consideration that backpropagation can
be performed after batching of multiple layers or batching different parts of the graph. Moreover,
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similarly to in Reference [177], redundant operations at aggregation are eliminated via searching
of edges common to multiple vertices.

4.3 Discussion

The analysis of the state of the art performed in previous sections leads to several conclusions.
First, we observe that a quantitative comparison among systems is very difficult due to the lack of
a common baseline system and a GNN benchmark suite with a representative set of algorithms,
datasets, and design targets. To bridge this gap, initiatives such as the Open Graph Benchmark

(OGB) [72] or GNNmark [10] aim to provide a representative set of graphs and GNNs to use as
benchmarks. In hardware accelerators, comparing multiple recent architectures is difficult and
some works have compared their fundamental dataflows instead [96]. In this direction, Garg et
al. perfomed a dataflow classification that includes multiple operation orders, and whose analysis
that may guide further developments in the field [51].

A second reflection is that the desirable one approach fits all does not apply to GNNs, and distinct
design approaches will probably be required for different applications. For example, the extreme
scale and high throughput demands of recommendation systems is well in line with the targets
of software frameworks: programmability and scalability. In contrast, for applications that need
to focus on real-time operation and energy efficiency, custom hardware acceleration solutions
may be the only way to go. Moreover, the wide variety of problems with their different graph and
feature vector sizes renders the acceleration problem more difficult to tackle with a single approach
[103, 163, 182].

Finally, we identify a few outstanding challenges for acceleration. Support for dynamic graphs is
a pending issue only evaluated in AliGraph [187]. Learning over dynamic graphs implies not only
processing the GNN in each timestep but also updating the weight matrices as the graph evolves,
factors that might be amenable to software or hardware optimization. At the frontier of software
and hardware, another challenge resides in how to approach the GNN acceleration problem with
a co-design strategy, i.e., which tasks can be offloaded to software and which ones should stay
in hardware, taking into consideration the related overheads. On the hardware side, how to best
accelerate training remains as an important open question as all proposals except GraphACT [175]
have targeted inference. Beyond that, another challenge in hardware accelerators is finding the
right balance between performance and generalization in light of the multitude of graph types
and GNN variants, including techniques such as pooling, sampling, or skip connections.

5 GNN ACCELERATION: THE VISION

Previous sections have discussed how GNNs can be understood as a set of classical NNs working
symbiotically over graph-structured data. We have seen that, to extract specific knowledge from
the graphs, different NN layers may be employed leading to a wide variety of GNN flavours. This,
plus the fundamental dependence of GNNs on the input graph (which may be extremely large)
complicate the task of streamlining their execution. As a result, works on GNN acceleration have
implicitly made a choice upon either providing an extremely efficient acceleration scheme for a
specific GNN variant, or being general or flexible enough to serve multiple types of GNNs less
efficiently.

The key challenge in GNN acceleration is thus to provide a framework that is able to both
maximize performance and efficiency while maintaining a degree of flexibility that caters to the
different graph sizes, characteristics, and GNN algorithms. Albeit a daunting task, in this section
we aim to leverage the analysis of existing acceleration works to hypothesize that would be the
main characteristics that future GNN accelerators should feature. In particular, our envisaged ar-
chitectural approach shall be driven by (i) software-hardware co-design, (ii) graph awareness, and
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Fig. 9. Architectural vision for GNN accelerators with hardware-software co-design (i.e., control and data
planes), graph awareness (i.e., guided mapping and scheduling), and communication-centric design (i.e., re-
configurable interconnect).

(iii) an much-needed emphasis on communications. We next discuss these aspects qualitatively,
using Figure 9 as reference.

5.1 Software-Hardware Co-Design

The analysis of prior work has shown that both software and hardware approaches can provide
significant speedups. In some occasions, one might argue that both strategies attack the problem
similarly, e.g., node reordering in software [141] and workload balancing in hardware [53]. How-
ever, a few works have also started to realize that both approaches are not mutually exclusive and
that their benefits can add up, or one can simplify the other. For instance, Rubik improves perfor-
mance by reordering the graph in software [23]. Also, the design from Zhang et al. [177] eliminates
redundant operations via software pre-processing and then optimizes execution with specialized
aggregation and combination modules. The software side allows to avoid having specialized hard-
ware structures to eliminate redundant operations.

Building upon this observation, our first proposed pillar is software-hardware co-design as a strat-
egy for handling different GNNs and graphs efficiently while retaining some hardware simplicity.
We advocate for a control-data plane model where, in general, the control plane will be imple-
mented entirely in software providing the flexibility and the data plane will be implemented in
custom hardware providing the efficiency. While conceptually separated (see Figure 9), the opera-
tion of both planes will be tightly coupled.

On the one hand, the control plane manages the actions of the accelerator by having a global
view of the complete GNN structure and input graph. The control plane is responsible for dictating
the dataflow running in the data plane, by (i) partitioning the GNN computation into manageable
computational segments, (ii) mapping the different vertices and edges to the hardware resources
of the data plane, and (iii) scheduling the different executions toward balancing the workload,
maximize the benefits of pipelining, and so on. Finally, we also consider part of the control plane to
(iv) drive pre-processing (and possibly offline) steps such as the removal of redundant operations
[77] or the detection of certain graph aspects such as cliques [155]. By being implemented in
software, all these functions can deliver the required flexibility to accelerate any GNN workload.
However, given that certain pre-processing steps may take minutes or hours in very large graphs
[28], care must be taken in not turning the software side into the bottleneck of the system. To this
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end, one may resort to lightweight heuristics or limit software techniques to specific cases such as
deep GNNs or training, where the result of pre-processing may be reused multiple times.

However, the data plane consists of the processing and memory elements that work as per the
control plane instructions to execute a GNN. As we have seen in Section 4.2, we could adopt many
strategies for architecting the data plane, e.g., unified, phased, modular, homogenenous, heteroge-
neous, to name a few. However, we find particularly interesting the use of architectures similar to
that of MAERI [90], where an homogeneous array of PEs and a specialized memory hierarchy are
put together via a lightweight reconfigurable interconnect fabric. This architecture could adapt the
dataflow according to the control plane commands, thus allowing to give service to the multiple
execution stages of an algorithm or different algorithms.

5.2 Graph Awareness

Most accelerators have attempted to provide methods that adapt to runtime conditions while being
largely unaware of the input graph characteristics [76, 103]. However, it has been also realized that
aspects such as the size of the graph, the relative size of the feature vectors, the clustering factor
of the graph, or the average degree of the same can be extremely relevant in accelerating the GNN
[45, 141, 164]. In fact, GNNAdvisor [155] seeks to exploit this information explicitly to improve
the performance in GPUs, while others have based the order of operations or the mapping of PEs
on characterstics of the graph [53, 103, 164]. Other characterization works have shown that the
impact of loop ordering or dataflow design decisions on performance certainly depends on the
input graph [10, 51, 96].

This leads to the second pillar of our envisaged architecture: graph awareness. If the GNN de-
pends on the input graph, then maximizing performance needs to be aware of the main features
of that graph. Offline or online methods shall be used to extract useful information from the graph
that, in our case, will be leveraged by the control plane. This will thus affect aspects such as the
graph partitioning [141], which may be more or less aggressive depending on the degree distri-
bution; the ordering and pipelining of the different aggregate–combine phases, which may vary
across layers and across graphs; or the scheduling process to minimize inter-partition communi-
cation. A good example of this approach is community detection, whose efficient implementation
[46, 110] or prediction [26] may allow for the partition of the graph in densely connected graphlets
at runtime. This is relevant to efficient pooling [168], redundancy elimination [77], and optimal
scheduling [155]. Again, it is critical to minimize the overhead of techniques providing graph
awareness, either via heuristics, reuse of prior analyses, or its use only in certain occasions where
the pre-processing can be done in advance or its benefit maximized, i.e., training.

5.3 Communication-Centric Design

Data movement is the enemy of efficient architectures. Hardware accelerators aim to minimize it by
adapting its resources to the execution dataflow but, surprisingly, traditional DNN accelerators [39,
138] have generally given a relatively low importance to the sub-system handling data movement:
the interconnect fabric. This is also true for GNN accelerators, which are generally computing-
centric with few exceptions [144, 175]. However, GNNs pose the additional challenge of not having
a single optimal dataflow given the input graph dependence and the many algorithm variants.
Thus, data movement continues to be a crucial aspect [60].

For this reason, the third pillar of our envisaged architecture is taking a communication-centric

design approach. This is a philosophy that has been applied to endow DNN accelerators with cer-
tain flexibility [88–90] or to optimize distributed learning [139]. In our case, we propose the use of
a reconfigurable interconnect fabric among the PEs to adapt the hardware to the underlying graph
connectivity or, in other words, to the optimal dataflow that may vary across layers, partitions, or

ACM Computing Surveys, Vol. 54, No. 9, Article 191. Publication date: October 2021.



191:30 S. Abadal et al.

graphs. In an extreme case, one could adopt the approach of recent DNN accelerators that orches-
trate all data movement at compilation time [4, 75]. GNNs and their extreme size might discourage
the use of this strategy and, instead, advocate for a compilation that provides hints for the inter-
connect to adapt to the varying needs of the graph and its most optimal dataflow. The compilation
and reconfiguration could be complemented by the analysis of the input graph. Assuming it can
be done in advance or with little overhead, graph profiling may allow us to predict the prevalent
communication patterns and, thus, the most appropriate interconnect topology.

6 CONCLUSION

The recent interest in geometric deep learning, or methods able to model and predict graph-
structured data, have led to an explosion of research around GNNs. As we have seen in our analysis
of the current state of the art, most of the works focus on the algorithms and their applications,
rendering the topic of GNN computing a less beaten path. However, we anticipate that the area of
software and hardware support for GNNs will grow at a fast pace, continuing an upwards trend
that we observed from 2018 to today.

The reasons for the probable increase in research delving into more efficient computing means
for GNNs are several. First, the field is maturing and the more theoretical algorithm-driven research
gives way to the most application-oriented development. A clear example of this trend is the advent
of efforts to unify aspects such as benchmarking [72]. Second, GNNs are the key to many disruptive
applications in multiple fields, thus creating a clear application pull driving the need for better
processing. Third, GNNs present multiple unique challenges such as the wide variety of algorithm
variants, their dependence on the graph characteristics, or their massive scale in some applications.
This makes the field of GNN processing unlikely to saturate in the foreseeable future and calls for
an in-depth discussion of not only the challenges associated to GNN processing, but also of possible
ways to tackle them.

Finally, we highlight the rising popularity of software frameworks and the recent appearance
of hardware accelerators for GNNs. On the software side, libraries such as DGL or NeuGraph
aim to speed up and add features to widespread frameworks such as TF or PyTorch. Interesting
contributions are acceleration of GNNs via graph analysis or pre-coding, as well as the distribution
of computation in large-scale systems, much needed for huge recommendation systems. On the
hardware side, we did not observe a clear architectural trend and existing proposals are debating
between being specific or applicable to multiple GNN variants, and between unified architectures
or more hierarchical, tiled organizations. Building on this observation, we envision that future
accelerators shall adopt a hardware-software co-design approach to maximize performance, keep
graph awareness as a profitable optimization opportunity, and tackle workload variability via a
reconfigurable interconnect.
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