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Abstract

The Schrödinger equation gives us a time evolution of the wave function of a certain quantum
system, thus we obtain a mathematical description of this system. This project focuses on
solving it numerically, using the exact diagonalization method.

We present an algorithm to solve the time-independent version of the equation efficiently for
a particle in a box with different boundary conditions, and a second program that expands
the initial wave function onto the basis formed from the eigenfunctions of the Hamiltonian
to obtain the time evolution of the wave function.

Using these two programs, we ran several simulations to obtain the properties of a quantum
system exposed to an external potential with a fractal shape. The selected two-dimensional
fractal was the Sierpinski carpet.

An analysis of the static and dynamic properties was performed, and we corroborated the
existence of an exponential scaling law between the ground-state energy and the iteration of
the fractal. We also verified the expected diffusive behavior of the mean squared displace-
ment of a particle under this fractal shaped potential.

The results obtained were not known before and can be useful for ongoing experiments of
ultracold atoms. Furthermore, our work can be extended by using the presented programs to
perform more experiments with different parameters or different external potential shapes.
The program can also be fine-tuned to solve other kind of systems.
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Resum

L’equació de Schrödinger ens dona una evolució temporal de la funció d’ona d’un sistema
quàntic concret, la qual cosa ens permet obtenir una descripció matemàtica d’aquest sistema.
Aquest projecte se centra a solucionar aquesta equació de forma numèrica, utilitzant el
mètode de diagonalització exacta.

Presentem un algoritme per resoldre la versió independent del temps de l’equació, de forma
eficient, per a una part́ıcula dins una caixa, amb diferents condicions de contorn. A part, un
segon programa que expandeix la funció d’ona inicial sobre la base formada a partir de les
funcions pròpies del Hamiltonià, per obtenir l’evolució temporal de la funció d’ona.

Utilitzant aquests programes, hem executat diverses simulacions per obtenir les propietats
d’un sistema quàntic exposat a un potencial extern amb forma fractal. La fractal de dues
dimensions seleccionada per l’estudi és la catifa de Sierpinski.

S’ha elaborat una anàlisi de les propietats estàtiques i dinàmiques, i hem corroborat l’existència
d’una llei d’escala exponencial entre l’energia de l’estat fonamental i la iteració de la fractal.
També s’ha verificat el comportament difusiu esperat del desplaçament quadrat mitjà d’una
part́ıcula sota aquest potencial en forma de fractal.

Els resultats obtinguts no eren coneguts anteriorment, i poden ser útils per experiments
en curs sobre àtoms ultra freds. A més, el nostre treball es pot ampliar utilitzant els
programes presentats per realitzar més experiments amb diferents paràmetres o diferents
formes de potencial extern. El programa també es pot ajustar per resoldre altres tipus de
sistemes.
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Resumen

La ecuación de Schrödinger nos da una evolución temporal de la función de onda de un
sistema cuántico concreto, lo que nos permite obtener una descripción matemática de este
sistema. Este proyecto se centra en solucionar esta ecuación de forma numérica, utilizando
el método de diagonalización exacta.

Presentamos un algoritmo para resolver la versión independiente del tiempo de la ecuación,
de forma eficiente, para una part́ıcula en una caja, con diferentes condiciones de contorno.
Aparte, un segundo programa que expande la función de onda inicial sobre la base formada
a partir de las funciones propias del Hamiltoniano, para obtener la evolución temporal de
la función de onda.

Utilizando estos programas, hemos ejecutado varias simulaciones para obtener las propiedades
de un sistema cuántico expuesto a un potencial externo con forma fractal. El fractal de dos
dimensiones seleccionado por el estudio es la alfombra de Sierpinski.

Se ha elaborado un análisis de las propiedades estáticas y dinámicas, y hemos corrobo-
rado la existencia de una ley de escala exponencial entre la enerǵıa del estado fundamental
y la iteración del fractal. También se ha verificado el comportamiento difusivo esperado
del desplazamiento cuadrado medio de una part́ıcula bajo este potencial en forma de frac-
tal.

Los resultados obtenidos no eran conocidos anteriormente, y pueden ser útiles para exper-
imentos en curso sobre átomos ultra fŕıos. Además, nuestro trabajo se puede ampliar uti-
lizando los programas presentados para realizar más experimentos con diferentes parámetros
o diferentes formas de potencial externo. El programa también se puede ajustar para resolver
otros tipos de sistemas.
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Chapter 1

Context

1.1 Introduction

The investigation world is always closely related to computer science. It is very frequent to
solve a problem by modelling it on a computer using a certain programming language, and
then making simulations to get a solution.

The physics investigation field highly benefits of this problem-solving approaches, as we find
plenty of equations with physical meaning without an exact solution. To fix this, we try to
solve them by representing these equations in a discrete and finite space, so our computers
can handle it, and then we write algorithms to get approximations of a real solution.

This is an interdisciplinary research project, with an important theoretical part that in-
volves some quantum physics knowledge and a practical part that covers the design and
development of algorithms to simulate and solve quantum physics systems.

All the code and algorithms that I mention in this report can be found on my personal
Github repository: https://github.com/atmarc/TFG.

1.2 Stakeholders

It is important to define the stakeholders of any project, to know who is interested of its
development and can benefit from it.

The main stakeholder of this project is UPC physics department, and more concretely Grig-
ori Astrakharchikm, who was the impeller of it, by posting a TFG offer on Racó. This can
lead to a scientific publication if interesting results are obtained, that is why it can interest
him as a researcher.

As every scientific research project, it increases the knowledge on this field in general. If we
write a paper about the steps we followed it can be beneficial for any other researcher of
quantum particle systems and their unique properties, even they could try to replicate our
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results by real experimentation. So it can be considered that this project benefits all the
scientific community in a way, more specifically the physics investigators.

1.3 Theoretical concepts

I will summarize some theoretical concepts that are necessary to understand the rest of this
document, so the reader can fully comprehend the aim and objectives of this project.

1.3.1 Quantum mechanics

Quantum mechanics is the theory that describes the physical properties of Nature at the
scale of atoms and subatomic particles. When it was first formulated during the early
decades of the 20th century, it introduced some ground-breaking concepts, such as energy
quantization, the uncertainty of position and momentum of a particle and the wave-particle
duality of matter.

In classical physics, we have Newton’s second law, which given a set of initial conditions
makes a mathematical prediction of what path a given physical system will take over time.
Its quantum analogous would be the Schrödinger equation, which instead requires a statis-
tical interpretation.

1.3.2 Schrödinger equation

Quantum mechanics tells us how the particles behave over time. This description is done
using the Schrödinger equation, which provides the time evolution of the wave function of
particles. The wave function, generally represented with the letter Ψ, is a mathematical
description of the quantum state of the system, and with it, we can obtain the distribution
of probability of the measurements that we can do over this system.

The Schrödinger equation is a differential equation, and has the following form:

i~
∂

∂t
Ψ (r, t) = ĤΨ (r, t) (1.1)

Here we define the Hamiltonian operator Ĥ, which is an operator corresponding to the total
energy of that system, including both kinetic (T ) and potential energy (V ), and for a single
particle it takes the form:

Ĥ = T̂ + V̂ = − ~2

2m
∇2 + V (r, t) (1.2)

The kinetic energy in quantum mechanics is proportional to the Laplace operator ∇2, which
is the addition of the second partial derivatives of the wave function. The potential energy
is a function of the position of the particle, similarly to the classical case.

For the first problem, we are interested in the stationary properties, so we take the time-
independent version of the Schrödinger equation:

Ĥ|Ψ〉 = E|Ψ〉 (1.3)
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When solving it, the set of energy eigenvalues that provides (also called energy spectrum)
is the set of possible energies obtained when measuring the system’s total energy. Here
we are interested in finding the ground state of the system, which is its lowest energy
state. Differently from the classical systems where the energy of a single particle at zero
temperature is finite due to zero-point motion, this ground state energy is always present
in the quantum system, even in absolute zero temperature conditions.

1.3.3 Fractals

A fractal is a subset of the Euclidean space that illustrates a property called self-similarity,
which means that appears the same at different scales and exhibits similar patterns at
increasingly smaller scales.

1.3.4 Sierpiński carpet

The Sierpinski carpet is a plane fractal that was first described by Wac law Sierpinski in
1916, as a two dimensions generalization of the Cantor set, that was discovered in 1874 by
Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883.

The Cantor ternary set is created by iteratively deleting the open middle third from a set
of line segments.

Figure 1.1: First six steps of Cantor ternary set

To describe fractals properties, we frequently use the fractal dimension, which is a ratio
that provides a statistical index that shows how the detail in the pattern of the fractal
changes with every iteration. These leaves us with noninteger dimensions, as the dimension
of the Sierpinski carpet is log(8)/log(3) ≈ 1, 8927... We can see the first four iterations of
the Sierpinski carpet fractal in Figure 1.2.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Figure 1.2: First four iterations of the Sierpinski carpet
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Chapter 2

Justification

The interdisciplinary aspect of this project is what attracts me the most. Quantum me-
chanics is a complicated field that we do not study on the GEI degree. That is why this
project really interested me personally, as it gives me the opportunity to learn and work on
a subject that is quite different to what I am used to, and I am also able to contribute on
a physics research project applying my computation knowledge, something I would enjoy
doing as a future job.

There have been recent experiments [1, 2], that have shown how it is possible to produce
a Bose-Einstein condensate [3, 4]. In the last few years, new experimental techniques have
been developed, and it became feasible to create two-dimensional Fermi or Bose gas in
highly controllable external potential. The projected potential can be chosen essentially in
any desired shape, fractal shapes included [5]. This means that most of our work could be
verified by these experiments. Moreover, we could find some related articles that studied
the properties of particles on a fractal environment, but they did not obtain the energetic,
structural and dynamic properties as we do.

13



Chapter 3

Scope

3.1 Objectives

The aim of the project is to study the properties of quantum particles in a fractal external
potential. The main goal is to obtain a detailed description of such a system in terms of
energetic, structural and dynamic properties. In particular, the energetic properties can
be quantified by evaluation of the ground state energy and the excitation spectrum. The
structural property of interest is the density profile. The dynamic property to be calculated
is the diffusion coefficient.

We consider the external potential in the shape of a Sierpinski carpet. It has a fractal
structure, with the fractal dimensionality between 1 (i.e. a line) and 2 (i.e. a plane). The
strength of the external potential is considered to be infinite (i.e. hard walls) in the positions
where the fractal is present. It means that the particles cannot diffuse freely in the system.
At the same time, the phase space is joined, that is the particle is allowed to move between
any two points where the external field is absent. The fractal shape is defined in a simple
recursive procedure and depends on the recursion level.

One of our goals is to provide a detailed description of the properties of quantum particles
in fractal external potential. In particular, we plan to verify the existence of a simple scaling
law between the zero-point energy of the system and the number of iterations of the fractal.

This is an interdisciplinary problem, based on application of mathematical concepts to the
field of quantum physics, and relies on the use of numerical methods. This project requires
carrying out a scientific investigation and a priori it is not clear which method is going to
be the best to study these properties.

We plan to execute this study considering two different problems:

1. Solve Schrödinger equation using exact diagonalization of a discretized Hamiltonian

2. Solve the time-dependent Schrödinger equation using superposition of stationary states

14



3.2 Potential obstacles and risks

The biggest obstacle to me is the fact that I have to really comprehend all the physical
concepts to be able to properly implement the techniques to model and solve the quantum
systems that we propose. I am a computer science student and I have not been taught
quantum mechanics, what means that this project involves a lot of self-studying by my
part.

Another risk is the possibility that the system properties that we selected to observe do not
present any reasonable pattern, or that we can not see it because of lack of scope. That is
why we want to try different experiments and compare the viability of studying different
properties.

Together with the previous risk, there is the obvious obstacles that you find in this kind
of experiments, related with the lack of realism of a discretized system compared to the
real world. This discrete barrier is found by the necessity of modelling the experiments in
a finite and computable way, as we also can not be too ambitious with the computational
resources needed to obtain a solution.
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Chapter 4

Methodology and rigour

4.1 Methodology

As this is a research project, every step we take is going to be vastly justified. The mod-
elling of the quantum system is going to be verified by computing some properties that
we know in advance, such as that the ground energy of a particle in a box without an

external potential has to be equal to π2~
2mL2 . Also, all the techniques followed to model and

obtain some properties of it are going to be referenced and explained in detail on the thesis
documentation.

My supervisor and I have followed a pretty loose Agile methodology [6], which was decided
at the begging of the project. We have a meeting once a week, to review the progress of the
project and comment the possible results obtained. We also set goals for the near future,
and debate about the path to follow.

On the last three months of the project, Pietro Massignan also joined us on the weekly meet-
ings. He helped us to give physical meaning to the results obtained by our study, together
with Grigori. He also participated in the decision-making, the design of the experiments
and the process of setting the short term goals to accomplish.
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Chapter 5

Time planning

As we can see in FIB’s documentation [7], the TFG corresponds to 18 credits, which have
a 30 hours workload each. This means that the total hours spend on the project must be
of 540 hours.

With this in mind, we plan a working routine of four hours a day, from the 1st of Febru-
ary to the 15th of June 2021, what makes a total of 135 days of work, from Monday to
Sunday.

5.1 Project phases

To achieve the aim of the project, that is to study the properties of quantum particles in
a fractal external potential, we are going to develop to algorithms two algorithms, one for
observing static properties and another to obtain the dynamic ones. This process can be
seen as two individual studies, with the respective sections on each one:

• Previous study (PS)

• Design (DN)

• Implementation (IM)

• Data analysis (DA)

5.2 Description of tasks

As I mentioned in the previous section, each of the three methods that we are using is going
to follow the phases previously specified. As this is a research project and we do not really
know a priori the results that we are going to obtain, we might be changing the order of the
tasks. Each task is assigned a different key code to identify it easily.
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5.2.1 Project management

Here I specify the tasks that are found in every kind of project that are related with the
management of this one. Some of them are done during GEP, such as the definition of the
scope, the planning, the budget and the sustainability studies of this project.

The others are executed during the hole project. For example, we planned a weekly meeting
with the thesis supervisor to coordinate our work, so he could explain me his ideas about
the current state of the project and comment some possible improvements or clarifications
about it. In this task it is also included the continuous emails we send each other during
the week for possible doubts or some daily details about the progress of my work.

As this is a research project that can possibly end as a scientific publication, we must strictly
justify every step we take and keep track of the methodology we are following. This is done
within the documentation task, which will we be done during the hole project, as we will
update the documentation on every action we perform.

• Scope (T1)

• Planning (T2)

• Budget (T3)

• Sustainability (T4)

• Meetings (T5)

• Documentation (T6)

5.2.2 Building Sierpinski carpet

We have to design and implement a Matlab program that can generate a Sierpinski carpet
fractal, given a certain input size and iteration of the fractal. The fractal computed must be
stored on a matrix, as we are going to use this program on the other algorithms to generate
the external potential shape.

5.2.3 Exact diagonalization method

The following tasks consist on the study of the time-independent Schrödinger equation and
the design of how it can be solved for a system composed of a particle in a box and with a
certain fractal shaped potential. A study of the possible boundary conditions and its effect
on the solution has to be done. The implementation of this design is the following step, and
all of this leads us to the possibility of obtaining the energetic and structural properties of
the system, such as the ground state energy or the Inverse Participation Ratio. With all
these data, we can study the relation it has with the external potential that we applied, and
see if we can find a relation with its fractal dimension.

• Previous study (T8)

• Design (T9)

• Implementation (T10)

• Data analysis (T11)
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5.2.4 Time-evolution of the wave function

The following tasks are related to the study of the time-dependent Schrödinger equation.
In these tasks we have to understand the concept of quantum superposition, to be able
to design an algorithm that uses the previous computed possible quantum states of the
system, to calculate the time evolution of the wave function given a certain initial state by
performing a superposition of all these possible states. This will allow us to study dynamic
properties that variate over time, such as the mean square displacement of a particle. It
also allows us to generate different time evolutions to properly understand the effect of this
fractal shaped external potential on the diffusion of the particle. All the

• Previous study (T12)

• Design (T13)

• Implementation (T14)

• Data analysis (T15)

5.3 Tasks dependencies

The dependencies between tasks are quite trivial, as for the correct development of the two
studies, their related tasks have to be done sequentially, in the following order: previous
study, design, implementation and data analysis. Maybe some of them can be overlapped,
such as design and implementation, as sometimes is better to design one part of the code
and implement it, and then go back again to design process.

One clear dependency thought, is the fact that the program for building the Sierpinski carpet
(T7) has to be implemented previously to the implementation of the first experiment.

The project management tasks, related with the current state of the project, have no de-
pendencies, as they take place during all the months of the project development.

5.4 Gantt diagram

To properly organize the tasks over time and to specify their duration, we present the
information in a Gantt diagram, that we can see in Figure 5.1. The tasks’ duration is
summarized in the Table 5.1.

Notice how tasks of data analysis have more time assigned, as they include the execution
of the different programs, that my vary a lot depending on the program and the iterations
that we decide to compute.

There are no time values assigned to the tasks of Meetings and Documentation, as they
will occur during all the other tasks, which have an implicit fraction of their dedicated time
assigned to these two tasks, as they must be done along with all the project’s develop-
ment.
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Id Task name Hours
T1 Scope 32
T2 Planning 32
T3 Sustainability 32
T4 Budget 32
T5 Meetings -
T6 Documentation -
T7 Building Sierpinski carpet 44
T8 Exact diagonalization: Previous study 44
T9 Exact diagonalization: Design 44
T10 Exact diagonalization: Implementation 44
T11 Exact diagonalization: Data analysis 52
T12 Time-evolution: Previous study 44
T13 Time-evolution: Design 44
T14 Time-evolution: Implementation 44
T15 Time-evolution: Data analysis 52

Table 5.1: Table to test captions and labels
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Figure 5.1: Gantt chart of the tasks of the project
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5.5 Risk management

There are some implicit risks in every project when you plan it in advance.

The main limitations we can find are about computational cost. We know that exist the
algorithms to solve the problems we are tackling, but maybe the cost of solving the systems
for a high number of iterations of the fractal is too much for our computers. The more
iterations we can do, the more precise our results are going to be. This can lead to a
rescheduling of the tasks, as we might need more time to find and implement a more efficient
way to solve the equations.

If this happens, we will focus on other related simulations, that also study properties of the
Sierpinski carpet fractal, but that do not make use of the diagonalization method, which is
where we are most likely to find a computational limit, as we need to find eigenvalues and
eigenvectors of pretty big matrices.

22



Chapter 6

Budget

6.1 Identification of costs

Referent to this project, we can consider three kinds of costs:

• Thesis supervisor: the continuous supervision of a physicist.

• Development: the laptop and the main developer work.

• Server: energy and rental of the servers to run the simulations.

6.1.1 Thesis supervisor

This is an interdisciplinary project which involves a lot of specific quantum physics concepts.
That is why there appears the need for a physics PhD to supervise and orientate the project.

We established a weekly meeting of one hour, approximately, that takes place every Tuesday.
He also keeps track of my developing process and answers my emails during the week, what
can be approximated by one hour of work a week as well.

We can see how an investigator at UPC has a monthly salary of 2.313,52€ on the Taules
retributives PDI laboral 2020 [8], which implies a salary of 12,85€/h approximately.

6.1.2 Development

This is an A modality TFG [9], which implies that is being done by a computer engineering
student. The economic cost of this process is the usage of his personal laptop, which is an
LP gram, that can be found for 1200€ on Amazon [10], and the salary of the developer,
which we set to be a standard salary of 9€/hour.
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6.1.3 Server

All the simulations are run on a server. Some simulations need considerable amount of
resources, such as memory. That is why we run them on a server with 16 CPUs and 64GB
of RAM, which we could rent online for approximately 270€ per month.

6.2 Cost estimates

The costs of this project are briefly detailed in Table 6.1, which summarizes the human
resources costs and Table 6.2, which includes some general costs. All together, leads to a
total of 6.798,77€.

Profile Salary Cost/year Cost/h Hours Cost
Thesis supervisor 32.374,48 42.044,78 16,69 20 333,77

Developer - - 9 450 4.050

Total 4.383,77

Table 6.1: Human resources costs

Concept Quantity Cost
Developer laptop 1 1.200

Server 4,5 1.215

Total 2.415

Table 6.2: Resources cost

6.3 Management control and contingency plan

We have included a contingency based on the renting of the servers for the whole duration of
the project, even though we are only going to use them once the development process is done.

In case of possible errors on the prediction of costs, we will add a contingency margin of
10% for human resources costs and generic costs. This equals to an added cost of 679,88€,
and leads to a total budget of 7.478,65€.
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Chapter 7

Sustainability

7.1 Reflection

I have been aware for years that computer science can have a negative and positive impact on
people’s lives, on the environment and on the world in general. That’s why I try to always
think about the ethic consequences of my actions and not waste resources, both in my
particular life and on any kind of project I am involved on. I find that society does not give
the social and environmental sustainability of projects the importance it deserves.

In any project it is important to perform a sustainability analysis considering three dimen-
sions: economic, environmental and social.

7.2 Economic dimension

The different aspects of the economic dimension of this project are:

• This project has a really reduced budget, as the main developer is a student.

• We have established some strategies to entirely organize this project online, so we do
not need any kind of office, what could be and additional cost.

• We could analyze the need of the renting of the server for the entire duration of the
project, but as this is a research project we are not sure about how long we are going
to need it. If we finish earlier we can always stop paying it.

7.3 Social dimension

We state some aspects of the social dimensions as follows:

• If we end up with interesting results, it is very likely that this project evolves in a
scientific publication. This means that it contributes to the scientific knowledge as it
is a research field that has not been properly explored yet.
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• Our work can lead to other people getting interested in the study of the behavior of
quantum particles in a different shaped external potentials.

• It can also demonstrate and show off how important and successful an interdisciplinary
project can be, something really important in a bast range of fields.

7.4 Environmental dimension

To end up with our sustainability analysis, we explore the environmental aspects of the
project:

• The resources used to develop this project are the ones stated previously, we do not
extract or use any kind of natural resource. We also do not emit or produce anything
harmful for the environment.

• We do not waste office supplies, and we try to cut down to the minimum the amount
of it that we use.

• The programs that we run on the server are really optimized, to save computation
time, and with it, energy.
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Chapter 8

Generating Sierpinski carpet

The first program we designed is a Sierpinski carpet fractal generator. This means that,
given two inputs N and iter it returns a matrix of size N × N that contains a Sierpinski
carpet at the iter iteration. An example can be found in Figure 8.1, where this fractal
would be the output matrix with the parameters iter = 3 and N = 27. On this figure,
the values of the matrix that contain a 0 or a 1 are represented by a black or white pixel
respectively.

Figure 8.1: Sierpinski carpet of iteration 3

It is important to mention that, because of the nature of the Sierpinski carpet, we only can
perform calculations for values of N that are positive multiples of 3i, being i the iteration
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of the fractal that we are using as the shape of the external potential energy.

N = 3ik k ∈ N+ (8.1)

This is quite intuitive to understand, as for example, we can not map a proper Sierpin-
ski carpet of iteration 1 (example in Figure 1.2.a) on a matrix of shape 10 × 10 as 10/3
does not give an integer solution, and we would obtain a non-symmetrical and degenerate
fractal.

Once we had these limitations in mind, we developed a recursive algorithm to know if each
position of the matrix has to be filled with a one or a zero. We implemented it with Matlab,
as we are going to use it as a module that we will call from other Matlab scripts. This
program will call the method isSierpinskiCarpetPosF illed for each position of a N × N
matrix, with the parameter d = iter − 1.

Algorithm 1 isSierpinskiCarpetPosFilled(x, y, width, height, d)

Require: mod(N, 3iter) == 0
1: x2 = floor(x * 3 / width)
2: y2 = floor(y * 3 / height)
3: if x2 == 1 and y2 == 1 then
4: return 1
5: end if
6: if d > 0 then
7: x = x - floor((x2 * width + 2) / 3)
8: y = y - floor((y2 * height + 2) / 3)
9: width = floor((width + 2 - x2) / 3)

10: height = floor((height + 2 - y2) / 3)
11: return isSierpinskiCarpetPosFilled(x, y, width, height, d - 1)
12: else
13: return 0
14: end if

The pseudocode of the algorithm (1) is a bit obfuscated, but I am going to break it
down.

On line 3, we can see one of the base cases. This is when the pixel is placed in the center
of the square, which is always filled, so we return a 1. The condition is making sure that
the position (x, y) is within the center square, which is the middle section of dividing the X
and Y coordinates by three.

The next base case is the else from line 13, where it enters when it has not ”found” a center
square, as the iteration parameter is two small, so it returns a 0. On a theoretical fractal of
infinite iterations, it would never enter this condition.

The last section is the recursive one, that starts at line 6. Here we make some reshape to the
position of the pixel and the width and high variables, to reduce the problem to a fractal of
one third of size. This can be seen as a zoom in into the area that our pixel (x, y) is placed,
and now we can check if it is in the center of this smaller box, or otherwise we have to keep
iterating until we find it or until we reach the depth limit.

It can be seen how the cost of this algorithm is O(iN2).
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Chapter 9

Stationary properties of a
quantum particle in Sierpinski
carpet

As our goal is to study the effect of the external potential field on a quantum system, we are
going to compute the ground state energy of the quantum system that we present. To do so,
we have to solve the time-independent Schrödinger equation numerically for one particle.
We can see in section 10.1 how this equation can be obtained from the original Schrödinger
equation.

Ĥ|Ψ〉 = E|Ψ〉 (9.1)

9.1 Boundary conditions

First, we have to define the boundary conditions of the box we place the particle in.

9.1.1 Zero boundary conditions

One possibility is to impose zero boundary conditions (z.b.c.) by defining a box with a side
length of L= 1 centered at the origin and apply Dirichlet boundary conditions that define a
value of the solution f(x, y) = 0, on the border area. Physically, such conditions correspond
to a hard wall of an infinite size, so that the particle cannot escape the box.

A single quantum particle in a box with zero boundary conditions and without any potential
energy has a finite energy equal to

Ebox,zbc =
π2~2

mL2
(9.2)
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9.1.2 Periodic boundary conditions

Another possibility is to use periodic boundary conditions (p.b.c.). In this case we use a
box with a side length of L = 1 centered at the origin, and we apply Neumann boundary
conditions, defining the partial derivatives equal to zero at the border of the box:

∂

∂x
f(x = L/2, y) = 0 (9.3)

∂

∂y
f(x, y = L/2) = 0 (9.4)

Conditions (9.3-9.4) are equivalent to periodic boundary conditions.

Physically, periodic boundary conditions provide a faster convergence to the thermodynamic
limit when the box size is increased. Indeed, for any box size L, the ground-state energy of a
single particle in a box without potential energy is equal to its thermodynamic value,

Ebox,pbc = 0 , (9.5)

contrarily to 1/L2 dependence observed in the case of zero boundary conditions (9.2). Exci-

tation spectrum in a box with periodic boundary conditions is Enx,ny
=

2π2~2(n2
x+n

2
y)

mL2 where
nx = 0;±1;±2; · · · and ny = 0;±1;±2; · · · are quantum numbers of excitations along two
directions.

9.2 Discretize the Hamiltonian operator

From equation (9.1), we can see how if we define the Hamiltonian operator Ĥ in a matrix
form, we can solve it by finding the eigenvalues and eigenvectors of it, as E are the eigenvalues
of Ψ when Ĥ act on Ψ. This is also called the diagonalization method.

Ĥ = T̂ + V̂ = − ~2

2m
∇2 + V (9.6)

To simplify the calculation, we are going to leave our results in function of − ~2

2m . So we
are left with the Laplace operator ∇2 and the potential V . The Laplace operator acting
on a function f is equal to the sum of the second derivatives of f . We are going to solve
this equation in a discrete space, and the multidimensional discrete Laplacian operator is a
Kronecker sum of the one dimensional discrete Laplacians, so first we have to obtain this
discrete derivatives for each dimension.

The fact that our space is discretized means that we have N different possible values for the
x coordinate. We are going to define xi as the i th value of x, for 1 ≤ i ≤ N .

Now, using the finite-difference method, we can define a second derivative of a function f
like:

fi = f(xi) (9.7)

∂2f

∂x2i
≈ fi−1 − 2fi + fi+1

∆x2
(9.8)
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As we want to solve this problem for a particle on the plane, the Hamiltonian operator has
2 dimensions. The Kronecker sum of two discrete Laplacians is defined as:

L = Dxx ⊕Dyy = Dxx ⊗ I + I⊗Dyy (9.9)

where Dxx and Dyy are one dimensional discrete Laplacians in the x and y-directions
correspondingly, and I is the identity matrix of appropriate size.
Looking at equation (9.8), we can define the one dimensional discrete derivative of x (Dxx)
as follows:

Dxx =
1

∆x2


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

 (9.10)

This representation of the derivative is done by applying zero boundary conditions to the
box.

Periodic boundary conditions can be as well imposed in the discrete form. In this case,
matrix Dxx has two additional elements on positions (N, 1) and (1, N):

Dxx =
1

∆x2


−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

 (9.11)

Now, defining Dyy the same way as Dxx but with ∆y2, we can compute the discrete
Laplacian as the matrix L and define the Hamiltonian in a matrix form.

∇2 ≈ L (9.12)

L = Dxx ⊕Dyy (9.13)

The potential can easily be represented in a matrix form by generating a Sierpinski carpet
of the size of our box. Then we store a matrix with the information if each point of our
discrete space has zero value of the potential or not.

H = L + V (9.14)

Lψ + Vψ = Eψ (9.15)

Now, we end up solving the equation (9.15) by diagonalization of H matrix and find its
eigenvalues and eigenvectors. The obtained solutions describe the ground state and excited
states of the single-particle problem. The ground-state energy and wave function correspond
to the eigenvalue with the lowest value and its eigenvector.
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9.3 Finding eigenvalues and eigenvectors

We have reduced the original problem of finding the spectrum of a quantum particle in
a fractal external field to a well known problem of numerical calculus and by extension
computer science: finding the eigenvectors and eigenvalues of a matrix. There are numerous
methods and algorithms that allow to solve this problem, and selecting the optimal one was
of major importance, as the execution time of different algorithms varies greatly.

Our program that solved the previously explained problem was implemented using Matlab
programming language, as we had some previous knowledge of it, and it gives a lot of
facilities for mathematical problem-solving. One example is the method eigs, which can
compute the N smallest eigenvalues of a matrix. This method was really useful for the initial
prototypes of the project, as it makes it really easy to compute the smallest eigenvalue and
its corresponding eigenvector of any matrix.

But we quickly realized that for larger matrices, it performed way worse. Then tried to use
another algorithm to obtain the eigenpairs in less time. We made some research on the best
possible methods, and we decided to try an algorithm called Locally Optimal Block Pre-
conditioned Conjugate Gradient (LOBPCG). This is a matrix-free algorithm, which means
that it does not store the matrix in memory, but accesses it by evaluating matrix-vector
products. This method is preferable when the matrix is huge and storing and manipulating
it would cost a lot of memory and computing time. The algorithm assumes that the matrix
is symmetric and positive-definite. From equation (9.10) and equation (9.11) we can see
how the matrix that we want to know its eigenpairs of is symmetric, in both boundary
conditions. We also know that it is positive-definite in both cases, as it can be seen how
both matrices satisfy the following properties:

• All their eigenvalues are real and positive, as there can not be an estate of the system
with 0 or negative energy.

• They are congruent with a diagonal matrix with positive real entries.

• All their leading principal minors are positive.

• There exists an invertible matrix B with conjugate transpose B∗ such that M = B∗B.

We found an implementation of this algorithm for Matlab 1 and Octave 2, and we performed
some experiments to see how both methods performed.

In Figure 9.1 we show how computing just the smallest eigenvalue is drastically faster with
the LOBPCG algorithm. This is useful to know, as for the experiments where we just need
to obtain the ground state, this algorithm is going to be much faster.

On the other hand, in figure 9.2 it can be seen how computing more than one eigenpair
of the matrix is performed way faster with the eigs method of Matlab. These result is
important to know for the problem of knowing the time-evolution of our system, as we need
to compute numerous states to achieve precise results.

Another interesting advantage of the LOBPCG algorithm is that we can set the precision
that we want for the obtained solution. This is really useful for us, as we might need a lot

1https://github.com/lobpcg/blopex
2https://octave.sourceforge.io/linear-algebra
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Figure 9.1: Comparing execution time of different algorithms to obtain the smallest eigen-
value

Figure 9.2: Comparing execution time of different algorithms to obtain the 20 smallest
eigenvalues

of precision for small matrices, but we can accept a bigger error margin on larger matrices,
what speeds up the computation drastically, as seen in Figure 9.3.
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Figure 9.3: Execution time of computing the smallest eigenpair with N = 35 (semi-log scale)

9.4 Normalization

The physical problem of finding the wave functions Ψ(r) and energies of the ground and
excited states of the Hamiltonian describing a single particle in a fractal field is interpreted
as a mathematical problem of diagonalizing a matrix and finding its eigenvectors fi and its
eigenvalues. This is achieved by discretizing the wave functions Ψ(r)→ fi.

Different communities use slightly different definitions for the normalization. That is the
“physicists” choice is written in terms of an integral as∫

|Ψ(r)|2dr = 1. (9.16)

Instead the “mathematician” choice involves a summation∑
i

|fi|2 = 1. (9.17)

In the discretized model, both normalizations are proportional one to the other,∫
|Ψ(r)|2dr =

∫
|Ψ(x, y)|2dxdy =

∑
i

|fi|2∆x2, (9.18)

with the coefficient proportionality given by the discretization area dr = ∆x2.

Obviously, each one of the normalizations (9.16) or (9.17) can be used, as long one is done
consistently.
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9.5 Efficiency of obtaining the ground state energy

An important quantity we want to obtain is the ground state energy of the system. As
mentioned previously, this is the energy of the lowest-energy state, and it can be found by
performing the discretization of the space and by computing the smallest eigenvalue of the
matrix obtained as a result of discretizing the Hamiltonian operator (Equation 9.14).

As the computational resources are finite, the phase space has to be described by a finite
grid in order to be represented on a computer. This lattice space (or grid) is represented in
a matrix of size N × N . To discretize the Hamiltonian operator, we perform a Kronecker
sum of two discrete Laplacians (9.9) corresponding to the kinetic energy of a particle in
two-dimensional place, (x, y). The Kronecker product of two N × N matrices produces a
resultant matrix of size N2 ×N2. This is important to notice, as it means that the size of
the matrix that represents the discretized Hamiltonian operator increases drastically when
we want to improve the precision of our results by increasing the size of the lattice space.
Obviously, we want to have the most precise results as possible. This means that we have
to push our algorithm to the limit and try to compute the results with the biggest lattice
space that the execution time of the eigenvalue obtaining process lets us.

Eventually we are interested in the value of the ground state energy in a continuous space,
or analogously in the limit, when N , the parameter that defines the discretization size,
tends to infinity. To do so, we computed the ground state energy for different values of N
and then we interpolated the energy with a quadratic function, to obtain the result when
1/N = 0.

We illustrate how this method works in Figure 9.4 which shows the ground-state energy
computed with different values of N (crosses). We fit the obtained data with a polynomial
function and extrapolate the ground state energy when the N tends to infinity. That is, we
extract the value of our fit in x = 0 point corresponding to 1/N →∞. For example, in the

shown case, the ground state energy equals to 529.67 ~2

2m .

Notice that, as we mentioned in section 8, the value of the linear grid size N has to be
a multiple of 3i, being i the iteration of the Sierpinski fractal (see Equation 8.1). This
restriction is quite important, as it implies that the matrix that describes the problem
increases significantly when simulating higher iterations of the fractal, as the minimum
value of N has to be 3i. To visualize this effect, we added some examples in Table 9.1,
where we can see that the minimum value that N can take to simulate an external potential
with a Sierpinski carpet of iteration 7 is N = 2187, which means we will have to find the
eigenvalues of a matrix of size 4.782.969× 4.782.969.

Iteration Possible N values
1 3, 6, 9, 12, 15, ...
2 9, 18, 27, 36, 45, ...
3 27, 54, 81, 108, 135, ...
4 81, 162, 243, 324, 405, ...
5 243, 486, 729, 972, 1215, ...
6 729, 1458, 2187, 2916, 3645, ...
7 2187, 4374, 6561, 8748, 10935, ...

Table 9.1: The values that N can take for different iterations of the Sierpinski carpet
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Figure 9.4: Ground state energy and its interpolation to the infinitely-small discretization
for Sierpinski carpet of iteration 3. The horizontal axis shows 1/N where N is the number
of grid points. Crosses, results of the exact diagonalization. Dazed line, parabolic fit of the
obtained data.

As the computational cost increases exponentially with the iteration of the fractal, we are
going to quickly find a computational limit when trying to compute the zero-point energy
for higher iterations.

9.6 Ground-state energy for different iterations of the
fractal

One of our initial goals is to verify the existence of a simple scaling law between the zero-point
energy of the system and the number of iterations of the fractal. To do so, we compute the
ground state energy of the system for each iteration of the fractal. We do it for a number of
N values, and use the procedure illustrated in Figure 9.4 to obtain the ground-state energy
in a continuous space. The obtained values are reported in Table 9.2
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Iteration of the fractal Ground state energy
(

~2

2m

)
1 38.59
2 112.78
3 529.43
4 3999.03
5 27387.51
6 107871.18

Table 9.2: Ground-state energy of the system for different iterations of the external potential
fractal shape

We are able to perform the extrapolation of the ground-state energy to the continuum limit
for iterations from 1 to 6 as the values of N that we had to compute are still computationally
manageable (refer to Table 9.1). These computations were done under a zero boundary con-
ditions regime. For larger iteration numbers, we were not able to do a precise interpolation
of the value of the ground state energy when N tends to infinity due to limitations of CPU
time and memory.

Figure 9.5: Ground state energy of the system for different iterations of the external potential
fractal shape.

The obtained results for the ground-state energy are shown in Figure 9.5 as a function of
the iteration number of the fractal. As can be seen, the energy increases very fast. In order
to demonstrate that the increase of the energy follows an exponential law, we show the same
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data on a semi-logarithmic scale in Fig. 9.6. The first five iterations of the fractal clearly
follow an exponential scaling law seen as a straight line in this semi-logarithmic plot. To
demonstrate it more precisely, we fit the data with an exponential law,

y = 1.79× e1.93x (9.19)

shown with a dashed line.

Figure 9.6: Ground-state energy in the continuum limit for different iterations of the external
potential fractal (semi-log scale). Red crosses, results of the extrapolation to continuum.
Blue dashed line, exponential fit (9.19)

At the same time, we observe that the value of the ground-state energy for iteration 6 does
not follow the exponential behavior. The few values that we could compute for iteration 7
seemed to tend to a smaller value than what we would expect if we supposed that all the
iterations follow this exponential law.

A possible explanation is the lack of precision for the large iteration numbers, as it becomes
notoriously difficult to perform the extrapolation.
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9.7 Degenerate eigenvectors

In a quantum system, there might be two or more quantum states having the same energy.
When this happens, such energy level is called a degenerate level and one says these quantum
states are degenerate. This happens when the Hamiltonian has more than one linearly
independent eigenstate with the same energy eigenvalue.

Seeing this in a mathematical way, we could present the possible eigenvectors of the system
as follows:

Ĥ|ψi〉 = Ei|ψi〉. (9.20)

The action of the Hamiltonian Ĥ to a state |ψi〉 can be interpreted in vector form as some
rotation and stretching of the vector,

|ψ′〉 = H|ψ〉. (9.21)

If the vector |ψ〉 is an eigenvector, its direction is not changed so that |ψ′〉 and |ψ〉 are
parallel,

〈ψ′|ψ〉2

〈ψ′|ψ′〉〈ψ|ψ〉
= 1 (9.22)

and the change in the normalization is governed by the eigenvalue E,

〈ψ′|ψ′〉
〈ψ|ψ〉

= E2 (9.23)

In the case when several eigenvalues are degenerate, for example E0 = E1 = E2 = E3,
any linear combination of corresponding eigenvectors such as |ψ〉 = C0|ψ0〉 + C1|ψ1〉 +
C2|ψ2〉+C3|ψ3〉, where C0, · · · , C3 are some coefficients, is again an eigenvector, i.e. Ĥ|ψ〉 =
E0|ψ〉.

If some vector is “almost” an eigenvector, |ψ′〉 ≈ H|ψ〉 its direction will almost remain the
same, i.e.

〈ψ′|ψ〉2

〈ψ′|ψ′〉〈ψ|ψ〉
≈ 1 (9.24)

and the change in the normalization will be almost the eigenvalue E,

〈ψ′|ψ′〉
〈ψ|ψ〉

≈ E2 (9.25)

In our system, we find plenty of degenerate states, for the reasons of symmetry. One
clear example are the four eigenvectors that its corresponding energy is the ground state
energy. Indeed, while the Sierpinski pattern has a fractal structure, and might look as being
almost random, in reality it has certain symmetries. For example, the Sierpinski pattern
reproduces itself when subjected to rotation by 90°, 180° and 270°. As a result, a localized
eigenstate might be four-fold degenerate, as other three states obtained by rotation are also
eigenstates and have exactly the same energy. Indeed, this is the case for the lowest energy
states, as shown in Figure 9.8. The diagonalization method in this case might find a linear
superposition of the degenerate states. This does not affect the eigenenergies but potentially
might result in a very different inverse participation ratio, which is very sensitive to a spatial
spreading of a state.
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Figure 9.7: Ground state wave function obtained by the diagonalization method without
adding noise to the potential.

We have verified that, in the case of the lowest four states, the direct output of the di-
agonalization method does not correspond to localized states themselves but rather to a
linear combination of them, as it can be seen how Figure 9.7 is a linear combination of the
four states of Figure 9.8. Furthermore, we were able to find such linear combination of the
output of the diagonalization scheme that it restores the localized states.

Although it was easy to find it in the case of the lowest states, it is desirable to lift the
degeneracy so that the problem can be entirely avoided. A possible way to do so is to add
a weak random potential so that now each localized state will have slightly different energy.
In this case, the diagonalization method correctly finds the localized states. We can see the
effect of this method in Figure 9.9, where we add a random value in the range [−α/2, α/2]
to every position of the fractal potential, breaking the degenerate states. It is important,
to select an α value that does not change the spectrum too much, as it can be seen on the
figure that for α = 0.2 the gap between bands is no longer obvious.
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Figure 9.8: Wave function of the four lowest degenerate eigenstates of the system, with zero
boundary conditions and iteration 4 of the fractal.
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Figure 9.9: Eigenvalues of the system with fractal shaped potential of iteration 4 and zero
boundary conditions, with nose of different amplitudes α.

42



9.8 Inverse Participation Ratio (IPR)

The previous sections were devoted to the energetic properties in the ground state of the
fractal. In this section, we focus on the spatial features of the wave functions that we obtain
for the different eigenstates.

We find that, for the lowest-energy states, the wave function tends to be localized. In order
to interpret the shape of these wave functions we compare them with the shape of the
external potential shown in Figure 1.2. Obviously, the wave function has zero value in the
areas where there infinitely-high potential Sierpinski carpet is present. At the same time,
only a small fraction of the rest of the available phase space is occupied in the lowest excited
states.

In order to discern localized and delocalized eigenstates, we use the Inverse Participation
Ration (IPR). In Quantum Mechanics, this quantity is often used in order to distinguish
a localized state (for example, a bound electron) or an extended state (for example, a
delocalized electron). If pi denotes the probability of finding the particle in state i, then the
Inverse Participation Ratio is defined as

IPR =
1∑
p2i

(9.26)

If the particle is localized only in one state, i.e. pi = 1 for that state, then IPR = 1. If the
particle is distributed equally between N states, then pi = 1/N and IPR = N . For our use
it is convenient to recast IPR (9.26) in terms of the wave function ψ.

The probability density function of a particle is equal to the square of the absolute value of
the wave function at each point. Equation (9.27) shows it for continuous space and equation
(9.28) for discrete space.

Pa≤x≤b(t) =

∫ b

a

|Ψ(x, t)|2dx (9.27)

Pr(x, t) = |Ψ(x, t)|2 (9.28)

To be a valid probability distribution, one first has to normalize the wave function, i.e. to
make sure that the sum of the density on every point adds up to 1.∫ ∞

−∞
|Ψ(x, t)|2dx = 1 (9.29)

In terms of the wave function, the IPR is defined as

Rq =

∫
|Ψ(r)|2qdr∫
|Ψ(r)|2dr

(9.30)

with r = (x, y) being a point in the two-dimensional phase space and dr = dx dy. In the
following we will consider q = 2.

Suppose that the particle is in the maximally extended state which uniformly occupies the
whole volume V = L × L, that is ψ = 1/

√
V = 1/L then the inverse participation ratio is

R2 = 1/L2. If, instead, the particle is localized in a state of size V = `× ` � L× L, then
ψ = 1/` in that region and ψ = 0 otherwise. In that case R2 = 1/`2 � 1/L2. In other
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words, for localized states the inverse participation ratio R2 is large while for delocalized
states the IPR is small.

In practice, to obtain the IPR of a certain wave function, we have to sum its density function
value squared, for every point of our space, or what is the same, the absolute value of the
wave function ψ at every point raised to the fourth power.

R2 =
∑
i

|ψi|4 (9.31)

where ψi denotes a discrete vector corresponding to the wave function ψ(r).

(a) R2 = 37.78, state number 53 (b) R2 = 3.06, state number 114

Figure 9.10: Wave functions with the highest and lowest IPR value between the first 1000
eigenstates of the particle in a box system, with potential with the shape of a Sierpinski
carpet on its third iteration.

An important question to address is that of a possible localization. That is, some states are
extended over the system, so that the particle can propagate across the box, while other
states are contained to a small region so that the particle remains effectively trapped and
cannot escape. To graphically show what does it mean to have a wave function which is
localized to a larger or a smaller extent, that if it has a greater IPR, we compute the first
thousand quantum states of a system formed by a particle in a box, with zero boundary
conditions and with an external potential with the shape of a Sierpinski carpet on its third
iteration. We compute the IPR of each state and plot the ones with maximal and minimal
IPR value.

Characteristic examples of the wave functions corresponding to large and small values of
IPR are presented in Figure 9.10). The left panel (Fig. 9.10.a) shows the wave function
of a localized state (i.e. with large IPR value). In this particular example, the particle
gets localized in the lower-left corner. Contrary, the wave function of a delocalized state
significantly extends over the available space in the box, as illustrated in Figure 9.10.b.

We searched for a relation between this IPR value and the energy of the quantum state, but
no apparent relation was found.
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9.9 Ground state wave function

In this section, we present some computed eigenvectors of the system. In Figure 9.11 we
report the wave function obtained using the diagonalization method for the ground state of
the system, for different iterations of the fractal using zero boundary conditions. The results
obtained by using periodic boundary conditions are shown in Figure 9.12. Notice that, as
we mentioned in the previous section, these states are the superposition of the degenerate
states that occupy the same energy as the ground state.

It can be seen that the effect of a specific choice of the condition for the wave function at
the borders of the box (zero or periodic boundary condition) strongly affects the ground
state for small iterations (compare iterations 1,2,3 in Figures 9.11-9.12). Instead, for larger
iteration numbers (compare iterations 4,5,6 in Figures 9.11-9.12) the effect of the boundary
condition is not that important.

In Figure 9.13 we show how the ground state wave functions are modified when some random
noise was applied to the potential. In absence of the random noise, the ground state is
fourfold degenerate and the particle can be localized in any of the four angles or might stay
in any linear combination of such states. The random noise lifts the degeneracy and the
particle prefers to stay in only one corner, as it makes each state distinct and this way avoids
the superposition of these degenerate states.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 9.11: Color map of the wave functions of the first six lowest energy states of the
system, for different iterations of the fractal, with zero boundary conditions. Blue regions,
zero density, the least probable regions to find the particle. Yellow regions, larger density,
the most probable regions to find the particle.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

(e) Iteration 5 (f) Iteration 6

Figure 9.12: Color map of the wave functions of the first six lowest energy states of the
system, for different iterations of the fractal, with periodic boundary conditions. Blue
regions, zero density, the least probable regions to find the particle. Yellow regions, larger
density, the most probable regions to find the particle.
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(a) Iteration 1, α = 60 (b) Iteration 2, α = 1

(c) Iteration 3, α = 0.1 (d) Iteration 4, α = 0.025

Figure 9.13: Color map of the wave functions of the first four lowest energy states of the
system, for different iterations of the fractal, with zero boundary conditions. We applied
some random noise α to the external potential to avoid superposition of degenerate states.
Blue regions, zero density, the least probable regions to find the particle. Yellow regions,
larger density, the most probable regions to find the particle.
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9.10 Energy spectrum

An important quantity describing the energetic properties of the system is the energy spec-
trum, that is, the eigenvalues of the Hamiltonian. An important question is how it evolves
when increasing the iteration of the fractal. This eigenergies are obtained by computing
eigenvalues of the Hamiltonian matrix that we exposed in the previous sections. In our
discrete version of the problem, we can have up to N2 quantum states with their respective
eigenenergies.

Figure 9.14: Energy of the lowest 80 eigenstates for different iterations of the fractal, with
zero boundary conditions.

If we focus on the first 80 values of the energy spectrum, shown in Figure 9.14, we observe
how a band structure is formed in the lowest eigenenergies. That is, the energy levels bunch
into small groups with very similar values, and there are gaps between one group and the
next one. These groups are formed from degenerate states. For example, the ground state
is fourfold degenerate with the corresponding wave functions shown in Figure 9.8. We find
that the band structure is maintained when the fractal iteration increases, and it gets more
accentuated, as the gaps between bands increase as well, following the exponential law
presented in section 9.6.

But when we observe a bigger number of eigenvalues, we can see how this scaling law is
replaced by a very similar curve among all iterations. This can be produced by the lack of
needed precision due to discretization for those states. For this reason, we only assumed
that the first 1000 values were accurate enough to work with on the next sections.
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Figure 9.15: Energy of the eigenstates of the system for different iterations of the fractal,
with zero boundary conditions

To get further insight, we rescaled the eigenvalues X coordinates by dividing it by 9i, being
i the iteration, to compare states with the same energy of different fractal iterations. In the
rescaled spectra, which we show in Figure 9.16, the gaps become less and less evident. This
means that, instead of finding more states with the same or similar energy occupying the
same bands as the previous iterations, these bands tended to diffuse, and a linear behavior
can be seen.

9.11 Comparing spectrum with different shaped poten-
tial

We previously compared the energy spectrum obtained by the Sierpinski carpet shaped
external potential with the case where there is no potential at all. To extend this analysis,
we defined a periodic external potential and computed the eigenvalues of it.

The periodic potential defined has a grid shape, similar to a chess grid, where one cell has
potential and the next one is empty. We defined the iteration of this pattern y the number
of cells it has on each row, being 2i the number of cells per row on iteration i, as it can be
seen in Figure 9.17.

We computed its spectrum and rescaled the x coordinate, as we did in Figure 9.16, and we
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Figure 9.16: First 300 eigenvalues for iterations 1, 2 and 3 of the fractal. Values from
iteration 2 and 3 are rescaled, so they match the energy values of iteration one.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Figure 9.17: First four iterations of the periodic pattern that we use as external potential.
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Figure 9.18: First 300 eigenvalues for iterations 1, 2 and 3 of the periodic potential. Values
from iteration 2 and 3 are scaled, so they match the energy values of iteration one.

could observe a different behavior. In Figure 9.18 we see how for higher iterations of the
potential, the gap seems to maintain, and the eigenvalues occupy the same bands as the
previous iterations, but grouping way more states on each band.

To complete the analysis of the spectrum, we added Figure 9.19, where we computed the
spectrum of the particle in a box system without any external potential. In the previous
experiments for the periodic and the fractal potentials (Figure 9.16 and Figure 9.18), the
physical length L escalated with the iteration, ensuring the minimum size of the potential
was maintained constant. To match these experiments, we obtained the eigenvalues for dif-
ferent sizes of the system without external potential. This size is described by the parameter
N , as we define a lattice space of N ×N , and the physical size of the box, which is equal to
L.

In Figure 9.19 it can be clearly seen how in each iteration the gap between bands decreases,
tending to a straight line when the discretization goes to infinity, where there is no prohibited
energy values.

To conclude this section, we could say that the spectrum obtained with the fractal shaped
potential falls between the periodic behavior, where the gap is maintained when increasing
the iteration, and the zero potential behavior, where the gap is smaller when increasing the
system’s size, and tends to disappear on a continuous space.
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Figure 9.19: First 300 eigenvalues for particle in a box without external potential, for
different sizes of the box. There is a scaling of the x coordinate so the values match.
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Chapter 10

Time evolution of a quantum
particle in Sierpinski carpet

All the work of the previous sections has been based on computing and observing the
properties of stationary states, quantum states that are independent of time. Now, we are
going to present a method that allows us to compute the wave function of a particle for a
certain time value, or what is equivalent, the time evolution of a wave function. This means
that we will be able to analyze properties which evolve with time, such as the time evolution
of the wave packet describing the quantum particle.

10.1 Time-evolution of a quantum state

The Schrödinger equation looks as follows:

i~
∂ψ(r, t)

∂t
= − ~2

2m
∇2ψ(r, t) + V (r)ψ(r, t) (10.1)

To separate the spatial and time dependencies, we factorize the wave function as ψ(r, t) =
φ(r)f(t). With this in mind, we can replace ψ on the Schrödinger equation (10.1) and
reorganize the terms in a way that we have all the time dependent parts in one side and the
terms that depend on r on the other (10.2).

i~
f(t)

df

dt
=

1

φ(r)

[
~2

2m
∇2 + V (r)

]
φ(r) (10.2)

It can be seen how both sides must have the same value, that we could label with a constant
E. This gives us the time-independent Schrödinger equation (10.3).

− ~2

2m
∇2φ(r) + V (r)φ(r) = Eφ(r) (10.3)

Ĥ|φ〉 = E|φ〉 (10.4)
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It also shows us that the temporal part of ψ can be rewritten as an exponential function,
like we see on equation (10.6).

1

f(t)

df(t)

dt
= − iE

~
(10.5)

f(t) = e−iEt/~ (10.6)

Putting the temporal part back together with φ(r), we can define ψ as:

ψ(r, t) = φ(r)e−iEt/~ (10.7)

On our previous section, we focused on solving the time-independent Schrödinger equation
by obtaining the eigenvalues and eigenvectors of the discretized Hamiltonian operator. In
our current notation, an eigenvector of this matrix would be a possible φ(r), and its cor-
respondent eigenvalue would be the eigenenergy value E of that state. So by watching
equation (10.7), with this eigenpairs computed, we could calculate the time-evolution of a
quantum state of the system by just varying the value of t.

10.2 Superposition of eigen states

Notice how the ψ(r, t) obtained in equation (10.7) is just one possible solution to the
Schrödinger equation and corresponds to a certain energy E. That is, the time evolution of
the wave function φi(r, t) of an eigenstate i corresponding to the energy Ei is

φi(r, t) = φi(r)e−iEit/~ (10.8)

The eigenstates form an orthonormal basis:

• each eigenstate is orthogonal to the others, that is for any eigenstates i 6= j∫
φ∗i (r)φj(r) dr = 0 (10.9)

or in bra-ket notation, 〈φi|φj〉 = 0

• each state can be considered normalized to unity∫
φ∗i (r)φi(r) dr = 1 (10.10)

or in bra-ket notation, 〈φi|φi〉 = 1

• any physical wave function Ψ(r) can be expanded on the basis

ψ(r) =
∑
i

ciφi(r) (10.11)

where the (complex) coefficients ci can be calculated as

ci =

∫
φ∗i (r)ψ(r) dr (10.12)

or in bra-ket notation, |ψ〉 =
∑
i ci|φi〉 and ci = 〈φi|ψ〉

56



• Condition that Ψ(r) itself is normalized to unity is then related to the normalization
of the coefficients of the expansion according to∑

i

|ci|2 = 1 (10.13)

As according to Eq. (10.8) the time-evolution of each eigenfunction consists only in the
evolution of the phase, the linear superposition of the wave function ψ(r) in the zero moment
of time as given by Eq. (10.11) actually defines the time-evolution for an arbitrary moment
of time t, according to

ψ(r, t) =
∑
i

ciφi(r)e−iEit/~ (10.14)

There is an infinite number of states in a quantum system, but as our system is discretized,
we have a finite number of them. More precisely, our space is described as a lattice space of
size N×N what let us compute a maximum number of N2 eigenpairs, each one representing
a quantum state. So, to obtain a solution of the Schrödinger as accurate as possible, we
perform the linear combination of equation (10.14) with as many states as we can com-
pute.

To obtain a wave function evolution, we need to specify the wave function state at t = 0. We
will define this initial state as a two-dimensional Gaussian function, centered at the position
(x0, y0) of the box:

ψ(r, t = 0) = A exp

(
− (x− x0)2

2σ2
x

− (y − y0)2

2σ2
y

)
(10.15)

For simplicity, we will have the same spread values for the x and y-axis, so σ = σx =
σy.

10.3 Behaviour of displacement of the particle over time

It is interesting to notice that, to compute the time-evolution for a certain number of
particles with different initial conditions, we do not have to perform the diagonalization
method for each moment of time, as we can precompute the eigenvectors and eigenvalues of
it and just load them on every execution. The only thing we have to recompute each time
is the coefficient ci of the expansion of the initial state on the eigenfunctions, but it is a
pretty fast computation. Then one has just to compute the sum 10.14 over the eigenstates
for each moment of time t, and obtain the resulting wave function ψ(r, t).

Taking these observations into account, we analyze the mean-square displacement [11] of a
particle on each time iteration, which is described as follows:

MSD ≡ 〈(x− x0)2〉 (10.16)

As we compute ψ(r, t) for r = (x, y), we can obtain the MSD by evaluating the expected
value of the operator on each time iteration:

MSD(t) =

∫ ∞
−∞

ψ∗(x, y, t)(x− x0)2ψ∗(x, y, t) dxdy (10.17)
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Figure 10.1: Heatmap representation of the initial wave function ψ(r, t = 0) corresponding
to a two-dimensional Gaussian of width σ = 0.2 centered at the origin.

In order to remove a possible dependence on the initial condition, we compute a large number
of time evolutions, each one with an initial state wave function centered on a random position
of the box. Then, we calculate the average mean-square displacement of each time iteration,
for different iterations of the fractal shaped external potential, to compare the diffusion of
a particle exposed to these different potentials.

The MSD of a free Gaussian wave packet should follow a ballistic expansion [12] described
by the following equation:

〈x2〉 =
σ2

2

[
1 +

(
~t
mσ2

)2
]

(10.18)

Indeed, we verify that the ballistic expansion explains the time evolution of MSD as shown
in Figure 10.2 only for small time values, as for greater t values the borders of the box and
of the fractal cause a rebound effect. The distance from the center to the border of the box,
which is (L/2)2, is represented by a dashed line. It is interesting to see that this rebound
effect is perceived when MSD has not reached the box border, as opposed to a classical
mechanics system, where the effect of the border is only present when it is reached.

Brownian motion of a particle [13], in which its position is randomly changed, in a free space
leads to a linear time dependence of the MSD,

〈x2(t)〉 ∝ t, (10.19)

and can be seen as a direct consequence of the central limit theorem. The linear rela-
tion (10.19) is known as the Einstein’s diffusion relation. It was found in Ref. [14] that a
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Figure 10.2: Average MSD averaged over 300 initial positions distributed randomly in the
box with no external potential and with zero boundary conditions. Blue solid line, averaged
data. Orange dashed line, ballistic expansion. Blue dashed line, distance of the border of
the box from the center (L/2)2.

diffusion in a discrete Sierpinski carpet (particle hops between squares of the minimal size)
does not follow the usual Einstein’s relation, 〈x2(t)〉 ∝ t, but it rather follows an anomalous
diffusion law[15],

〈x2(t)〉 ∝ tγ , (10.20)

where 0 < γ < 1 is the diffusion exponent.

In Figure 10.3 we report the MSD for different iterations of the fractal. For small time
values, the MSD increases ballistically, similarly to an expansion of a free particle. The
diffusion gets slowed down as the particle diffuses to distances comparable to the smallest
size of the detail of the fractal, which is equal L/9i being i the iteration of the fractal.

When the particle gets closer to the fractal edge, it results in a similar effect as that produced
by the border of the box, as shown in Figure 10.2, and starts following a diffusion law as
seen in equation (10.20). This exponent γ decreases when we increase the iteration.

Another feature which can be observed in Figure 10.3 is that, around t = 0.08, the wave
function bounces off the edges of the box and starts going back to the middle, and this leads
to a decreasing MSD value.
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Figure 10.3: Average MSD averaged over 300 initial positions distributed randomly in a
box with zero boundary conditions in presence of different external potentials. Solid lines,
averaged data obtained for different iterations of Sierpinski carpet. Dashed line, ballistic
expansion.
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Chapter 11

Conclusions

This thesis studies properties of a quantum particle in a fractal external potential. The
work is of a manifestly interdisciplinary nature, as it combines vastly different fields such as
quantum mechanics, mathematics of fractals and numerical methods.

We have developed and implemented a number of efficient codes capable of obtaining sta-
tionary states and predicting dynamic evolution of a quantum particle in a box with zero
or periodic boundary conditions. The external potential can be of any desired shape, and
we mostly have studied the external field in a shape of a Sierpinski carpet fractal.

The first code allows calculation of the stationary properties of a quantum particle in Sier-
pinski carpet fractal. In particular, it allows to find the energy in the ground state as well
as in excited states of the particle. In addition, it provides information on the spatial prop-
erties of the system, such as wave functions and density profiles for the ground and excited
states.

The second algorithm that we implemented allows us to predict the time evolution of a
particle with arbitrary initial conditions. In particular, we have considered a Gaussian
initial profile for the particle. In order to obtain the time evolution, we expand the initial
wave function onto the basis formed from the eigenfunctions of the Hamiltonian and obtain
the solution to the Schrödinger equation.

These two programs permit one to simulate the behavior of a quantum particle in a box
system and to compute from it any energetic and spatial property one might be interested
in. That is what allowed us to carry on a study analyzing the effects of applying this fractal
shaped external potential to a certain quantum system.

One of our main findings is that the ground state energy of the system grows exponentially
when increasing the iteration of the fractal.

Another important outcome of our static study is the analysis of the energy spectrum of this
system, and how it varies when increasing the iteration of the fractal. We also performed a
comparison between the spectrum of a system under the influence of a periodic potential,
a fractal potential and a system without an external potential. From this comparison, we
concluded that a system without external potential has a continuous spectrum in the limit
of large box size. The addition of an external periodic potential leads to formation of energy
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bands in the excitation spectrum (analogously to metals and solids). The bands become
continuous in the limit of large box size and are separated by gaps (i.e. for a certain range
of energies excitations are absent). The system with an external fractal potential falls in
between of these two cases, as it maintains the band structure, but the separation between
bands decreases as the system size is increased.

From our dynamic properties’ analysis, we could verify how the time evolution of a free
Gaussian wave packet follows a ballistic expansion for small times, and visualized the effect of
the boundary conditions. We also saw the diffusive behavior of the mean square displacement
of a particle on a fractal shaped external potential, and how it became more and more
diffusive when increasing the iteration of the fractal.

It might be noted that an efficient code is needed in order to make it feasible to address the
considered problem. We could obtain this data thanks to the study of the best algorithm for
computing the smallest eigenvalue of a matrix, as we computed it for matrices containing up
to 43.046.721× 43.046.721 = 1.8 · 1015 elements. Note that a mere storing of all elements of
double type would require ≈ 15 petabytes of memory. Without the use of optimized sparse
matrix routines, the present calculation would not be possible.

Overall, we have achieved the initial objectives, which were the implementation of a program
to solve numerically the Schrödinger equation, and the study of the properties of a certain
quantum system, while relating them to the iteration of the fractal.

Furthermore, these programs can be fine-tuned to perform experiments with different shapes
of external potential, different initial conditions or even a different quantum system, allowing
all kinds of studies and experiments to emerge from this work.

Predictions obtained in this Thesis are relevant to current experiments with ultracold atoms.
Essentially arbitrary external field can be generated in experiment and two-dimensional
geometry is readily available. In particular, the group studying 2D gases at LENS in Florence
can be interested in an experimental study of the present system.
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