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Abstract 

The asynchronous circuit design has been conventionally regarded as a valid           
alternative to synchronous logic due to its potential for low consumption of            
resources, power and delay. This includes areas such as the communication           
infrastructure of modern multi-core processors, the so-called Network-on-Chip        
(NoC) paradigm on which this thesis focuses on. In recent times, the transistor             
downscaling and the increasing clock frequencies have pushed synchronous         
design to high static power and delay. As a result, the interest for asynchronous              
integrated routers and links has re-emerged, especially in fields with ultra-low           
power requirements such as embedded systems. In this thesis, we construct an            
asynchronous router using Verilog code based on architectures found in the           
literature. We analyze the functionality of each of the building blocks and verify the              
operation of the implemented routing algorithm and an arbitration mechanism. In           
the future, the results obtained here are expected to enable a complete            
implementation of the router in Verilog and its posterior analysis of its scalability. 
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1. Introduction 

Asynchronous logic design has been around for quite a while and is considered a              
good alternative to its synchronous counterpart. This is because of its ability to             
perform tasks without the need for a global common clock. Asynchronous logic            
only consumes dynamic power when the value of signals change, which is            
opposed to the behaviour of synchronous logic that consumes power in each            
clock tick. Therefore, asynchronous logic lowers the use of system power and            
latency, leading to higher performance and efficiency. As the size of the transistor             
reduces and the number of transistors on the chip increase in accordance with             
Moore’s law, the degradation of the synchronous design is evident with shot            
noise, charge sharing, thermal effects, supply voltage noise and process          
variations all making these advantages even more appealing. 

The synchronous design always calculates the worst case values whereas the           
asynchronous designs provide us with the average values. This proves to be very             
helpful at 90nm technology and below. The asynchronous designs also take less            
area on the chip due to the absence of the bulky clock design which is an integral                 
part of the synchronous design  [1]. 

A particular area where the asynchronous design shines is Network-on-Chip          
(NoC). NoC has become the new normal for structured on-chip communication for            
low powered embedded chips as well as high-powered multiprocessors. It is           
slowly replacing traditional bus-based communication with packet switching        
integrated networks  [21]. 

As technology advances, the limits of on-chip transistors are pushed, integrating           
up to a thousand cores on the same chip, making the design extremely energy              
limited. Thus the need for energy efficient designs. Also, the demands of the             
market for super fast and efficient communication leads us to asynchronous           
systems  [23]. 

GALS network or globally asynchronous locally synchronous networks is a hybrid           
of synchronous components in asynchronous design. The synchronous        
components include the cores, memory units, accelerators, I/O units etc. GALS           
allows us to use the best of both designs. The elimination of global clock provides               
highly scalable, low power robust mechanism which proves useful for assembling           
complex systems [1,14]. 
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1.1 Requirements and Specifications: 
Asynchronous designs are claimed to be better than synchronous design in terms            
of cell area, latency and power. In this thesis, an asynchronous router is built              
using the structure from [1].  

The goal is to have routers and links that can be integrated into many-core              
processors. Let us assume that a complete 100-core processor is implemented in            
a die of dimensions 20x20 mm2, that are the usual values. Moreover, let us              
assume that the power consumption is 120 W, at maximum. Assuming equal area             
and power budget for the processing elements, the memory, and the network,            
then the network must occupy less than 133 mm2 and use less than 40 W. In a                 
100-core case, assuming that each core contains a router, the calculations above            
lead to approximately 1.33 mm2 and 400 mW per router as the crucial             
requirements for our design. 

A simple and widely used NoC architecture is assumed. The network topology of             
the router is a 2D mesh with wormhole flow control. The routers have no virtual               
channels. The routing algorithm used is dimension-order (XY) routing where first           
the X moves are performed then the Y moves. The destination address is kept in               
the head flit payload. For all this, the router needs to have five ports (north, south,                
east, west, and local) and we confirm that each router is attached to a core.  

From Imai et al [1] the comparison is done between synchronous routers with and              
without clock gating optimization and asynchronous routers linear and circular          
FIFO. This is done with two types of architectures i.e 1mm and 2mm routing. 

Cell area comparison: we see that the area taken by asynchronous linear FIFO is              
less than the one with circular FIFO. The cell area of a synchronous router without               
clock gating optimization is 1.44 times an asynchronous linear FIFO and almost            
the same as circular FIFO router. On the other hand without the clock gating              
optimization shows us the cell area is 1.80 times that of linear FIFO router and               
1.25 times the circular FIFO router. This is very helpful in proving that the                
asynchronous router takes less area in a circuit design. Similar results were            
observed with 2mm routing. From [1] the values of cell area of an asynchronous              
routers  for are 675272 μm2(linear) and 976179 μm2(circular) for 1mm routing. 

Latency comparison: the latency from the input port to the output port for a              
synchronous router and average latency for asynchronous router is listed. The           
values in table 2 illustrate the values showing a significant reduction in latencies of              
the circular FIFO routers when compared to the synchronous routers. The latency            
values of the asynchronous linear FIFO and synchronous router with clock gating            
optimization are comparable for 1mm place and route. 
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 Synchronous 
no clk gt 

Synchronous 
with clk gt 

Asynchronous 
linear FIFO 

Asynchronous 
circular FIFO 

1mm place 
and route 

4.74 ns 4.86 ns 4.84 ns 4.22 ns 

2mm place 
and route 

5.48 ns 6.74 ns 5.13 ns 4.43 ns 

Table 2: Latency values for synchronous and asynchronous routers from Imai et al [1] 

 

Power Consumption: The comparison is done in three scenarios (i) zero load            
situation (ii) low packet injection and (iii) high packet injection. In the zero load              
situation, we observe that asynchronous router have almost no power          
consumption and the synchronous router consumes 211mW of power in 1mm           
place and route and 178.2mW power in 2mm place and route. During the high              
packet injection, the values of the routers are almost the same because they             
saturate. With these results in [1], we decided to implement their design of the              
asynchronous router. 

 

1.2 Statement of purpose (Objective):  
The main objective of this thesis is to construct an asynchronous router using             
Verilog code based on architectures found in the literature that comply with the             
specifications set above. We have confirmed that the design from [1] fulfils the             
specifications and we choose to implement it (the area is 0.97617mm2 meeting            
our requirement of 1.33mm2; and the power is approximately 100 mW at 20 mHz              
of packet injection rate, meeting our requirement of 400 mW). Moreover, the            
technology used in [1] is relatively old (130nm CMOS) and therefore the            
specifications can be even improved. We aim to analyze the functionality of each             
of the building blocks and verify the operation of the implemented routing            
algorithm and an arbitration mechanism. It is also our aim to build the router using               
Verilog and open-source EDA tools as much as possible. In the future, the results              
obtained here are expected to enable a complete implementation of the router in             
Verilog and its posterior analysis of its scalability. 
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1.3 Methods and procedures:  
The code for the router modules was written in Verilog HDL. The applications             
used were all open source. Notepad++ was used to type the code out, iVerilog              
was used to compile the code and GTKWave was used to view the waveform.              
The router architecture is provided by [1]. 

1.4 Work plan: 

 

Figure 1: Gantt Chart 

 

The Gantt chart displays the timeline of the project. The project started of             
literature survey for the first month from 18th February till 20th March. In that time               
we decided to focus on the asynchronous router architecture mentioned in Imai et             
al [1] and replicate that on Verilog. The month of April was dedicated to working               
on the handshaking protocols. After the execution of 2 and 4 phase protocol on              
Verilog, we started working on the different modules of the asynchronous router.            
This took two months to do. We worked on the code until the end of June. From                 
24th June to the 5th of July  

1.5 Deviations from the initial plan:  
In the beginning, during the project planning, we decided to build the complete             
asynchronous router and make it work as a standalone unit. Then chart its area              
power and latency using available CAD tools. We had to narrow the scope at the               
midterm status update because the time was too tight to implement each            
component of the asynchronous router. We underestimated the time required to           
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successfully interconnect the different modules and work them as a standalone           
unit. 

2. Background 
2.1 Synchronous logic design 

2.1.1 Synchronous designs: What are synchronous designs 

Commercial digital systems usually use Synchronous design because of its          
simplicity and stability. The communicating systems in a synchronous design          
usually operate with a global clock. All the computations follow the clock for timing              
in the system, this greatly simplifies the computations. All input and output signals             
and internal nodes are stabilized in the high or low state on the active edge of the                 
clock. Between the fall and rise of the clock, the signals and nodes are allowed to                
change and may take any intermediate state. The behaviour of a synchronous            
network is predictable and is programmed not to fail due to hazards or glitches              
introduced by irregularities of the real circuit.  

 

Figure 2: Synchronous Communication 

2.1.2 Synchronous designs: Their challenges. 

The global clock mechanism simplifies the circuit design, but it also has its own              
share of challenges. For these circuits to perform correctly, a great deal of care is               
needed in the design of the clock distribution networks. Static timing analysis is             
most often used to decide upon the maximum safe operating speed. Moreover,            
the clock distribution network can consume a significant amount of power in            
manycore NoCs [23]. 

Synchronous systems often slow down their circuits to accommodate the clock           
skew. As the feature constantly reduces in size, clock skew becomes a topic of              
greater concern. 

Standard synchronous circuits have to toggle clock lines, and possibly pre-charge           
and discharge signals, in portions of a circuit unused in the current computation.             
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For example, even though a floating point unit on a processor might not be used               
in a given instruction stream, the unit must still be operated by the clock. 

Synchronous circuits yield worst-case performance because they must wait until          
all possible computations in the module have completed before latching the           
results. 

In systems such as a synchronous microprocessor, the system clock, and system            
performance is dictated by the slowest (critical) path. This affects the system            
performance because it has to slow down and wait thus consuming more power             
and increasing the latency of the system. 

Integrated circuits will often be implemented in several different technologies          
during their lifetime. Early systems may be implemented with gate arrays, while            
the later may migrate to semi-custom or custom ICs. Better performance for            
synchronous systems can often only be achieved by migrating all system           
components to a new technology since the overall system performance is based            
on its longest path. The delay through a circuit fluctuates with changes in             
fabrication, power-supply voltage and temperature variations. Synchronous       
circuits always assume the worst case of factors and clock the system            
accordingly. 

Synchronous circuits require all its elements to exhibit bounded response time.           
There are some chances that mutual exclusion circuits will fail in a synchronous             
system. 

2.2 Asynchronous logic design 

2.2.1 Asynchronous designs: What are asynchronous      
designs 

Asynchronous designs are clock-less systems where the different modules do not           
synchronise its computations according to a single global clock. Asynchronous          
systems do not depend on strict arrival times of signals or messages for reliable              
operation. As a result, the different processing elements in the system are free to              
operate at different speeds. In an asynchronous design, the elements          
communicate with each other using local handshaking techniques, resulting in          
systems being faster and power efficient. That’s why asynchronous designs are           
so alluring to researchers, but with the changes in technology we are faced with              
its own set of challenges. 
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Figure 3: Asynchronous Communication 

 

2.2.2 Asynchronous Designs: History  

Asynchronous design is not a new technology, it has been around for a long time.               
Around the 1950s to the early 1970s, the early years for the asynchronous design              
included the development of the classical theory (Huffman, Unger, McCluskey,          
Muller), and the commercial use of asynchronous processors. The middle years,           
from the mid-1970s to early 1980s, was a time of reduced activity, corresponding             
to the advent of the synchronous VLSI era. The mid-1980s to late 1990s was              
when the asynchronous designs were coming back with the beginning of modern            
methodologies for the asynchronous controller and pipeline design, initial         
computer-aided design tools and optimization techniques. This includes the first          
academic microprocessors (Caltech, University of Manchester, Tokyo Institute of         
Technology), low-power commercial products (Philips Semiconductors) and       
high-performance interconnection networks (Myricom). From the 2000s to the         
present deemed as the modern era that includes modernization of design           
approaches, CAD tool development and systematic optimization techniques,        
migration into on-chip interconnection networks, several large-scale       
demonstrations of cost benefits, industrial uptake at leading companies (IBM,          
Intel) as well as startups, and application to emerging technologies (sub-/near           
threshold circuits, sensor networks, energy harvesting, cellular automata) [6]. 

 

2.2.3 Asynchronous designs: How they help to solve the         
challenges of synchronous designs 

The synchronous design is a system powered by a global clock which makes the              
system stable. The challenges of the synchronous designs as listed above are            
tackled by the asynchronous clock-less designs. 
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The reason for lower power consumption by the asynchronous designs compared           
to its synchronous counterpart is due to the absence of a global clock. Although              
asynchronous circuits often require more transitions on the computation path than           
synchronous circuits, they generally have transitions only in areas involved in the            
current computation. 

The average-case is taken into account, unlike the synchronous designs which           
take the worst–case performance. Many asynchronous systems sense when the          
computation has completed, allowing them to exhibit average-case performance.         
For circuits such as ripple-carry adders where the worst-case delay is significantly            
worse than the average-case delay, this can result in substantial savings. 

Since many asynchronous systems operate at the speed of the circuit path            
currently in operation, rarely used portions of the circuit can be left un-optimized             
without adversely affecting system performance thus easing the global timing          
issues [27]. 

In most of the asynchronous systems, because performance is dependent on only            
the currently active path migration of only the most critical system components            
can improve system performance on an average. Also, since many asynchronous           
systems sense computation completion, components with different delays may         
often be substituted into a system without altering other elements or structures. 

Asynchronous systems can wait for an arbitrary amount of time for an element in              
the system to complete, allowing robust mutual exclusion. Also, since there is no             
clock with which signals have to be synchronized, asynchronous circuits better           
accommodate inputs from the outside world, which are by nature asynchronous. 

2.2.4 Asynchronous designs: Commercial applications and      
Industrial Experiments 

Philips Semiconductors (now NXP) used asynchronous microcontroller 805C1        
initially as a pager chipset to lower the electromagnetic noise emission so that it              
could operate with Radio Frequency (RF) data without the use of shielding. This             
resulted in eliminating the need for a fixed function circuit and encoded the RF              
data in software. This also showed a significant decrease in power usage. Later             
this microcontroller started being used in smart cards for public transport. Now the             
new improved microcontroller (SmartMX) is used in biometric systems and ID’s in            
more than 75 countries including the European Union and the United States  [14]. 

Intel acquired Fulcrum Microsystems, a startup working on asynchronous         
high-speed networking chips. Intel’s FM5000/FM6000 are a family of switch chips           
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which support the 40 gigabit Ethernet that includes a fully asynchronous           
high-speed crossbar switch which provides low latency, high energy efficiency          
and bandwidth, flexible link topologies support. The high speed is achieved by            
fine-grain asynchronous pipelining at individual stages. When operated at a below           
peak throughput they are highly energy- efficient  [3,14]. 

Achronix semiconductor’s Speedster 22i is a family of FPGAs that can operate at             
a speed of 1.5GHz. They claim to be the world’s fastest FPGA yet cost a lot less                 
than their synchronous counterparts in terms of operating energy and design.           
They achieve such fast operation by asynchronous fine-grain bit-level pipelines          
hence overcoming the need for global synchronization  [3]. 

Several industrial experiments with asynchronous design have been done         
successfully, but never implemented commercially such as Intel RAPPID and IBM           
FIR Filter. There are multiple areas of application for an asynchronous design still             
being researched like large scale heterogeneous system integration, energy         
harvesting and Ultra-low-energy systems, handling the extreme environment and         
alternate computing approaches. There is a lot of effort being put into            
asynchronous and mixed synchronous-asynchronous systems like “GALS       
system” and “Networks-on-Chip”. The emerging current technologies such as         
nano-arrays and nano-magnetics, with highly robust asynchronous designs, prove         
to be vital to improve the timing irregularities  [3,14]. 

2.2.5 Asynchronous Design: Links and Handshaking 
The communication channel of an asynchronous router involves a request (req)           
wire and an acknowledge (ack) wire. The req wire shows us when the data sent               
by the sender is valid, and the ack wire indicates that the receiver successfully              
received the data. The two most common handshaking protocols used for the            
communication channel. The first is a 4-phase (return-to-zero (RZ) protocol), and           
the second is a 2-phase (non-return-to zero (NRZ) protocol) [3]. Section 5.2            
provides more details on the different signalling mechanisms and encoding. 

 

2.2.6 Asynchronous Design: Challenges of Asynchronous      
Design 
There has been a large amount of work in addressing various challenges of             
asynchronous design since the asynchronous circuits are much more difficult to           
design than synchronous circuits. 

In a synchronous system, a designer has to merely outline the combinational logic             
necessary to compute the given function and surround it with latches. By setting             
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the clock rate for a longer period, all worries about hazards and the dynamic state               
of the circuit are removed. On the contrary, designers of asynchronous systems            
must focus on the dynamic state of the circuit. To avoid incorrect results, hazards              
must also be physically removed from the circuit, or not introduced in the first              
place. The order of operations, which was fixed by the placement of latches in a               
synchronous system, must be ensured by the designer of the asynchronous           
control logic. For the present ultra-complex systems, these issues become          
extremely difficult to handle manually. 

Asynchronous circuits, unfortunately, cannot use the existing CAD tools that are           
specially designed to be used for the synthesis of synchronous circuits. For            
example, some asynchronous methodologies allow only algebraic manipulations        
(associative, commutative, and De-Morgan's Law) for logic decomposition.        
Placement, routing, partitioning, logic synthesis, and most other CAD tools either           
need modifications for designing asynchronous circuits, or they are not applicable           
at all. 

The comparison between asynchronous and synchronous circuits started off with          
the claim that asynchronous have faster computation speed compared to          
synchronous systems, but this hasn’t been proven yet. Asynchronous circuits          
generally require extra time due to their signalling policies, thus increasing the            
average-case delay.  

Testing of asynchronous circuits faces challenges compared to synchronous         
designs. A typical testing procedure for synchronous designs is called          
single-stepped approach which involves pausing or slowing down the system, and           
checking the internal states. However, this testing approach is not possible for            
asynchronous designs due to the absence of a global clock. The testing tools for              
asynchronous designs should not only check for functional correctness, it should           
also check for hazards, which adds to the complications. 

 

2.3 Network-on-Chip (NoC) 

2.3.1 NoC: What are NoCs 
Network-on-Chip is a network-based communications subsystem on an integrated         
circuit, most typically between modules in a system on a chip (SoC)[6]. The             
modules on the IC are typically semiconductor IP cores schematizing various           
functions of the computer system and are designed to be modular in the sense of               
network science.  

NoC technology applies the theory and methods of computer networking to           
on-chip communication and contributes to improvements over conventional bus         
and crossbar communication architectures. Networks-on-chip improves the       
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scalability of systems-on-chip and the power efficiency of complex SoCs. A very            
common NoC used in contemporary personal computers is a graphics processing           
unit (GPU), which is used in computer graphics, video gaming and accelerating            
artificial intelligence.  

Over the span of the last decade, Networks-on-Chip (NoCs) have become the            
standard approach for a structured on-chip communication, for low-power         
embedded systems as well as high-performance chip multi-processors. 

These on-chip networks typically replace traditional bus-based communication        
with packet switching and can be targeted to a variety of cost functions             
(fault-tolerance, power, latency, saturation throughput, quality-of-service [QoS])       
and parameters (network topology, channel width, routing strategies). 

2.3.2 NoC: Motivation behind using an NoC.  
On-chip interconnects have become the limiting factor to achieve high          
performance and low power for the current multi-core technology mainly due to            
two reasons: (i) the system cores operate at different clock frequencies, thus the             
need for reliable and efficient interconnects is crucial to maintain error-free           
interactions between the different timing domains (ii) technology scaling has made           
computational elements and memories faster and more energy efficient, but the           
interconnects used to have the same performance and power, and not been            
changed with the change in technology. These issues prove the need for NoCs in              
the current technology standpoint. 

NoC provides a distributed communication infrastructure, consisting of switches         
and channels. Each processing element is connected to the switch through a            
network interface, and the switches are in turn connected to each other using             
channels or links. The switches and channels are organized in a fixed structure             
called a topology, which can be of different types, e.g. mesh, ring, etc 

 

2.3.3 NoC: Advantages of NoC 
NoCs support modularity by separating communication from the computation.         
They help in decreasing design efforts by facilitating design reuse thus allowing            
faster testing and validation resulting in improvement in the overall design cycle.  

NoCs allow sharing the communication infrastructure facilitating parallel and         
distributed traffic flow. This leads to faster performance, without the need for extra             
wiring resources for dedicated pathways, decreasing the area used and power           
overheads. 
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The bandwidth in traditional global buses is limited, which is shared by all the              
attached units and suffers when the number of units increases. The bandwidth of             
the NoC depends on the scaling of the network. NoCs have regular architectures,             
with short wires that have controlled and predictable electrical properties, leading           
to a more reliable operation compared to global long wires. 

 

2.3.4 NoC: The advances of synchronous NoCs 
The synchronous design is the most common style of NoC design. Since            
synchronous NoCs have been around from the early 2000s, there have been            
significant advances have been made in this area. 

Many different topologies have been proposed and used in the NoCs. The most             
common of the topologies are Mesh, Ring, Torus and Trees. For           
high-performance computing, high radix topologies such as Dragon-fly is         
proposed. 

Routing Algorithms for NoCs are divided into two categories:(i) deterministic          
routing: where the path is fixed for the packet (ii) adaptive routing: where the best               
path is dynamically selected depending on the congestion in the network. 

Many power and performance optimizations have been introduced in the NoCs.           
To minimize power, router techniques such as dynamic voltage and frequency           
scaling (DVFS) have been used. To improve performance, optimization         
techniques such as speculation [20], prediction [21] and bypassing or lookahead           
[22] have been used within routers [3]. 

Several approaches have been proposed to support patterns involving multicast          
and aggregation while simultaneously achieving high performance with low         
overheads. There has also been significant research to support communication          
patterns common in parallel computing applications, such as cache coherency,          
and emerging areas of deep neural network architectures. 

2.3.5 NoC: Advances in asynchronous NoC design 
The NoC approach separates the communication infrastructure and timing, from          
its processing elements, it seems like a natural match with the asynchronous            
paradigm. Asynchronous interconnect eliminates the need for global clock         
management across a large network structure. Power and performance benefits          
of asynchronous NoCs have been demonstrated for high-performance        
shared-memory chip multi-processors [11] and Ethernet switch chips [12] as well           
as their facilitation of extreme fine-grain power management and flexible          
integration of many-core GALS architectures. The end-to-end latency benefits of          
asynchronous NoCs over synchronous NoCs have also been demonstrated         
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[8,9,11,12] due to the low forward latency of individual asynchronous router           
nodes, and the ability of packets to advance without a clock. As a recent example,               
an asynchronous NoC switch architecture [9] using single-rail bundled data and           
two-phase communication, obtained a significant reduction in average        
energy-per-packet and area compared to a highly-optimized synchronous        
single-cycle NoC switch in the same 40nm technology. 
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3. State of the art  

Multiple research challenges for asynchronous NoCs have been targeted. To          
achieve the quality of service (QoS), asynchronous NoCs have been proposed           
that provide guaranteed service and multiple levels of services, in addition to best             
effort traffic. There has been important research on improving fault-tolerance and           
reliability of asynchronous NoCs with some works focusing on developing efficient           
asynchronous NoCs that mitigate the effects of process variation  [3]. 

Earliest established works on asynchronous routing for NoC dates back to the            
mid-2000s[16]. Since then, improvements in this field have constantly been made           
allowing designs of asynchronous routers with functionalities similar to their          
sophisticated synchronous counterparts. For instance, Horak et al. set the          
foundation for two-phase, single-rail bundled-data routers with wormhole routing         
capabilities and evaluated the critical components separately [17]. After that,          
Jiang et al. proposed and evaluated a router with virtual channel capabilities,            
which are achieved by a replication of the internal switch rather than the input              
buffers  [18]. 

Numerous researchers have implemented and made a comparison between their          
asynchronous router design with existing equivalent synchronous alternatives.        
Table 1 summarizes their main characteristics and the results of the cost and             
performance comparison that includes area, power, throughput and latency.  

The four analyzed works evaluate place-and-routed designs at very different          
technology points, namely, from 14nm to 130nm, yet the results are consistent            
throughout. Comparing the costs, asynchronous routers are much more         
lightweight than the synchronous ones. Cell area is reduced due to the simplicity             
of the router architecture and the use of latches instead of flip-flops in all the               
buffers, whereas lower power usage is due to the virtual lack of static power              
consumed by the clock.  

 

Reference Technology Design Latency Throughput Area Power 

[83] 65 nm 4P, BD, 3 ports, 1 VC -5% N/A -80% -44% 

[1] 130 nm 2P, BD, 5 ports, 1 VC -12% -20% -45% -24% 

[82] 14 nm 2P, BD, 5-7 ports, 2-8 
VC 

-28% N/A -55% -58% 

[9] 40 nm 2P, BD, 5 ports, 1 VC -10% Similar -71% -45% 
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Table 2: Asynchronous on-chip routers in the literature. Performance and cost numbers 
are compared to synchronous counterparts. 2P and 4P mean 2-phase and 4-phase 

handshaking. BD means bundled-data 

4. Methodology/Project Development 

For building an asynchronous router, I used simple Verilog code. The compiler is             
an open-source software called iVerilog and the code was written on Notepad++.            
The waveforms for the output were generated on Gtkwave which is also an open              
source software. 

Verilog is a hardware description language used to model electronic systems. It            
supports design, testing and implementation of digital and mixed-signal circuits at           
different levels of abstraction. It is similar to C programming with a few crucial              
differences such as timing and hierarchical execution of models. 

The code is typed out on Notepad++ which is a free open-source code editor. It is                
a notepad replacement and supports several languages. Notepad++ 's build          
ensures a higher execution speed and compact program size  [25]. 

Iverilog or Icarus Verilog is an open source Verilog simulation and synthesis tool             
that operates as a compiler that compiles the Verilog code into some target             
format. For synthesis, the compiler generates the netlists as desired  [24]. 

GTKWave is an open source fully featured GTK+ based wave viewer which reads             
standard Verilog .vcd/.evcd files and allows viewing the waves  [26]. 

The Verilog code is written on Notepad++ and then the file is saved as a “.vl” file,                 
recognized by the iverilog compiler. Once the file is saved in the iverilog folder,              
shift-right-click and choose “Windows PowerShell”. Instruction “iverilog -o filename         
filename.vl is given to compile the code in the given file. If there are errors/ bugs                
in the code, they are listed in the window alongside the line which has the error                
which makes debugging easier. If there are no errors then “vvp filename” is used              
to give the output for the given code. 

If the output of the code is in waveforms then the file has the following code: 

“$dumpfile(“filename.vcd”);” 
“$dumpvars;” 

  
The above line of code creates a .vcd file which is the GTKWave format to view                
the output waveforms. If we want to view the output of the code in text form and                 
not waveform then the following code is used 
  

“$monitor($time,” parameters = %b”, parameters);” 
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“#time $finish;” 

 

Figure 4: Flowchart of executing Verilog code  and observing the outputs 
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5. Architecture: 

5.1 Network 

 
The NoC is made up of Routers, network interface (NI), IPs and links.             

These are the main elements of NoC architecture. For the same example, let us              
assume that the components are connected in (4×4) Mesh topology shown in            
Figure 2. The most important features of NoC architecture are routing algorithm,            
network topology, and switching techniques. As for the network itself; the router is             
the most important element in SoC based on NoC architecture. Network           
Interfaces connect the IP cores to the on-chip router network. Network Interface in             
an NoC is the medium between the computational part and communication           
infrastructure. Network Interfaces exchange the data generated by the IP blocks           
into data packets and place extra routing information based on the underlying            
NoC network.  

 

Mesh network topology consists of n rows and m columns. Each router in a mesh               
topology is connected to the adjacent router through the interconnection of wires.            
This is the simplest topology to implement. The faults and can easily be detected              
and the faulty nodes can be avoided while routing the packets to its destination. 

 

 

Figure 5: Network Architecture - Mesh Topology 
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The following paragraphs describe the asynchronous links and Handshaking         
protocols adopted by the asynchronous router. The router architecture is          
discussed and the router modules are dealt with in great detail. 

5.2 Links and Handshaking 

Asynchronous circuits rely on a certain request-acknowledgement-data       
transmission strategy since it cannot assume the availability of a channel           
beforehand. Asynchronous schemes greatly depend on well-constructed       
handshaking protocols and designs [14]. 

Handshaking circuits can be modelled using popular CAD tools such as Cadence            
suits. The handshaking protocol can easily be defined by simple VHDL/Verilog           
code and then the delay and cost overheads can be obtained by instantiating the              
code in a circuit simulator environment. For high-level behavioural models, tools           
such as DSENT can be used.  

 

Setting up a link:  

The asynchronous design employs two types of handshaking protocols (i)          
two-phase protocol (ii) four-phase protocol. Both of these protocols require a           
request for transmission (req) and acknowledging the request(ack). The         
handshaking protocol is repeated for every flit of the transmission. 

The 4 phase protocol or return-to-zero (RZ), the req and ack signal start at 0. The                
transmitter sends the data and sets the req signal to high. The receiver then              
absorbs the data and sets the ack to high when done. When the transmitter sees               
the ack signal, the req signal is set to 0 (when the data’s validity is no longer                 
guaranteed). The receiver then sets the ack to zero, thus returning to the initial              
state. After this, a new connection can be formed for another cycle. 
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Figure 6: four-phase handshaking protocol  

 

 

The 2-phase protocol or non-return-to-zero (NRZ) does not return to the initial            
state. Both the transmitter and receiver leave the signals req and ack unchanged             
after the transmission is completed. The signal for the next transmission is            
toggling the req signal (0 to 1 or from 1 to 0) and waiting for the receiver to do the                    
same with the ack. 

 

Figure 7: Two-phase Handshaking protocol 
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Data encoding and transmission: 

Data transmission occurs after handshaking completes. There are two known          
types of data encoding: dual rail or single-rail bundled encoding, both are            
illustrated in Figures 8,9. 

Dual rail encoding: Two wires are required per transmitted bit. Zero in both wires              
indicate that no data is present, whereas if the first or second wire is high means                
transmitting a ‘0’ or ‘1’. This transition serves as req signal and ack is sent using a                 
dedicated wire. Dual rail encoding improves the robustness to the different delays            
that are found between the transmitter and the receiver. This robust nature is at              
the cost of considerable area and power overhead (presence of two wires for             
transmission). Efficient codes have been developed to reduce the cost  [14]. 

 

 

Figure 8: Dual Rail encoding of data 

 

Single rail bundled encoding: The data transmission resembles that of          
synchronous systems. Req and ack have their own dedicated lines and each bit of              
data is transported through a single wire. Whenever the request has been            
acknowledged, data is transmitted through each data wire. Data should be stable            
from the time before the req signal is received to after the ack bit is set. Also, the                  
delay of the req line has to be longer than any of the data ones. 
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Figure 9: Single Rail bundled data encoding 

 

 

5.3 Router Micro-Architecture 
Asynchronous and synchronous routers have a common principle of operation          
and structure. However, within the router, the nature of communication between           
the various components changes the design flow significantly that plays a major            
role in the performance and cost.  

Asynchronous routers: 

1. since they are a clockless design, they require handshaking protocols to           
transfer data. 

2. require a different set of buffers and arbiters, as well as safe pipeline designs              
to avoid glitches and other errors 

3. since they use power only during data transfer, they would theoretically have            
lower energy requirements  

4. as data transitions do not occur exactly at the same instant marked by the              
edge of the clock, they have much lower interferences caused by           
electromagnetic emissions (this is especially useful in the metasurface         
context) 

5. because the stages do not have to adhere to the clock edges, it might result in                
lower latency 
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Figure 7 shows the typical architecture of an asynchronous router. The router            
consists of Input Channels (ICs), crossbar inputs (CBINs), and crossbar outputs           
(CBOUTs). IC stores packets in an internal queue and passes them to the CBIN.              
This communication happens using a handshake protocol with req/ack signals.          
CBIN then performs the routing computation(RC) and accordingly sends a request           
to the required CBOUT. The CBOUT has an asynchronous arbiter, which           
performs switch arbitration by deciding which request to respond to. When data            
comes from the granted CBIN, a muxer is driven to pass the data through the               
CBOUT towards the link in a process that acts as switch traversal. 

The steps mentioned confirm that the structural design of the routers is            
conserved: both require buffer write (BW), route computation (RC), switch          
arbitration (SA), and switch traversal (ST). This allows for a fair comparison            
between synchronous and asynchronous designs. It is worth noting that the           
unavailability of tools for asynchronous routers prevents from making a broad           
design space exploration without an actual gate-level simulation of the router. 

To achieve higher performance with lower power dissipation, the asynchronous          
router is designed using the bundled data method with transition signalling           
protocol. 

 

Figure 10: The router architecture from Imai et al [1] 

 

5.3.1 Input Channel (IC) 
The IC gets the flit sent to its input port which it then puts into a queue. This                  
queue is just a simple asynchronous FIFO. Asynchronous FIFO is a FIFO design             
where data is written to the buffer from one clock domain and the data values are                
read from the same FIFO buffer from another clock domain, both these clocks are              
asynchronous to each other.  
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In a synchronous FIFO design, the status of the FIFO (full or empty) is determined               
by a count register. This increments and decrements on the same clock cycle.             
This is not possible on an asynchronous system, therefore two different           
asynchronous clock domains are used. An additional bit is used to detect the             
status of the buffer in an asynchronous buffer. The full and empty is determined              
by comparing the read and write pointers. The write pointer always points at the              
next position that is to be written and the read pointer points at the current entry to                 
be read. When the FIFO is empty both the pointers point at zero which is also the                 
reset position. When the FIFO is full, all the bits except the MSB are equal. This                
FIFO pointer convention contributes to the low access latency. 

For simplifying the synchronisation of the pointers across the clock domains we            
use Gray code. Gray code is the preferred method of encoding the pointers             
because the Gray code changes by 1 bit each time. This eliminates the problem              
of synchronizing the read and write pointers.  

5.3.2 Crossbar Inputs (CBIN) 

Figure 8 shows the crossbar input (CBIN) in detail. When the CBIN receives a              
head flit from its IC, it goes to the RC Comp. block where it performs the routing                 
computation (RC) and sends a request (arb req) to the arbiter in the CBOUT              
decided by the algorithm performed. The output is gated by an enable input en1,              
which is obtained by delaying “head(idata)”, where the head(d) becomes 1 only            
when signal d carries a head flit. 

 
The XY routing algorithm is simple to implement and the most common routing             
algorithm that is proposed by Wang Zhang and Ligang Hou used in NoC design              
[5]. This routing technique comes under distributed deterministic routing algorithm.          
The advantage of the XY routing is that it never runs into a deadlock or livelock.                
The XY routing algorithm follows the shortest path and the only one determined             
path for the packet. This algorithm is suitable for regular and irregular network             
topologies. 

 
“RC Comp. unit” has another enable input en2 that is activated only by valid head               
flits. The value of en2 is defined by the value of ireq xor oack. The head flit should                  
be held in the CBIN until the grant “arb_grant” is given from the arbiter in the                
CBOUT. This is done by gating the request signal ireq using a TR-gate, which is               
implemented by a D-latch. When the grant is obtained, the TR-gate is opened by              
the positive edge of the arb_done, and ireq d is forwarded to the corresponding              
CBOUT through a TR-DEMUX which is a simple demux where the value of             
arb_grant acts as its selection lines. The functionality of the control circuits in the              
TR-gate is shown in the red box in Fig. 8. The data-path block is implemented               
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using normal D-latches. When an acknowledgement is sent from the CBOUT, it is             
forwarded to the IC as oack. TR-MRG is just an exclusive-OR and is used to               
merge transition signalling inputs that are the value of acknowledgement from the            
CBOUTs. When oack of the head flit is asserted, the request (arb_req) to the              
arbiter is released, but arb grant is kept by a latch in CBOUT. The following data                
and tail flits are just passed from the IC to the CBOUT because the TR-gate is                
kept open. When ireq_d of a tail flit is sent to the CBOUT through TR-DEMUX, the                
TR-gate is closed at ire_d when the tail flit becomes 1, for the preparation of a                
head flit of next packet  [1]. 

 

Figure 11: From the literature, Imai et al[1].  
The architecture of CBIN in an asynchronous Router 

 

5.3.3 Crossbar Outputs (CBOUT)  

CBOUT has a four-input asynchronous arbiter. The grant outputs of the arbiter are             
latched by a LevelLT which are normal D Latches, and the latched grant outputs              
arb_grant is sent back to CBINs. The CBOUT has a multiplexer (MUX) in the              
data-path (its output is mdata) and arb_grant acts as the selection lines for it, i.e.,               
the data from the CBIN that has a grant is selected. This forms a cross-bar.  

The arbiter latch is initially open and is closed when a head flit arrives at mdata.                
This is because arb_req is released after the head flit goes through as mentioned.              
It is opened again for the next packet when the tail flit in mdata is acknowledged.                
CBOUT also has one pipeline stage connected to the output port. The ireq signal              
is obtained by merging the request signals from four CBINs using TR-MRG, and             
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its acknowledgement output is sent to the four CBINs through TR-DEMUX based            
on arb grant  [1]. 

 

Figure 12:  CBOUT Architecture from Imai et al [1] 

 

 

 

 

 

 

 

 

31 
 



 

6. Results 

This section lists the output waveforms of all the modules for the asynchronous             
router and the two different types of handshaking protocols. 
 

 

Figure 13: Results for the 2-phase handshaking 

 

Figure 13 shows us the results of a module demonstrating 2 phase handshaking.             
Rs is the request signal from the sender module and Rr shows the request signal               
in the receiver module. Once the stimulus is given to the sender module, a              
request Rs is generated and sent to the receiver module. When the receiver             
module gets the request signal it generates the acknowledgement signal A. We            
observe that this continues till another stimulus signal is given, at which these             
signals reset to low and wait for the next stimulus to start another handshake. This               
shows the non-return-to-zero protocol. 

 

 

Figure 14: Results for 4-phase handshaking 

 

Figure 14 illustrates the waveform of the code written for a 4-phase handshaking             
protocol. Rout - represents the request signal from the sender. R is the signal that               
is received by the receiver model after some time. A - the acknowledgement sent              
by the receiver module to the sender. The request signal is sent by the sender               
module after the stimulus. The handshaking is performed between the two           
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modules and then it waits for the next stimulus signal. This shows us the              
return-to-zero protocol. 

 

 

Figure 15: Results for the Input Channel - Asynchronous FIFO 

 

Figure 15 shows the output waveforms of the signals in the Input channel. The              
asynchronous FIFO has two clocks rclk and wclk that are auxiliary internal to the FIFO               
asynchronous to each other. These clocks are for the write and read pointers in the FIFO.                
wdata represents the input data to the FIFO memory. The rdata signal represents the              
data to be read from the FIFO memory when it receives an ireq from the CBIN. The wfull                  
represents the signal which indicates that the FIFO memory is full and rempty represents              
that it is empty. The wreq signal is a request signal for writing the data into memory.                 
While the wreq is high and the wfull is low, the data written in the memory.  

 

 

Figure 16: Results for Crossbar input - CBIN of the Asynchronous Router  

Initially, the CBIN receives a request from the IC. When the head flit arrives at the                
RC Comp.unit, the module performs the routing algorithm that decides where the            
data gets routed. The RC Comp. output is arb_req which is sent to the CBOUT.               
The arb_grant signal from the CBOUT is used as selection lines by the             
TRDEMUX and also used as arb_done in TRGATE. The TRDEMUX sends a req             
signal to the CBOUT. The CBOUT reciprocates with an ack signal. This is             
received by the TRMRG which sends an oack signal to the IC. The TRMRG gets               
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req signals from the CBINS and the output of this module is the input to the                
mousetrap pipeline. 

 

 

Figure 17: Results for the Crossbar output- CBOUT of the asynchronous Router 

 

The CBOUT receives arb_req from CBIN to its 4 input arbiter. After the arbitration is done                
the output is gated by a LevelLT module which sends the arb_grant signal to the CBIN.                
Arb_grant is used as selection lines in the CBOUT module by the MUX and TRDEMUX.               
The mousetrap pipeline has ireq, iack and mdata as inputs and sends the output as oack,                
oreq and data_out to the other routers. The MUX gets data inputs (d1,d2,d3,d4) and the               
arb_grant selects the output of the MUX. 
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7. Budget 

 

 Time Taken Cost/Hr Total Cost 

Freelance 4hrs/day x 
5months  
(working days) 

€ 30/ person 95 days x 4 x 30 
= € 11,400 

Startup Company 4 hrs/day x  
5months 
 (working days) 

€100(Research) 95 x 4 x 100 
= € 38,000 

 Technology Minimum Cost  Maximum Cost 

Fabricating the 
Asynchronous 
Design on a Chip 

Advanced 
Nanometer 
technology 
(<90nm) 

€ 200k (non- 
commercial 
purpose) 

€ 1mil 
(commercial 
Purposes) 

 

Table 3: Table illustrating the budget for this project 

 

The budget tabulated in Table 3 mentions cost incurred by a freelancer/student            
working on this particular topic. Time put into this project to build the modules for               
an asynchronous code is taken into account and the cost for it for 5 months is                
calculated. 

If a company was to take up this project and work on this code, the time for the                  
research is taken into account. The cost incurred by the company is calculated.  
For the design to be built on a chip is calculated. Since the asynchronous design               
is a technology that works under 90nm the cost of producing a chip for              
non-commercial purposes come to around €200k and if a well-established          
organisation were to build an asynchronous chip it would cost more than a million              
euros. 
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8. Conclusions and future development 

We have designed asynchronous Router modules, like the input Channel(IC),          
Crossbar input(CBIN) and Crossbar output(CBOUT), to work as Standalone units.          
Also designed programs illustrating the 2-phase and 4-phase handshaking         
protocols. The routing algorithm used is a simple XY dimension routing algorithm.            
The packets move in four direction-north, south, east and west. A one stage             
mousetrap pipeline is used in the CBOUT. 

Future Development: The different modules should be connected and made to           
work as an Asynchronous Router. The area power and latency of this router can              
be compared with the synchronous router using CAD tools. The asynchronous           
router that we have constructed is a 4 port module, the scope is to construct               
multiple port router and have a suitable routing computation algorithm. This will            
give us a deeper insight into how the router performs compared to synchronous             
routers. 
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Appendices  

1. Code for 2-Phase Handshaking 

// sender module 
module sendermod(reqse, ackse, sti); 
output reqse; 
input ackse, sti; 
reg reqse; 
initial 

reqse = 0; 
always @ * 

begin 
 if(sti) 
  #1 reqse = !reqse; 
 else 
  reqse = reqse; 
end 

endmodule 
 
//receiver module 
module receivermod(ackre,reqre); 
output ackre; 
input reqre; 
reg ackre; 
initial 

ackre = 0; 
always @ * 

begin 
 if(reqre) 
  #1 ackre = 1; 
 else   
   #1 ackre = 0; 
end 

endmodule 

 

2. Code for 4-Phase Handshaking 

//sender module 
module sender(reqse,ackse,S); 
input ackse,S; 
output reqse; 
reg reqse; 
initial 

begin 
 reqse=0; 
end 

always @* 
begin 
  if(S) 
  #1 reqse <= 1; 
  else 
   if(ackse) 
   #1 reqse <=0; 

    end 
 
endmodule 
 
//receiver module 
module receiver(ackre,reqre); 
output ackre; 
input reqre; 
reg ackre; 
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initial  
begin 
 ackre=0; 
end 

always @* 
begin 
 if(reqre) 
  #1 ackre=1; 
 else if(!reqre) 
  #1 ackre=0; 
end 

endmodule 
 

3. Code for Input Channel (IC) - Asynchronous FIFO of an Asynchronous           

Router 

module async_fifo #( 
    parameter DSIZE = 9, 
    parameter ASIZE = 4 
) ( 
    input   wreq, wclk, wrst_n, 
    input   rreq, rclk, rrst_n, 
    input   [DSIZE-1:0] wdata, 
    output  [DSIZE-1:0] rdata, 
    output  reg wfull, 
    output  reg rempty, 

input oack, 
output reg ireq 
 

); 
reg [DSIZE-1:0]rdata; 
 
reg     [ASIZE:0]   wq2_rptr, wq1_rptr, rptr; 
reg     [ASIZE:0]   rq2_wptr, rq1_wptr, wptr; 
wire    rempty_val; 
wire    [ASIZE : 0] rptr_nxt; 
wire    [ASIZE-1:0] raddr; 
reg     [ASIZE:0] rbin; 
wire    [ASIZE:0] rbin_nxt; 
wire    [ASIZE-1:0] waddr; 
reg     [ASIZE:0] wbin; 
wire    [ASIZE:0] wbin_nxt; 
wire    [ASIZE : 0] wptr_nxt; 
 
// synchronizing rptr to wclk 
always @(posedge wclk or negedge wrst_n) begin 
    if(!wrst_n) 
        {wq2_rptr, wq1_rptr} <= 2'b0; 
    else 
        {wq2_rptr, wq1_rptr} <= {wq1_rptr, rptr}; 
end 
 
// synchronizing wptr to rclk 
always @(posedge rclk or negedge rrst_n) begin 
    if(!rrst_n) 
        {rq2_wptr, rq1_wptr} <= 2'b0; 
    else 
        {rq2_wptr, rq1_wptr} <= {rq1_wptr, wptr}; 
end 
 
// generating rempty condition 
assign  rempty_val = (rptr_nxt == rq2_wptr);  
 
always @(posedge rclk or negedge rrst_n) begin 
    if(!rrst_n) 
        rempty <= 1'b0; 
    else 
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        rempty <= rempty_val; 
end 
 
// generating read address for fifomem 
assign rbin_nxt = rbin + (rreq & ~rempty); 
 
always @ (posedge rclk or negedge rrst_n)  
    if (!rrst_n) 
        rbin <= 0; 
    else  
        rbin <= rbin_nxt; 
assign raddr = rbin[ASIZE-1:0];  
 
// generating rptr to send to wclk domain 
// convert from binary to gray 
assign rptr_nxt = rbin_nxt ^ (rbin_nxt>>1); 
 
always @ (posedge rclk or negedge rrst_n) 
    if (!rrst_n) 
        rptr <= 0; 
    else  
        rptr <= rptr_nxt; 
 
// generating write address for fifomem 
assign wbin_nxt = wbin + (wreq & !wfull); 
 
always @ (posedge wclk or negedge wrst_n) 
    if(!wrst_n) 
        wbin <= 0; 
    else 
        wbin <= wbin_nxt; 
 
assign waddr = wbin [ASIZE-1:0]; 
 
// generating wptr to send to rclk domain 
// convert from binary to gray 
assign wptr_nxt = (wbin_nxt>>1) ^ wbin_nxt;  
 
always @ (posedge wclk or negedge wrst_n) 
    if(!wrst_n) 
        wptr <= 0; 
    else 
        wptr <= wptr_nxt; 
 
// generate wfull condition 
wire wfull_val; 
assign wfull_val = (wq2_rptr == {~wptr[ASIZE : ASIZE-1],wptr[ASIZE-2 : 0]}); 
 
always @ (posedge wclk or negedge wrst_n) 
    if (!wrst_n) 
        wfull <= 0; 
    else  
        wfull <= wfull_val; 
 
// fifomem 
// Using Verilog memory model 
//rdata is the input to CBIN 
//the ireq is sent to CBIN when there is a data written in the mem 
// oack is the ack from the CBIN to send the data 
localparam DEPTH = (1 << (ASIZE)); 
reg [DSIZE-1 : 0] mem [0: DEPTH -1]; 
 
initial begin 

rdata = 'b0; 
end 
 
always @(rclk && oack) begin 

 
if(oack)begin 

rdata <= mem[raddr] ; 
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end 
else if(rempty) 
 rdata = 9'b0; 

end 
 

initial 
ireq = 0; 
 
always @ (posedge wclk)begin 
    if (wreq & !wfull) begin 

    mem[waddr] <= wdata; 
ireq = 1; 

    end 
else if (rempty) begin 

 ireq = 0; 
end 

end 
 

endmodule 
 
 

4. Code for Crossbar input-CBIN for an Asynchronous Router 
//The head flit should be held in the CBIN until the grant arb grant is given from the arbiter.  
//This is done by gating the request signal ireq using a TR-gate, which can be implemented by a D-latch. 
module trgate(ireq_d,ireq,reset,arb_grant,idata); 
 
output ireq_d; 
input reset,ireq; 
input [3:0]arb_grant; 
input [8:0]idata; 
 
reg ireq_d; 
wire arb_done; 
reg [4:0]tail; 
 
assign arb_done = arb_grant[0] || arb_grant[1] || arb_grant[2] || arb_grant[3]; 
 
initial 

begin 
tail = idata[8:4]; 
end 

 
always @(reset or ireq or arb_grant or idata) begin 
 

if(reset) 
ireq_d = 0; 

else if(arb_done && ireq) 
ireq_d <= ireq; 

else if(tail == 5'b10001) 
ireq_d = 0; 

else 
ireq_d = 0; 

end 
 
endmodule 
 
//When the grant is obtained, the TR-gate is opened by “@posedge(arb_done)” 
// and ireq_d signal is forwarded to the corresponding CBOUT through a TRDEMUX. 
//The data-path block is implemented using the normal D-latches.  
//When an acknowledgement is sent from the CBOUT, it is forwarded to the IC as oack 
//A TR-DEMUX is a DEMUX for the transition signalling protocol, 
// and is implemented by both-edge sensitive toggle FFs with enable inputs. 
 
module tr_demux(req,ireq_d,arb_grant); 
 
output reg [3:0]req; 
input ireq_d; 
input [3:0]arb_grant; 
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always @(ireq_d or arb_grant) 

begin 
case(arb_grant) 
4'b0001,4'b0010,4'b0100,4'b1000: req <= arb_grant; 
default: req = 4'b0000; 
endcase 

end 
 
endmodule 
 
module tr_mrg(oack,x1,x2,ack); 
 
output oack; 
output reg x1,x2; 
input [3:0]ack; 
reg oack; 
 
always @(ack)begin 

if(ack)begin 
fork 

x1 = ack[3] ^ ack[2]; 
x2 = ack[1] ^ ack[0]; 

join 
oack = x1 ^ x2; 

end 
else 

oack = 0; 
end 
  

endmodule 
 
//RC unit is a combinational circuit which does the routing computation when a request comes from the IC to the CBIN. \\ 
 
module rcunit1 #(parameter cl = 4'b1010) (arb_req,idata,en1,en2,head,tail,addr,ireq,oack,levelt,levelh); 
 
input [8:0]idata; 
output levelt,levelh; 
output reg en1; 
output wire [4:0]head; 
output wire [4:0]tail; 
output reg [3:0]addr; 
input ireq,oack; 
output en2; 
output [3:0]arb_req; 
reg [3:0]arb_req; 
wire [1:0]ax,ay,mx,my; 
 
reg levelh,levelt; 
 
initial begin 

levelh = 0; 
levelt = 0; 
addr = 4'b0; 
arb_req = 4'b0; 
en1 = 0; 
end 

 
 assign head = idata[8:4]; 
 assign tail = idata[4:0]; 
 //assign addr = idata[3:0]; 
  
 always @(idata) 
 begin 

if (head == 5'b10001)begin 
addr = idata[3:0]; 
en1 = 1; 
levelh = 1; 
#10 levelh = 0; 
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end 
else if(tail == 5'b10001)begin 

en1 = 0; 
addr = 4'b0000; 
levelt = 1; 
#10 levelt = 0; 

end 
end 
 
assign  mx = cl[3:2]; 
assign  my = cl[1:0]; 
assign  ax = addr[3:2]; 
assign  ay = addr[1:0]; 
 
xor(en2,ireq,oack); 
 
 
 always @(en1 && en2 && addr) begin 

if(addr == 4'b0) 
arb_req = 4'b0; 

else if((ax != mx)&&levelh)  
begin  
 if(ax > mx)  

arb_req = 4'b0010; //go east  
 else if(ax < mx)  

arb_req = 4'b1000; // go west  
    end  

else if((ax == mx)&&(ay != my)&& levelh)  
begin  
 if(ay > my)  

 arb_req = 4'b0001; // go north 
 else if(ay < my)  

 arb_req = 4'b0100; // go south  

 
end  

else  
arb_req = 4'b0;  

end 
 always @ (*)begin 

if(addr == 4'b0) 
arb_req = 4'b0; 

 end 
 
endmodule 
 
 

5. Code for Crossbar output - CBOUT of the Asynchronous Router 
 

//trmrg module is an input signal merging module 
module trmrg(ireq,req); 
 
output ireq; 
input [3:0]req; 
 
reg ireq; 
initial 
ireq = 0; 
 
always @ (req) 

begin 
case(req) 
4'b0001,4'b0010,4'b0100,4'b1000: ireq <= 1; 
default: ireq <= 0; 
endcase 

end 
 
endmodule 
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//data mux module  
// the mux module is a switch module for the input data into the CBOUT from the CBIN after giving the arb_grant to CBIN 
module mux(dataout,d1,d2,d3,d4,arb_grant,idata); 
 
input [3:0]arb_grant; 
output reg [8:0]d1,d2,d3,d4; 
output [8:0]dataout; 
input [8:0]idata; 
reg [8:0]dataout; 
 
always @(*)begin 

case(arb_grant) 
4'b0001: begin  

 d1 = idata; 
 {d2,d3,d4} = 9'b0; 
 end 

4'b0010: begin 
d2 = idata; 
{d1,d3,d4} = 9'b0; 

end 
4'b0100: begin 

d3 = idata; 
{d1,d2,d4} = 9'b0; 

end 
4'b1000: begin 

d4 = idata; 
{d1,d2,d3} = 9'b0; 

end 
default: {d1,d2,d3,d4} = 9'b0; 
endcase 

end 
 
always @(*) 

begin 
case(arb_grant) 
 4'b0001: dataout = d1; 
 4'b0010: dataout = d2; 
 4'b0100: dataout = d3; 
 4'b1000: dataout = d4; 
 default: dataout = 9'b0; 
endcase 

end 
endmodule 
 
 
//demux module 
module trdemux(ack,oack,arb_grant); 
 
output [3:0]ack; 
input oack; 
input [3:0]arb_grant; 
 
reg [3:0]ack; 
 
 
always @ (oack) 

begin 
case(arb_grant) 
4'b0001:ack <= arb_grant; 
4'b0010:ack <= arb_grant; 
4'b0100:ack <= arb_grant; 
4'b1000:ack <= arb_grant; 
4'b0000:ack <= arb_grant; 
default:ack <= 4'b0; 
endcase 

end 
 

endmodule 
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//4 input arbiter with a round robin algorithm, which is connected to the level Lt.this arbiter gives out arb_out and not 
//arb_grant. the level LT is the latch that gives out  arb_grant to the CBIN based on other signal inputs. 
module arbiter(arb_out,a,count,arb_req); 
 
input [3:0]arb_req; 
output reg [2:0]a; 
output reg [2:0]count; 
output [3:0]arb_out; 
reg [3:0]arb_out; 
 
initial begin 

arb_out = 4'b0; 
count = 3'b0; 
a = 3'b0; 

end 
 
always @(arb_req) begin  
a = arb_req[3] + arb_req[2] + arb_req[1] + arb_req[0]; 
end 
 
always @ (a)begin 

if(a == 3'b001)begin 
 
count <= 3'b0; 

end 
else begin 

 
count <= a; 

end 
end 

 
reg [3:0]s1,s2,s3,s4; 
 
always @((a && arb_req)||(count))begin 
  
 if(a == 3'b001)begin 

 arb_out <= arb_req; 
 //#5 $display($time,"arb_out = %b,arb_req = %b,count = %b\n",arb_out,arb_req,count); 
 a = 3'b0; 

 end 
 
 
 else if(a > 3'b001)begin 

s1= 4'b0001 & arb_req; 
s2= 4'b0010 & arb_req; 
s3= 4'b0100 & arb_req; 
s4= 4'b1000 & arb_req; 
 
while (count > 3'b0) 
begin  

if( s1 == 4'b0001)begin 
 arb_out = 4'b001; 
count <= count - 3'b001; 
 
s1 = 4'b0; 
// #5 $display($time,"arb_out = %b,arb_req = %b,count = 

%b\n",arb_out,arb_req,count); 
end 

  
else if( s2 == 4'b0010) begin 

arb_out = 4'b0010; 
count <= count - 3'b001; 
s2 = 4'b0; 
//#5 $display ($time,"arb_out = %b,arb_req = %b,count = %b\n",arb_out,arb_req,count); 

end 
  

else if( s3 == 4'b0100)begin 
arb_out = 4'b0100; 
count <= count - 3'b001; 
s3 = 4'b0; 
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//#5 $display ($time,"arb_out = %b,arb_req = %b,count = %b\n",arb_out,arb_req,count); 
end 

  
else if( s4 == 4'b1000) begin 

arb_out = 4'b1000; 
count <= count - 3'b001; 
s4 = 4'b0; 
//#5 $display ($time,"arb_out = %b,arb_req = %b,count = %b\n",arb_out,arb_req,count); 

end 
  

else begin 
arb_out = 4'b0000; 
//#5 $display ($time,"arb_out = %b,arb_req = %b,count = %b\n",arb_out,arb_req,count); 

end 
 

end 
  

end 
end 
endmodule 
 
//level lt module is where the signal of oack and ireq are checked before giving arbiter grant to the CBIN 
// level lt gets its input from the arbiter after the round robin algorithm. 
 
module level (arb_grant,arb_out,oack, ireq,idata,reset); 
 
output [3:0]arb_grant; 
input [8:0]idata; 
input [3:0]arb_out; 
input oack, ireq; 
reg levelt, levelh; 
output reg reset; 
 
reg [4:0]head, tail; 
 
//assign head = idata[8:4]; 
//assign tail = idata[4:0]; 
 
initial begin 

levelt = 0; 
levelh = 0; 
reset = 0; 

end 
 
always @ (levelt)begin 
 #5 levelh= 0; 
end 
 
always @ (*) begin 

if( levelt && !levelh )begin 
#20 reset = 1; 
end 

else if( levelh) 
   reset <= 0; 

end 
 
always @ (idata)begin 
 head = idata[8:4]; 
 tail = idata[4:0]; 

if(head == 5'b10001) 
levelh<= 1; 

else if(tail == 5'b10001) 
levelt <= 1;  

else if (head == 5'b0 && tail == 5'b0)begin 
levelh= 0; 
levelt = 0; 
end 

end 
 
reg [3:0]arb_grant; 
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initial 
 arb_grant = 4'b0; 
  
always @(reset or arb_out or idata) begin 

if(reset)begin 
arb_grant = 4'b0; 
levelt = 0; 
 
end 

else if( levelh || !levelt ) 
arb_grant <= arb_out;  

else if(levelt) 
 arb_grant <= 4'b0; 

else 
arb_grant = 4'b0; 

end 
 
endmodule 
 
//this is a 1 stage mousetrap pipeline. 
module mousetrap(data_out,oack,en, ireq, iack,reset, datain); 
 
output [8:0]data_out; 
output oack; 
output en; 
input ireq, iack; 
input [8:0] datain; 
input reset; 
 
reg clk = 0; 
always #50 clk = ~clk; 
 
reg [8:0]data_out; 
reg oack; 
reg en; 
 
initial begin 

oack = 0; 
data_out = 9'b0; 
en = 0; 

end 
 
always @ (iack or oack)begin 

en = ~( iack ^ oack); 
end 
 
always @(posedge clk)  //(reset or ireq or datain or en) 

begin 
if(reset) 
fork 

data_out <= 9'b0; 
oack = 0; 
en = 0; 
//$display ($time,"data_out = %b,en = %b,oack = %b",data_out,en,oack); 

join 
  

else if(ireq)begin 
if(en) 

fork 
data_out <=datain; 
oack = 1; 
#5 en = 0; 

join 
    else  

data_out = 9'b0; 
    end 
 // data_out = 9'b0; 
end 
 

endmodule; 
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