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Abstract

The first ejectors were invented in the 1900s, and a lot of research has been
done since that time. The fluid mechanics department of the UPC has been
searching for an optimal geometry in order to implement it to a supersonic ejec-
tor. Researchers Roberto Castilla López and Llorenç Macià have developed a
numerical simulator using OpenFOAM[1] in order to analyze the flow inside a
supersonic ejector.

They have found that a one dimensional solver (1D model) of the steady flow
is needed to interact with the larger and more complex transient solver that is
already done. This OpenFOAM CFD solver will allow to find coefficients to
adjust the performance of the one dimensional solver. Then, the 1D solver will
be used for the optimization process, as it will allow to make a higher number
of simulations. The problem with the CFD solver is that, due to its complexity,
every simulation takes too much time, making it impossible to carry out an
optimization process.

Therefore, the development of a one dimensional solver has been done using
Python. The model is capable to compute the performance for a given ejector
geometry and to approximate the vacuum level that can be reached.
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Nomenclature

Symbols

ṁ mass flow rate, kg s−1

A area, m2

a sonic velocity, m s−1

d diameter, m

ER error

M Mach number

P pressure, bar

Re Reynolds number

R gas constant, kJ kg−1 K−1

T temperature, K

V velocity, m s−1

cp specific heat of gas at constant pressure, kJ kg−1 K−1

f friction factor

Greek Symbols

η isentropic coefficient

γ isentropic expansion ratio

ν specific volume, m3 kg−1

ω entrainment ratio

ψ isentropic coefficient of mixing

ρ density, kg m−3

θ expansion ratio

ζ compression ratio

Superscripts

* critical mode operation of ejector

Subscripts

1 nozzle exit

2 constant area section

3 constant area section after friction losses

c back pressure

d diffuser
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m mixed flow

p primary flow

s secondary flow

t nozzle throat

y location where two stream start to mix
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1 Introduction

The supersonic ejector is a device that using the transportation of a fluid is able to give
a low-pressure secondary stream the sufficient quantity of energy in order to accelerate
it, using only a high-pressure primary jet and without using any mechanical device.

The vacuum ejector-diffuser system is a simple device, with low maintenance and low
energy consumption. It is used in numerous industrial applications, such as refrigera-
tion systems, seawater desalination systems, fuel cells, and high altitude test facilities
[2].

Other application consist in vacuum generation. The use of ejectors for vacuum gen-
eration is present in many different applications. This is because the advantage of
time achieved with ejectors, as they are capable to produce vacuum with high velocity.
Other applications include object manipulation.

The mechanism consists in using an ejector with a pressure source to achieve vacuum
in a secondary chamber. There are ejectors capable of achieving vacuum levels as
high as 99%. But, for industrial usage, it is only necessary to obtain vacuum levels of
approximately 80%, which is known as ‘useful vacuum’.

This project will help previous studies [1] to develop a more efficient ejector device
using a one dimensional (1D) model to predict, with sufficient accuracy, the vacuum
level that an ejector can reach for a given geometry. The results obtained by the solver
will be used to predict more efficient geometries to study with the CFD models.

1.1 Scope of the project

The design of the model will include:

• An schematic of the supersonic ejector used in the project.

• An explanation of the operation carried out by the ejector, as well as the expres-
sions that are involve, along with the study of them.

• Description of the process used to develop the solver.

• Develop of the program to numerically solve the steady flow of the supersonic
ejector and the final pressure in vessel.

• Report with the results and conclusions.
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The design will not include:

• The development of a new ejector geometry.

1.2 Requirements

The requirements of this project are the following:

• The final report must include an explanation of the basics of compressible flow
and the basics of the supersonic ejector.

• The program must be able to solve the steady primary and secondary flow for a
given ejector geometry.

• The solver is required to compute a proper approximation of the final pressure
in vessel and the percentage of vacuum obtained.

• The numerical implementation must be included and described in the final report.

• It should be verified that the obtained results are acceptable.

• Final results should be included and discussed.
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2 State of art

2.1 Historical Background

Since Giovanni Battista Venturi (Bibbiano, Italy, 11 September 1746 – Reggio Emilia,
Italy, 10 September 1822) proposed that velocity increments entails pressure decays,
mankind has sought for devices capable of work as pumps or compressors without using
mobile mechanical components.

Nowadays, there are multiple instruments based on this principle, such as carburetors
and paint sprays guns of compressible air. Alongside these components invented in the
late 19th century, there is the ejector, as a result of many advances on scientific and
engineering camps applied to steam devices.

Particularly for ejectors, their first rudimentary and early applications date back to
1850s [3]. A jet machine may be seen in the "blast pipe", which is located in the
smokebox (a volume at the final of the boiler where the smoke and ash are gathered
previous going into the chimney) since the first steam locomotives (see Fig. 1). This
device was capable of direct exhaust steam of the cylinders through a nozzle, placed
at the base of the chimney, achieving a direct reduction of the flue gas pressure and
increasing the air flow on the fire. With this machine, the locomotive power was higher
than before, and it also provoked the intermittent flow of smoke of the chimney, which
is synchronous with the alternate movement of the pistons. This first rudimentary
device was called injector. It was the predecessor of the ejector device, although at
that time the principles of the injector were not jet fully understood.

Figure 1: Blast pipe in a steam locomotive
[3]
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Then, the inventor Henri Giffard (locomotive French engineer), who was familiar with
the blast pipe, understood the basic principle of the steam injector, and wrote the
momentum equation, which is still valid nowadays [4]. After that, he patented the
injector in 1858, becoming successful immediately.

Figure 2: First patented injector from Henri Giffard [5]

The injector become very popular by 1860s, as a consequence of its efficiency and
simplicity, and ousted the pumps from the locomotives. It was smaller and more
efficient, in addition it had not moving parts, which eliminates the necessity of oiling
and the majority of friction. In comparison with pumps, injectors were better and also
were capable of working during the time the locomotive was not being moving.

Due to all these advantages by 1860 many French railroad and the French Navy lines
were using already injectors in their engines, and at the London exhibition of 1862,
approximate one third of the steam engines were equipped only with injectors. America
started to manufacture injectors in 1860, and just in 1861 nearly 1200 injectors were
sold only in the USA. Then at the end of the century (late 1890s - early 1900s),
the number of sold injectors increased up to half million, and by that days most of
locomotive engineers had never seen one of the elder feed pumps.

In that period, the properties of water vapor were not well-known. The fact that the
high enthalpy of the vapor arriving from the boiler is transformed into kinetic energy
inside the nozzle and it may overcome a high discharge pressure, once it is transported
to the feed water flow, was remarkably hard to comprehend for the engineers of that
time. This fact provoked a lively discussion (as mentioned in Kranakis 1982 [4]) and
eventually advanced the society in the knowledge and comprehension of the newly born
first law of thermodynamics.
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Once the working principle of the injector was demonstrated and understood, it was
easily transmitted to the steam ejector, and it was used on locomotives as a vacuum
pump for the brake circuit (Encyclopædia Britannica 1911 [6], see Fig. 3). For that case,
there was a huge availability of steam and combining that with the simplicity ejectors
could offer, this system was the perfect solution to the urgent need of a trustworthy
braking system (making the vacuum brake system the first technique to be considered
safe, in view of the fact that it automatically stops the train, including the case when
the circuit is unexpectedly opened to the atmosphere). This vacuum brake system had
a major success in the UK, where it was used until the 70s.

Figure 3: Vacuum brake system [6]

Bringing it all together, there was two technical challenges that led to the invention
of the ejector. On one side, the needing of devices capable to bring pressurize water
into the boiler, which it is the field just discussed. And in the other hand, it was
required devices that could extract incondensable gases from the condenser and with
the steam available at various pressure levels during the expansion phase, for usage in
steam power plants.

This second challenge was addressed by Sir Charles Parson in 1901, who used an steam
ejector to solve the challenge, as it was more cheaper and reliable than any other vacuum
pump. He gave it the name of "vacuum augmentor". Then, numerous progress were
achieved and in 1918 Maurice Leblanc filed the patent "Steam Ejector Aparatus" US
Patent 1422582. His idea was to perfect the "vacuum augmentor" developed by Sir
Charles Parsons, and its operative system can be observed in Fig. 4. Years later, in
the 20s, and taking advantage of the vacuum level the ejector could achieved, it was
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proposed as a compressor for refrigeration circuits. Then, this is the predecessor of
the ejector as a substitute for the compressor in a refrigeration cycle. Its use began
in the 1920s, extending until the 1930s, a period in which it operated with water
vapor as refrigerant and heating steam as "motive fluid", being mainly used for the air
conditioning of large buildings.
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Figure 4: First ejector in 1918 [7]

Later it will arrive the introduction of CFCs (chlorofluorocarbon gases) in the 30s,
and due to their higher energy efficiency, they practically replaced the ejector from the
refrigeration field. Despite this, it has continued to be used in other sectors such as
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petrochemical, paper industry (suction pads), steam condensers and other applications
where vacuum is required.

From the end of the 80s, and motivated by the energy crises and the growing awareness
about the environment (Montreal and Kyoto Protocols), the interest in the improve-
ment of thermodynamic cycles grew, which, although they were already known, they
were still far from being able to compete against the compression machine, mainly
for reasons of efficiency, cost, and simplicity of operation. The criteria for new de-
signs was to focus on the use of renewable energies and the use of refrigerants that do
not affect the environment, which are generally called "natural refrigerants" for their
characteristics and origin.

As a consequence, the consolidated working fluids (the CFCs) were replaced in a short
time frame, but the refrigeration and air conditioning were still appreciated as a relevant
products for the final electricity users. This provoke a renewed interest concerning the
heat-powered refrigeration devices and the usage of environmentally secure working
fluids. Unfortunately for ejector chillers, the absorption based system were the ones
who dominate the market.

Nowadays, even though the absorption system dominate the refrigeration market for
the most part, there are investigations in other cycles which are being investigate [8].
Besides the vapor compression cycles, there are alternatives as the thermal energy
cycles and electric energy cycles. All of them used for the sake of refrigeration.

One of the thermal energy cycles is based on the ejector, and it is focus on the ejector
design and the searching of the ideal refrigerant fluid for the different operational
conditions, in order to optimize the process.
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2.2 Current situation

Much research has been done in order to determine the performance of ejectors (which
can be quantified by its entrainment ratio [9]). The entrainment ratio is the ratio
of mass flow between the secondary and primary mass flow rates. There are many
theoretical ejector models which are capable of predicting (with margin errors) the
performance. These analytical techniques can be classified into two main groups [10]:
constant area mixing methods, where the nozzle exit is located inside the constant area,
and therefore the mixing of primary and secondary fluids happens inside the constant
area section. The other group is the constant pressure mixing methods. It takes place
when the nozzle is placed before the mixing chamber, in front of the constant area
section. The latter analytic techniques gives superior performances for the ejector
above the constant area mixing methods, as shown in [11]. Therefore, the present
study will focus in develop a constant pressure mixing model.

The constant pressure of theory ejector developed by Huang et al. [12] was used by
many other posterior works and theories [2, 8, 13, 14, 15]. Huang et al. [12] developed
a constant mixing model, but with a new feature, consisting in assuming the mixing
between two flows inside the constant area section.

In his report [12], Huang et al. shows the theoretical study needed to develop the model.
The model consists in the implementation of a one dimensional solver with the R-141b
as a working fluid, and then the obtained results are compared with experimental data
obtained by his own. The analytical model is capable of predict the ejector performance
but only at the critical mode operation (explained later in Subsection 3.2), when the
two flows are choked and the ejector is working at fully capacity.

Kong et al. [2] presented an updated 1D evaluation model, which was proposed to
predict the ejector performance with reasonable exactitude. The model includes em-
pirical coefficients to take account the losses produce by shock waves and the mixing
process, and as a differentiating factor, the model includes the calculation of friction
losses solved by momentum and energy conservation equations, alongside with the in-
clusion of shock wave equations and Fanno flow equations. In this model, the primary
flow goes through a convergent nozzle, and the exit is located inside the constant area,
which means that this model is based in constant area mixing methods. However, the
results show high accuracy when it comes to compute the ejector performance, thanks
to the inclusion of a more complex set of equations.
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Another theoretical analysis is the one made by Chen et al. [13]. This model is based
on constant pressure mixing methods, that are assumed to have a better performance.
In addition, this model not only computes the ejector performance for the critic mode
operation (as the previous theoretical models do), but also determines the performance
for the subcritical mode operation of the ejector. However, it supposes isentropic flows,
and it uses isentropic coefficients to take account of the mixing losses.

Javier García del Valle [8], makes a bibliographic review of a high number of existing
models in his PhD thesis. He also develops two different mathematical models to
predict the ejector performance, and then he compares them with existing models and
with his own experimental results. He developed a linearized axisymmetric potential
model and a non linearized axisymmetric potential model, with the latter being more
complex. This two models resulted to be very accurate compared to the experimental
data, but both of them are two dimensional models, and not one dimensional.
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3 Methodology

3.1 Working principle of ejectors

A supersonic ejector could take multiple geometries, nevertheless, a basic scheme is
presented in Fig. 5. The size and geometry shown are non scaled, but enough to
understand how it works. The fundamental parts are the injector, the mixing chamber
and the diffuser [16].

Figure 5: Section of a basic standard supersonic ejector [3]

The primary (or motive) flow is supplied through the primary nozzle (called injector).
Then, this flow carry along the secondary one (which is also called entrained flow)
and pull from it reaching both the mixing chamber, where momentum and energy
transfers are done. With highly different velocities, the transfer of momentum cause
an acceleration of the entrained flow as long as a deceleration of the motive fluid. Then,
once the two flows are mixed into one, the later pass throw the mixing zone up until
the diffuser, where eventually is discharge, re-compressing until reaching the ambient
pressure.

The ejector works as a substitute of another assembly, much more complex, formed
by a turbine and a compressor. The ejector removes the existence of mechanical work
transmission trough a connecting shaft, and also have losses from rotating blades,
bearings, lubrication, etc.

Nevertheless, the two streams mixing with highly different velocities introduces some
energetic losses which should be taken into consideration. There is a transition where
the flow goes from supersonic to subsonic, due to the velocity loss. Would be ideal if the
transition occurs at the throat of the diffuser, with a progressively decreasing velocity.
In that case the flow did not undergo from supersonic flow to subsonic with a shock
wave. However, this condition only occurs with a particular inlet and exit conditions,
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making it practically impossible to achieve in reality. And as a consequence, normally
the supersonic flow decelerates to subsonic through a wave shock.

The stable mode operation of the ejector is reached when the shock takes place down-
stream of the diffuser next to the throat. This is because, with this condition, flow rates
are insensitive to any possible increase in the discharge pressure. While the discharge
pressure increases, the shock is moving in the direction of the throat, when eventually
it reaches the throat, the ejector experiences its most efficient operation condition (see
Fig. 13), as it achieves the maximum entrainment ratio with the maximum discharge
pressure.
At this state, any additional increase in the discharge pressure will cause the flow
to become subsonic, and then it will become dependent on the discharge pressure.
Operating in this condition, the ejector become unstable, and an increments in the
discharge pressure causes the performance to step back.

Figure 6: Operation map of a supersonic ejector [3]

Fig. 6 shows the above described behavior, in terms of the entrainment ratio. For the
sake of clarity, it should be introduced the following non-dimensional parameters:

• Entrainment ratio ω = ṁs/ṁp, which is the quotient between the secondary (ṁs)

and the primary (ṁp) mass flow rates.

17
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• Compression ratio ζ = Pc/Ps, being the quotient between the discharge (Pc) and
induced fluid (Ps) pressures.

• Expansion ratio θ = Pp/Ps, referring to the ratio between the primary (Pp) and
entrained fluid (Ps) pressures.

With this parameters, it is possible to discuss the behavior using Fig. 6. At first, for a
given primary (Pp1) and secondary pressure (Ps3) conditions, the entrainment ratio (ω)
is a function of the discharge pressure (Pc). The line is first horizontal until it reaches
the critical back pressure (Pcrit), also called maximum discharge pressure, and is the
limiting operational point, since after reaching it, increasing values in the discharge
pressure will lead to decreases of the entrainment ratio. The critical back pressure
is the point where the maximum entrainment ratio is reach alongside the maximum
compression ratio (ζcrit)

Then, if the secondary fluid pressure is lowered (e.g, reach Ps1 from Ps3 and at a
constant primary pressure), then the operating curve of the ejector is moved left and
downward of the chart (referring Fig. 6), which means lower values of both the entrained
(ω) and the compression (ζcrit) ratios. Continuing with a primary fluid pressure increase
(e.g., primary pressure goes from Pp1 to Pp2), and without changes now in the induced
pressure flow (i.e, Ps remains constant at Ps1), ζcrit and the expansion ratio (θ) all both
increase, and the ω decreases.

Finally, it is worth mentioning that another important parameter is the area ratio
between primary nozzle and the mixer/diffuser area sections. This is a limitation
factor when the ejector is working in supersonic conditions, as the two flow rates are
limited and so is the entrainment ratio. Then, as the area ratio increases, the primary
flow increases and the compression ratio increases too. Alongside, the entrainment
ratio decreases, as the induced flow remains constant or even decline, as the major
section that the primary flow is now occupying at the mixing section.

18
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3.2 Mathematical models

There are many proposed mathematical models in the literature, and the majority have
the purpose of obtain the ratio between the secondary (ṁs) and the primary (ṁp) mass
flow rates [16]. This indicator is the entrainment ratio:

ω =
ṁs

ṁp

(1)

The principal models can be classified into three main groups, which are thermody-
namic, energetic and cinematic models, commented in the doctoral thesis of J. García
del Valle [8]. The cinematic ones use the whole set of conservation equations: mass,
momentum and energy conservation. The model presented in this bachelor thesis is a
cinematic model, as it is used the conservation equations to predict the performance
of the ejector.

The first cinematic model to describe the different working modes of an ejector is the
Fabri and Sienstrunck model [17]. And in addition it is the most instructive model,
as it comprehensively describes the three modes of a constant area ejector. The test
carried out by [17] were performed by lowering the primary fluid pressure. The three
operational modes observed were:

1. Supersonic mode of operation

Figure 7: Supersonic working operation [17]

This first regime has its own characteristics:

1.1. Stagnation pressure of primary flow is maximum.
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1.2. The flow is supersonic at the ‘st’ section, while the secondary flow is sub-
sonic.

1.3. The critic ‘sc’ section is unique of this regime, where the secondary flow
reaches sonic conditions, as if it was a secondary throat. The primary fluid
expands from the ‘st’ section to the critic ‘sc’ section.

1.4. The two flows are well distinguished alongside all the tube.

1.5. The pressure at x = L may be different from the discharge pressure, as there
is supersonic regime.

2. Saturated supersonic mode

Figure 8: Saturated Supersonic working operation [17]

For this second case of operation, the following conclusions are reached:

2.1. The stagnation pressure is less than in the supersonic regime case, with the
same stagnation pressure of the secondary pressure and the same discharge
pressure.

2.2. For this case, at the ‘st’ section the primary and the secondary fluids reach
supersonic conditions (proved with pressure outlets located at the walls).

2.3. Primary and entrained flows are well distinguished along all the chamber.

2.4. There are no observed shock waves for this operational conditions.

2.5. Discharged pressure may be different from the measured pressure at x = L,
this is because the supersonic flow.
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3. Mixed mode

Figure 9: Mixed working operation [17]

Observations about this third mode operation:

3.1. Lower needed stagnation pressure for the primary flow than in the supersonic
regime case, keeping constant secondary and discharge pressure.

3.2. Primary flow reaches supersonic condition at the ‘st’ section, while secondary
one is subsonic.

3.3. The two flows are mixed between ‘st’ section and the exit (x = L) section,
and oblique chocks are formed as they mix.

3.4. There is subsonic flow at the exit section, which means that the static pres-
sure equals the one existing at the exit, normally the ambient pressure.

The three operational modes observed by Fabri and Sienstrunck [17] are the basis to
understand how ejectors work, and then develop theories based on this phenomena. In
the following Subsection 3.3, it is explained in detail how these operational modes can
be used to determine the performance and how is implemented into the present one
dimensional model.
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Researches Llorenç Macià and Roberto Castilla have obtained the following results with
two different configurations of CFD (more details explained at Section 5). The results
only show the secondary flow. Fig. 10 shows the different positions of the generated
shock wave. It is seen that for values of P∗s ≥ 0.4 the primary flow expands, and the
secondary flow reaches sonic conditions between x = 0 and x = L. This corresponds
to supersonic mode of operation.

Figure 10: Secondary flow with implicit solver HiSA for P∗s ≥ 0.4. Flow direction is from
the left (inlet) to the right (outlet) [1].
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For values of P∗s ≤ 0.3, the ejector enters into mixed mode of operation, as the secondary
flow does not take a shock wave (the flow does not reach sonic conditions, as any point
reaches M ≥ 1).

Figure 11: Secondary flow for P∗s ≤ 0.4 [1].
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Finally, Fig. 12 shows the difference between the implicit HiSA and explicit rhoCentral-
Foam CFD models. For the implicit model, the ejector reaches the maximum vacuum
level for P∗s = 0.217 (zero-flow condition for the secondary flow). For the explicit model,
the ejector still working at supersonic mode of operation for values of P∗s = 0.2.

Figure 12: Secondary flow with explicit solver rhoCentralFoam for P∗s = 0.2 [1].
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3.3 Theoretical analysis of ejector performance

As discussed above, in supersonic ejector applications, the most important indication
of ejector performance is the entrainment ratio (ω), shown in Eq. 1.

To evaluate the performance in terms of entrainment ratio, ejector operation can be
divided into three modes of operation, as already commented in Subsection 3.2. The
Fig. 13 shows the variation of the entrainment ratio in front back pressure when the
primary and secondary pressures are constant. During critical mode operation (or
double-choking mode), the primary and entrained flows are choked, and then the en-
trainment ratio reaches its maximum value that stay constant with lower back pressure
values. Then, in the sub-critical mode operation (or single-choking mode), it is only
the primary flow chocked, and therefore the entrainment ratio changes with the varia-
tion of the back pressure. The entrainment ratio goes from its maximum value to zero
as the secondary flow decays with higher values of back pressure. For the back flow
mode (or breakdown mode), the induced flow could be blocked or reversed, and then
the entrainment ratio is zero or less than zero.

Figure 13: Performance of an ejector-diffuser device [2]

Fig. 14 depicts a scheme of an ejector with constant pressure mixing principle. The
nozzle exit is located before the mixing chamber. The high pressure stream, typi-
cally known as the primary flow, passes through the primary nozzle and fans out at
supersonic velocities at the primary nozzle exit (section 1-1). The low pressure envi-
ronment created by the supersonic primary flow and the viscous entrained effect cause
the entrained flow to drawn into the mixing chamber.
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The primary flow expands and forms a converging tube for the entrained flow before
any mixing with it occurs, following the hypothesis used in [18]. In consequence, the
entrained flow accelerates to a sonic velocity inside the constant area section. Then,
the mixing process starts when the induced flow is choked for critical mode operation,
as suggested by [12].

x

c

Secondary flow

Primary flow

Mixing chamber Constant area section Diffuser

t 1 y m s 2 3

Figure 14: Diagram of ejector geometry with sections

For the present model, it is assumed that when the ejector is at critical mode operation,
the hypothetical throat occurs inside the constant area section, as suggested by [12].
In addition, when working at subcritical mode operation, it is supposed to exist an
effective zone where the entrained flow speed is the highest (but lower than the sonic
velocity), and then the two streams are mixed at uniform pressure, as assumed in [13].
This assumption means that there always will be an effective zone (section y − y),
whether or not the ejector is in critical mode. The mixing process is assumed to
start after this section. The mixed fluid undergoes a normal shock wave at the s − s

section located within the constant-area section, which causes a significant compression
effect and an immediate decrease of the flow velocity. Finally, the mixing flow moves
past through the diffuser where the velocity is gradually reduced and the pressure is
recovered.

For the analysis of the model, the following assumptions are made:

1. The working fluid is an ideal gas with constant properties cp and γ

2. The 1D solver is able to compute a one dimensional and steady flow process.

3. The kinetic energy at the primary and secondary flow inlets, and at the exit of
the diffuser, is not taking into account, as it can be considered negligible.

4. The accounting of mixing and frictional losses have been taken with the intro-
duction of isentropic efficiency coefficients. Nevertheless, for the implementation
of the 1D model, isentropic relations have been used for simplicity.
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5. The accounting of frictional wall losses inside the mixing chamber have been
considered with the introduction of the Fanno flow equations combined with the
Darcy friction factor formulae.

6. The primary flow exits the primary nozzle without mixing with the entrained
flow up until the mixing chamber, at the cross section y− y. It is then when the
two stream begin to mix with uniform pressure, despite the fact that the ejector
is in critical or subcritical mode operation.

7. The two streams begin to mix after cross section y−y with uniform pressure (i.e.
Ppy = Psy), before the shock wave takes place at section s− s.

8. The secondary flow is choked at the hypothetical throat (cross section y − y),
when the ejector is working in critical mode operation (double-choking mode).

9. The inner wall of the ejector is considered adiabatic.
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3.4 Primary flow in the nozzle and suction chamber

3.4.1 Primary flow through nozzle

The primary stream flows into the primary chamber at a given stagnation pressure of
Pp and a total temperature of Tp. The mass flow (ṁp) through the nozzle, at a choking
condition, can be obtained using the energy balance law and the isentropic relations:

ṁp =
PpAt√

Tp

×

√
γ

R

(
2

γ + 1

) γ+1
γ−1

· ηp (2)

For that case, the coefficient ηp is the isentropic efficiency coefficient for the nozzle,
which takes into account the friction loss of the compressible flow. The value of the
coefficients will be discussed at Subsection 3.5.

Then, it is computed the Mach number at the exit of the nozzle, Mp1, and the exit
pressure, Pp1, using the gas dynamic relations between Mach number, the cross section
area of the throat, At and the exit cross section area Ap1. The relations are the following
[19]:

(
Ap1

At

)2

=
1

Mp1
2

[
2

γ + 1

(
1 +

γ − 1

2
Mp1

2

)] γ+1
γ−1

(3)

Pp

Pp1

=

(
1 +

γ − 1

2
M2

p1

) γ
γ−1

(4)

3.4.2 Primary flow core

The entrained flow does not mix with the primary flow while it fans out the nozzle, as
they mix at the section m −m. Then, the Mach number Mpy of the primary flow at
the y − y section can be obtained using the following isentropic relation:

Ppy

Pp1
=

(1+ γ−1
2

M2
p1)

γ
γ−1

(1+ γ−1
2

M2
py)

γ
γ−1

(5)

The Mach numberMpy is computed with the input arguments Pp1, Ppy andMp1. Then
it is possible to calculate the area (hypothetical throat) of the primary flow at the y−y
section, using the isentropic relation that follows. However, it is included an isentropic
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coefficient ηpy which takes into account the loss of the flow from the 1 − 1 section to
the y − y section.

Apy

Ap1
=

(
ηpy
Mpy

)
[ 2
γ+1(1+

γ−1
2

Mpy
2)]

γ+1
2·(γ−1)(

1
Mp1

)
[ 2
γ+1(1+

γ−1
2

Mp1
2)]

γ+1
2·(γ−1)

(6)

Regarding the primary flow up until the section y − y, finally it is calculated the
temperature of the primary flow at this section.

Tp

Tpy

= 1 +
γ − 1

2
M2

py (7)

3.4.3 Entrained flow from inlet to section y-y (Critical mode)

If the ejector is working in critical mode operation, it is assumed that the induced flow
chokes at section y − y, and the following equations are valid.

Msy = 1, Psy = P∗sy (8)

The P∗sy is the pressure reached by the entrained flow assuming choking condition at
y−y section with an hypothetical throat. As assumed critical mode at this Subsection,
the actual Psy will be equal to P∗sy.
The pressure of the entrained flow can be obtained from the given inlet stagnant pres-
sure Ps, using the following isentropic relation:

Psy
∗ = Ps

(
1 + γ−1

2
M2

sy

) −γ
γ−1 (9)

For a given total pressure (Ps) and temperature (Ts), the mass flow rate of the entrained
flow (ṁs) is obtained at critical mode operation with the following Eq. (10). Then, the
isentropic coefficient ηs is added to account for the losses of the secondary flow:

ṁs =
PsAsy√

Ts

×

√
γ

R

(
2

γ + 1

) γ+1
γ−1

· ηs (10)

3.4.4 Entrained flow from inlet to section y-y (Sub-critical mode)

For sub-critical mode operation of the ejector, it is supposed an effective area of the
induced flow where its velocity is the highest, but lower than the velocity reached at the
critical mode operation. In other words, lower than the speed of sound. Accordingly,
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the following relations can be used:

Msy < 1, Psy > P∗sy (11)

For this mode of operation, and using conservation of mass and energy, in addition to
isentropic relations, the next equations are reached:

Tsy

Ts

=

(
Psy

Ps

) γ−1
γ

(12)

Psyνsy = RTsy, (13)

Vsy =
√

2 cp (Ts − Tsy), (14)

ṁs =
VsyAsy

νsy

√
ηs (15)

the ηs is the same isentropic coefficient used in Eq. (10). And the area of the secondary
flow can be obtained with the following relation:

Apy +Asy = A2 (16)

where Apy is the area used by the primary flow, A2 is the total area of the cross section
y − y, and Asy is the searched area of the secondary flow.

3.4.5 Mixed flow at section m-m upstream of the shock

The primary stream is supposed to start the process of mixing with the secondary
stream after the cross section y − y, and then a shock takes place with an intense
pressure rise at section s− s. Then, it is possible to apply the momentum and energy
conservation equation between section y-y and section m-m. The momentum and
energy equations are, respectively:

ψm (ṁpVpy + ṁsVsy) = (ṁp + ṁs)Vm (17)

ṁp

(
cpTpy +

V2
py

2

)
+ ṁs

(
cpTsy +

V2
sy

2

)
= (ṁp + ṁs)

(
cpTm +

V2
m

2

)
(18)

Here the Vm is the velocity of the mixed flow and the ψm is relevant to the ejector area
ratio A2/At and can be calculated using an empirical relation [12]. Vpy and Vsy are
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the flow velocities of primary and entrained flows at section y − y, which are:

Vpy = Mpy · apy apy =
√
γ RTpy (19)

Vsy = Msy · asy asy =
√
γ RTsy (20)

And then the Mach number of the mixed flow can be obtained the following equations:

Mm =
Vm

am
(21)

am =
√
γ RTm (22)

3.4.6 Mixed flow across the shock from section m-m to 2-2

A supersonic shock with a strong pressure increase will occur in the s − s section.
Assuming that the mixed flow after the shock undergoes an isentropic process, the
mixed flow between section m-m and section 2−2 within the constant area section has
a uniform pressure P2. Therefore, the following gas dynamic relations exist [20]:

T2

Tm

=

[
2γMm

2 − (γ − 1)
] [
(γ − 1)Mm

2 + 2
]

(γ + 1)2Mm
2 (23)

P2

Pm

= 1 +
2γ

γ + 1

(
Mm

2 − 1
)

(24)

M2
2 =

1+ γ−1
2

Mm
2

γMm
2− γ−1

2

(25)

From the Mach number and the pressure, it is possible to obtain the other flow prop-
erties at section 2− 2:

ρ2 =
P2

R T2

, V2 = M2

√
γR T2 (26)
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3.4.7 Wall friction losses at mixing chamber

After the shock wave takes place, the mixed fluid flows across the constant mixing
chamber.
To take into account the inner wall friction losses, the calculation of the Darcy friction
factor is used, to then use the Fanno flow properties changes [21].
The friction between the flow and the walls of the constant area make the flow properties
to change through the duct. The friction inside a tube can be modeled as a shear stress
at the wall acting on a fluid with uniform pressures [19], as shown in Fig. 15.

Figure 15: One dimensional flow model with friction [19]

Modifying the momentum equation in order to include the frictional shear stress τw,
that acts on the surface of the inner wall, the momentum equation in his integral form
is:

‹

S

(ρV · dS)u = −
‹

S

(pdS)x −
‹

S

τwdS (27)

If the momentum equation is applied to the boundary conditions of cylindrical control
volume of diameter D and length L (as shown in Fig. 15), the Eq. (27) becomes:

−ρ1u21A+ ρ2u
2
2A = p1A− p2A−

ˆ L

0

πDτwdx (28)

For a circular section, the area can be substituted as A = πD2

4
, and then:

(p2 − p1) +
(
ρ2u

2
2 − ρ1u21

)
= − 4

D

ˆ L

0

τwdx (29)
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The shear stress τw varies with distance x along the duct, thus complicating the inte-
gration on the right-hand side of Eq. (3.92). This can be circumvented by taking the
limit of Eq. (3.92) as L shrinks to dx, as shown in Fig. 3.14, resulting in the differential
relation

dp + d
(
ρu2
)
= − 4

D
τwdx (30)

Applying the conservative mass equation (ρu = cte), as the area between two points of
the duct remains constant. Therefore, it can be express, d (ρu2) = ρu du+ u d(ρu) =

ρudu+ u(0) = ρu du. Thus Eq. (30) becomes:

dp + ρudu = − 4

D
τwdx (31)

Finally, the shear stress can be express in terms of a friction coefficient f ′, which is
describes as τw = 1

2
ρu2f ′. Substituting this expression to Eq. (31), it becomes:

dp + ρu du = −1

2
ρu2

4f ′dx

D
(32)

Returning to Fig. 15, the driving force causing the mean cross-sectional flow properties
to vary as a function of x is friction at the wall of the duct, and this variation is governed
by Eq. (32). For practical calculations dealing with a calorically perfect gas, Eq. (32)
is recast completely in terms of the Mach number M . This can be accomplished by
recalling that, a2 = γp/ρ,M2 = u2/a2, p = ρRT, ρu = const, and cpT + u2/2 = const.
The result is:

4f ′dx

D
=

2

γM2

(
1−M2

) [
1 +

γ − 1

2
M2

]−1
dM

M
(33)

Integrating Eq. (33) between x = x1 (where M =M1) and x = x2 (where M =M2)

ˆ x2

x1

4f ′dx

D
=

[
− 1

γM2
− γ + 1

2γ
ln

(
M2

1 + γ−1
2
M2

)]M2

M1

(34)

From the solutions are some physical trends that can be discussed. The effect of the
friction on the downstream flow is the next, depending if the flow has a supersonic or
subsonic inlet. For supersonic inlet the effect is [19]:

1. Mach number decreases, M2 < M1

2. Pressure increases, p2 > p1

3. Temperature increases, T2 > T1

4. Velocity decreases, u2 < u1
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For subsonic inlet the effect is [19]:

1. Mach number increases, M2 > M1

2. Pressure decreases, p2 < p1

3. Temperature decreases, T2 < T1

4. Velocity increases, u2 > u1

It is shown that the effect of friction is such that tends the flow towards Mach number
M = 1. Fig. 16 shows how the effect of friction tends to accelerate the subsonic flow,
and to decelerate the supersonic flow. The point a corresponds to maximum entropy,
where the flow is sonic.

Figure 16: The Fanno curve [19]
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For the calculation of the friction factor f ′, an alternative one could be used, which is
the Darcy-Weisbach friction factor f defined by [22]:

f =
τ

8ρu2
(35)

The fanning factor f ′ is defined by [23]:

f ′ =
τ

2ρu2
(36)

Therefore, the Darcy-Weisbach is four times larger than the fanning friction factor:

f = 4 · f ′ (37)

Which can be calculated with the implicit Colebrook-White equation [24]:

1√
f
= −2.00 log10

(
2.51

1

Re
√
f
+

1

3.7

ε

D

)
(38)

The implicit Colerbook-White equation can not be solver analytically, consequently, it
is used an approximation using the Goudar-Sonnad equation for smooth pipe [2]. But
first, is needed to compute the Reynolds number:

Re =
ρ2 V2 dh

µ
(39)

d = ln(10)Re
5.02

q = ln(d)
ln(d)

ln(d)+1

g = ln
(
d
q

)
z = ln

(
q
g

)
1√
f
= 2

ln(10)

[
ln
(
d
q

)
+ z g

g+1

(
1 + 3z

6(g+1)2+2z(2g−1)

)]


(40)

Once the Darcy friction factor is known, it is possible to integrate Eq. (34) between
sections 2− 2 and 3− 3 (where M1 of the formulae is M2 and M2 equals M3).

To compute for the frictional losses is possible to calculate the resistance coefficient
K, where K accounts for the frictional losses K = f L/D [25]. Then, the following
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equations are used:

K = K∗(M2)−K∗(M3) (41)

where K∗(M) is the solution of Eq. (34):

K∗(M) =
1−M2

γM2
+
γ + 1

2γ
ln

(
(γ + 1)M2

2 + (γ − 1)M2

)
(42)

Finally, when the mach flow of section 3− 3 is obtained, it is possible to compute the
P3 pressure:

P3

P2

=
M2

M3

[
2 + (γ − 1)M2

2

2 + (γ − 1)M3
2

] 1
2

(43)

3.4.8 Mixed flow through diffuser

Finally the mixed stream passes through the diffuser, and assuming an isentropic pro-
cess:

P∗c
P3

=
(
1 + γ−1

2
·M3

2
) γ
γ−1 (44)
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3.5 Procedure

The performance of an ejector is defined by the total pressure and temperature at
the inlet of the primary nozzle (Pp, Tp), and the total pressure and temperature (Ps,
Ts) at the inlet of the suction chamber. Then, to determine the performance, it is
also necessary to know the geometrical characteristics, as the nozzle throat diameter
dt (or nozzle throat area At), the nozzle exit diameter d1 (or nozzle exit area A1) and
constant area section diameter d2 (or constant area section area A2). The longitude
of the constant section area L is necessary also to determine the pressure losses for
friction inside it.

The numerical procedure follows the diagram shown in Fig. 17. The value calculation
of P∗c is a crucial step, and then the reference value of the back pressure Pc is given
(when is running the ejector in a test bench, the reference Pc will be the ambient
pressure outside). If Pc is less than P∗c, the ejector is working at critical operation.
Otherwise, the subcritical operation is running (as shown in Fig. 13).

The results of the analysis with the 1D model include the primary mass flow rate ṁp,
the secondary mass flow rate ṁs and the entrainment ratio ω. In the present model,
the default coefficients are taken from [1]. The coefficients should be taken accordingly
with the ejector is being studied.

For the present thesis, the ejector coefficients, as the geometry characteristics are not
shown, as the results are based on a research ejector studied in the Polytechnic Cat-
alonia University.

Regardless, to bring to the knowledge of the reader, other coefficients used by other
authors [12] are the following. Coefficients that take into account the losses in the
primary flow nozzle and from the nozzle outlet to section y− y are taken as ηp = 0.95

and ηpy = 0.88, and the coefficient of losses in the entrained flow is taken as ηs = 0.85,
this are the experimental coefficients found by [12] for their studied ejector. It was also
found that the coefficient, ψm, presented in Eq. (17) is more sensitive than the other
coefficients, and therefore it should be taken accordingly to the area ratio, A2/At, and
then an empirical relationship was found [12]:

ψm =


0.80, for A2/At > 8.3

0.82, for 6.9 ≤ A2/At ≤ 8.3

0.84, for A2/At < 6.9

(45)
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As mentioned above, equations are similar to the model proposed by [12] and [13]
because of the same classical 1D theory, which is based on the conservation of mass,
momentum and energy. However, the present 1D model shows different procedure than
[12] at the critical mode, and added the subcritical mode of operation.

In the model of Huang et al., the critical pressure Pc
∗ is an independent parameter

(obtained from experimental results). Then there is an iteration process with the aim
of obtain a theoretical critical pressure which equals the experimental P∗c by changing
the area of the constant area section (A2). For this reason, the entrainment ratio is
obtained using the theoretical A2 gotten from the model (and not the experimental A2

result).

In the present model the critical pressure P∗c is not an independent parameter (as
Pc is a required parameter which compares to P∗c), and also the entrainment ratio w
(computed with the experimental value of A2) and P∗c are output variables. Similar to
[13], the model computes the performance from a given geometry, but for the present
model are added Fanno flow equations combined with the Darcy factor formulae to
take into account frictional losses.
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Table 1: Conventional calculation procedure

Step Inputs Equations Outputs Comments

1 Pp, Tp, At mp = PpAt√
Tp
×
√

γ
R

(
2

γ+1

)(γ+1)/(γ−1)√
ηp mp

Using At choking condition,
it is possible to compute
the mass flow rate through
a gas dynamic relation.

2 Ap1

(
Ap1
At

)2
= 1

M2
p1

[
2

γ+1

(
1 + γ−1

2
M2

p1

)](γ+1)/(γ−1)
Mp1

Using an approximate method
calculation, it is possible to
compute the Mach no. Mp1.

3 Mp1
Pp

Pp1
=
(
1 + γ−1

2
M2

p1

)γ/(γ−1)
Pp1

Once Mp1 is known,
the next step is calculate
the dynamic pressure of
the primary flow.

4 Ps P ∗sy = Ps

(
1 + γ−1

2
M2

sy

)−γ/(γ−1)
P ∗sy

It is time to estimate the
secondary flow pressure,
and it is taken first the
pressure assuming sonic
conditions.

5 Ppy = Psy
Ppy

Pp1
=

(1+((γ−1)/2)M2
p1)

γ/(γ−1)

(1+((γ−1)/2)M2
py)

γ/(γ−1) Mpy

Using the obtained secondary
flow pressure at section y − y,
the Mach number of
the flow is computed.

6 Mpy

Apy

Ap1
=(

ηpy
Mpy

)
[ 2
γ+1(1+

γ−1
2 M2

py)]
γ+1

2(γ−1)(
1

Mp1

)
[ 2
γ+1(1+

γ−1
2 M2

p1)]
γ+1

2(γ−1)

Apy

The ηpy isentropic coefficient
represents the flow losses from
the 1− 1 to the y − y section.

7 Apy Asy = A2 − Apy Asy

This step is necessary
to compute the effective area
for the secondary flow.

8 Ps ms =
PsAsy√

Ts
×
√

γ
R

(
2

γ+1

)(γ+1)/(γ−1)√
ηs ms

Secondary mass flow
accounting of the
isentropic efficiency (ηs)

9 Ts

Tsy

Ts
=
(

Psy

Ps

)(γ−1)/γ
Psyνsy = RTsy

Vsy =
√

2Cp (Ts − Tsy)

Tsy, νsy, Vsy

With the initial secondary
flow temperature, it is
computed the temperature,
specific volume and velocity.

10 Tp,Mpy
Tp

Tpy
= 1± γ−1

2
M2

py Tpy
The temperature of the
primary flow is evaluated

11 Tpy Vpy =Mpy ·
√
γRTpy Vpy

Next step is to compute
the velocity of the primary flow,
using the previous temperature
and the Mach obtained at step 5.

12 Vpy, Vsy ψm (mpVpy +msVsy) = (mp +ms)Vm Vm

ψm used as a mixed flow
coefficient, taking
account of the losses.

13 Vm
mp

(
CpTpy +

V2
py

2

)
+ms

(
CpTsy +

V2
sy

2

)
= (mp +ms)

(
CpTm + V2

m

2

) Tm

Use of the obtained temperatures,
velocities and mass flow
rate of each flow to
obtained the mixed flow velocity.
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Table 1: Continuation

Step Inputs Equations Outputs Comments

14 Tm Mm = Vm√
γRTm

Mm

The temperature obtained
in the previous step is used
to compute the Mach number.

15 Pm = Psy
P2

Pm
= 1 + 2γ

γ+1
(M2

m − 1) P2

The flow is resolved
after the shock wave.

16 Mm M2
2 =

1+ γ−1
2

M2
m

γM2
m−

γ−1
2

M2

Mach number of the
flow after the shock
wave is computed.

17 Re 1√
f
= −2.00 log10

(
2.51 1

Re
√
f
+ 1

3.7
ε
D

)
f

Calculation of the
Darcy-Weisbach
friction factor

18 f, L,D,M2 K = K∗(M2)−K∗(M3) M3

Computing the Mach
flow after the
constant section area

19 P3,M3
Pc∗
P3

=
(
1 + γ−1

2
M2

3

)γ/(γ−1)
P ∗c

Finally, flow pressure at
the diffuser exit
is calculated.

Table 1 shows the detailed procedure used for the present one dimensional model. The
procedure corresponds to the computation of the critical mode operation. The final
step is to compute P∗c and compare it to Pc:

If P∗c > Pc −→Working at critical mode (46)

If P∗c 6 Pc −→Working at sub-critical mode (47)
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Figure 17: Calculation flowchart of the model

41



DEVELOPMENT OF A 1-D SOLVER
FOR A SUPERSONIC EJECTOR

4 Model validation

The proposed model computes primary and entrained mass flow rates for different
pressures of the secondary flow, and determines the lowest value of pressure that the
ejector is capable of reach for a given geometry. In order to measure its accuracy, data
from different experimental studies is obtained and used to compare the results.

First, to verify the present model at critical mode operation, experimental data from
Hemidi et al. [15] is used. In order to adapt the present model to the geometry
characteristics used for Hemidi et al., the same geometry is taken. The characteristics
of the air ejector are dt = 3.3mm, d1 = 4.5mm and d2 = 7.6mm. Then, different
stagnation pressures of the primary fluid are used, in order to compare the different
results of the model with the experimental data. The following table (see Table 2)
shows the error (ER = theory−experiment

experiment ) between different measures of different flows
(different Pp). The induced pressure is set to be the same as the one used for the
experiments (Ps = 105 Pa = 1bar).

Table 2: Data comparison to Hemidi et al. [15]

Pp Experimental ωexp Present model ω Error (ER)
4× 105 Pa 0.76 0.88 15.79 %
5× 105 Pa 0.62 0.67 8.06 %
6× 105 Pa 0.51 0.53 3.92 %

The analysis shows that the theoretical results bring by the present 1D model coincide
reasonably with the experimental ones, as the largest error is no more than 16%, and
with closer results as the primary pressure increases, being the error with a primary
pressure of Pp = 6× 105 Pa between the present model and the experimental data less
than 4%.

Then, data collected from previous study made by Llorenç Macia et al. (2019)[1] is
utilized. The present model is adapted to the geometrical conditions of [1], in order to
have the same conditions, and also the inlet/outlet conditions are set to be the same.
The geometry conditions are not shown, but the ejector has circular cross-sections,
with different diameters for the primary and exit nozzles, and with other diameter for
the mixing tube.

Operation conditions of the 1D model are set to be the same as the experiment, which
are stagnation pressure for the primary flow of Pp = 7× 105 Pa and temperature of
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Tp = 20° and initial stagnation pressure for the entrained flow of Ps = 1× 105 Pa and
temperature of Ts = 20°. The properties such as cp or γ are given in consideration
of the working fluid, which is air. Then, the secondary pressure is decreased from the
initial value until the entrainment flow becomes blocked, point where the ejector can
not decrease more the entrained pressure, and therefore the maximum vacuum level is
reached.

Fig. 18 shows the error (ER) between the entrainment ratio (ω) of the experimental data
and the theoretic values of the present model. It is seen that as closer the entrainment
ratio gets to zero, the values become more inaccurate, and the differences between
the results of the 1D solver and experimental could be very high. For example, in
the model the entrainment flow is blocked for values of less than Ps = 0.20 bar and
experimental data shows that the entrainment flow is blocked for Ps = 0.19 bar. Then,
the error between these two points become 100%. However, is the relative error which
can be very high, regardless the total error between the experimental data and the
values shown by the present model, that remains constant.
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Figure 18: Entrainment ratio comparison between present model and experimental
data
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As shown in Fig. 18, the 1D model becomes more accurate with higher values of ω. The
maximum displayed error is about 25% (for data above ωexp > 0.15), but most data
point are within ±10%. The deviations are generally because of the calculation error
from the empirical equations as consequence of the assumptions and the inaccuracy
with the isentropic coefficients.
Even though, the present 1D model is capable to resolve the ejector performance with
high fidelity, and it can be used to compute the maximum vacuum level of an ejector
with a given geometry.
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5 Results

The present model is made to achieve the blocked condition and the vacuum level of an
ejector with a given geometry. In order to display the results that the model is capable
to reach, the geometry of [1] is taken. Fig. 22 shows the results of the entrainment ratio
(ω) for different values of the inlet pressure, where P∗s is the normalized inlet pressure:
P∗s = Ps/bar. Then, the results are represented with the experimental data in the same
figure, to compare them. The error in the experimental results is also included.
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Figure 19: Comparison to experimental data

It is seen reasonably accurate data, with values of secondary mass flow relatively closed
to the experimental ones. However, differences between higher values seems to be
mainly constant, as the differences between lower values of mass flow tend to be slightly
diverse, while the model brings a vacuum level of 80% as the experiment brings 81%.
This could happen because of the nature of the model. The model is set to have one
shock wave between the section y − y and 3 − 3. But in reality the shock wave is
displaced towards the throat, as the secondary pressure decreases. It is difficult to
determine where the shock wave takes place in a one dimensional model, and the best
that can be done is to assume a shock wave where it normally takes place, and this is
the mixing section.
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It is not in the scope of this work to make a CFD solver, but Macia et al. [1] used in
their study two different density-based solvers, with the purpose of comparison. One of
them is the HiSA implicit solver. It is an open source transient solver capable of solving
unsteady flows and it works very well with high Mach numbers. The other model
is an explicit solver, which is available in the standard distribution of OpenFOAM,
rhoCentralFoam (RCF), and it is a transient density-based solver. Results of both
solvers are utilized to compare with the present 1D model. Fig. 20 and Fig. 21 show
the entrainment ratio in front of the secondary pressure, and the results of the three
solvers are compared.
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Figure 20: Comparison to HISA solver
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Figure 21: Comparison to RCF

The present model shows high accuracy with the implicit HiSA solver (Fig. 20), but it
differs more with the RCF explicit solver (Fig. 21). The entrainment ratio computed
by the HiSA and the present 1D model are almost the same for high values of Pc, but
then the one dimensional model brings more linear results in comparison with the CFD.
This could be happening as consequence of placing the shock wave after the mixing
process. The HiSA model is able to determine where the shock wave is placed and
then it can be more precise. However, the vacuum level calculated by both solvers are
considerably the same, as the HiSA model yields a minimum Pc = 21.730 kPa, which
represents a vacuum level of 78.27%, in front of the 80% of the present model.
In other hand, the RCF explicit solver seems to have similar results for high pressure
inlet values (P∗s > 0.5). Then, the differences in the results increase. Table 3 shows the
entrainment ratio for different values of the inlet pressure.
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Table 3: Data comparison with RCF explicit solver [1]

P∗s RCF solver ω Present model ω Error (ER)
0.4 0.3359 0.2525 24.8 %
0.3 0.2672 0.1280 52.1 %
0.2 0.1374 0.0099 92.8 %

The RCF explicit solver tends to overestimate the values of flow rate and entrainment
ratio for low values of P∗s , as commented in [1] (in Fig. 22 this fact can be observed).
For a secondary pressure of P∗s = 0.2, the present 1D model obtained ω = 0.0099 for
the entrained ratio, while the experimental results reveal ω = 0.0116 ± 0.029, which
is a very low entrainment ratio. However, the RCF reports an entrainment ratio of
ω = 0.1374, which is almost ten times more than the one get by experimental results.

Fig. 22 shows the results of the present model all in one figure with the experimental
results, and the HiSA, and RCF solvers.
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Figure 22: Linear calculation
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6 Conclusions

The present thesis shows the development for a one dimensional model solver for a
supersonic ejector. The model is capable of predicting the performance of an ejector
with a given geometry and isentropic coefficients that take account for the mixing and
frictional losses.

To achieve the objective, much research has been done, as it is explained in the report.
The report has explanations for the working principle of ejectors, and all the set of
equations used in the model are shown and explained. The model procedure is also
explained and a copy of it is added in the Appendix.

The validation of the model shows that it is capable of predicting the ejector perfor-
mance for a determined geometry (which is not shown for confidentiality reasons) with
a good accuracy, and it also computes the vacuum level that it is predicted to arrive
to.

The results show the accuracy of the present one dimensional model compared to CFD
models (implicit HiSA and explicit RCF), and it is shown that performance levels are
very similar to those achieved by HiSA solver, except for low-middle range of secondary
pressure levels, where the difference increases.

The main objective was to develop a one dimensional model capable to be used among
a CFD model to be able to achieve a geometry optimization of an ejector. The results
show that the present one dimensional model is able of predicting the minimum pressure
levels achieved for a given ejector with considerable high accuracy.

The developed one dimensional (1D) solver computes a maximum vacuum level of 80%
(minimum P∗s = 0.2) for the ejector with the geometry of [1], while experimental results
show a vacuum level of 81% (minimum P∗s = 0.19). The minimum entrainment ratio
obtained by the model is ω = 0.0099 with the minimum secondary pressure, in front
of the ω = 0.0116± 0.029 obtained in experimental results.
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7 Budget

The budget presents the different tasks that have been done in order to develop the
engineering project, the necessary hours to develop the tasks and the total price needed
to elaborated the different activities.

This project consists in the development of an open one dimensional solver made with
Python. Therefore, the price of the project consists only in the salary that would be
paid to a junior engineer.

The average salary for a junior engineer in Spain [26] is 26,309 e per year. The working
days are approximately 273 days per year, with 8 working hours per day, which yields
to:

Price/h =
26, 309

273× 8
≈ 12 e/h

Once the price per hour is determined, it is necessary to calculate the working hours.
The following table accounts for the different tasks and the hours.

Table 4: Hours required to complete each task

Task code Task identification Hours

1 Research & documentation 135 h
2 Documentation writing 80 h
3 Software development 165 h
Total 380 h

The Research & documentation accounts for the hours needed for the search of different
studies and books needed to develop the project, as long as the hours needed to read and
analyze all the necessary information. The documentation writing is the time needed
to write the present report. Finally, the software development covers the different tasks
performed to achieve the code implementation, as the tasks used for the presentation
of the results. Fig. 23 includes the different tasks done for the software development,
alongside the frame time that has been required.

Finally, once the total hours are known, the total cost can be calculated:

Total Cost = 380 h · 12 e/h = 4, 560 e
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Figure 23: Project Gantt Chart
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A Python code

1 #Alex Martinez de Francisco 2021
2

3 #%%
4

5 #Implement different libraries
6 import math
7 import csv
8 import numpy as np
9 from scipy.optimize import fsolve

10 import time
11

12 #%%
13 #The solver function returns the entrainment ratio w, the back

pressure Pc, the pressure of the secondary flow at section y-y
and the mass flow rates of primary and secondary flows.

↪→

↪→

14 #The function takes as arguments the entrainment pressure. Other
arguments are passed in to make the progressive iterations. It
distinguishes between the first iteration (supersonic mode of
operation) and the other iterations (subsonic mode).

↪→

↪→

↪→

15

16 def solver(first_solve, args):
17

18 [Psy_prev, delta_vec, pc_vec, w_vec, Pc_crit, Ps_data] = args
19 if first_solve:
20 del pc_vec
21 delta = delta_vec[-1]
22

23 #Fluid parameters (constants, air)
24 gamma = 1.4
25 R = 287
26 cp = 1004.5
27 mu = 1.7894e-5
28

29 #Primary and entrained flows pressures and temperatures
30 Pp = 7.0e5
31 Tp = 273+20
32 Ps = Ps_data
33 Ts = 273+20
34

35 #Ejector geometry
36 def area(d):
37 A = np.pi * (d ** 2) / 4
38 return A
39

40 #Ejector geometries are not shown
41 At = area()
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42 Ap1 = area()
43 d2 =
44 A2 = area(d2)
45 Lm =
46

47 #Ejector coefficients are not shown (commented reference values
of Huang et al.)↪→

48 eta_p = #0.95
49 eta_s = #0.85
50 eta_py = #0.88
51 psi_m = #0.80-0.82-0.84
52

53 #Relations
54 def computedot_mp(Pp, Tp, At):
55 dotm_1 = Pp * At * np.sqrt(eta_p * gamma/R/Tp *

(2/(gamma+1)) ** ((gamma+1)/(gamma-1)))↪→

56 return dotm_1
57

58 def computeMp1(Mp1, args):
59 [Ap1, At] = args
60 eq = (Ap1 / At)**2 - 1 / (Mp1**2) * (2/(gamma+1) * ( 1 +

(gamma-1) / 2 * (Mp1**2))) ** ((gamma+1)/(gamma-1))↪→

61 return eq
62

63 def computeP(P0, M):
64 P = P0/(1 + (gamma-1)/2 * (M ** 2)) ** (gamma/(gamma-1))
65 return P
66

67 def computeMpy(Mpy, args):
68 [Pp1, Ppy, Mp1] = args
69 eq = Ppy / Pp1 - (1 + (gamma-1)/2 * (Mp1 ** 2)) **

(gamma/(gamma-1)) / (1 + (gamma-1)/2 * (Mpy ** 2)) **
(gamma/(gamma-1))

↪→

↪→

70 return eq
71

72 def computeApy(Ap1, Mp1, Mpy):
73 Apy = Ap1 * eta_py * Mp1 / Mpy * ((2 + (gamma-1) *

(Mpy**2))/(2 + (gamma - 1) * Mp1 ** 2)) **
((gamma+1)/2/(gamma-1))

↪→

↪→

74 return Apy
75

76 def computedot_ms(Ps, Ts, Asy):
77 dotm_1 = Ps * Asy * np.sqrt(eta_s * gamma/R/Ts *

(2/(gamma+1)) ** (((gamma+1))/(gamma-1)))↪→

78 return dotm_1
79

80 def computeTsy(Ts, Ps, Psy):
81 Tsy = Ts * (Psy/Ps) ** ((gamma-1)/gamma)
82 return Tsy
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83

84 def computeve_sy(Psy, Tsy):
85 ve_sy = R * Tsy / Psy
86 return ve_sy
87

88 def computeVsy(Ts, Tsy):
89 Vsy = np.sqrt(2 * cp * (Ts-Tsy))
90 return Vsy
91

92 def computeTpy(Tp, Mpy):
93 Tpy = Tp * (1 + (gamma-1)/2 * Mpy**2) ** (-1)
94 return Tpy
95

96 def computeVpy(Tpy, Mpy):
97 Vpy = Mpy * np.sqrt(gamma * R * Tpy)
98 return Vpy
99

100 #Section m-m
101 def computeVm(dot_mp, dot_ms, Vpy, Vsy):
102 Vm = psi_m * (dot_mp * Vpy + dot_ms * Vsy) / (dot_mp +

dot_ms)↪→

103 return Vm
104

105 def computeTm(dot_mp, dot_ms, Vpy, Vsy, Tpy, Tsy):
106 Tm = ((dot_mp * (cp * Tpy + Vpy**2/2) + dot_ms * (cp * Tsy

+ Vsy**2/2))/(dot_mp+dot_ms) - Vm**2/2)/cp↪→

107 return Tm
108

109 def computeMm(Vm, Tm):
110 Mm = Vm / np.sqrt(gamma * R * Tm)
111 return Mm
112

113 #Section 2-2
114 def computeP2(Pm, Mm):
115 P2 = Pm * (1 + 2 * gamma/(gamma+1) * (Mm**2-1))
116 return P2
117

118 def computeM2_sq(Mm):
119 M2_sq = (1 + (gamma-1)/2 * Mm**2) / (gamma * Mm**2 -

(gamma-1)/2)↪→

120 return M2_sq
121

122 #Section 2-2 to 3-3
123 def computeT2(Mm, Tm):
124 T2 = Tm * (((2 * gamma * Mm ** 2) - (gamma - 1)) * ((gamma

- 1) * Mm ** 2 + 2)) / ((gamma + 1) ** 2 * Mm ** 2)↪→

125 return T2
126

127 def computeRe(rho_2, V2, dh):
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128 Re = rho_2 * V2 * dh / mu
129 return Re
130

131 def computef(f, Re):
132 d = np.log(10) * Re / 5.02
133 q = np.log(d) ** (np.log(d) / (np.log(d) + 1))
134 g = np.log(d / q)
135 z = np.log(q / g)
136 eq = 1 / np.sqrt(f) - 2 / np.log(10) * (np.log(d/q) + z * g

/ (g+1) * (1 + 3 * z / (6 * (g+1) ** 2 + 2 * z * (2 * g
- 1))))

↪→

↪→

137 return eq
138

139 def computeK(M_sq):
140 K = (1 - M_sq)/(gamma * M_sq) + (gamma+1)/(2*gamma) *

np.log(((gamma+1) * M_sq)/(2+(gamma-1)*M_sq))↪→

141 return K
142

143 def solveM_sq(M_sq, args):
144 K = args
145 eq = K - (1 - M_sq)/(gamma * M_sq) - (gamma+1)/(2*gamma) *

np.log(((gamma+1) * M_sq)/(2+(gamma-1)*M_sq))↪→

146 return eq
147

148 def computeP3(P2, M2_sq, M3_sq):
149 P3 = P2 * np.sqrt(M2_sq / M3_sq) * ((1 + (gamma - 1) / 2 *

M2_sq)/(1 + (gamma - 1) / 2 * M3_sq)) ** (1/2)↪→

150 return P3
151

152 #Flow throw diffuser
153 def computePc(P2, M2_sq):
154 Pc = P2 * (1 + (gamma-1)/2 * M2_sq) ** (gamma/(gamma-1))
155 return Pc
156

157

158 #Solver
159

160 dot_mp = computedot_mp(Pp,Tp,At)
161 Mp1 = abs(fsolve(computeMp1, np.array([3,5]), args=[Ap1,

At])[0])↪→

162 Pp1 = computeP(Pp, Mp1)
163

164 # Different solutions for different modes of operation. Method
of convergence↪→

165 if first_solve:
166 Msy = 1
167 Psy = computeP(Ps, Msy)
168 else:
169 sum_Psy = 1.0e3
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170 conver_error = False
171 if len(delta_vec)>2:
172 if delta_vec[2]>delta_vec[1]:
173 sum_Psy = 5.0e2
174 if len(delta_vec)==3:
175 print('Solving convergence error...')
176 Psy = Psy_prev - 1.0e3
177 conver_error = True
178 print('Solved')
179

180 if not conver_error:
181 Psy = Psy_prev + sum_Psy * delta
182

183 Ppy = Psy
184

185 Mpy = fsolve(computeMpy, np.array([1,5]), args=[Pp1, Ppy,
Mp1])[0]↪→

186 Apy = computeApy(Ap1, Mp1, Mpy)
187 Asy = A2 - Apy
188

189 if first_solve:
190 dot_ms = computedot_ms(Ps, Ts, Asy)
191

192 # Section y-y
193 Tsy = computeTsy(Ts, Ps, Psy)
194 ve_sy = computeve_sy(Psy, Tsy)
195 Vsy = computeVsy(Ts, Tsy)
196 if not first_solve:
197 dot_ms = Vsy * Asy / ve_sy * np.sqrt(eta_s)
198

199 Tpy = computeTpy(Tp, Mpy)
200 Vpy = computeVpy(Tpy, Mpy)
201

202 #Section m-m
203 Vm = computeVm(dot_mp, dot_ms, Vpy, Vsy)
204 Tm = computeTm(dot_mp, dot_ms, Vpy, Vsy, Tpy, Tsy)
205 Mm = computeMm(Vm, Tm)
206 Pm = Psy
207

208 #Section 2-2
209 P2 = computeP2(Pm, Mm)
210 M2_sq = computeM2_sq(Mm)
211

212 #Section 2-2 to 3-3
213 dh = d2
214 T2 = computeT2(Mm, Tm)
215 rho_2 = P2 / (R * T2)
216 V2 = np.sqrt(M2_sq * gamma * R * T2)
217 Re = computeRe(rho_2, V2, dh)
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218 f = fsolve(computef, np.array([0.0001]), args=Re)[0]
219 K = f*Lm/dh
220 K_M2 = computeK(M2_sq)
221 K_M3 = K_M2 - K
222 M3_sq = fsolve(solveM_sq, np.array([0.0001]), args=K_M3)[0]
223 K_new_M3 = computeK(M3_sq)
224

225 if not round(K_M3,3) == round(K_new_M3,3):
226 M3_sq = 1
227

228 P3 = computeP3(P2, M2_sq, M3_sq)
229

230 #Flow through Diffuser
231 Pc = computePc(P3, M3_sq) #P3 and M3
232

233

234 if not first_solve:
235 pc_vec.append(Pc)
236 Pc_vector = pc_vec
237 else:
238 Pc_vector = [Pc]
239

240 #Results
241 w = dot_ms/dot_mp
242 if not first_solve:
243 w_vec.append(w)
244 w_vector = w_vec
245 else:
246 w_vector = [w]
247

248 #Convergence
249 delta = np.abs((Pc-Pc_crit)/Pc_crit)
250 if not first_solve:
251 delta_vec.append(delta)
252 delta_vector = delta_vec
253 else:
254 delta_vector = [delta_vec]
255

256 return Pc, w, Pc_vector, w_vector, delta_vector, Psy, dot_mp,
dot_ms↪→

257

258

259 # The function solver_routine is capable of solving the flow
properties for different secondary pressures. The arguments are
the secondary pressure and the back pressure.

↪→

↪→

260

261 def solver_routine(Ps_data, Pc_crit):
262

263 #Initialization
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264 Psy_prev = 0
265 Psy_vec = []
266 delta_vec = [1]
267 pc_vec = [0]
268 w_vec = [0]
269

270 #Solver
271 Variables = solver(True, args=[Psy_prev, delta_vec, pc_vec,

w_vec, Pc_crit, Ps_data])↪→

272

273 #Results
274 Pc = Variables[0]
275 Psy_prev = Variables[5]
276 Psy_vec.append(Psy_prev)
277 pc_vec = Variables[2]
278 w_vec = Variables[3]
279

280 #Loop
281 #Declaring variables for the loop. Declaring maximum N

iterations.↪→

282 i = 0
283 N = 2000
284 critic_mode = False
285

286 if Pc > Pc_crit:
287 critic_mode = True
288 return critic_mode, i, Variables
289

290 while delta_vec[i]>1.0e-5 and critic_mode == False:
291

292 Variables_sub = solver(False, args=[Psy_prev, delta_vec,
pc_vec, w_vec, Pc_crit, Ps_data])↪→

293

294 #Pc = Variables_sub[0]
295 Pc_vector = Variables_sub[2]
296 w_vector = Variables_sub[3]
297 delta_vector = Variables_sub[4]
298 Psy_prev = Variables_sub[5]
299

300 Psy_vec.append(Psy_prev)
301 delta_vec = delta_vector
302 pc_vec = Pc_vector
303 w_vec = w_vector
304

305 if i>N:
306 break
307

308 i += 1
309
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310 return critic_mode, i, Variables_sub
311

312 #----------SaveResults----------
313 #The saveResults function takes as arguments the results of the

solver and prints to txt files the results.↪→

314

315 def saveResults(Ps, dot_ms, w, case):
316 if case == 0:
317 file = open('../RESULTS/solver_data.txt', 'w',

encoding='ISO-8859-1')↪→

318

319 file.write('Ps\t\t')
320 file.write('dot_ms\t\t\t\t')
321 file.write('w\n')
322

323 for j in range(0, len(Ps)):
324 file.write('%.2f\t' % (Ps[j]))
325 file.write('%.21f\t\t' % (dot_ms[j]))
326 file.write('%.10f\n' % (w[j]))
327

328 else:
329 file = open('../RESULTS/w_comparison.txt', 'w',

encoding='ISO-8859-1')↪→

330

331 file.write('Ps\t\t')
332 file.write('w\n')
333

334 for j in range(0, len(Ps)):
335 file.write('%.2f\t' % (Ps[j]))
336 file.write('%.10f\n' % (w[j]))
337

338 file.close()
339

340

341 #-------------Comparison with experimental data---------
342 #Comparision_routine computes the flow properties for the same

secondary pressures used for the experimental data. It reads
the experimental secondary pressure from an external csv file.

↪→

↪→

343

344 def comparisondata_routine(Pc_critic):
345 Ps_exp = []
346 with open('./Results/experimental.csv', newline='') as csvfile:
347 reader = csv.reader(csvfile, quotechar='|')
348 i = 0
349 for row in reader:
350 if not i==0:
351 Ps_exp.append(float(row[2])*1.0e5)
352 i += 1
353 # print('Experimental data collected')
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354 #Obtaining data with same pressure of the present model
355 Ps_enter = Ps_exp
356 help_savedata = []
357 w_savedata = []
358 for j in range(0, len(Ps_enter)):
359 [critic_mode, i, Variables] = solver_routine(Ps_enter[j],

Pc_critic)↪→

360 w_savedata.append(Variables[1])
361 # if math.isnan(w_savedata[j]):
362 # Ps_savedata = Ps_enter[0:j]
363 # w_savedata = w_savedata[0:j]
364 # break
365

366 saveResults(Ps_enter, help_savedata, w_savedata, case=1)
367

368 #-------Main----------
369 #Main function. It has three options. One is set to false and the

other two are set to true by default.↪→

370 #Print_result prints the results (flow properties) for the specific
Pc_critic and Ps given.↪→

371 #run_solver runs the solver and save the results to an external txt
file for the different given Pc_critic (constant, as it is the
external pressure), and for different values of the secondary
flow pressure (Ps_enter).

↪→

↪→

↪→

372 #experimental_comparison runs the solver for the specific secondary
flow pressure values used for experimental and prints the
results to an external txt file.

↪→

↪→

373

374 def main():
375

376 start_time = time.time()
377 Pc_critic = 1.0e5
378

379 Ps = 1.0e5
380 [critic_mode, i, Variables] = solver_routine(Ps, Pc_critic)
381

382 #Results
383 Print_result = False
384 if critic_mode and Print_result:
385 print('Total iterations:', i+1)
386 print('Critical mode operation:',critic_mode)
387 print('------------------')
388 print('Pc =',Variables[0])
389 print('w =', Variables[1])
390 print('mp_flow =',Variables[6])
391 print('ms_flow =',Variables[7])
392 print('Running_time =',round(time.time()-start_time,5),'s')
393 print('-------------------')
394
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395 elif Print_result:
396 print('Total iterations:', i+1)
397 print('Critical mode operation:',critic_mode)
398 print('------------------')
399 print('Pc =',Variables[0])
400 print('w =', Variables[1])
401 print('mp_flow =',Variables[6])
402 print('ms_flow =',Variables[7])
403 print('delta =',Variables[4][-1])
404 print('Running_time =',round(time.time()-start_time,5),'s')
405 print('-------------------')
406

407

408 # Progressively reduce Ps
409 Ps_enter = np.linspace(1.0e5, 0.0, 101)
410 dot_ms_savedata = []
411 w_savedata = []
412

413 run_solver = True
414 if run_solver:
415 for j in range(0,len(Ps_enter)):
416 [critic_mode, i, Variables] =

solver_routine(Ps_enter[j], Pc_critic)↪→

417 dot_ms_savedata.append(Variables[7])
418 w_savedata.append(Variables[1])
419 if math.isnan(dot_ms_savedata[j]):
420 Ps_enter = Ps_enter[0:j]
421 dot_ms_savedata = dot_ms_savedata[0:j]
422 w_savedata = w_savedata[0:j]
423 break
424

425 saveResults(Ps_enter, dot_ms_savedata, w_savedata, case=0)
426

427

428 experimental_comparison = True
429 if experimental_comparison:
430 comparisondata_routine(Pc_critic)
431

432

433 print('-----------------------')
434 print('Running_time =',round(time.time()-start_time,5),'s')
435

436 if __name__ == "__main__":
437 main()

63


	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Scope of the project
	Requirements

	State of art
	Historical Background
	Current situation

	Methodology
	Working principle of ejectors
	Mathematical models
	Theoretical analysis of ejector performance
	Primary flow in the nozzle and suction chamber
	Primary flow through nozzle
	Primary flow core
	Entrained flow from inlet to section y-y (Critical mode)
	Entrained flow from inlet to section y-y (Sub-critical mode)
	Mixed flow at section m-m upstream of the shock
	Mixed flow across the shock from section m-m to 2-2
	Wall friction losses at mixing chamber
	Mixed flow through diffuser

	Procedure

	Model validation
	Results
	Conclusions
	Budget
	Python code

