

ANALYSIS OF ASYNCHRONOUS ROUTERS FOR

NETWORK-ON-CHIP APPLICATIONS

A Bachelor’s Thesis
Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya
by

Roshni Maniraj

In partial fulfilment
of the requirements for the degree of

BACHELOR IN ELECTRONICS AND COMMUNICATION
ENGINEERING

Advisor: Dr. Sergi Abadal
Barcelona, July 2019

Title of the thesis: Analysis for Asynchronous Routers for
Network-on-Chip Applications

Author: Roshni Maniraj

Advisor: Dr Sergi Abadal

Abstract

The asynchronous circuit design has been conventionally regarded as a valid
alternative to synchronous logic due to its potential for low consumption of
resources, power and delay. This includes areas such as the communication
infrastructure of modern multi-core processors, the so-called Network-on-Chip
(NoC) paradigm on which this thesis focuses on. In recent times, the transistor
downscaling and the increasing clock frequencies have pushed synchronous
design to high static power and delay. As a result, the interest for asynchronous
integrated routers and links has re-emerged, especially in fields with ultra-low
power requirements such as embedded systems. In this thesis, we construct an
asynchronous router using Verilog code based on architectures found in the
literature. We analyze the functionality of each of the building blocks and verify the
operation of the implemented routing algorithm and an arbitration mechanism. In
the future, the results obtained here are expected to enable a complete
implementation of the router in Verilog and its posterior analysis of its scalability.

1

Acknowledgements

I would like to express my sincere gratitude to Dr Sergi Abadal who through the
entire course of the project was extremely patient and helpful. His guidance was
the most valuable and this project’s success is all thanks to him.

I would also like to thank Amrita University to give me this opportunity to
participate in the student abroad program that gave me a chance to take this
project up.

I would like to thank UPC, ETSETB for hosting me and allowing me to do my
bachelor thesis in their esteemed institution

Last but not least I would like to acknowledge and thank my family and their
efforts. Their constant love and support was the reason I was able to do all this.

2

Revision history and approval record

Revision Date Purpose

0 27/06/2019 Document creation

1 03/07/2019 Document revision

2 04/07/2019 Final version

Written by: Roshni Maniraj Reviewed and approved by:

Date 04/07/2019 Date 05/07/2019

Name Roshni Maniraj Name Dr Sergi Abadal

Position Project Author Position Project Supervisor

3

Table of contents

Abstract 1

Acknowledgements 2

Revision history and approval record 3

Table of contents 4

List of Figures 5

List of Tables 6

1. Introduction 7

1.1. Requirements and Specification 8

1.2. Statement of Purpose(Objective) 9

1.3 Methods and Procedures 9

1.4 Work Plan 10

1.5 Deviations from the initial plan 10

2. Background 11

3. State of the art of the technology used or applied in this thesis 19

4. Methodology / project development 20

5. Architecture 21

5.1. Networks 21

5.2. Links and Handshaking 22

5.3. Router microarchitecture 26

6. Results 31

7. Budget 36

8. Conclusions and future development 37

Bibliography 38

Appendices 41

4

List of Figures

Figure 1: Gantt Chart 10

Figure 2: Synchronous Communication 11

Figure 3: Asynchronous Communication 13

Figure 4: Flowchart illustration the working on Verilog 21

Figure 5: Network Architecture 23

Figure 6: 4-Phase HandShaking Protocol 25

Figure 7: 2-Phase Handshaking Protocol 25

Figure 8: Dual Rail Encoding 26

Figure 9: Single Rail Encoding 27

Figure 10: The Router Architecture 28

Figure 11: CBIN Architecture 30

Figure 12: CBOUT Architecture 31

Figure 13: Results: 2phase handshaking 32

Figure 14: Results: 4phase handshaking 32

Figure 15: Results: IC waveforms 33

Figure 16: Results: CBIN waveform 33

Figure 17: Results: CBOUT waveforms 34

5

List of Tables

Table 1: Latency values of synchronous and asynchronous routers
9

Table 2: Performance and Cost numbers of an Asynchronous router
 compared to synchronous routers 20

Table 3: Budget Calculations 36

6

1. Introduction

Asynchronous logic design has been around for quite a while and is considered a
good alternative to its synchronous counterpart. This is because of its ability to
perform tasks without the need for a global common clock. Asynchronous logic
only consumes dynamic power when the value of signals change, which is
opposed to the behaviour of synchronous logic that consumes power in each
clock tick. Therefore, asynchronous logic lowers the use of system power and
latency, leading to higher performance and efficiency. As the size of the transistor
reduces and the number of transistors on the chip increase in accordance with
Moore’s law, the degradation of the synchronous design is evident with shot
noise, charge sharing, thermal effects, supply voltage noise and process
variations all making these advantages even more appealing.

The synchronous design always calculates the worst case values whereas the
asynchronous designs provide us with the average values. This proves to be very
helpful at 90nm technology and below. The asynchronous designs also take less
area on the chip due to the absence of the bulky clock design which is an integral
part of the synchronous design [1].

A particular area where the asynchronous design shines is Network-on-Chip
(NoC). NoC has become the new normal for structured on-chip communication for
low powered embedded chips as well as high-powered multiprocessors. It is
slowly replacing traditional bus-based communication with packet switching
integrated networks [21].

As technology advances, the limits of on-chip transistors are pushed, integrating
up to a thousand cores on the same chip, making the design extremely energy
limited. Thus the need for energy efficient designs. Also, the demands of the
market for super fast and efficient communication leads us to asynchronous
systems [23].

GALS network or globally asynchronous locally synchronous networks is a hybrid
of synchronous components in asynchronous design. The synchronous
components include the cores, memory units, accelerators, I/O units etc. GALS
allows us to use the best of both designs. The elimination of global clock provides
highly scalable, low power robust mechanism which proves useful for assembling
complex systems [1,14].

7

1.1 Requirements and Specifications:
Asynchronous designs are claimed to be better than synchronous design in terms
of cell area, latency and power. In this thesis, an asynchronous router is built
using the structure from [1].

The goal is to have routers and links that can be integrated into many-core
processors. Let us assume that a complete 100-core processor is implemented in
a die of dimensions 20x20 mm2, that are the usual values. Moreover, let us
assume that the power consumption is 120 W, at maximum. Assuming equal area
and power budget for the processing elements, the memory, and the network,
then the network must occupy less than 133 mm2 and use less than 40 W. In a
100-core case, assuming that each core contains a router, the calculations above
lead to approximately 1.33 mm2 and 400 mW per router as the crucial
requirements for our design.

A simple and widely used NoC architecture is assumed. The network topology of
the router is a 2D mesh with wormhole flow control. The routers have no virtual
channels. The routing algorithm used is dimension-order (XY) routing where first
the X moves are performed then the Y moves. The destination address is kept in
the head flit payload. For all this, the router needs to have five ports (north, south,
east, west, and local) and we confirm that each router is attached to a core.

From Imai et al [1] the comparison is done between synchronous routers with and
without clock gating optimization and asynchronous routers linear and circular
FIFO. This is done with two types of architectures i.e 1mm and 2mm routing.

Cell area comparison: we see that the area taken by asynchronous linear FIFO is
less than the one with circular FIFO. The cell area of a synchronous router without
clock gating optimization is 1.44 times an asynchronous linear FIFO and almost
the same as circular FIFO router. On the other hand without the clock gating
optimization shows us the cell area is 1.80 times that of linear FIFO router and
1.25 times the circular FIFO router. This is very helpful in proving that the
asynchronous router takes less area in a circuit design. Similar results were
observed with 2mm routing. From [1] the values of cell area of an asynchronous
routers for are 675272 μm2(linear) and 976179 μm2(circular) for 1mm routing.

Latency comparison: the latency from the input port to the output port for a
synchronous router and average latency for asynchronous router is listed. The
values in table 2 illustrate the values showing a significant reduction in latencies of
the circular FIFO routers when compared to the synchronous routers. The latency
values of the asynchronous linear FIFO and synchronous router with clock gating
optimization are comparable for 1mm place and route.

8

 Synchronous
no clk gt

Synchronous
with clk gt

Asynchronous
linear FIFO

Asynchronous
circular FIFO

1mm place
and route

4.74 ns 4.86 ns 4.84 ns 4.22 ns

2mm place
and route

5.48 ns 6.74 ns 5.13 ns 4.43 ns

Table 2: Latency values for synchronous and asynchronous routers from Imai et al [1]

Power Consumption: The comparison is done in three scenarios (i) zero load
situation (ii) low packet injection and (iii) high packet injection. In the zero load
situation, we observe that asynchronous router have almost no power
consumption and the synchronous router consumes 211mW of power in 1mm
place and route and 178.2mW power in 2mm place and route. During the high
packet injection, the values of the routers are almost the same because they
saturate. With these results in [1], we decided to implement their design of the
asynchronous router.

1.2 Statement of purpose (Objective):
The main objective of this thesis is to construct an asynchronous router using
Verilog code based on architectures found in the literature that comply with the
specifications set above. We have confirmed that the design from [1] fulfils the
specifications and we choose to implement it (the area is 0.97617mm2 meeting
our requirement of 1.33mm2; and the power is approximately 100 mW at 20 mHz
of packet injection rate, meeting our requirement of 400 mW). Moreover, the
technology used in [1] is relatively old (130nm CMOS) and therefore the
specifications can be even improved. We aim to analyze the functionality of each
of the building blocks and verify the operation of the implemented routing
algorithm and an arbitration mechanism. It is also our aim to build the router using
Verilog and open-source EDA tools as much as possible. In the future, the results
obtained here are expected to enable a complete implementation of the router in
Verilog and its posterior analysis of its scalability.

9

1.3 Methods and procedures:
The code for the router modules was written in Verilog HDL. The applications
used were all open source. Notepad++ was used to type the code out, iVerilog
was used to compile the code and GTKWave was used to view the waveform.
The router architecture is provided by [1].

1.4 Work plan:

Figure 1: Gantt Chart

The Gantt chart displays the timeline of the project. The project started of
literature survey for the first month from 18th February till 20th March. In that time
we decided to focus on the asynchronous router architecture mentioned in Imai et
al [1] and replicate that on Verilog. The month of April was dedicated to working
on the handshaking protocols. After the execution of 2 and 4 phase protocol on
Verilog, we started working on the different modules of the asynchronous router.
This took two months to do. We worked on the code until the end of June. From
24th June to the 5th of July

1.5 Deviations from the initial plan:
In the beginning, during the project planning, we decided to build the complete
asynchronous router and make it work as a standalone unit. Then chart its area
power and latency using available CAD tools. We had to narrow the scope at the
midterm status update because the time was too tight to implement each
component of the asynchronous router. We underestimated the time required to

10

successfully interconnect the different modules and work them as a standalone
unit.

2. Background
2.1 Synchronous logic design

2.1.1 Synchronous designs: What are synchronous designs

Commercial digital systems usually use Synchronous design because of its
simplicity and stability. The communicating systems in a synchronous design
usually operate with a global clock. All the computations follow the clock for timing
in the system, this greatly simplifies the computations. All input and output signals
and internal nodes are stabilized in the high or low state on the active edge of the
clock. Between the fall and rise of the clock, the signals and nodes are allowed to
change and may take any intermediate state. The behaviour of a synchronous
network is predictable and is programmed not to fail due to hazards or glitches
introduced by irregularities of the real circuit.

Figure 2: Synchronous Communication

2.1.2 Synchronous designs: Their challenges.

The global clock mechanism simplifies the circuit design, but it also has its own
share of challenges. For these circuits to perform correctly, a great deal of care is
needed in the design of the clock distribution networks. Static timing analysis is
most often used to decide upon the maximum safe operating speed. Moreover,
the clock distribution network can consume a significant amount of power in
manycore NoCs [23].

Synchronous systems often slow down their circuits to accommodate the clock
skew. As the feature constantly reduces in size, clock skew becomes a topic of
greater concern.

Standard synchronous circuits have to toggle clock lines, and possibly pre-charge
and discharge signals, in portions of a circuit unused in the current computation.

11

For example, even though a floating point unit on a processor might not be used
in a given instruction stream, the unit must still be operated by the clock.

Synchronous circuits yield worst-case performance because they must wait until
all possible computations in the module have completed before latching the
results.

In systems such as a synchronous microprocessor, the system clock, and system
performance is dictated by the slowest (critical) path. This affects the system
performance because it has to slow down and wait thus consuming more power
and increasing the latency of the system.

Integrated circuits will often be implemented in several different technologies
during their lifetime. Early systems may be implemented with gate arrays, while
the later may migrate to semi-custom or custom ICs. Better performance for
synchronous systems can often only be achieved by migrating all system
components to a new technology since the overall system performance is based
on its longest path. The delay through a circuit fluctuates with changes in
fabrication, power-supply voltage and temperature variations. Synchronous
circuits always assume the worst case of factors and clock the system
accordingly.

Synchronous circuits require all its elements to exhibit bounded response time.
There are some chances that mutual exclusion circuits will fail in a synchronous
system.

2.2 Asynchronous logic design

2.2.1 Asynchronous designs: What are asynchronous
designs

Asynchronous designs are clock-less systems where the different modules do not
synchronise its computations according to a single global clock. Asynchronous
systems do not depend on strict arrival times of signals or messages for reliable
operation. As a result, the different processing elements in the system are free to
operate at different speeds. In an asynchronous design, the elements
communicate with each other using local handshaking techniques, resulting in
systems being faster and power efficient. That’s why asynchronous designs are
so alluring to researchers, but with the changes in technology we are faced with
its own set of challenges.

12

Figure 3: Asynchronous Communication

2.2.2 Asynchronous Designs: History

Asynchronous design is not a new technology, it has been around for a long time.
Around the 1950s to the early 1970s, the early years for the asynchronous design
included the development of the classical theory (Huffman, Unger, McCluskey,
Muller), and the commercial use of asynchronous processors. The middle years,
from the mid-1970s to early 1980s, was a time of reduced activity, corresponding
to the advent of the synchronous VLSI era. The mid-1980s to late 1990s was
when the asynchronous designs were coming back with the beginning of modern
methodologies for the asynchronous controller and pipeline design, initial
computer-aided design tools and optimization techniques. This includes the first
academic microprocessors (Caltech, University of Manchester, Tokyo Institute of
Technology), low-power commercial products (Philips Semiconductors) and
high-performance interconnection networks (Myricom). From the 2000s to the
present deemed as the modern era that includes modernization of design
approaches, CAD tool development and systematic optimization techniques,
migration into on-chip interconnection networks, several large-scale
demonstrations of cost benefits, industrial uptake at leading companies (IBM,
Intel) as well as startups, and application to emerging technologies (sub-/near
threshold circuits, sensor networks, energy harvesting, cellular automata) [6].

2.2.3 Asynchronous designs: How they help to solve the
challenges of synchronous designs

The synchronous design is a system powered by a global clock which makes the
system stable. The challenges of the synchronous designs as listed above are
tackled by the asynchronous clock-less designs.

13

The reason for lower power consumption by the asynchronous designs compared
to its synchronous counterpart is due to the absence of a global clock. Although
asynchronous circuits often require more transitions on the computation path than
synchronous circuits, they generally have transitions only in areas involved in the
current computation.

The average-case is taken into account, unlike the synchronous designs which
take the worst–case performance. Many asynchronous systems sense when the
computation has completed, allowing them to exhibit average-case performance.
For circuits such as ripple-carry adders where the worst-case delay is significantly
worse than the average-case delay, this can result in substantial savings.

Since many asynchronous systems operate at the speed of the circuit path
currently in operation, rarely used portions of the circuit can be left un-optimized
without adversely affecting system performance thus easing the global timing
issues [27].

In most of the asynchronous systems, because performance is dependent on only
the currently active path migration of only the most critical system components
can improve system performance on an average. Also, since many asynchronous
systems sense computation completion, components with different delays may
often be substituted into a system without altering other elements or structures.

Asynchronous systems can wait for an arbitrary amount of time for an element in
the system to complete, allowing robust mutual exclusion. Also, since there is no
clock with which signals have to be synchronized, asynchronous circuits better
accommodate inputs from the outside world, which are by nature asynchronous.

2.2.4 Asynchronous designs: Commercial applications and
Industrial Experiments

Philips Semiconductors (now NXP) used asynchronous microcontroller 805C1
initially as a pager chipset to lower the electromagnetic noise emission so that it
could operate with Radio Frequency (RF) data without the use of shielding. This
resulted in eliminating the need for a fixed function circuit and encoded the RF
data in software. This also showed a significant decrease in power usage. Later
this microcontroller started being used in smart cards for public transport. Now the
new improved microcontroller (SmartMX) is used in biometric systems and ID’s in
more than 75 countries including the European Union and the United States [14].

Intel acquired Fulcrum Microsystems, a startup working on asynchronous
high-speed networking chips. Intel’s FM5000/FM6000 are a family of switch chips

14

which support the 40 gigabit Ethernet that includes a fully asynchronous
high-speed crossbar switch which provides low latency, high energy efficiency
and bandwidth, flexible link topologies support. The high speed is achieved by
fine-grain asynchronous pipelining at individual stages. When operated at a below
peak throughput they are highly energy- efficient [3,14].

Achronix semiconductor’s Speedster 22i is a family of FPGAs that can operate at
a speed of 1.5GHz. They claim to be the world’s fastest FPGA yet cost a lot less
than their synchronous counterparts in terms of operating energy and design.
They achieve such fast operation by asynchronous fine-grain bit-level pipelines
hence overcoming the need for global synchronization [3].

Several industrial experiments with asynchronous design have been done
successfully, but never implemented commercially such as Intel RAPPID and IBM
FIR Filter. There are multiple areas of application for an asynchronous design still
being researched like large scale heterogeneous system integration, energy
harvesting and Ultra-low-energy systems, handling the extreme environment and
alternate computing approaches. There is a lot of effort being put into
asynchronous and mixed synchronous-asynchronous systems like “GALS
system” and “Networks-on-Chip”. The emerging current technologies such as
nano-arrays and nano-magnetics, with highly robust asynchronous designs, prove
to be vital to improve the timing irregularities [3,14].

2.2.5 Asynchronous Design: Links and Handshaking
The communication channel of an asynchronous router involves a request (req)
wire and an acknowledge (ack) wire. The req wire shows us when the data sent
by the sender is valid, and the ack wire indicates that the receiver successfully
received the data. The two most common handshaking protocols used for the
communication channel. The first is a 4-phase (return-to-zero (RZ) protocol), and
the second is a 2-phase (non-return-to zero (NRZ) protocol) [3]. Section 5.2
provides more details on the different signalling mechanisms and encoding.

2.2.6 Asynchronous Design: Challenges of Asynchronous
Design
There has been a large amount of work in addressing various challenges of
asynchronous design since the asynchronous circuits are much more difficult to
design than synchronous circuits.

In a synchronous system, a designer has to merely outline the combinational logic
necessary to compute the given function and surround it with latches. By setting

15

the clock rate for a longer period, all worries about hazards and the dynamic state
of the circuit are removed. On the contrary, designers of asynchronous systems
must focus on the dynamic state of the circuit. To avoid incorrect results, hazards
must also be physically removed from the circuit, or not introduced in the first
place. The order of operations, which was fixed by the placement of latches in a
synchronous system, must be ensured by the designer of the asynchronous
control logic. For the present ultra-complex systems, these issues become
extremely difficult to handle manually.

Asynchronous circuits, unfortunately, cannot use the existing CAD tools that are
specially designed to be used for the synthesis of synchronous circuits. For
example, some asynchronous methodologies allow only algebraic manipulations
(associative, commutative, and De-Morgan's Law) for logic decomposition.
Placement, routing, partitioning, logic synthesis, and most other CAD tools either
need modifications for designing asynchronous circuits, or they are not applicable
at all.

The comparison between asynchronous and synchronous circuits started off with
the claim that asynchronous have faster computation speed compared to
synchronous systems, but this hasn’t been proven yet. Asynchronous circuits
generally require extra time due to their signalling policies, thus increasing the
average-case delay.

Testing of asynchronous circuits faces challenges compared to synchronous
designs. A typical testing procedure for synchronous designs is called
single-stepped approach which involves pausing or slowing down the system, and
checking the internal states. However, this testing approach is not possible for
asynchronous designs due to the absence of a global clock. The testing tools for
asynchronous designs should not only check for functional correctness, it should
also check for hazards, which adds to the complications.

2.3 Network-on-Chip (NoC)

2.3.1 NoC: What are NoCs
Network-on-Chip is a network-based communications subsystem on an integrated
circuit, most typically between modules in a system on a chip (SoC)[6]. The
modules on the IC are typically semiconductor IP cores schematizing various
functions of the computer system and are designed to be modular in the sense of
network science.

NoC technology applies the theory and methods of computer networking to
on-chip communication and contributes to improvements over conventional bus
and crossbar communication architectures. Networks-on-chip improves the

16

https://en.wikipedia.org/wiki/Network_theory
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/IP_core
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Communication
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Crossbar_switch

scalability of systems-on-chip and the power efficiency of complex SoCs. A very
common NoC used in contemporary personal computers is a graphics processing
unit (GPU), which is used in computer graphics, video gaming and accelerating
artificial intelligence.

Over the span of the last decade, Networks-on-Chip (NoCs) have become the
standard approach for a structured on-chip communication, for low-power
embedded systems as well as high-performance chip multi-processors.

These on-chip networks typically replace traditional bus-based communication
with packet switching and can be targeted to a variety of cost functions
(fault-tolerance, power, latency, saturation throughput, quality-of-service [QoS])
and parameters (network topology, channel width, routing strategies).

2.3.2 NoC: Motivation behind using an NoC.
On-chip interconnects have become the limiting factor to achieve high
performance and low power for the current multi-core technology mainly due to
two reasons: (i) the system cores operate at different clock frequencies, thus the
need for reliable and efficient interconnects is crucial to maintain error-free
interactions between the different timing domains (ii) technology scaling has made
computational elements and memories faster and more energy efficient, but the
interconnects used to have the same performance and power, and not been
changed with the change in technology. These issues prove the need for NoCs in
the current technology standpoint.

NoC provides a distributed communication infrastructure, consisting of switches
and channels. Each processing element is connected to the switch through a
network interface, and the switches are in turn connected to each other using
channels or links. The switches and channels are organized in a fixed structure
called a topology, which can be of different types, e.g. mesh, ring, etc

2.3.3 NoC: Advantages of NoC
NoCs support modularity by separating communication from the computation.
They help in decreasing design efforts by facilitating design reuse thus allowing
faster testing and validation resulting in improvement in the overall design cycle.

NoCs allow sharing the communication infrastructure facilitating parallel and
distributed traffic flow. This leads to faster performance, without the need for extra
wiring resources for dedicated pathways, decreasing the area used and power
overheads.

17

https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Power_efficiency
https://en.wikipedia.org/wiki/PC_game

The bandwidth in traditional global buses is limited, which is shared by all the
attached units and suffers when the number of units increases. The bandwidth of
the NoC depends on the scaling of the network. NoCs have regular architectures,
with short wires that have controlled and predictable electrical properties, leading
to a more reliable operation compared to global long wires.

2.3.4 NoC: The advances of synchronous NoCs
The synchronous design is the most common style of NoC design. Since
synchronous NoCs have been around from the early 2000s, there have been
significant advances have been made in this area.

Many different topologies have been proposed and used in the NoCs. The most
common of the topologies are Mesh, Ring, Torus and Trees. For
high-performance computing, high radix topologies such as Dragon-fly is
proposed.

Routing Algorithms for NoCs are divided into two categories:(i) deterministic
routing: where the path is fixed for the packet (ii) adaptive routing: where the best
path is dynamically selected depending on the congestion in the network.

Many power and performance optimizations have been introduced in the NoCs.
To minimize power, router techniques such as dynamic voltage and frequency
scaling (DVFS) have been used. To improve performance, optimization
techniques such as speculation [20], prediction [21] and bypassing or lookahead
[22] have been used within routers [3].

Several approaches have been proposed to support patterns involving multicast
and aggregation while simultaneously achieving high performance with low
overheads. There has also been significant research to support communication
patterns common in parallel computing applications, such as cache coherency,
and emerging areas of deep neural network architectures.

2.3.5 NoC: Advances in asynchronous NoC design
The NoC approach separates the communication infrastructure and timing, from
its processing elements, it seems like a natural match with the asynchronous
paradigm. Asynchronous interconnect eliminates the need for global clock
management across a large network structure. Power and performance benefits
of asynchronous NoCs have been demonstrated for high-performance
shared-memory chip multi-processors [11] and Ethernet switch chips [12] as well
as their facilitation of extreme fine-grain power management and flexible
integration of many-core GALS architectures. The end-to-end latency benefits of
asynchronous NoCs over synchronous NoCs have also been demonstrated

18

[8,9,11,12] due to the low forward latency of individual asynchronous router
nodes, and the ability of packets to advance without a clock. As a recent example,
an asynchronous NoC switch architecture [9] using single-rail bundled data and
two-phase communication, obtained a significant reduction in average
energy-per-packet and area compared to a highly-optimized synchronous
single-cycle NoC switch in the same 40nm technology.

19

3. State of the art

Multiple research challenges for asynchronous NoCs have been targeted. To
achieve the quality of service (QoS), asynchronous NoCs have been proposed
that provide guaranteed service and multiple levels of services, in addition to best
effort traffic. There has been important research on improving fault-tolerance and
reliability of asynchronous NoCs with some works focusing on developing efficient
asynchronous NoCs that mitigate the effects of process variation [3].

Earliest established works on asynchronous routing for NoC dates back to the
mid-2000s[16]. Since then, improvements in this field have constantly been made
allowing designs of asynchronous routers with functionalities similar to their
sophisticated synchronous counterparts. For instance, Horak et al. set the
foundation for two-phase, single-rail bundled-data routers with wormhole routing
capabilities and evaluated the critical components separately [17]. After that,
Jiang et al. proposed and evaluated a router with virtual channel capabilities,
which are achieved by a replication of the internal switch rather than the input
buffers [18].

Numerous researchers have implemented and made a comparison between their
asynchronous router design with existing equivalent synchronous alternatives.
Table 1 summarizes their main characteristics and the results of the cost and
performance comparison that includes area, power, throughput and latency.

The four analyzed works evaluate place-and-routed designs at very different
technology points, namely, from 14nm to 130nm, yet the results are consistent
throughout. Comparing the costs, asynchronous routers are much more
lightweight than the synchronous ones. Cell area is reduced due to the simplicity
of the router architecture and the use of latches instead of flip-flops in all the
buffers, whereas lower power usage is due to the virtual lack of static power
consumed by the clock.

Reference Technology Design Latency Throughput Area Power

[83] 65 nm 4P, BD, 3 ports, 1 VC -5% N/A -80% -44%

[1] 130 nm 2P, BD, 5 ports, 1 VC -12% -20% -45% -24%

[82] 14 nm 2P, BD, 5-7 ports, 2-8
VC

-28% N/A -55% -58%

[9] 40 nm 2P, BD, 5 ports, 1 VC -10% Similar -71% -45%

20

Table 2: Asynchronous on-chip routers in the literature. Performance and cost numbers
are compared to synchronous counterparts. 2P and 4P mean 2-phase and 4-phase

handshaking. BD means bundled-data

4. Methodology/Project Development

For building an asynchronous router, I used simple Verilog code. The compiler is
an open-source software called iVerilog and the code was written on Notepad++.
The waveforms for the output were generated on Gtkwave which is also an open
source software.

Verilog is a hardware description language used to model electronic systems. It
supports design, testing and implementation of digital and mixed-signal circuits at
different levels of abstraction. It is similar to C programming with a few crucial
differences such as timing and hierarchical execution of models.

The code is typed out on Notepad++ which is a free open-source code editor. It is
a notepad replacement and supports several languages. Notepad++ 's build
ensures a higher execution speed and compact program size [25].

Iverilog or Icarus Verilog is an open source Verilog simulation and synthesis tool
that operates as a compiler that compiles the Verilog code into some target
format. For synthesis, the compiler generates the netlists as desired [24].

GTKWave is an open source fully featured GTK+ based wave viewer which reads
standard Verilog .vcd/.evcd files and allows viewing the waves [26].

The Verilog code is written on Notepad++ and then the file is saved as a “.vl” file,
recognized by the iverilog compiler. Once the file is saved in the iverilog folder,
shift-right-click and choose “Windows PowerShell”. Instruction “iverilog -o filename
filename.vl is given to compile the code in the given file. If there are errors/ bugs
in the code, they are listed in the window alongside the line which has the error
which makes debugging easier. If there are no errors then “vvp filename” is used
to give the output for the given code.

If the output of the code is in waveforms then the file has the following code:

“$dumpfile(“filename.vcd”);”
“$dumpvars;”

The above line of code creates a .vcd file which is the GTKWave format to view
the output waveforms. If we want to view the output of the code in text form and
not waveform then the following code is used

“$monitor($time,” parameters = %b”, parameters);”

21

“#time $finish;”

Figure 4: Flowchart of executing Verilog code and observing the outputs

22

5. Architecture:

5.1 Network

The NoC is made up of Routers, network interface (NI), IPs and links.

These are the main elements of NoC architecture. For the same example, let us
assume that the components are connected in (4×4) Mesh topology shown in
Figure 2. The most important features of NoC architecture are routing algorithm,
network topology, and switching techniques. As for the network itself; the router is
the most important element in SoC based on NoC architecture. Network
Interfaces connect the IP cores to the on-chip router network. Network Interface in
an NoC is the medium between the computational part and communication
infrastructure. Network Interfaces exchange the data generated by the IP blocks
into data packets and place extra routing information based on the underlying
NoC network.

Mesh network topology consists of n rows and m columns. Each router in a mesh
topology is connected to the adjacent router through the interconnection of wires.
This is the simplest topology to implement. The faults and can easily be detected
and the faulty nodes can be avoided while routing the packets to its destination.

Figure 5: Network Architecture - Mesh Topology

23

The following paragraphs describe the asynchronous links and Handshaking
protocols adopted by the asynchronous router. The router architecture is
discussed and the router modules are dealt with in great detail.

5.2 Links and Handshaking

Asynchronous circuits rely on a certain request-acknowledgement-data
transmission strategy since it cannot assume the availability of a channel
beforehand. Asynchronous schemes greatly depend on well-constructed
handshaking protocols and designs [14].

Handshaking circuits can be modelled using popular CAD tools such as Cadence
suits. The handshaking protocol can easily be defined by simple VHDL/Verilog
code and then the delay and cost overheads can be obtained by instantiating the
code in a circuit simulator environment. For high-level behavioural models, tools
such as DSENT can be used.

Setting up a link:

The asynchronous design employs two types of handshaking protocols (i)
two-phase protocol (ii) four-phase protocol. Both of these protocols require a
request for transmission (req) and acknowledging the request(ack). The
handshaking protocol is repeated for every flit of the transmission.

The 4 phase protocol or return-to-zero (RZ), the req and ack signal start at 0. The
transmitter sends the data and sets the req signal to high. The receiver then
absorbs the data and sets the ack to high when done. When the transmitter sees
the ack signal, the req signal is set to 0 (when the data’s validity is no longer
guaranteed). The receiver then sets the ack to zero, thus returning to the initial
state. After this, a new connection can be formed for another cycle.

24

Figure 6: four-phase handshaking protocol

The 2-phase protocol or non-return-to-zero (NRZ) does not return to the initial
state. Both the transmitter and receiver leave the signals req and ack unchanged
after the transmission is completed. The signal for the next transmission is
toggling the req signal (0 to 1 or from 1 to 0) and waiting for the receiver to do the
same with the ack.

Figure 7: Two-phase Handshaking protocol

25

Data encoding and transmission:

Data transmission occurs after handshaking completes. There are two known
types of data encoding: dual rail or single-rail bundled encoding, both are
illustrated in Figures 8,9.

Dual rail encoding: Two wires are required per transmitted bit. Zero in both wires
indicate that no data is present, whereas if the first or second wire is high means
transmitting a ‘0’ or ‘1’. This transition serves as req signal and ack is sent using a
dedicated wire. Dual rail encoding improves the robustness to the different delays
that are found between the transmitter and the receiver. This robust nature is at
the cost of considerable area and power overhead (presence of two wires for
transmission). Efficient codes have been developed to reduce the cost [14].

Figure 8: Dual Rail encoding of data

Single rail bundled encoding: The data transmission resembles that of
synchronous systems. Req and ack have their own dedicated lines and each bit of
data is transported through a single wire. Whenever the request has been
acknowledged, data is transmitted through each data wire. Data should be stable
from the time before the req signal is received to after the ack bit is set. Also, the
delay of the req line has to be longer than any of the data ones.

26

Figure 9: Single Rail bundled data encoding

5.3 Router Micro-Architecture
Asynchronous and synchronous routers have a common principle of operation
and structure. However, within the router, the nature of communication between
the various components changes the design flow significantly that plays a major
role in the performance and cost.

Asynchronous routers:

1. since they are a clockless design, they require handshaking protocols to
transfer data.

2. require a different set of buffers and arbiters, as well as safe pipeline designs
to avoid glitches and other errors

3. since they use power only during data transfer, they would theoretically have
lower energy requirements

4. as data transitions do not occur exactly at the same instant marked by the
edge of the clock, they have much lower interferences caused by
electromagnetic emissions (this is especially useful in the metasurface
context)

5. because the stages do not have to adhere to the clock edges, it might result in
lower latency

27

Figure 7 shows the typical architecture of an asynchronous router. The router
consists of Input Channels (ICs), crossbar inputs (CBINs), and crossbar outputs
(CBOUTs). IC stores packets in an internal queue and passes them to the CBIN.
This communication happens using a handshake protocol with req/ack signals.
CBIN then performs the routing computation(RC) and accordingly sends a request
to the required CBOUT. The CBOUT has an asynchronous arbiter, which
performs switch arbitration by deciding which request to respond to. When data
comes from the granted CBIN, a muxer is driven to pass the data through the
CBOUT towards the link in a process that acts as switch traversal.

The steps mentioned confirm that the structural design of the routers is
conserved: both require buffer write (BW), route computation (RC), switch
arbitration (SA), and switch traversal (ST). This allows for a fair comparison
between synchronous and asynchronous designs. It is worth noting that the
unavailability of tools for asynchronous routers prevents from making a broad
design space exploration without an actual gate-level simulation of the router.

To achieve higher performance with lower power dissipation, the asynchronous
router is designed using the bundled data method with transition signalling
protocol.

Figure 10: The router architecture from Imai et al [1]

5.3.1 Input Channel (IC)
The IC gets the flit sent to its input port which it then puts into a queue. This
queue is just a simple asynchronous FIFO. Asynchronous FIFO is a FIFO design
where data is written to the buffer from one clock domain and the data values are
read from the same FIFO buffer from another clock domain, both these clocks are
asynchronous to each other.

28

In a synchronous FIFO design, the status of the FIFO (full or empty) is determined
by a count register. This increments and decrements on the same clock cycle.
This is not possible on an asynchronous system, therefore two different
asynchronous clock domains are used. An additional bit is used to detect the
status of the buffer in an asynchronous buffer. The full and empty is determined
by comparing the read and write pointers. The write pointer always points at the
next position that is to be written and the read pointer points at the current entry to
be read. When the FIFO is empty both the pointers point at zero which is also the
reset position. When the FIFO is full, all the bits except the MSB are equal. This
FIFO pointer convention contributes to the low access latency.

For simplifying the synchronisation of the pointers across the clock domains we
use Gray code. Gray code is the preferred method of encoding the pointers
because the Gray code changes by 1 bit each time. This eliminates the problem
of synchronizing the read and write pointers.

5.3.2 Crossbar Inputs (CBIN)

Figure 8 shows the crossbar input (CBIN) in detail. When the CBIN receives a
head flit from its IC, it goes to the RC Comp. block where it performs the routing
computation (RC) and sends a request (arb req) to the arbiter in the CBOUT
decided by the algorithm performed. The output is gated by an enable input en1,
which is obtained by delaying “head(idata)”, where the head(d) becomes 1 only
when signal d carries a head flit.

The XY routing algorithm is simple to implement and the most common routing
algorithm that is proposed by Wang Zhang and Ligang Hou used in NoC design
[5]. This routing technique comes under distributed deterministic routing algorithm.
The advantage of the XY routing is that it never runs into a deadlock or livelock.
The XY routing algorithm follows the shortest path and the only one determined
path for the packet. This algorithm is suitable for regular and irregular network
topologies.

“RC Comp. unit” has another enable input en2 that is activated only by valid head
flits. The value of en2 is defined by the value of ireq xor oack. The head flit should
be held in the CBIN until the grant “arb_grant” is given from the arbiter in the
CBOUT. This is done by gating the request signal ireq using a TR-gate, which is
implemented by a D-latch. When the grant is obtained, the TR-gate is opened by
the positive edge of the arb_done, and ireq d is forwarded to the corresponding
CBOUT through a TR-DEMUX which is a simple demux where the value of
arb_grant acts as its selection lines. The functionality of the control circuits in the
TR-gate is shown in the red box in Fig. 8. The data-path block is implemented

29

using normal D-latches. When an acknowledgement is sent from the CBOUT, it is
forwarded to the IC as oack. TR-MRG is just an exclusive-OR and is used to
merge transition signalling inputs that are the value of acknowledgement from the
CBOUTs. When oack of the head flit is asserted, the request (arb_req) to the
arbiter is released, but arb grant is kept by a latch in CBOUT. The following data
and tail flits are just passed from the IC to the CBOUT because the TR-gate is
kept open. When ireq_d of a tail flit is sent to the CBOUT through TR-DEMUX, the
TR-gate is closed at ire_d when the tail flit becomes 1, for the preparation of a
head flit of next packet [1].

Figure 11: From the literature, Imai et al[1].
The architecture of CBIN in an asynchronous Router

5.3.3 Crossbar Outputs (CBOUT)

CBOUT has a four-input asynchronous arbiter. The grant outputs of the arbiter are
latched by a LevelLT which are normal D Latches, and the latched grant outputs
arb_grant is sent back to CBINs. The CBOUT has a multiplexer (MUX) in the
data-path (its output is mdata) and arb_grant acts as the selection lines for it, i.e.,
the data from the CBIN that has a grant is selected. This forms a cross-bar.

The arbiter latch is initially open and is closed when a head flit arrives at mdata.
This is because arb_req is released after the head flit goes through as mentioned.
It is opened again for the next packet when the tail flit in mdata is acknowledged.
CBOUT also has one pipeline stage connected to the output port. The ireq signal
is obtained by merging the request signals from four CBINs using TR-MRG, and

30

its acknowledgement output is sent to the four CBINs through TR-DEMUX based
on arb grant [1].

Figure 12: CBOUT Architecture from Imai et al [1]

31

6. Results

This section lists the output waveforms of all the modules for the asynchronous
router and the two different types of handshaking protocols.

Figure 13: Results for the 2-phase handshaking

Figure 13 shows us the results of a module demonstrating 2 phase handshaking.
Rs is the request signal from the sender module and Rr shows the request signal
in the receiver module. Once the stimulus is given to the sender module, a
request Rs is generated and sent to the receiver module. When the receiver
module gets the request signal it generates the acknowledgement signal A. We
observe that this continues till another stimulus signal is given, at which these
signals reset to low and wait for the next stimulus to start another handshake. This
shows the non-return-to-zero protocol.

Figure 14: Results for 4-phase handshaking

Figure 14 illustrates the waveform of the code written for a 4-phase handshaking
protocol. Rout - represents the request signal from the sender. R is the signal that
is received by the receiver model after some time. A - the acknowledgement sent
by the receiver module to the sender. The request signal is sent by the sender
module after the stimulus. The handshaking is performed between the two

32

modules and then it waits for the next stimulus signal. This shows us the
return-to-zero protocol.

Figure 15: Results for the Input Channel - Asynchronous FIFO

Figure 15 shows the output waveforms of the signals in the Input channel. The
asynchronous FIFO has two clocks rclk and wclk that are auxiliary internal to the FIFO
asynchronous to each other. These clocks are for the write and read pointers in the FIFO.
wdata represents the input data to the FIFO memory. The rdata signal represents the
data to be read from the FIFO memory when it receives an ireq from the CBIN. The wfull
represents the signal which indicates that the FIFO memory is full and rempty represents
that it is empty. The wreq signal is a request signal for writing the data into memory.
While the wreq is high and the wfull is low, the data written in the memory.

Figure 16: Results for Crossbar input - CBIN of the Asynchronous Router

Initially, the CBIN receives a request from the IC. When the head flit arrives at the
RC Comp.unit, the module performs the routing algorithm that decides where the
data gets routed. The RC Comp. output is arb_req which is sent to the CBOUT.
The arb_grant signal from the CBOUT is used as selection lines by the
TRDEMUX and also used as arb_done in TRGATE. The TRDEMUX sends a req
signal to the CBOUT. The CBOUT reciprocates with an ack signal. This is
received by the TRMRG which sends an oack signal to the IC. The TRMRG gets

33

req signals from the CBINS and the output of this module is the input to the
mousetrap pipeline.

Figure 17: Results for the Crossbar output- CBOUT of the asynchronous Router

The CBOUT receives arb_req from CBIN to its 4 input arbiter. After the arbitration is done
the output is gated by a LevelLT module which sends the arb_grant signal to the CBIN.
Arb_grant is used as selection lines in the CBOUT module by the MUX and TRDEMUX.
The mousetrap pipeline has ireq, iack and mdata as inputs and sends the output as oack,
oreq and data_out to the other routers. The MUX gets data inputs (d1,d2,d3,d4) and the
arb_grant selects the output of the MUX.

34

7. Budget

 Time Taken Cost/Hr Total Cost

Freelance 4hrs/day x
5months
(working days)

€ 30/ person 95 days x 4 x 30
= € 11,400

Startup Company 4 hrs/day x
5months
 (working days)

€100(Research) 95 x 4 x 100
= € 38,000

 Technology Minimum Cost Maximum Cost

Fabricating the
Asynchronous
Design on a Chip

Advanced
Nanometer
technology
(<90nm)

€ 200k (non-
commercial
purpose)

€ 1mil
(commercial
Purposes)

Table 3: Table illustrating the budget for this project

The budget tabulated in Table 3 mentions cost incurred by a freelancer/student
working on this particular topic. Time put into this project to build the modules for
an asynchronous code is taken into account and the cost for it for 5 months is
calculated.

If a company was to take up this project and work on this code, the time for the
research is taken into account. The cost incurred by the company is calculated.
For the design to be built on a chip is calculated. Since the asynchronous design
is a technology that works under 90nm the cost of producing a chip for
non-commercial purposes come to around €200k and if a well-established
organisation were to build an asynchronous chip it would cost more than a million
euros.

35

8. Conclusions and future development

We have designed asynchronous Router modules, like the input Channel(IC),
Crossbar input(CBIN) and Crossbar output(CBOUT), to work as Standalone units.
Also designed programs illustrating the 2-phase and 4-phase handshaking
protocols. The routing algorithm used is a simple XY dimension routing algorithm.
The packets move in four direction-north, south, east and west. A one stage
mousetrap pipeline is used in the CBOUT.

Future Development: The different modules should be connected and made to
work as an Asynchronous Router. The area power and latency of this router can
be compared with the synchronous router using CAD tools. The asynchronous
router that we have constructed is a 4 port module, the scope is to construct
multiple port router and have a suitable routing computation algorithm. This will
give us a deeper insight into how the router performs compared to synchronous
routers.

36

Bibliography

[1] M. Imai, T. V. Chu, K. Kise and T. Yoneda, "The synchronous vs.
asynchronous NoC routers: an apple-to-apple comparison between synchronous
and transition signalling asynchronous designs," 2016 Tenth IEEE/ACM
International Symposium on Networks-on-Chip (NOCS), Nara, 2016, pp. 1-8.

[2] M. Krstic et al., “Globally asynchronous, locally synchronous circuits:
Overview and Outlook,” IEEE Des. Test, vol. 24, no. 5, pp. 430–441, 2007.

[3] Bhardwaj Kshitij.,” On Multicast in Asynchronous Networks-on-Chip:
Techniques, Architectures, and FPGA Implementation.” PhD Diss. Columbia
University, 2018

[4] R. Dobkin, R. Ginosar, and I. Cidon. QNoC asynchronous router with
dynamic virtual channel allocation. In International Symposium on
Networks-on-Chips (NOCS), page 218, 2007

[5] Wang Zhang, Ligang Hou, Jinhui Wang, Shuqin Geng, and Wuchen Wu.
Comparison research between xy and odd-even routing algorithm of a
2-dimension 3x3 mesh topology network-on-chip. In Intelligent Systems, 2009.
GCIS’09. WRI Global Congress on, volume 3, pages 329–333. IEEE, 2009.

[6] Benini, Luca, and Giovanni De Micheli. "Networks on chips: A new SoC
paradigm." computer 35.1 (2002): 70-78.

[7] Bohnenstiehl, Brent, et al. "KiloCore: A 32-nm 1000-processor
computational array." IEEE Journal of Solid-State Circuits 52.4 (2017): 891-902.

[8] Y. Thonnart, E. Beigne, and P. Vivet, “A Pseudo-synchronous
implementation flow for WCHB QDI asynchronous circuits,” in Proc. 18th IEEE Int.
Symp. ASYNC, 2012, pp. 73–80.

[9] A. Ghiribaldi, D. Bertozzi, and S. M. Nowick, “A transition signaling bundled
data NoC switch architecture for cost-effective GALS multicore systems,” in Proc.
ACM/IEEE DATE, 2013, pp. 332–337.

[10] E. Kasapaki and J. Sparsø, “Argo: A time-elastic time-division-multiplexed
noC using asynchronous routers,” in Proc.20th IEEE Int. Symp. ASYNC, 2014,
pp. 45–52.

[11] M. N. Horak et al. , “A low-overhead asynchronous interconnection network
for GALS chip multiprocessors,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 30, no. 4, pp. 494–507, 2011.

37

[12] A. Lines, “Asynchronous interconnect for synchronous SoC design,” IEEE
Micro, vol. 24, no. 1, pp. 32–41, 2004.

[13] W. Jiang et al., “A lightweight early arbitration method for low latency
asynchronous 2D-mesh NoC’s,” in Proc. ACM/IEEE DAC, 2015.

[14] S. M. Nowick and M. Singh, “Asynchronous DesignPart 1: Overview and
Recent Advances,” IEEE Design & Test, vol. 32, no. 3, pp. 5–18, 2015.

[15] Jerger, Natalie Enright, and Li-Shiuan Peh. "On-chip networks." Synthesis
Lectures on Computer Architecture 4.1 (2009): 1-141.

[16] T. Bjerregaard and J. Sparso, “A router architecture for connection-oriented
service guarantees in the MANGO clockless network-on-chip,” in Proceedings of
the DATE ’05, 2005, pp. 1226–1231.

[17] M. N. Horak, S. M. Nowick, M. Carlberg, and U. Vishkin, “A low-overhead
asynchronous interconnection network for GALS chip multiprocessors,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
30, no. 4, pp. 494–507, 2011.

[18] W. Jiang, D. Bertozzi, G. Miorandi, S. M. Nowick, W. Burleson, and G.
Sadowski, “An Asynchronous NoC Router in a 14nm FinFET Library: Comparison
to an Industrial Synchronous Counterpart,” in Proceedings of the DATE ’17, 2017,
pp. 732–733.

[19] D. Gebhardt, J. You, and K. S. Stevens, “Design of an energy-efficient
asynchronous NoC and its optimization tools for heterogeneous SoCs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
30, no. 9, pp. 1387–1399, 2011.

[20] L.S. Peh and W.J. Dally. A delay model and speculative architecture for
pipelined routers. In International Symposium on High-Performance Computer
Architecture (HPCA), pages 255–266, 2001.

[21] H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga. Prediction router:
Yet another low latency on-chip router architecture. In International Conference on
High-Performance Computer Architecture (HPCA), pages 367–378, 2009.

[22] S. Park, T. Krishna, C.H. Owen Chen, B.K. Daya, A. Chandrakasan, and
L.S. Peh. Approaching the theoretical limits of a mesh NoC with a 16-node
chip prototype in 45 nm SOI. In Design Automation Conference (DAC), pages
398–405, 2012.

[23] Sun, Chen, et al. "DSENT-a tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling." 2012 IEEE/ACM Sixth
International Symposium on Networks-on-Chip. IEEE, 2012.

38

[24] Retrieved from iverilog.icarus.com

[25] Retrieved from https://notepad-plus-plus.org

[26] Retrieved from gtkwave.sourceforge.net/

[27] Retrieved from http://www.csun.edu/edaasic/roosta/Syn_Asyn_Design.pdf

39

Appendices

1. Code for 2-Phase Handshaking

// sender module
module sendermod(reqse, ackse, sti);
output reqse;
input ackse, sti;
reg reqse;
initial

reqse = 0;
always @ *

begin
 if(sti)
 #1 reqse = !reqse;
 else
 reqse = reqse;
end

endmodule

//receiver module
module receivermod(ackre,reqre);
output ackre;
input reqre;
reg ackre;
initial

ackre = 0;
always @ *

begin
 if(reqre)
 #1 ackre = 1;
 else
 #1 ackre = 0;
end

endmodule

2. Code for 4-Phase Handshaking

//sender module
module sender(reqse,ackse,S);
input ackse,S;
output reqse;
reg reqse;
initial

begin
 reqse=0;
end

always @*
begin
 if(S)
 #1 reqse <= 1;
 else
 if(ackse)
 #1 reqse <=0;

 end

endmodule

//receiver module
module receiver(ackre,reqre);
output ackre;
input reqre;
reg ackre;

40

initial
begin
 ackre=0;
end

always @*
begin
 if(reqre)
 #1 ackre=1;
 else if(!reqre)
 #1 ackre=0;
end

endmodule

3. Code for Input Channel (IC) - Asynchronous FIFO of an Asynchronous

Router

module async_fifo #(
 parameter DSIZE = 9,
 parameter ASIZE = 4
) (
 input wreq, wclk, wrst_n,
 input rreq, rclk, rrst_n,
 input [DSIZE-1:0] wdata,
 output [DSIZE-1:0] rdata,
 output reg wfull,
 output reg rempty,

input oack,
output reg ireq

);
reg [DSIZE-1:0]rdata;

reg [ASIZE:0] wq2_rptr, wq1_rptr, rptr;
reg [ASIZE:0] rq2_wptr, rq1_wptr, wptr;
wire rempty_val;
wire [ASIZE : 0] rptr_nxt;
wire [ASIZE-1:0] raddr;
reg [ASIZE:0] rbin;
wire [ASIZE:0] rbin_nxt;
wire [ASIZE-1:0] waddr;
reg [ASIZE:0] wbin;
wire [ASIZE:0] wbin_nxt;
wire [ASIZE : 0] wptr_nxt;

// synchronizing rptr to wclk
always @(posedge wclk or negedge wrst_n) begin
 if(!wrst_n)
 {wq2_rptr, wq1_rptr} <= 2'b0;
 else
 {wq2_rptr, wq1_rptr} <= {wq1_rptr, rptr};
end

// synchronizing wptr to rclk
always @(posedge rclk or negedge rrst_n) begin
 if(!rrst_n)
 {rq2_wptr, rq1_wptr} <= 2'b0;
 else
 {rq2_wptr, rq1_wptr} <= {rq1_wptr, wptr};
end

// generating rempty condition
assign rempty_val = (rptr_nxt == rq2_wptr);

always @(posedge rclk or negedge rrst_n) begin
 if(!rrst_n)
 rempty <= 1'b0;
 else

41

 rempty <= rempty_val;
end

// generating read address for fifomem
assign rbin_nxt = rbin + (rreq & ~rempty);

always @ (posedge rclk or negedge rrst_n)
 if (!rrst_n)
 rbin <= 0;
 else
 rbin <= rbin_nxt;
assign raddr = rbin[ASIZE-1:0];

// generating rptr to send to wclk domain
// convert from binary to gray
assign rptr_nxt = rbin_nxt ^ (rbin_nxt>>1);

always @ (posedge rclk or negedge rrst_n)
 if (!rrst_n)
 rptr <= 0;
 else
 rptr <= rptr_nxt;

// generating write address for fifomem
assign wbin_nxt = wbin + (wreq & !wfull);

always @ (posedge wclk or negedge wrst_n)
 if(!wrst_n)
 wbin <= 0;
 else
 wbin <= wbin_nxt;

assign waddr = wbin [ASIZE-1:0];

// generating wptr to send to rclk domain
// convert from binary to gray
assign wptr_nxt = (wbin_nxt>>1) ^ wbin_nxt;

always @ (posedge wclk or negedge wrst_n)
 if(!wrst_n)
 wptr <= 0;
 else
 wptr <= wptr_nxt;

// generate wfull condition
wire wfull_val;
assign wfull_val = (wq2_rptr == {~wptr[ASIZE : ASIZE-1],wptr[ASIZE-2 : 0]});

always @ (posedge wclk or negedge wrst_n)
 if (!wrst_n)
 wfull <= 0;
 else
 wfull <= wfull_val;

// fifomem
// Using Verilog memory model
//rdata is the input to CBIN
//the ireq is sent to CBIN when there is a data written in the mem
// oack is the ack from the CBIN to send the data
localparam DEPTH = (1 << (ASIZE));
reg [DSIZE-1 : 0] mem [0: DEPTH -1];

initial begin

rdata = 'b0;
end

always @(rclk && oack) begin

if(oack)begin

rdata <= mem[raddr] ;

42

end
else if(rempty)
 rdata = 9'b0;

end

initial
ireq = 0;

always @ (posedge wclk)begin
 if (wreq & !wfull) begin

 mem[waddr] <= wdata;
ireq = 1;

 end
else if (rempty) begin

 ireq = 0;
end

end

endmodule

4. Code for Crossbar input-CBIN for an Asynchronous Router
//The head flit should be held in the CBIN until the grant arb grant is given from the arbiter.
//This is done by gating the request signal ireq using a TR-gate, which can be implemented by a D-latch.
module trgate(ireq_d,ireq,reset,arb_grant,idata);

output ireq_d;
input reset,ireq;
input [3:0]arb_grant;
input [8:0]idata;

reg ireq_d;
wire arb_done;
reg [4:0]tail;

assign arb_done = arb_grant[0] || arb_grant[1] || arb_grant[2] || arb_grant[3];

initial

begin
tail = idata[8:4];
end

always @(reset or ireq or arb_grant or idata) begin

if(reset)
ireq_d = 0;

else if(arb_done && ireq)
ireq_d <= ireq;

else if(tail == 5'b10001)
ireq_d = 0;

else
ireq_d = 0;

end

endmodule

//When the grant is obtained, the TR-gate is opened by “@posedge(arb_done)”
// and ireq_d signal is forwarded to the corresponding CBOUT through a TRDEMUX.
//The data-path block is implemented using the normal D-latches.
//When an acknowledgement is sent from the CBOUT, it is forwarded to the IC as oack
//A TR-DEMUX is a DEMUX for the transition signalling protocol,
// and is implemented by both-edge sensitive toggle FFs with enable inputs.

module tr_demux(req,ireq_d,arb_grant);

output reg [3:0]req;
input ireq_d;
input [3:0]arb_grant;

43

always @(ireq_d or arb_grant)

begin
case(arb_grant)
4'b0001,4'b0010,4'b0100,4'b1000: req <= arb_grant;
default: req = 4'b0000;
endcase

end

endmodule

module tr_mrg(oack,x1,x2,ack);

output oack;
output reg x1,x2;
input [3:0]ack;
reg oack;

always @(ack)begin

if(ack)begin
fork

x1 = ack[3] ^ ack[2];
x2 = ack[1] ^ ack[0];

join
oack = x1 ^ x2;

end
else

oack = 0;
end

endmodule

//RC unit is a combinational circuit which does the routing computation when a request comes from the IC to the CBIN. \\

module rcunit1 #(parameter cl = 4'b1010) (arb_req,idata,en1,en2,head,tail,addr,ireq,oack,levelt,levelh);

input [8:0]idata;
output levelt,levelh;
output reg en1;
output wire [4:0]head;
output wire [4:0]tail;
output reg [3:0]addr;
input ireq,oack;
output en2;
output [3:0]arb_req;
reg [3:0]arb_req;
wire [1:0]ax,ay,mx,my;

reg levelh,levelt;

initial begin

levelh = 0;
levelt = 0;
addr = 4'b0;
arb_req = 4'b0;
en1 = 0;
end

 assign head = idata[8:4];
 assign tail = idata[4:0];
 //assign addr = idata[3:0];

 always @(idata)
 begin

if (head == 5'b10001)begin
addr = idata[3:0];
en1 = 1;
levelh = 1;
#10 levelh = 0;

44

end
else if(tail == 5'b10001)begin

en1 = 0;
addr = 4'b0000;
levelt = 1;
#10 levelt = 0;

end
end

assign mx = cl[3:2];
assign my = cl[1:0];
assign ax = addr[3:2];
assign ay = addr[1:0];

xor(en2,ireq,oack);

 always @(en1 && en2 && addr) begin

if(addr == 4'b0)
arb_req = 4'b0;

else if((ax != mx)&&levelh)
begin
 if(ax > mx)

arb_req = 4'b0010; //go east
 else if(ax < mx)

arb_req = 4'b1000; // go west
 end

else if((ax == mx)&&(ay != my)&& levelh)
begin
 if(ay > my)

 arb_req = 4'b0001; // go north
 else if(ay < my)

 arb_req = 4'b0100; // go south

end

else
arb_req = 4'b0;

end
 always @ (*)begin

if(addr == 4'b0)
arb_req = 4'b0;

 end

endmodule

5. Code for Crossbar output - CBOUT of the Asynchronous Router

//trmrg module is an input signal merging module
module trmrg(ireq,req);

output ireq;
input [3:0]req;

reg ireq;
initial
ireq = 0;

always @ (req)

begin
case(req)
4'b0001,4'b0010,4'b0100,4'b1000: ireq <= 1;
default: ireq <= 0;
endcase

end

endmodule

45

//data mux module
// the mux module is a switch module for the input data into the CBOUT from the CBIN after giving the arb_grant to CBIN
module mux(dataout,d1,d2,d3,d4,arb_grant,idata);

input [3:0]arb_grant;
output reg [8:0]d1,d2,d3,d4;
output [8:0]dataout;
input [8:0]idata;
reg [8:0]dataout;

always @(*)begin

case(arb_grant)
4'b0001: begin

 d1 = idata;
 {d2,d3,d4} = 9'b0;
 end

4'b0010: begin
d2 = idata;
{d1,d3,d4} = 9'b0;

end
4'b0100: begin

d3 = idata;
{d1,d2,d4} = 9'b0;

end
4'b1000: begin

d4 = idata;
{d1,d2,d3} = 9'b0;

end
default: {d1,d2,d3,d4} = 9'b0;
endcase

end

always @(*)

begin
case(arb_grant)
 4'b0001: dataout = d1;
 4'b0010: dataout = d2;
 4'b0100: dataout = d3;
 4'b1000: dataout = d4;
 default: dataout = 9'b0;
endcase

end
endmodule

//demux module
module trdemux(ack,oack,arb_grant);

output [3:0]ack;
input oack;
input [3:0]arb_grant;

reg [3:0]ack;

always @ (oack)

begin
case(arb_grant)
4'b0001:ack <= arb_grant;
4'b0010:ack <= arb_grant;
4'b0100:ack <= arb_grant;
4'b1000:ack <= arb_grant;
4'b0000:ack <= arb_grant;
default:ack <= 4'b0;
endcase

end

endmodule

46

//4 input arbiter with a round robin algorithm, which is connected to the level Lt.this arbiter gives out arb_out and not
//arb_grant. the level LT is the latch that gives out arb_grant to the CBIN based on other signal inputs.
module arbiter(arb_out,a,count,arb_req);

input [3:0]arb_req;
output reg [2:0]a;
output reg [2:0]count;
output [3:0]arb_out;
reg [3:0]arb_out;

initial begin

arb_out = 4'b0;
count = 3'b0;
a = 3'b0;

end

always @(arb_req) begin
a = arb_req[3] + arb_req[2] + arb_req[1] + arb_req[0];
end

always @ (a)begin

if(a == 3'b001)begin

count <= 3'b0;

end
else begin

count <= a;

end
end

reg [3:0]s1,s2,s3,s4;

always @((a && arb_req)||(count))begin

 if(a == 3'b001)begin

 arb_out <= arb_req;
 //#5 $display($time,"arb_out = %b,arb_req = %b,count = %b\n",arb_out,arb_req,count);
 a = 3'b0;

 end

 else if(a > 3'b001)begin

s1= 4'b0001 & arb_req;
s2= 4'b0010 & arb_req;
s3= 4'b0100 & arb_req;
s4= 4'b1000 & arb_req;

while (count > 3'b0)
begin

if(s1 == 4'b0001)begin
 arb_out = 4'b001;
count <= count - 3'b001;

s1 = 4'b0;
// #5 $display($time,"arb_out = %b,arb_req = %b,count =

%b\n",arb_out,arb_req,count);
end

else if(s2 == 4'b0010) begin

arb_out = 4'b0010;
count <= count - 3'b001;
s2 = 4'b0;
//#5 $display ($time,"arb_out = %b,arb_req = %b,count = %b\n",arb_out,arb_req,count);

end

else if(s3 == 4'b0100)begin
arb_out = 4'b0100;
count <= count - 3'b001;
s3 = 4'b0;

47

//#5 $display ($time,"arb_out = %b,arb_req = %b,count = %b\n",arb_out,arb_req,count);
end

else if(s4 == 4'b1000) begin

arb_out = 4'b1000;
count <= count - 3'b001;
s4 = 4'b0;
//#5 $display ($time,"arb_out = %b,arb_req = %b,count = %b\n",arb_out,arb_req,count);

end

else begin
arb_out = 4'b0000;
//#5 $display ($time,"arb_out = %b,arb_req = %b,count = %b\n",arb_out,arb_req,count);

end

end

end
end
endmodule

//level lt module is where the signal of oack and ireq are checked before giving arbiter grant to the CBIN
// level lt gets its input from the arbiter after the round robin algorithm.

module level (arb_grant,arb_out,oack, ireq,idata,reset);

output [3:0]arb_grant;
input [8:0]idata;
input [3:0]arb_out;
input oack, ireq;
reg levelt, levelh;
output reg reset;

reg [4:0]head, tail;

//assign head = idata[8:4];
//assign tail = idata[4:0];

initial begin

levelt = 0;
levelh = 0;
reset = 0;

end

always @ (levelt)begin
 #5 levelh= 0;
end

always @ (*) begin

if(levelt && !levelh)begin
#20 reset = 1;
end

else if(levelh)
 reset <= 0;

end

always @ (idata)begin
 head = idata[8:4];
 tail = idata[4:0];

if(head == 5'b10001)
levelh<= 1;

else if(tail == 5'b10001)
levelt <= 1;

else if (head == 5'b0 && tail == 5'b0)begin
levelh= 0;
levelt = 0;
end

end

reg [3:0]arb_grant;

48

initial
 arb_grant = 4'b0;

always @(reset or arb_out or idata) begin

if(reset)begin
arb_grant = 4'b0;
levelt = 0;

end

else if(levelh || !levelt)
arb_grant <= arb_out;

else if(levelt)
 arb_grant <= 4'b0;

else
arb_grant = 4'b0;

end

endmodule

//this is a 1 stage mousetrap pipeline.
module mousetrap(data_out,oack,en, ireq, iack,reset, datain);

output [8:0]data_out;
output oack;
output en;
input ireq, iack;
input [8:0] datain;
input reset;

reg clk = 0;
always #50 clk = ~clk;

reg [8:0]data_out;
reg oack;
reg en;

initial begin

oack = 0;
data_out = 9'b0;
en = 0;

end

always @ (iack or oack)begin

en = ~(iack ^ oack);
end

always @(posedge clk) //(reset or ireq or datain or en)

begin
if(reset)
fork

data_out <= 9'b0;
oack = 0;
en = 0;
//$display ($time,"data_out = %b,en = %b,oack = %b",data_out,en,oack);

join

else if(ireq)begin
if(en)

fork
data_out <=datain;
oack = 1;
#5 en = 0;

join
 else

data_out = 9'b0;
 end
 // data_out = 9'b0;
end

endmodule;

49

