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Abstract

The incompressible form of the Navier-Stokes equations (conservation of mass, momen-
tum and energy) is solved by applying a second-order symmetry-preserving spatial discretiza-
tion which allows to preserve the symmetry of the operators. The physics behind turbulent
flows and how those can be modelled is studied, considering both the RANS equations and
the LES model. The Taylor-Green vortex problem is solved with no model and compared
with the results of van Rees et al. [4], obtaining very good agreement regarding the time
evolution of the volume-averaged kinetic energy, but higher discrepancies in the time evolu-
tion of the kinetic energy dissipation rate. Additionally, DNS results for a turbulent channel
flow at Reτ “ 180 are obtained with coarse meshes. The same problem is also solved by
applying the Smagorinsky, S3PR and Vreman’s LES models. DNS results obtained with a
323 mesh show relatively good agreement with the reference results of Moser et al. [5], while
LES simulations employing the S3PR and Vreman’s model allow to improve the results in
the buffer-layer region.
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1 Introduction

1.1 Aim of the thesis

The aim of this thesis is the elaboration, validation and verification of C++ codes and the
necessary tools that allow to solve the incompressible form of the Navier-Stokes equations under
turbulent regime. The objective is to understand the physics behind turbulent flows and how
those can be modelled by applying a symmetry-preserving discretization of the equations, which
will be properly verified too. Additionally, different LES models to tackle the turbulence closure
problem must be programmed and applied to relatively coarse meshes. The comparison with
different turbulence models will be assessed by solving the well-known benchmark problem of
the turbulent channel flow.

1.2 Background and Justification

Computational fluid dynamics (CFD), has become an essential tool for the industrial and aerospace
industries, as it allows to model and analyse a wide variety of problems that involve fluid flows,
heat transfer and chemical reactions. CFD was integrated by the aerospace industry during
the 1960s. However, it was not until the 90s when the availability of much more economically-
affordable high-performance computers and the improvements on the interfaces of the CFD
codes; allowed CFD codes to enter into other industrial sectors and fields, such as aerodynamics,
hydrodynamics, turbomachinery design, chemical process engineering, external and internal en-
vironment of buildings, hydrology and oceanography, meteorology, biomedicine,... [6] With the
reduction in the relative computation cost over the years, the majority of the preliminary designs
of the aerospace industry are carried-out through CFD, while wind tunnel testing is only used
to fine-tune the final design, which allows to decrease the overall costs during the design stage.
Moreover, CFD allows to visualise and study detailed flow-field structures that are very difficult
to capture through wind tunnel tests.

Nevertheless, there are important drawbacks that need to be addressed when considering the
use of computational fluid dynamics. Numerous sources of errors are present when using CFD.
Incorrect domain dimensions and inadequate grid designs are important sources of errors which
are usually problem-dependent and can only be eliminated by performing a grid dependence
study, which increases the time and cost of the overall study. Due to the equations being
discretised in space and time, three major sources of numerical errors arise [6]:

• Roundoff errors: Those errors appear due to the representation of real numbers with
a finite number of significant digits (i.e, the machine accuracy). These errors can be
controlled by carefully arranging floating-point arithmetic operations, avoiding subtraction
of very similar size numbers, or addition of numbers of very different size.

• Iterative convergence errors: Which appear due to the fact that the iteration sequence
of computations is stopped when the solution is sufficiently close to the final one.

• Discretisation errors: Errors that appear in the temporal and spatial derivatives in
the rates of change, fluxes, sources and sink terms when those are approximated from
discrete values. Those can be minimised either by refining the mesh used (which increases
considerably the computation time) or by using higher-order schemes.
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Another group of uncertainties or errors are the input uncertainties, which are those associated
with the differences that exist between the real fluid and the fluid characteristics defined for the
CFD simulation. This could be further classified into:

• Domain geometry: Differences between the CAD model used for the simulation and
the real geometry. Those differences could be due to differences in the surface roughness,
manufacturing tolerances of the real object,...

• Boundary conditions: It is the contribution which is associated to the uncertainties
introduced in the process of defining the boundary conditions, which might only be ap-
proximately true.

• Fluid properties: Differences between the fluid properties considered, which are usually
assumed to be constant, and the real ones, which depend to a greater or less extend on the
local value of the parameters of the flow.

Another set of uncertainties are introduced when semi-empirical submodels are needed to sim-
ulate more complex flow phenomena such as combustion or turbulence. Those models usually
contain adjustable constants that are empirically derived for certain cases, and those constants
are then extrapolated beyond the range of the experiments and used for other flow configura-
tions, introducing an error.

Finally, and perhaps the biggest drawback of CFD, is the fact that the computational cost of a
DNS simulation of turbulent flows grows with the Reynolds number to Re3. This implies that a
direct numerical simulation of the flow over an Airbus A380, whose Reynolds number is about
Re “ 108, has a computational complexity of about 1024 operations. Considering the main super
computer of the Barcelona Supercomputing Center, the Marenostrum 4, with a speed of 13.9
petaFLOPS [8], the simulation would have a complexity of about 7.2 ¨ 107s « 2.3 years. As
it can be seen, this computation time is not feasible for a real engineering case, which means
that DNS simulations can only be performed, in practice, for very low Reynolds numbers cases.
Consequently, turbulence modelling is a must for reducing computation time when the Reynolds
number increases. For real practice engineering problems, average flow quantities are usually
enough for design purposes, and thus, RANS equations are widely used, commonly through
eddy viscosity models. However, with the improvement in performance of nowadays computers,
Large Eddy Simulation (LES) is becoming more popular, as it allows to obtain time-dependent
flow properties in contrast with RANS models.

1.3 Scope

The scope of the thesis is to get a better understanding of turbulent flows, the physics behind
them and how they can be studied from a physical and statistical point of view. The aim is the
development of a 3D staggered CFD code with a symmetry-preserving discretisation, and based
on a classical Fractional Step projection method, that can be used to simulate simple 3D flows.
To get a better insight into the turbulence phenomena, different LES models based on the eddy
viscosity assumption are programmed and compared.
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1.4 Requirements

The basic requirements to properly develop the thesis are the development of the C ` ` codes
and all the other necessary tools to solve the incompressible form of the Navier-Stokes equations
(conservation of mass, momentum and energy), by applying a symmetry-preserving spatial dis-
cretization. The postprocess of all the computations is done with Paraview and Matlab, in order
to get the plots and graphs to proof the proper functioning of the developed codes.
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2 Previous study

2.1 The Navier-Stokes equations

The Navier-Stokes equations are a set of coupled non-linear partial differential equations that
describe the motion of a fluid. These set of equations are formed by one time-dependent conser-
vation of mass equation, three time-dependent conservation of momentum equations, one for each
velocity component in the x, y and z directions, and an additional time-dependent conservation
of energy equation. The wanted unknowns of these equations are typically the three velocity
components (u, v and w), the thermodynamic pressure p and the temperature T . However, other
unknowns are also involved in the equations, such as the density ρ, the enthalpy h (or internal
energy u), the fluid viscosity µ and the thermal conductivity k. Consequently, a total number of
9 unknowns are usually present, meaning that four extra state relations are needed [9].

2.1.1 Conservation of mass

The equation of mass can be written, in tensorial form, as:

Bρ

Bt
`
Bpρuiq

Bxi
“ 0 (2.1)

Or written in vector form:

Bρ

Bt
`∇ ¨ pρvq “ 0 (2.2)

The previous expression can be written as:

Bρ

Bt
` ρ∇ ¨ v ` v ¨∇ρ “ 0 Ñ

Dρ

Dt
` ρ∇ ¨ v “ 0 (2.3)

It can clearly be seen that, if the flow is incompressible, the previous expression reduces to:

∇ ¨ v “ 0 (2.4)

2.1.2 Conservation of momentum

The conservation of momentum equation is simply Newton’s second law, which expresses the
proportionality between the applied force per unit volume on a fluid particle and the resulting
acceleration per unit volume of the fluid element:

ρ
Dv

Dt
“ fbody ` fsurface (2.5)

It is important to note that an Eulerian description has been used to express the acceleration
term through the material derivative of the velocity. Additionally, it must be mentioned that,
even though the density appears outside the derivative, it has not been assumed constant density.
It is just the result of considering the conservation of mass equation. Moreover, the force term
has been divided into a body force term (fbody) and a surface force term (fsurface), both per
unit of volume. The latter are the stresses applied on the sides of the fluid element, which can

12



be represented by a symmetric stress tensor. Substituting those into the previous expression one
gets:

ρ
Dv

Dt
“ ∇ ¨ σ ` fbody (2.6)

The stress terms can be expressed using a deformation-rate law, such as the one for a Newtonian
fluid.

2.1.2.1 Deformation law for a Newtonian fluid

The simplest model for the viscous stresses is a linear variation of those with the strain rate.
Stokes (1845) proposed three main considerations regarding this stress law, which is satisfied by
all gases and most common fluids [9]:

1. The fluid is a continuous medium. Its stress tensor σij is a linear function of the strain
rates εij

2. The fluid is isotropic

3. When the strain rates are zero (i.e, the fluid is at rest), the deformation law must reduce
to the hydrostatic pressure condition, σij “ ´pδij

If the principal axes are chosen to express the deformation law, which are the same axes for the
stresses and for the strain-rate tensors according to condition 2, the deformation law would read:

¨

˝

σ11

σ22

σ33

˛

‚“

¨

˝

´p 0 0
0 ´p 0
0 0 ´p

˛

‚`

¨

˝

a1 a2 a3

b1 b2 b3
c1 c2 c3

˛

‚

¨

˝

ε11

ε22

ε33

˛

‚ (2.7)

In which the terms ´p in the first diagonal matrix have been added to satisfy the hydrostatic
condition. However to satisfy fluid isotropy the coefficients a2 and a3 must be equal. In a similar
manner, b1 “ b3 and c1 “ c2. Additionally, the diagonal terms must also be equal, which means
that a1 “ b2 “ c3, and the matrix must be symmetric. This means that equation 2.7 can be
written as:

¨

˝

σ11

σ22

σ33

˛

‚“

¨

˝

´p 0 0
0 ´p 0
0 0 ´p

˛

‚`

¨

˝

k a1 a1

a1 k a1

a1 a1 k

˛

‚

¨

˝

ε11

ε22

ε33

˛

‚ (2.8)

However, if stresses are expressed according to some arbitrary axes x, y and z and not with
respect to the principal axes x1, y1 and z1, a transformation law is required. Let the x axis have
direction cosines l1, m1 and n1, the y axis have direction cosines l2, m2 and n2, and the z axis
have direction cosines l3, m3 and n3. According to those direction cosines, the transformation
rule between the stresses in the principal axes reference frame and an arbitrary set of axes reads:

¨

˝

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

˛

‚“

¨

˝

l1 m1 n1

l2 m2 n2

l3 m3 n3

˛

‚

¨

˝

σ11 0 0
0 σ22 0
0 0 σ33

˛

‚

¨

˝

l1 l2 l3
m1 m2 m3

n1 n2 n3

˛

‚ (2.9)

And the same transformation can be applied to the strain rates:
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¨

˝

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

˛

‚“

¨

˝

l1 m1 n1

l2 m2 n2

l3 m3 n3

˛

‚

¨

˝

ε11 0 0
0 ε22 0
0 0 ε33

˛

‚

¨

˝

l1 l2 l3
m1 m2 m3

n1 n2 n3

˛

‚ (2.10)

σ11, σ22 and σ33 can be eliminated from 2.9 by using the principal axis deformation law 2.8,
equations 2.10 and the fact that l2i `m

2
i ` n

2
i “ 1, leading to:

¨

˝

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

˛

‚“

¨

˝

´p 0 0
0 ´p 0
0 0 ´p

˛

‚`K

¨

˝

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

˛

‚` a1

¨

˝

divv 0 0
0 divv 0
0 0 divv

˛

‚ (2.11)

Where K “ k ´ a1. The coefficients K and a1 can be empirically found by comparing the pre-
vious expression with the shear flow between parallel plates. It is then observed that the linear
coefficient K is equal to twice the ordinary coefficient of viscosity K “ 2µ, while the coefficient
a1 is independent of µ and it is typically called the second coefficient of viscosity, and called
Lamé’s coefficient in linear elasticity or the coefficient of bulk’s viscosity λ.

Equation 2.11 can be rewritten in a single deformation law as:

σij “ ´pδij ` τij “ ´pδij ` µ

ˆ

Bui
Bxj

`
Buj
Bxi

˙

` δijλdivv (2.12)

Where τij “ µ
´

Bui
Bxj
`
Buj
Bxi

¯

`δijλdivv is the deviatoric part of the stress tensor. It is important to
notice that the previous stress law is generic and valid for either compressible and incompressible
fluids. If the fluid is incompressible, divv vanishes from the stress law and the bulk’s viscosity
coefficient λ disappears from the Newtonian law, leading to the following expression:

σij “ ´pδij ` µ

ˆ

Bui
Bxj

`
Buj
Bxi

˙

(2.13)

With the deformation law for a Newtonian fluid derived, the conservation of momentum equations
can be written as a single vector equation by using the indicial notation:

ρ
Dv

Dt
“ ´∇p` B

Bxj

„

µ

ˆ

Bui
Bxj

`
Buj
Bxi

˙

` δijλdivv



` fbody (2.14)

2.1.3 Conservation of energy equation

For the conservation of energy equation, the first law of thermodynamics is considered:

dEt “ dQ` dW (2.15)

Where Q is the heat added to the system, while W is the work done on the system, both per
unit of volume. Et includes the total energy of the system, hence internal energy, kinetic energy
and potential energy, per unit of volume. However, it is also possible to express the potential
energy as a body force which does work on the fluid particle as it moves. To do so, an extra term
needs to be added to the energy equation which includes the effects of a source of energy per unit
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of volume and time (fbody ¨ v), where fbody is a body force per unit of volume. Consequently,
the time rate of change of the internal energy plus kinetic energy per unit volume (E “ u` ek,
where u is the internal energy per unit of mass and ek “ 1{2pu2 ` v2 `w2q is the kinetic energy
per unit of mass) can be written using an Eulerian description as follows:

ρ
DE

Dt
“
DQ

Dt
`
DW

Dt
` fbody ¨ v (2.16)

The only thing remaining is to express DQ{Dt and DW {Dt in terms of the properties of the
fluid. The total rate of heat added to the fluid particle per unit volume can be expressed as:

DQ

Dt
“ ´

B 9qx
Bx

´
B 9qy
By

´
B 9qz
Bz

(2.17)

Next, the rate of work done to the fluid element by the surface forces is equal to the product of
the force with the velocity component in the direction of the force. Thus, the net rate of work
done on the fluid element per unit volume can be expressed as:

DW

Dt
“
B

Bx
puσxx ` vσxy ` wσxzq `

B

By
puσyx ` vσyy ` wσyzq `

B

Bz
puσzx ` vσzy ` wσzzq (2.18)

The previous expression can be written as:

DW

Dt
“ ∇ ¨ pσvq (2.19)

As done before, the stress tensor can be split into an hydrostatic and a deviatoric part, which
allows to rewrite the previous expression as:

DW

Dt
“ ´

ˆ

Bppuq

Bx
`
Bppvq

By
`
Bppwq

Bz

˙

`
B

Bx
puτxx ` vτxy ` wτxzq`

B

By
puτyx ` vτyy ` wτyzq `

B

Bz
puτzx ` vτzy ` wτzzq

(2.20)

In summary, combining expressions 2.16, 2.17 and 2.20, the conservation of energy equation
reads:

ρ
DE

Dt
“ ´

ˆ

B 9qx
Bx

`
B 9qy
By

`
B 9qz
Bz

˙

´

ˆ

Bppuq

Bx
`
Bppvq

By
`
Bppwq

Bz

˙

`
B

Bx
puτxx ` vτxy ` wτxzq`

B

By
puτyx ` vτyy ` wτyzq `

B

Bz
puτzx ` vτzy ` wτzzq ` fbody ¨ v

(2.21)

Nevertheless, it is usually more common to extract the changes of the kinetic energy to get an
equation for internal energy u or temperature T . To do so, expression 2.19 can be decomposed
into:

∇ ¨ pσvq “ v ¨ p∇ ¨ σq ` σij
Bui
Bxj

(2.22)
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The first term on the right-hand-side is directly related to the momentum equation according to
equation 2.6:

∇ ¨ σ “ ρ
Dv

Dt
´ fbody (2.23)

Thus:

v ¨ p∇ ¨ σq “ ρv
Dv

Dt
´ v ¨ fbody “ ρ

Dek
Dt

´ v ¨ fbody (2.24)

Which is exactly equal to the potential and kinetic energy terms. Thus, by substituting equation
2.24 into equation 2.22, and the latter into equation 2.21, the kinetic and potential energy terms
vanish, yielding an equation for the conservation of internal energy:

ρ
Du

Dt
“ ´

ˆ

B 9qx
Bx

`
B 9qy
By

`
B 9qz
Bz

˙

` σij
Bui
Bxj

(2.25)

As usual, the stress tensor can be split into an hydrostatic and a deviatoric part, yielding:

ρ
Du

Dt
“ ´

ˆ

B 9qx
Bx

`
B 9qy
By

`
B 9qz
Bz

˙

` τij
Bui
Bxj

´ p∇ ¨ v (2.26)

From the continuity equation 2.3, the divergence of the velocity field can be expressed as:

∇ ¨ v “ ´1

ρ

Dρ

Dt
(2.27)

Which can be used to rewrite the term p∇ ¨ v of equation 2.26:

p∇ ¨ v “ ´p
ρ

Dρ

Dt
“ ρ

D

Dt

ˆ

p

ρ

˙

´
Dp

Dt
(2.28)

Combining the previous expression with equation 2.26, one gets:

ρ
D

Dt

ˆ

u`
p

ρ

˙

“
Dp

Dt
´∇ ¨ 9q ` τij

Bui
Bxj

(2.29)

Recalling the definition of enthalpy h “ u` p
ρ , the previous expression can be written as:

ρ
Dh

Dt
“
Dp

Dt
´∇ ¨ 9q ` Φ (2.30)

Where Φ is usually called the dissipation function, given by the following expression for a new-
tonian fluid:

Φ “ µ

«

2

ˆ

Bu

Bx

˙2

` 2

ˆ

Bv

By

˙2

` 2

ˆ

Bw

Bz

˙2

`

ˆ

Bv

Bx
`
Bu

By

˙2

`

ˆ

Bw

By
`
Bv

Bz

˙2

`

ˆ

Bu

Bz
`
Bw

Bx

˙2
ff

` λ

ˆ

Bu

Bx
`
Bv

By
`
Bw

Bz

˙2
(2.31)
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However, it is usually common to use Fourier’s law of heat conduction to relate the heat fluxes
to the local temperature gradient:

ρ
Dh

Dt
“
Dp

Dt
` divpk∇T q ` Φ (2.32)

Equation 2.32 can be modified to get a temperature equation. Recalling the thermodynamic
identity:

dh “ CpdT ` p1´ βT q
dp

ρ
(2.33)

The enthalpy equation can be written as:

ρCp
DT

Dt
“ βT

Dp

Dt
` divpk∇T q ` Φ (2.34)

At the limit of low-velocity or incompressible flow, the previous equation reduces to:

ρCp
DT

Dt
« divpk∇T q (2.35)

And finally, considering constant thermal conductivity, a more familiar equation can be obtained:

ρCp
DT

Dt
« k∇2T (2.36)

2.1.4 Summary of the basic equations

In summary, the the equations of conservation of mass, momentum and energy derived previously
are shown below:

Bρ

Bt
`∇ ¨ pρvq “ 0 (2.37)

ρ
Dv

Dt
“ ´∇p` B

Bxj

„

µ

ˆ

Bui
Bxj

`
Buj
Bxi

˙

` δijλdivv



` fbody (2.38)

ρ
Dh

Dt
“
Dp

Dt
` divpk∇T q ` Φ (2.39)

As mentioned previously, a set of 5 equations has been found, involving 9 variables: u, v, w, p,
T , ρ, µ, h and k. Consequently, 4 state relations are used to close the system:

ρ “ ρpp, T q (2.40)
µ “ µpp, T q (2.41)
h “ hpp, T q (2.42)
k “ kpp, T q (2.43)

Finally, it is important to mention that the equations found are fairly general, as the only
assumptions made are:
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• The fluid forms a (mathematical) continuum

• The fluid particles are assumed to be in thermodynamic equilibrium

• The heat conduction follows Fourier’s law

• There are no internal heat sources

• Newtonian fluid is assumed

2.1.5 Non-dimensional form of the Navier-Stokes equations

It is common to express the Navier-Stokes equations in terms of non-dimensional parameters.
To do so, the following dimensionless variables (denoted with an asterisk as a superscript) are
defined:

v˚ “ v{U (2.44)

t˚ “
t

L{U
(2.45)

p˚ “
p

ρ0U2
(2.46)

ρ˚ “ ρ{ρ0 (2.47)
r˚ “ r{L (2.48)

T ˚ “ T {T0 (2.49)

Where r “ px, y, zq; U is a characteristic velocity, L is a characteristic length, ρ0 is a reference
density and T0 is a reference temperature, all of them problem-dependent. Substituting all the
previous relations into equations 2.37, 2.38 and 2.39 one obtains:

Bρ˚

Bt˚
`∇˚pρ˚v˚q “ 0 (2.50)

ρ˚
Dv˚

Dt˚
“ ´∇˚p˚ ` B

Bx˚j

«

ˆ

µ

Lρ0U

˙

˜

Bu˚i
Bx˚j

`
Bu˚j
Bx˚i

¸

` δij

ˆ

λ

Lρ0U

˙

div˚v˚

ff

` fbody
˚ (2.51)

ρ˚
DT ˚

Dt˚
“

ˆ

βU2

Cp

˙

T ˚
Dp˚

Dt˚
` div˚

ˆˆ

k

Cpµ

˙ˆ

µ

Lρ0U

˙

∇˚T ˚
˙

`

ˆ

µU

Lρ0CpT0

˙

«

2

ˆ

Bu˚

Bx˚

˙2

` 2

ˆ

Bv˚

By˚

˙2

` 2

ˆ

Bw˚

Bz˚

˙2

`

ˆ

Bv˚

Bx˚
`
Bu˚

By˚

˙2

`

ˆ

Bw˚

By˚
`
Bv˚

Bz˚

˙2

`

ˆ

Bu˚

Bz˚
`
Bw˚

Bx˚

˙2
ff

`

ˆ

λU

Lρ0CpT0

˙ˆ

Bu˚

Bx˚
`
Bv˚

By˚
`
Bw˚

Bz˚

˙2

(2.52)

As it can be seen, numerous non-dimensional parameters have appeared in the dimensionless
equations. The most relevant ones are briefly summarised below:
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2.1.5.1 Non-dimensional parameters

• Reynolds number:

The Reynolds number describes the ratio between inertial forces and viscous forces:

Re “
ρ0LU

µ
(2.53)

The Reynolds number is an important dimensionless parameter to predict the onset of
turbulent flow, but also in engineering purposes to achieve dynamic similitude of different
fluid flows. As it can be seen in the dimensionless equations above, the inverse of the
Reynolds number can be found in the conservation of momentum equation multiplying
the non-dimensional diffusive term, and in the conservation of energy equation multiplying
the gradient of the temperature. Consequently, it is clear that a high Reynolds number
reduces the importance of the diffusive transport of both momentum and temperature
over the convective transport, being the latter the dominant. For flows with low Reynolds
number, the opposite behaviour is observed.

• Prandtl number:

The Prandtl number expresses the ratio of momentum diffusivity to thermal diffusivity
[10]:

Pr “
ν

α
“

µ{ρ

k{pCpρq
“
Cpµ

k
(2.54)

As it can be seen, the inverse of the Prandtl number is present in the energy equation
multiplying the gradient of the non-dimensional temperature, multiplying the inverse of
the Reynolds number. A small Prandtl number indicates that the thermal diffusivity dom-
inates, while a large one indicates a domination of the momentum diffusivity. Additionally,
it is a very useful parameter to relate the relative thickness of the momentum and thermal
boundary layers. When the Prandtl number is small, the thermal boundary layer is much
thicker than the velocity boundary layer. When the Prandtl number is large, the opposite
is observed.

• Péclet number:

The Péclet number is a non-dimensional number that expresses the ratio between the ad-
vective transport rate of a certain physical quantity, to the diffusive transport rate of the
same quantity [11].

Pe “
advective transport rate
diffusive transport rate

(2.55)

It is a very important parameter for the study of the transport phenomena in a continuum.
If the physical quantity of study is the transport of certain species or mass transfer, the
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Péclet number is just the product of the Reynolds number with the Schmidt number. On
the other hand, the thermal Péclet number is equivalent to the product of the Reynolds
number and the Prandtl number. The inverse of this product, and thus, the inverse of
the thermal Péclet number, can be found in the conservation of energy equation, with its
physical meaning becoming clear. A large Péclet number implies a longer diffusion time
than the time it takes for convective transport. Consequently, the latter is the dominant
transport mechanism. If the Péclet number is small, the opposite behaviour is observed.

• Grashof number:

The Grashof number is a non-dimensional number that expresses the ratio between the
buoyancy forces and the viscous forces acting on a fluid particle [12].

Gr “
gβpT ´ T0qL

3

ν2
(2.56)

It can be understood as an analogous parameter to the Reynolds number but in natural
convection flows. Its value can be used to determine if transition to turbulent flow will
occur or not, as its onset happens for a certain critical Grashof number.

The ratio of the Grashof number to the Reynolds number squared (the Richardson number
(Ri)), is a useful parameter to determine if natural convection or forced convection will
occur. A Richardson number much larger than unity implies that natural convection is
dominant, while a value much smaller than 1 implies that force convection dominates.

• Rayleigh number:

The Rayleight number is a non-dimensional number that describes the ratio of the time
scale of the diffusive thermal transport, to the time scale for the convective thermal trans-
port.

Ra “
ρβpT ´ T0qL

3g

να
(2.57)

Being the ratio between a diffusive and a convective time scales, the Rayleigh number is
a type of Péclet number. From its definition, it can be easily computed as the product
between the Grashof number and the Prandtl number.

• Nusselt number:
The Nusselt number is a non-dimensional number that expresses the ratio of convective
heat transfer at a boundary in a fluid, to conductive heat transfer:

Nu “
hL

k
(2.58)
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Where h is the convective heat transfer coefficient and should not be confused with the
enthalpy of the fluid. The Nusselt number is closely related to the Rayleigh number to
determine if heat transfer is mainly due to conduction or due to convection. A value of unity
implies a heat transfer by pure conduction, while higher values might be found for laminar
flow (usually in the range of 1 ă Nu ă 10) and turbulent flow (for 100 ă Nu ă 1000) [13].
For free convection, the Nusselt number is typically a function of the Rayleigh number and
the Prandtl number, while for forced convection it is usually a function of the Reynolds
number and the Prandtl number. A large variety of empirical correlations can be found in
various references for different geometries.

2.2 Finite Difference Method vs Finite Volume Method vs Finite Element
Method

There are different approaches when trying to numerically solve the Navier-Stokes equations.
The most well-known ones are the Finite Difference Method, the Finite Volume Method and the
Finite Element Method. Each of them has its advantages and its drawbacks. In this section, a
brief description of those is given to get a general insight of them:

2.2.1 Finite Difference Method (FDM)

The basic idea behind the Finite Difference Method is to replace the partial derivatives of the
governing equations i.e, equations 2.37, 2.38 and 2.39; in differential form, with finite differences
of the value of interest at various points in space and time, by using an appropriate Taylor
expansion series of the desired order. With the partial derivatives expressed in a discrete manner,
a discretised set of governing equations is obtained, which are evaluated at those fixed spatial
and temporal grid points (the mesh nodes).

Figure 1: Finite Element mesh or Finite Difference mesh (left) and Finite Volume Mesh (right)
[1]

2.2.2 Finite Volume Method (FVM)

In the Finite Volume Method, the domain is divided into a set of computational domains called
cells or control volumes. The edges of those cells are known as the faces, while the vertices are the
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nodes, which are equivalent to the nodes used in the FDM. However, in the FVM,the information
is stored at the cells’ centroids, rather than at the nodes. The governing equations are integrated
at each control volume, and the volume integrals are converted into surface integrals by applying
the Gauss divergence theorem. Consequently, the governing equations are not solved directly and
rather, a weak form is solved. One of the biggest advantages of the FVM over the FDM or FEM
is that, by obtaining surface integrals over the control volume faces, the finite volume equations
are, in essence, flux balance equations of the governing PDE’s. This is specially useful in those
fields in which the PDEs represent conservation laws, such as in CFD, as mass, momentum and
energy are conserved by definition.

2.2.3 Finite Element Method (FEM)

The Finite Element Method is a method for solving PDEs based on the principle of variation of
parameters [1]. In a similar way to the FVM formulation, it also determines the weak form solu-
tion of the governing equations. However, in this case, the governing PDE’s are first multiplied
by a test function, and then integrated over the whole domain. The domain is also discretised
into a set of elements (the finite elements) similar to the ones used for the FDM shown in figure
1. The test function and the solution in each of the elements is described by a linear combination
of interpolation functions or shape functions. This linear combination allows to find the values
of interest at non-nodal points of the domain, by interpolating the nodal values, which are the
unknowns of the problem. The shape functions, thus, allow to describe how the field variables
vary within the finite element. Due to the fact that both the test function and the solution are
expressed through this linear combination, a linear system of algebraic equation can be obtained,
which is used to solve for the values at the nodal points and, through the shape function, the
values at any point inside the domain. This method, although being really useful, is not very
used for fluid dynamics applications. Rather, it is extensively applied to the fields of stress and
structural analysis.

2.2.4 Summary of FDM and FVM

Being the Finite Volume Method and the Finite Difference Method the two most common ap-
proaches to solve the PDEs of the governing equations of fluid dynamics, their advantages and
drawbacks should be briefly described. As already outlined previously, the FDM solves the gov-
erning equations in its differential (original) form, obtaining a solution known as the strong form
solution. The differential operators are computed by using the values of interest at fixed inter-
connected nodes inside the domain and at its boundaries. On the other hand, the FVM uses a set
of control volumes in which the integral of the governing equations is computed. Consequently,
the solution obtained is known as the weak form solution, as it corresponds to the solution of
the integral form of the PDEs. Nevertheless, both methods need the use of a method to approx-
imate derivatives in a discrete way, which is typically done through a Taylor expansion series
of the desired order. Consequently, the truncation errors produced in the FVM and FDM are
comparable, which implies that the error produced by a finite difference scheme is comparable
to the one produced by a finite volume scheme of the same order.

However, one of the biggest differences between both methods is the way boundary conditions
are treated. In the FDM, nodes are also located at the boundaries of the domain. This implies
that Dirichlet boundary conditions can be directly imposed to the boundary node. However, the
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governing equation can not be satisfied at the boundary, as it would lead to an overspecification
of the problem. On the other hand, when Neumann boundary conditions are imposed, both the
boundary condition and the governing equation can be imposed at this node, giving much better
accuracy than only applying the boundary condition [1]. On the other hand, in the FVM there
is typically any node applied directly on the domain boundaries. This implies that the boundary
conditions are directly applied to the cell faces. This is perhaps the biggest difference between
both methods, because it means that in the FVM, the governing equation is always satisfied
in the whole computational domain regardless of its shape, discretization or type of boundary
conditions. On the other hand, for the FDM, the fraction of the domain in which the governing
equation is satisfied heavily depends on the mesh used and type of boundary conditions applied.
Due to this, both methods exhibit really different behaviour regarding its global conservation
properties. In the FDM, as the governing equation is partially satisfied inside the domain de-
pending on the mesh used, the global conservation is also mesh-dependent. On the other hand,
in the FVM local and global conservation is assured. Another additional advantage of the FVM
over the FDM is found in problems in which material discontinuities are present. Being the FVM
an integral method, those discontinuities can be treated with ease, while the FDM encounters
problems.

Consequently, given all the differences outlined between both methods and the advantages of the
FVM over the FDM, the former is chosen to be used for the development of this thesis.
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3 Symmetry-preserving discretization

The conservative nature of the Navier-Stokes equations is really dependent on the symmetry of
the differential operators used.

In order to analyse the conservation and stability properties, the finite-volume discretization of
the Navier-Stokes equations (neglecting the conservation of energy equation) in matrix-vector
notation can be written as:

Ω0
duh

dt
`C0puhquh “D0uh ´Ω0G0ph (3.1)

M0uh “ 0 (3.2)

where ph “ pp1, p2, ..., pnq
˚ P Rn is the cell-centered pressure field, uh P R3n is the staggered

velocity fields, and n is the number of control volumes used. uh is defined as a column vector
arranged as uh “ pu1,u2,u3q

˚, where ui “ ppuiq1, puiq2, ...puiqnq
˚ are the vectors containing

the velocity component of each control volume corresponding to the ith spatial direction. The
matrix Ωh P R3nˆ3n is a diagonal matrix containing the size of each control volume, while
C0puhq P R3nˆ3n and D0 P R3nˆ3n represent the convective and diffusive operators respectively.
By defining the discrete inner product between a and b as:

xa, by “ a˚Ωb (3.3)

The discrete kinetic energy is then given by }uh}2 ” u˚hΩuh. The temporal evolution of the
discrete kinetic energy can be obtained by left-multiplying equation (3.1) by uh

˚and summing
the resulting expression with its transpose:

d

dt
}uh}

2
“ ´u˚h pC0 puhq `C

˚
0 puhqquh ´ u

˚
h pD0 `D

˚
0quh ´ u

˚
hΩG0ph ´ p

˚
hG

˚
0Ω˚uh (3.4)

If no diffusion is present, D0 “ 0 and the global kinetic energy reduces to:

d

dt
}uh}

2
“ ´u˚h pC0 puhq `C

˚
0 puhqquh ´ u

˚
hΩG0ph ´ p

˚
hG

˚
0Ω˚uh (3.5)

Which implies that kinetic energy is conserved if both the convective and pressure terms vanish
in the discretized kinetic energy equation, i.e:

u˚h pC0 puhq `C
˚
0 puhqquh “ 0 (3.6)

u˚hΩG0ph ` p
˚
hG

˚
0Ω˚uh “ 0 (3.7)

Equation 3.6 is satisfied if and only if C0puhq “ ´C˚0puhq (i.e, the convective operator is skew-
symmetric). Moreover, to make sure that the contribution of the pressure term vanishes, the
negative transpose of the discrete gradient operator can be defined to be equal to the divergence
operator. If those conditions apply, the global kinetic energy (when diffusion effects are present)
is reduced to:
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d

dt
}uh}

2
“ ´u˚h pD0 `D

˚
0quh ď 0 (3.8)

The inequality appears due to the fact that the diffusive term must be dissipative. This implies
that the matrix pD0 `D

˚
0q must be positive-definite. However, even though it is not strictly

necessary [14], D0 is assumed to be not only positive-definite but also symmetric, like the con-
tinuous operator, ´∆.

As a result, when it comes to the spatial discretization of the equations, the previous con-
straints need to be taken into account in order to preserve the global kinetic energy. In the
following subsections, a second order spatial discretization of the different operators is presented
and illustrated with a two-dimensional mesh using staggered control volumes for the velocity
computation, as the extension to 3D is straightforward.

Figure 2: 2D representation of the velocity control volume staggered in the x direction (Ωi`1{2,j)

3.1 Discretization of the convective operator

Recalling the Reynold’s transport theorem for a function f of x and t:

d

dt

ż

Ω
fdV “

ż

Ω

Bf

Bt
dV `

ż

BΩ
fu ¨ ndS (3.9)

Where Ω is an arbitrary part of the fluid domain (in this case the control volume) at a particular
instant t. If the function f is equal to the velocity, the momentum transport equation is obtained.
The spatial discretization of this equation in the region Ωi`1{2,j reads the following, according
to figure 2:

ˇ

ˇΩi`1{2,j

ˇ

ˇ

dui,j
dt

` p 9meqsxui`1{2,j ` p 9mnqsxui,j`1{2 ´ p 9mwqsxui´1{2,j ´ p 9msqsxui,j´1{2 (3.10)

Where p 9meqsx, p 9mwqsx, p 9mnqsx and p 9msqsx are the massflows through the east, west, north and
south control volume faces, respectively, in which the subscript sx indicates that the mass fluxes
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are computed in the mesh staggered in the x direction. ui`1{2,j , ui´1{2,j , ui,j`1{2 and ui,j´1{2 are
the convected velocities through the east, west, north and south faces, respectively. At this point,
a question arises regarding the computation of the convected velocities at the cell faces in order
to assure that the convected-operator is skew-symmetric. To study this, a general interpolation
rule for the velocities at the cell faces is considered:

ui`1{2,j “ p1´ ωi,jqui`1,j ` ωi,jui,j (3.11)

Where ωi,j is a coefficient dependent on the control volume size. By substituting this interpola-
tion rule into equation 3.10, the following is obtained:

ˇ

ˇΩi`1{2,j

ˇ

ˇ

dui,j
dt

` p 9meqsxp1´ ωi,jqui`1,j ` p 9meqsxωi,jui,j ` p 9mnqsxp1´ ωi,jqui,j`1 ` p 9mnqsxωi,jui,j

´p 9mwqsxp1´ ωi,jqui´1,j ´ p 9mwqsxωi,jui,j ´ p 9msqsxp1´ ωi,jqui,j´1 ´ p 9msqsxωi,jui,j
(3.12)

In equation 3.12, it can be observed how the coefficient of ui`1,j is equal to p 9meqsxp1 ´ ωi,jq,
while the coefficient of the term ui,j of the control volume on the right of the one in figure 2,
would be ´ωi,jp 9meqsx. For skew-symmetry, both coefficients should be equal but with opposite
signs, hence:

p1´ ωi,jqp 9meqsx “ ωi,jp 9meqsx (3.13)

which is only satisfied if ωi,j “ 1{2, and hence, independent of the grid size. Additionally,
the elements of the diagonal of the convective operator should be equal to zero. The diagonal
coefficient of expression 3.12 is given by:

1

2
pp 9meqsx ` p 9mnqsx ´ p 9mwqsx ´ p 9msqsxq (3.14)

Which is equal to the net mass flux through the faces of the control volume, and hence, equal
to zero due to mass conservation. The respective mass flow rates are a function of the discrete
velocity vector uh. In summary, the following spatial-discretization for the x-component of the
convective term is obtained:

ˇ

ˇΩi`1{2,j

ˇ

ˇ

dui,j
dt

`
1

2
pp 9meqsx ` p 9mnqsx ´ p 9mwqsx ´ p 9msqsxquij `

1

2
p 9meqsxui`1,j`

1

2
p 9mnqsxui,j`1 ´

1

2
p 9mwqsxui´1,j ´

1

2
p 9msqsxui,j´1

(3.15)

While the extension to the other two dimensions is analogous and straightforward, allowing to
express the convective operator in matrix form: C0puhq.

3.2 Discretization of the gradient and divergence operators

As already stated, the mass fluxes need to be expressed in terms of the discrete velocity vector uh.
Hence, the coefficients of the convective operator become a function of uh as well (i.e C0puhq).

26



Considering a main pressure control volume as the one sketched in figure 3, the integral of the
divergence of the velocity can be computed as:

ż

Ω
∇ ¨ v “

ż

BΩ
v ¨ ndS (3.16)

In which the Gauss theorem has been applied.

Figure 3: 2D representation of the main control volume (Ωi,j)

By applying the mid-point rule to approximate the integral 3.16, the conservation of mass yields:

p 9meqc ` p 9mnqc ´ p 9mwqc ´ p 9msqc “

pyj ´ yj´1qui,j ´ pyj ´ yj´1qui´1,j ` pxi ´ xi´1qvi,j ´ pxi ´ xi´1qvi,j´1
(3.17)

In which the mass fluxes with the subscript c represent the massflows computed through the
boundaries of the main cell-centered control volume. By rewriting the previous expression in
matrix form taking into account all the control volumes of the domain, equation 3.17 can be
written as M0uh, in which the coefficient matrix M0 represents the discretization of the diver-
gence operator, integrated over the control volumes. The right-hand side of equation

M0uh “ 0 (3.18)

represents the net mass flux through the boundaries of the computational domain. For periodic
boundary conditions or closed systems, the right-hand side is equal to zero.

For the discretization of the gradient operator, the symmetry relation:

x∇p,vy “ ´xp,∇ ¨ vy (3.19)

is used, yielding the following operator property: ∇˚ “ ´∇, which states that the continuous
gradient operator equals the negative of the transpose of the divergence. If ph denotes the
discrete pressure and G0ph the discrete pressure gradient, the relation 3.19:

pG0phq
˚Ωuh “ p

˚
hG

˚
0Ωuh “ ´p

˚
hM0uh (3.20)

holds if G0 “ ´Ω´1M˚
0
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3.3 Discretization of the diffusive operator

The diffusive operator can be computed as the product of the divergence and a gradient operator.
In short, the diffusive operator can be written as:

1

Re
∇ ¨∇ (3.21)

However, due to the fact that staggered grids are used, the approximation 1
ReM0Ω

´1
0 M˚

0 cannot
be used. Therefore, the matrices Mu

0 , Mv
0 and Mw

0 need to be derived, which stand for the
discrete integration of the divergence operators over the staggered meshes in the x, y and z
directions, respectively. In this case, the Mu

0 operator would be applied to the function in the
grid staggered in the x direction, while the operator Mv

0 would be applied to the staggered grid
in the y direction. Considering the discretization in the mesh staggered in x, like the one shown
in figure 2, the diffusive flux through the faces of the control volume Ωi`1{2,j of ui.j would read:

1

Re

ui`1,j ´ ui,j
xi`1 ´ xi

pyj ´ yj´1q ´
1

Re

ui,j ´ ui´1,j

xi ´ xi´1
pyj ´ yj´1q`

1

Re

ui,j`1 ´ ui,j
yj`1{2 ´ yj´1{2

pxi`1{2 ´ xi´1{2q ´
1

Re

ui,j ´ ui,j´1

yj´1{2 ´ yj´3{2
pxi`1{2 ´ xi´1{2q

(3.22)

Which could be written in matrix form as Du
0uh. The process to compute the diffusive flux

through the faces of the control volumes for the staggered meshes in the y and z direction is
analogous and those could also be written in matrix form as Dv

0uh and Dw
0 uh respectively. In

summary, the discretization of the diffusive term in the Navier-Stokes equations becomes D0uh,
where D0 “ diagpDu

0 ,D
v
0,D

w
0 q.

Finally, before presenting the verification of the symmetry-preserving scheme implemented, it is
important to mention that the scheme presented is second-order accurate. However, higher-order
schemes could be derived (see for instance [15]).

3.4 Fractional Step Method

The basis behind the Fractional Step Method, which is used to solve the incompressible form of
the Navier-Stokes equations, is the well-known Helmholtz-Hodge theorem:

Theorem: Given a vector field ω defined in a bounded domain Ω Ď Rn for n “ 2, 3, with a
smooth boundary BΩ, the vector field can be uniquely decomposed in the following form:

ω “ u`∇ϕ (3.23)

Where ϕ is a scalar field over Ω and u is a vector field of Ω that satisfies the following constraints:

• ∇ ¨ u “ 0

• u ¨ n “ 0 over BΩ
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This theorem can be easily proved given the following considerations. Considering the divergence
of the product of a vector field with a scalar quantity and its decomposition:

∇ ¨ puϕq “ p∇ ¨ uqϕ` u ¨ p∇ϕq (3.24)

The decomposition yields, for a divergence-free vector field:

∇ ¨ puϕq “ u ¨ p∇ϕq (3.25)

If the previous equality is used to compute the scalar product between the vector field u and
∇ϕ in the region Ω, and applying the divergence theorem:

ż

Ω
∇ϕ ¨ udΩ “

ż

Ω
∇ ¨ pϕuqdΩ “

ż

BΩ
pϕuq ¨ ndS “ 0 (3.26)

Which is equal to zero, given that the fluxes through the domain boundaries are null according
to the constraints previously defined. Consequently, it is clear that the vector fields u and ∇ϕ
are orthogonal. However, the unicity of the decomposition is still to be proved. To do so, two
different decompositions can be considered:

ω “ u1 `∇ϕ1 “ u2 `∇ϕ2 (3.27)

Rearranging terms:

u1 ´ u2 `∇pϕ1 ´ ϕ2q “ 0 (3.28)

At this point, considering the scalar product of expression 3.28 with pu1 ´ u2q, it is clear that:
ż

Ω

”

}u1 ´ u2}
2
` pu1 ´ u2q ¨∇ pϕ1 ´ ϕ2q

ı

dΩ “

ż

Ω
||u1 ´ u2||

2dΩ “ 0 (3.29)

Therefore, according to equation 3.29, it is evident that, given the orthogonality relation:

u1 “ u2 (3.30)
∇ϕ1 “ ∇ϕ2 Ñ ϕ1 “ ϕ2 ` constant (3.31)

Proving that the decomposition, depicted in the following figure, is unique.
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Figure 4: Helmholtz-Hodge decomposition

By recalling the discretised Navier-Stokes equations 3.1 and 3.2, the Helmholtz-Hodge theorem
can be used to express the equations in terms of a predicted velocity (non-divergent free). After-
wards, the equations can be projected into a subspace with null divergence. However, equations
need to be discretised in time beforehand. The continuity equation can be integrated implicitly:

M0u
n`1
h “ 0 (3.32)

Next, the transient term of the momentum equation can be discretised using a second order
central difference scheme:

duh
dt

ˇ

ˇ

ˇ

ˇ

n`1{2

«
un`1
h ´ unh

∆t
`Op∆t2q (3.33)

While the convective and diffusive terms are grouped and discretised using a fully explicit second
order Adams-Bashforth scheme:

Rpuhq
n`1{2 « 3{2Rpuhq

n ´ 1{2Rpuhq
n´1 `Op∆t2q (3.34)

Where Rpuhq “ Ω´1p´C0puhquh`D0uhq. And finally, the pressure gradient term is integrated
using a first order backward Euler scheme. By taking this into consideration, the discretised
momentum equation reads:

un`1
h ´ unh

∆t
“ 3{2Rpuhq

n ´ 1{2Rpuhq
n´1 `Ω´1

0 M˚
0p

n`1
h (3.35)

By introducing the following unique decomposition thanks to the Helmholtz-Hodge theorem, a
predicted velocity can be obtained:

uph “ u
n
h `∆t

`

3{2Rpuhq
n ´ 1{2Rpuhq

n´1
˘

(3.36)
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Which is then used to find the discretised velocity field at the current time step.

un`1
h “ uph `∆tΩ´1

0 M˚
0p

n`1
h (3.37)

At this point, by applying the divergence operator to each side of the previous equation, providing
that M0u

n`1
h “ 0, a Poisson equation for the pressure can be obtained:

M0Ω
´1
0 M˚

0p
n`1
h “ ´

1

∆t
M0u

p
h (3.38)

In summary, the steps followed to solve for the discrete velocity and pressure fields at each time
step are summarised below:

1. Evaluation of the term Rpuhq
n and Rpuhq

n´1

2. Evaluation of the predicted velocity with equation 3.36

3. Solving for the pressure with equation 3.38

4. Solving for the velocity at the current time step n` 1 with equation 3.37

To get a better insight of the fractional step method approach, a visual representation of it is
shown in the following figure:

Figure 5: Projection Method representation

As depicted in figure 5, the predicted velocity obtained is a solution of the Navier-Stokes equa-
tions without taking into account the incompressibility constraint. Consequently, it is a non
divergence-free space. The pressure gradient can be understood as the minimum perturbation
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that forces the predictor velocity to be incompressible [16]. In other words, the pressure gradient
term projects the predicted velocity to a divergent-free space, as depicted above.

Finally, one last comment needs to be made regarding the computation of the time-step used.
The Courant-Friedrichs-Lewy condition is used, as it is a condition for numerical stability that
states that, during a certain time-step, the information of the flow, either transported due to
diffusion or convection, should only travel to adjacent nodes [17]:

3.4.1 Linear Solvers

In order to solve the Poisson equation, different linear solvers can be considered. In this thesis,
the Successive over-relaxation solver (henceforth SOR) and the Conjugate gradient (henceforth
CG) were considered. In this section, they are briefly described and their algorithm is shown
in pseudocode format. Nevertheless, other solvers such as Jacobi, Gauss-Seidel or Tri-diagonal
matrix line-by-line could also be used.

3.4.1.1 Successive over-relaxation solver (SOR)

The successive over-relaxation is an extrapolation of the Gauss-Seidel solver for linear systems
of equations, but allowing faster convergence. It uses a weighted average between the previous
iterated value and the current one. Considering a system of equations in matrix format:

Ax “ b (3.39)

Where A is the coefficients matrix and x is the vector of unknowns. Matrix A can be decomposed
into a diagonal matrix D, one strictly lower triangular matrix L and one strictly upper triangular
matrix U , such that:

A “ D ` L` U (3.40)

The system of linear equations can be written then as:

pD ` ωLqx “ ωb´ rωU ` pω ´ 1qDsx (3.41)

Where ω is a relaxation factor. The method solves for the new value of the variable x by using
the previous iterated value on the right hand side of the equation [18]:

xk`1 “ pD ` ωLq´1pωb´ rωU ` pω ´ 1qDsxkq (3.42)

Being xk and xk`1 the current and the next approximation of x respectively. Finally, by taking
advantage of the fact that the matrix pD ` ωLq is triangular, the unknowns can be computed
sequentially as:

xk`1
i “ p1´ ωqxki `

ω

aii

˜

bi ´
ÿ

jăi

aijx
k`1
j ´

ÿ

jąi

aijx
k
j

¸

, i “ 1, 2, ..., n (3.43)
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The traditional Gauss-Seidel iterative solver is recovered if the relaxation factor ω is set to one.
The pseudocode of the SOR algorithm is shown below:

Algorithm 1: Successive Over Relaxation (SOR)
Inputs: A, b, ω, δ, nÐ length(b);
Outputs: φ;
Choose an initial estimation φ of the solution;
εÐ |Aφ´ b|;
while ε ą δ do

for iÐ 1 to n do

xi “ p1´ ωqφi `
ω

aii

˜

bi ´
ÿ

jăi

aijxj ´
ÿ

jąi

aijφj

¸

end
εÐ maxp|φ´ x|q ;
φÐ x;

end

3.4.1.2 Conjugate gradient

The conjugate gradient method is an iterative method that allows to find the solution of a linear
system of equations, whose matrix is positive-definite. A good starting point for getting a better
understanding of the method is by considering the minimization of the quadratic test function:

φpxq “
1

2
xTAx´ xTb (3.44)

Where the vectors x and b P Rn, and A P Rnˆn, is a matrix which is assumed to be symmetric
positive definite (SPD). The minimizer of the previous quadratic function is just the point in
which its gradient becomes null, i.e:

∇φpx˚q “ Ax˚ ´ b “ 0 Ñ Ax˚ “ b (3.45)

Which clearly shows that the solution x˚ that solves the system of equations Ax “ b, is also
the same solution that minimizes the quadratic function φpxq. Once this is clear, line search
methods can be used to iteratively find the minimum of the function. Those methods are based
on an iterative procedure given by [19]:

xk`1 “ xk ` αkpk (3.46)

The idea is to choose an initial position of the function x0 and at each step, move in the search
direction pk a certain step length αk in order to minimize the function, i.e: φpxk`1q ă φpxkq.
Now, suppose that a set of vectors P “ pp1,p2, ...,pnq, is a set of n mutually conjugate vectors
with respect to A, which means that pTi Apj “ 0 for all i ‰ j. This means that this n set of
vectors P span the whole space Rn. Therefore, the solution x˚ that minimizes the function of
interest can be expressed as a linear combination of those vectors:

x˚ “
n
ÿ

i“1

αipi Ñ Ax˚ “
n
ÿ

i“1

αiApi (3.47)

33



And by left-multiplying the previous expression by pTk , one gets:

pTkAx
˚ “

n
ÿ

i“1

αip
T
kApi Ñ αk “

pTk b

pTkApk
(3.48)

Consequently, the only thing remaining is to find the set of n conjugate directions that allow to
compute the coefficients αk. The first search direction that could be considered could be equal
to the negative of the gradient of the function at the first initial guessed solution x0, which,
according to equation 3.45, is equal to its residual, i.e:

r0 “ b´Ax0 (3.49)

And the other vectors of the basis need to be in conjugate directions to the previous. This
could be enforced by constructing the next search direction from the current residual and all the
previous searched directions. By removing any projection of the current residual in the previous
conjugate vector one gets:

pk “ rk ´
ÿ

iăk

pTi Ark
pTi Api

pi (3.50)

βik is the projector operator of rk on pi:

βik “
pTi Ark
pTi Api

(3.51)

However, the search for conjugate directions can be much simplified by considering that it can
be easily proved that any residual rk is orthogonal to all the previous search directions (pTj rk “
0 @ pj j ď kq. As a result, given that the search directions form a basis and the residuals are
orthogonal to them, the residuals must also form a basis. Hence, any residual must be orthogonal
to the previous ones. According to this, it is clear that:

rTk`1rk “ 0 Ñ pb´Axk`1q
Trk “ 0 (3.52)

And by introducing equation 3.46 into equation 3.52 and rearranging terms, another expression
for the step length αk can be obtained:

αk “
rTk rk

pTkApk
(3.53)

By making use of the fact that residuals can be used as an orthogonal basis, another expression
for the projector βik can also be obtained [20]. By modifying equation 3.46, it is clear that:

rk`1 “ rk ´ αkApk (3.54)

By pre-multiplying the previous expression by rTj , and making use of equations 3.51 and 3.53,
the following expression can be found:

βk,j “
´rTj rk`1 ` r

T
j rk

rTk rk
(3.55)
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Which is a useful expression for k ă j in equation 3.50. However, given the orthogonality of the
residuals, the previous expression is non-zero only when j “ k ` 1, and thus:

βkk`1 “ ´
rTk`1rk`1

rTk r
T
k

(3.56)

Combining all this together, the final algorithm is obtained and outlined below:

Algorithm 2: Conjugate Gradient (CG)
Inputs: A, b, ω, δ, nÐ length(b);
Outputs: x;
Choose an initial estimation x0 of the solution;
r0 Ð b´Ax0;
p0 Ð r0;
k Ð 0;
while maxp|r|q ą δ do

αk Ð
rTk rk

pTkApk
;

xk`1 Ð xk ` αkpk;
rk`1 Ð rk ´ αkApk;

βk Ð
rTk`1rk`1

rTk rk
;

pk`1 Ð rk`1 ` βkpk;
k Ð k ` 1;

end
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3.5 Verification of the symmetry-preserving scheme

In order to verify the correct implementation of the symmetry-preserving spatial discretization
scheme, the correct behaviour of the operators needs to be checked. This implies that the
convective operator must be skew-symmetric and the diffusive operator must be positive defined
(and symmetric for convenience). Finally, mass conservation is also checked using the divergence
operator previously shown. These verifications are done considering a lid-driven cavity problem
with the following boundary conditions:

Figure 6: Problem schematization of the driven-cavity problem

On the top wall, a non-slip moving lid is considered, with known tangential velocity. On the
left, right and bottom walls, non-slip walls are considered, while on the z direction, periodic
boundary conditions are imposed. The behaviour of the operators is checked during the first 200
time-iterations of the problem for a Reynolds number of Re “ 1000.

First of all, it must be checked the skew-symmetry of the convective term. To do so, it is known
that, for a skew-symmetric operator C0:

a ¨C0b “ pa ¨C0bq
˚ “ b ¨C˚0a “ ´b ¨C0a (3.57)

Where a and b are two random vectors P R3n. However, the convective operator must satisfy
mass conservation, that is why the velocity field found at each time iteration is used to build
the operator C0puhq. In this case, if a “ b “ uh, then it is clear that uh ¨ C0 puhquh “ 0.
This operation is checked during the first 200 time iterations of the lid-driven cavity problem
previously described. The absolute value of the result is shown in the following figure:

36



Figure 7: Results of the skew-symmetry test for the convective operator during the first 200 time
iterations of the lid-driven cavity problem for Re “ 1000

As it can be seen, the average value obtained during all the iterations tested is of 4.3e ´ 09,
proving the correct discretization of the convective operator.

The next step is to check the symmetry of the diffusive operator. To do so, it is known that for
a symmetric operator D0:

a0 ¨D0b0 “ pa ¨D0b0q
˚ “ b ¨D˚

0a0 “ b0 ¨D0a0 (3.58)

Where a0 and b0 are to random vectors P R3n. In this case, the operator D0 would be the
diffusive operator, which, unlike the convective operator, does not have to satisfy mass conser-
vation or any other constraint. The diffusive operator is distributed into three minor operators,
one for each staggered mesh, according to D0 “ diagpDu

0 ,D
v
0,D

w
0 q. According to this, to check

the symmetry of the diffusive operator, the following operation is computed, which should give
a value of 0:

a˚Du
0u´ u

˚Du
0a` b

˚Dv
0v ´ v

˚Dv
0b` c

˚Dw
0w ´w

˚Dw
0 c (3.59)

Where a, b and c are three random generated vectors P Rn, while u, v and w are the x, y and
z components of the velocity field. The absolute value of expression 3.59 is graphed during the
first 200 time iterations of the lid-driven cavity problem, obtaining a mean value of 2.95e-15,
proving that the operator is symmetric and thus, correctly discretized.
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Figure 8: Results of the symmetry test for the diffusive operator during the first 200 time
iterations of the lid-driven cavity problem for Re “ 1000

Figure 9: Results of the test for the divergence operator during the first 200 time iterations of
the lid-driven cavity problem for Re “ 1000
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Finally, the last operator that needs to be checked is the divergence operator by checking mass
conservation. The operator is applied to the main grid, like the one sketched in figure 3, giving
the following expression, which should also be very close to 0:

M0uh (3.60)

In this case, the result is a vector giving the net mass flux through each control volume. In order
to quantify the result, the L2 norm is applied to the result vector of expression 3.60 during the
first 200 time iterations of the problem, obtaining a mean value of 1.4e-07 as shown in figure 9,
which again proves the correct discretization of the divergence operator.
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4 Energy cascade

Richardson (1922), firstly introduced the idea of the energy cascade in turbulent flows. In his
concept, he considered turbulence to be composed of eddies of different sizes. The concept behind
his idea is that kinetic energy is introduced at the largest scales of the flow (i.e largest eddies).
Largest eddies are unstable, and thus, they break up, transferring energy to smaller eddies (by
inviscid processes), whose, at the same time, also break up into smaller ones. At sufficiently
smaller scales, molecular viscosity becomes dominant, and energy is dissipated due to viscous
dissipation [21]. This process can be easily visualised in the following figure:

Figure 10: Energy cascade concept

In figure 10, the energy spectrum of the different turbulent scales is plotted. As it can be easily
seen, at low wave-numbers energy is introduced into the system. Through the inertial range,
energy is transported from larger eddies (lower wave-numbers), to smaller eddies (higher wave-
numbers), until, eventually, energy is dissipated at sufficiently small scales. The largest eddies
are characterised by the lengthscale l0, which is comparable to the flow scale L, and with char-
acteristic velocity u0 ” upl0q, which is similar to the reference velocity U ; having a Reynolds
number of Re0 ” u0l0{ν, which is large enough so that the direct effect of viscosity is negligible.
Those largest eddies have energy of order u2

0 and timescale τ0 “ l0{u0. Consequently, the rate of
energy dissipation (ε) is supposed to scale as u2

0{τ0 “ u3
0{l0, which is independent of the viscosity

ν (only for high Reynolds numbers).

However, some aspects still need to be considered, such as determining the size of the smallest
eddies that are responsible for dissipating the energy. This and other questions are answered
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through three hypotheses stated by Kolmogorov.

4.1 Kolmogorov’s hypothesis of local isotropy

The first hypothesis states that larger scales of the flow are anisotropic and affected by the
boundary conditions of the flow. However, as energy is transferred to lower scales in a chaotic
manner, the directional biases of the large eddies is lost, resulting in smaller scales of the tur-
bulent flow being statistically isotropic, and, in a sense, universal. Kolmogorov introduced the
lengthscale lEI , which is the limit between the large (and anisotropic) eddies (l ą lEI), and the
smaller (and isotropic) ones (l ă lEI).

4.2 Kolmogorov’s first similarity hypothesis

With Kolmogorov’s hypothesis of local isotropy, there is still to be determined the parameters on
which the universal state (l ă lEI) depends. The hypothesis is that the important parameters are
the rate at which the smaller scales receive energy from the larger scales (τEIq and the kinematic
viscosity (ν). The dissipation rate ε can be considered to be nearly equal to the energy transfer
rate τEI . Consequently, for turbulent flows with high enough Reynolds number, smaller turbulent
scales which l ă lEI have statisticals with universal form which are only determined by ν and
ε. Given those two parameters, unique length, velocity and time scales can be computed (i.e,
Kolmogorov’s scales), for the universal equilibrium range:

η ” pν3{εq1{4 (4.1)
uη ” pενq

1{4 (4.2)

τη “ pν{εq
1{2 (4.3)

It is straightforward to prove that, the Reynolds number based on Kolmogorov’s scales is:

ηun
ν
“ 1 (4.4)

which is consistent with the fact that dissipation is effective only for low Reynolds numbers.
Consequently, the kinematic viscosity is equal to ν “ uηη. Additionally, the dissipation rate is
given by:

ε “ νpuη{ηq
2 “ ν{τ2

η (4.5)

The ratio between the smallest and largest scales can be easily found. As the dissipation rate is
given by:

ε “
u3

0

l0
“
u3
η

η
Ñ

ˆ

u0

uη

˙3

“
l0
η

(4.6)

By the definition of the Reynolds number and, remembering that ν “ ηuη:

Re “
u0l0
ν
“
l0
η

u0

uη
“

ˆ

u0

uη

˙4

(4.7)
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Consequently, the relation between the velocity of the smaller and the larger scales can be written
as:

uη
u0
“ Re´1{4 (4.8)

The ratio between the size of the smallest eddies and the largest one can be computed as:

η

l0
“
u0

uη

1

Re
“

ˆ

uη
u0

˙3

“ Re´3{4 (4.9)

And finally, the relation between the time scales can be computed as:

τη
τ0
“
η{uη
l0{u0

“
η

l0

u0

uη
“ Re´1{2 (4.10)

4.3 Kolmogorov’s second similarity hypothesis

In the second similarity hypothesis proposed, Kolmogorov states that there is a range of turbu-
lent scales l, that are much smaller compared to the reference dimension l0, yet a lot larger than
the Kolmogorov’s length scale η (l0 " l " η). In this range, turbulent structures are big enough
and with a high Reynolds number luplq{ν, which implies that they are still not affected by vis-
cosity. This range, which is called the inertial subrange, is characterised by a universal form,
solely determined by the energy dissipation rate ε, and independent of the kinematic viscosity ν.
The inertial subrange starts at a characteristic lengthscale of lEI , which determines the start of
the universal equilibrium range and the inertial subrange; and ends at a lengthscale lDI , which
determines the start of the dissipation range.

The lengthscale, timescale and velocity scale can not be created solely with the energy dissipation
rate ε. Hence, an eddy size l inside the inertial subrange needs to be considered as well to define
those scales:

uplq “ pεlq1{3 “ uηpl{ηq
1{3 „ u0pl{l0q

1{3 (4.11)

τplq “ pl2{εq1{3 “ τηpl{ηq
2{3 „ τ0pl{l0q

2{3 (4.12)

It can be easily seen that both the velocity and time scales uplq and τplq decrease as l decreases.
An important parameter in the energy cascade concept is the rate at which energy is being
transferred from eddies with a characteristic size larger than l to smaller eddies with size smaller
than l - denoted by τplq. Considering that the transfer of energy is mainly due to eddies of a
characteristic size l, then it becomes clear that τplq is of the order of uplq2{τplq. But, according to
equations 4.11 and 4.12, it can be seen that τplq for l inside the inertial subrange, is independent
of l as:

uplq2{τplq “ ε (4.13)

The inertial subrange, dissipation range, and the total energy spectrum of turbulent flows can
be easily understood by examining figuer 10.
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4.4 Energy spectrum

An important statistic in turbulence is the two-point correlation, which allows to obtain infor-
mation regarding the spatial structure of a random field:

Rijpr,x, tq ” xuipx, tqujpx` r, tqy (4.14)

If homogeneous turbulence is considered, the two-point correlation is then independent of x, and
the information can be expressed by using the wavenumber spectrum. With this, the velocity
spectrum tensor Φijpk, tq can be defined as the Fourier transform of the two-point correlation
[21]:

Φijpk, tq “
1

p2πq3

8
¡

´8

e´ik¨rRijpr, tqdr (4.15)

And the inverse Fourier transform can be defined as:

Rijpr, tq “

8
¡

´8

eik¨rΦijpk, tqdk (4.16)

It is clear that, by setting r “ 0, the velocity spectrum tensor term Φijpk, tq is equal to the the
contribution to the covariance xuiujy that the velocity modes with wavenumber k have. However,
another parameter of importance is the energy spectrum function, which can be computed as:

Epk, tq ”

8
¡

´8

1

2
Φiipk, tqδp|k| ´ kqdk (4.17)

This can be interpreted as the velocity spectrum tensor Φijpk, tq without accounting for all the
directional information. By integrating Epk, tq over all scalar wavenumber, one gets:

ż 8

0
Epk, tqdk “

1

2
Riip0, tq “

1

2
xuiuiy (4.18)

Which is equal to the turbulent kinetic energy of all modes with k ă |k| ă k ` dk. With all of
this, it is still to be determined how the turbulent kinetic energy is distributed among the eddies
with different sizes. This can be done by using simple dimensional analysis:

rks “ rL´1s rεs “ rL2T´3s rET s “ rL
2T´2s rEpkqs “ rL3T´2s (4.19)

Given that in the inertial subrange will only be a function of ε and k, it is clear that:

Epkq9εakb (4.20)

And according to the dimensional analysis previously done:

rL3T´2s9rL2T´3sarL´1sb Ñ rL3T´2s9rL2a´bT´3as (4.21)
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Yielding a “ 2{3 and b “ ´5{3. Which allows to write the energy spectrum equation for the
inertial subrange part as:

Epkq “ Ckε
2{3k´5{3 (4.22)

Where Ck is the universal Kolmogorov constant.
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5 Mean flow equations

Given the chaotic nature of the Navier-Stokes equations in turbulent regime, it is common to
tackle the problem by averaging the equations and resolving for time-averaged values. Due to the
fact that variables in turbulent flows need to be treated as random variables, certain definitions
need to be given beforehand.

5.1 Statistical description of turbulent flows

Let U be a random variable that is a function of space and time, (Upx, tq), either velocity, pres-
sure, temperature,... whose cummulative distribution function (F ), is defined as the probability
that a variable has to be less than a value V . For instance, the following equation expresses the
probability (P ), that the variable u is smaller than V:

F pV q “ P pu ă V q (5.1)

The cummulative distribution function satisfies three properties:

F p´8q “ 0 (5.2)

F p8q “ 1 (5.3)

F pVbq ě F pVaq for Vb ą Va (5.4)

The probability density function can be easily defined as the derivative of the cummulative
distribution function:

fpV q ”
dF pV q

dV
(5.5)

Which has the following properties:

fpV q ě 0 (5.6)

ż 8

´8

fpV qdV “ 1 (5.7)

fp´8q “ fp8q “ 0 (5.8)

With the previous definition, the probability that a random variables lays between a certain
interval is equal to the integral of the probability density function over that interval:

P tVa ď U ă Vbu “ F pVbq ´ F pVaq “

ż Vb

Va

fpV qdV (5.9)

The mean or expectation of a random variable U , that could be any measurable variable in
turbulent flow, can be computed as:
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xUy ”

ż 8

8

V fpV qdV (5.10)

The fluctuation (u1) in the random variable U is easily defined as:

u1 ” U ´ xUy (5.11)

The variance of the variable U is defined as the mean of the fluctuations squared:

varpUq ” xu12y “

ż 8

´8

pV ´ xUyq2fpV qdV (5.12)

While the standard deviation is defined as the square root of the variance:

sdevpUq “ xu12y1{2 (5.13)

Two random variables can be either studied separately or together to see if there is any relation
between both. If the latter is done, the cummulative distribution function of the joint random
variables is defined according to:

F12pV1, V2q ” P pU1 ă V1, U2 ă V2q (5.14)

The joint probability density function is defined by:

f12pV1, V2q ”
B2

BV1BV2
F12pV1, V2q (5.15)

The joint variability of two random variables can be computed with the covariance:

cov pU1, U2q “ă u11u
1
2 ą“

ż 8

´8

ż 8

´8

pV1 ´ xU1yq pV2 ´ xU2yq f12 pV1, V2q dV1dV2 (5.16)

And the correlation coefficient can be easily computed as:

ρ12 ”
xu11u

1
2y

b

xu11
2yxu12

2y

´1 ď ρ12 ď 1
(5.17)

All the previous statistics have been computed based on the probability density function. How-
ever, this function is not known for the computation of turbulent flows. Thus, the mean or
expected variable of the velocity, pressure, temperature,... can not be evaluated with expression
5.10. An option to estimate the mean value and any other statistics could be to set a large
number of experiments under identical conditions (i.e, an ensemble), and average the results
obtained (i.e, an ensemble average):

xUyN ”
1

N

N
ÿ

i“1

U iptq (5.18)

It can be easily proved that
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xxUyNy “ xUy (5.19)

Additionally, according to the definition of the ensemble average, it is straightforward to show
that the operation of differentiation and integration commute with the operation of ensemble
averaging, i.e:

B

BU

Bt

F

N

“
BxUyN
Bt

(5.20)

B
ż b

a
Udt

F

N

“

ż b

a
xUyNdt (5.21)

Being the previous equalities valid not only for time-dependant variables, but also for spatial-
dependent ones. Nevertheless, it is clar that this approach is not feasible to compute the statistics
of turbulent flows, as each simulation can be extremely time-consuming. To solve this problem,
we can make use of the definition of statistically stationary flows (SS) and statistically homoge-
neous flows (SH). In a statistically stationary flow, all statistics are invariant with respect to a
time shift.

An example of a statistically stationary flow can be found in figure 11.

Figure 11: Example of a statistically stationary time series (left) and a statistically nonstationary
time series (right). Extracted from [2]

It is clear how the time series on the left shows a statistically stationary time series, in contrast
with the time series on the right of figure 11. In statistically homogeneous flows, the statistics
are invariant with respect to a position shift in any direction. If the flow field is statistically
stationary, its mean value is a function of the position x and can be easily computed as:

xUpt, xqyT “
1

∆t

ż t0`∆t

t0

Upt1qdt1 (5.22)

If the flow field is statistically homogeneous, its mean or expected value is a scalar function of
time:

xUpt, xqyV “
1

V

ż

V
Upx, tqdv (5.23)

Nevertheless, statistically homogeneous flows are not common in engineering problems.

47



5.2 Reynolds-Averaged Navier-Stokes equations

Fully turbulent flows can be very difficult and time-consuming to solve, as there is a large amount
of length and time scales to be resolved, as it has been previously seen. Nevertheless, in engi-
neering there is usually not much interest in resolving all the flow scales, but rather, in finding
the mean flow properties such as mean velocity or temperature. Consequently, by time-averaging
the Navier-Stokes equations, the mean flow properties can be obtained.

Recalling the general form of the incompressible Navier-Stokes equations (momentum and mass
conservation), neglecting body forces and assuming a Newtonian fluid with constant viscosity:

ρ

ˆ

Bui
Bt
`

B

Bxj
puiujq

˙

“ ´
Bp

Bxi
` µ

B2ui
BxjBxj

(5.24)

Bui
Bxi

“ 0 (5.25)

The dependent variables (velocity and pressure) are decomposed into their mean and fluctuating
part:

ui “ xuiy ` u
1
i (5.26)

p “ xpy ` p1 (5.27)

Considering the following properties of the average operator on two random variables ψ and φ:

• The average of the fluctuations is zero:

xφy “ xxφy ` φ1y “ xφy ` xφ1y Ñ xφ1y “ 0

• Average of the product of two random variables:

xψφy “ xpxφy ` φ1qpxψy ` ψ1qy “ xxφyxψy ` xφyψ1 ` φ1xψy ` φ1ψ1y “ xφyxψy ` xφ1ψ1y

• Commutation with the operation of differentiation (as previously shown):
A

Bφ
Bt

E

“
Bxφy
Bt

A

Bφ
Bxi

E

“
Bxφy
Bxi

Substituting equations 5.26 and 5.27 into 5.24 and 5.25 one gets:

Bxuiy

Bxi
“ 0 (5.28)

ρ

ˆ

Bxuiy

Bt
`

B

Bxj
pxuiujyq

˙

“ ´
Bxpy

Bxi
` µ

B2xuiy

BxjBxj
(5.29)

As it can be seen, the continuity equation shows a null divergence of the mean velocity field.
The averaged momentum equation is basically the same but accounting for mean values, except
for the convective term, which needs to be considered separately:
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xuiujy “ xpxuiy ` u
1
iqpxujy ` u

1
jqy “ xxuiyxujyy ` xxuiyu

1
jy ` xu

1
ixujyy ` xu

1
iu
1
jy “

xuiyxujy ` xu
1
iu
1
jy

(5.30)

Which, substituting into the previous equations, yields the following:

ρ

ˆ

Bxuiy

Bt
`

B

Bxj
pxuiyxujyq

˙

“ ´
Bxpy

Bxi
` µ

B2xuiy

BxjBxj
´ ρ

B

Bxj
pxu1iu

1
jyq (5.31)

The averaged momentum equation can be re-written by expressing the convective term in non-
conservative form, and replacing the term τRij “ ´ρxu

1
iu
1
jy. With this, the RANS equations are

obtained:

Bxuiy

Bxi
“ 0 (5.32)

ρ

ˆ

Bxuiy

Bt
` xujy

Bxuiy

Bxj

˙

“ ´
Bxpy

Bxi
` µ

B2xuiy

BxjBxj
`
BτRij
Bxj

(5.33)

The term τRij is known as the Reynolds-stress term, which is added up to the mean stresses to
account for the turbulent fluctuations. This is a symmetric, positive semi-definite matrix, whose
diagonal components are the normal stresses, and the off-diagonal terms are shear stresses:

τRij “ ´ρ

»

–

xu12y xu1v1y xu1w1y
xv1u1y xv12y xv1w1y
xw1u1y xwv12y xw12y

fi

fl (5.34)

The system of equations 5.32 and 5.33 is not a closed system, due to the fact there are a total
of 10 unknowns: the three components of the mean velocity xuiy, the mean pressure xpy, and six
additional Reynolds stress terms xu12y, xv12y, xw12y, xu1v1y, xu1w1y and xv1u1y; but only 4 equa-
tions. Consequently, the closure of the problem consists on expressing the six extra additional
Reynolds stress components as a function of the mean velocity components and/or any other
variables.

5.3 Classical turbulence models

As stated previously, in order to close the problem, turbulence models are needed to express the
Reynolds stress terms in the RANS equations. In general, it is seek an accurate, yet simple and
computationally economical to run turbulence model. RANS turbulence models are typically
classified depending on the number of extra transport equations that need to be solved to find
the unknowns needed to solve the problem:
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No. of extra transport equations Turbulence model

Zero Mixing length model

One Spalart-Allmaras

Two
k ´ ε
k ´ ω

Algebraic stress model

Seven Reynolds stress model

Table 1: Classical Turbulence models according to the number of extra transport equations
needed

5.3.1 Eddy-viscosity model

In 1877, Joseph Valentin Boussinesq tackled the closure problem by introducing the concept of
eddy viscosity. Boussinesq assumed, that given the similarity between the Reynolds stress term
and the the stresses caused by viscosity effects, the former should be proportional to the mean
velocity gradients. Given the fact that turbulent stresses increase when mean rate of deformation
also increase [6], Boussinesq stated that the Reynolds stress term should be proportional to the
mean strain rate:

τRij “ ´ρxu
1
iu
1
jy “ µt

ˆ

Bxuiy

Bxj
`
Bxujy

Bxi

˙

(5.35)

In which a proportionality constant µt has been used. Nevertheless, the previous expression is
not consistent and thus, should be corrected due to the following. Given the definition of the
turbulent kinetic energy kpx, tq:

k ”
1

2
xu1iu

1
iy “

1

2
pxu12y ` xv12y ` xw12yq (5.36)

It is clear that the sum of the normal turbulent stresses should give:

´ ρpxu12y ` xv12y ` xw12yq “ ´2ρk (5.37)

However, according to the proposed relation 5.35, the sum of the normal turbulent stresses gives
a different result:

´ 2ρk ‰ 2µt

ˆ

Bxuy

Bx
`
Bxvy

By
`
Bxwy

Bz

˙

(5.38)

Which is equal to 0 for incompressible flow. Consequently, to correct expression 5.35, 1/3 of the
error is subtracted from each of the normal components, i.e:

´ ρxu12y “ 2µt

ˆ

Bxuy

Bx
´

1

3

ˆ

Bxuy

Bx
`
Bxvy

By
`
Bxwy

Bz

˙˙

´
1

3
p2ρkq (5.39)

´ ρxv12y “ 2µt

ˆ

Bxvy

By
´

1

3

ˆ

Bxuy

Bx
`
Bxvy

By
`
Bxwy

Bz

˙˙

´
1

3
p2ρkq (5.40)
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´ ρxw12y “ 2µt

ˆ

Bxwy

Bz
´

1

3

ˆ

Bxuy

Bx
`
Bxvy

By
`
Bxwy

Bz

˙˙

´
1

3
p2ρkq (5.41)

Consequently, the final Boussinesq approximation can be written in a more compact form as:

τRij “ ´ρxu
1
iu
1
jy “ µt

ˆ

Bxuiy

Bxj
`
Bxujy

Bxi
´

2

3

Bxuky

Bxk
δij

˙

´
2

3
ρkδij (5.42)

Which reduces to the following for incompressible flow:

τRij “ ´ρxu
1
iu
1
jy “ µt

ˆ

Bxuiy

Bxj
`
Bxujy

Bxi

˙

´
2

3
ρkδij (5.43)

Finally, substituting the incompressible form of the Boussinesq approximation in equation 5.33,
the following is obtained:

ρ

ˆ

Bxuiy

Bt
` xujy

Bxuiy

Bxj

˙

“ ´
Bpxpy ` 2{3ρkq

Bxi
` pµ` µtq

B2xuiy

BxjBxj
(5.44)

Where the term xpy ` 2{3ρk is a corrected pressure term that includes the turbulent kinetic
energy. It is important to notice that by using Boussinesq’s approximation, the number of un-
knowns in the Reynold’s stress term has been reduced from 6 terms to only 2 (the turbulent
kinetic energy k and the turbulent viscosity µt). The reader should be aware of the difference
between the dynamic viscosity µ and the turbulent viscosity µt. While the former is a physical
property of the fluid, the latter is an artificial constant that does not depend on the fluid, but
rather on the flow characteristics. The eddy viscosity controls the strength of the extra diffusion
added by the turbulent stresses. Consequently, being an artificial parameter, µt must be mod-
elled somehow.

Finally, it is important to notice that with Boussinesq’s approximation, the turbulent transport
of momentum is assumed to be proportional to the mean gradients of the momentum per unit
of mass (i.e, velocity). Consequently, in a similar way, turbulent transport of any scalar is taken
to be proportional to the gradient of the mean value of the quantity that is being transported,
i.e:

´ ρxu1iϕ
1y “ Γt

BΦ

Bxi
(5.45)

Where Γt is the turbulent or eddy diffusivity. The Prandtl/Schmidt number can be defined as
the ratio between the turbulent eddy viscosity and the turbulent eddy diffusivity of a certain
quantity:

σt “
µt
Γt

(5.46)

Values of σt are around unity according to Reynolds analogy, which states that both µt and Γt
are comparable, due to the fact that the turbulent transport of an quantity is due to the same
mechanism - eddy mixing [22].
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5.3.1.1 Mixing length model

The mixing length model, also known as the Prandtl’s mixing length model, is one of the sub-
groups of turbulence models included inside the eddy-viscosity models. It is based on the fact
that given the units of the dynamic turbulent or eddy viscosity µt (kgm´1s´1); this could be
written as the product of one velocity scale and one length scale according to:

µt “ Cρ ϑlm (5.47)

Where C is a dimensionless constant of proportionality. Considering a blob of fluid which is
moved in the vertical direction due to a fluctuating velocity v1. The blob of turbulent flow moves
a distance lm, known as the mixing length, which is analogous to the mean free path in molecular
dynamics [23]. When the blob of flow reaches its new position, the fluctuation in the streamwise
velocity can be approximated to be the difference between its original velocity and the one of its
surroundings in the new position, i.e:

u1 „

ˆ

xuy `
Bxuy

By
lm

˙

´ xuy “
Bxuy

By
lm (5.48)

Figure 12: Prandtl’s mixing length theory

The modulus of this fluctuating velocity is taken as the characteristic velocity in equation 5.47:

ϑ “ |u1| “

ˇ

ˇ

ˇ

ˇ

Bxuy

By

ˇ

ˇ

ˇ

ˇ

lm (5.49)

The absolute value is taken to ensure that the characteristic velocity is always positive. Conse-
quently. Substituting equation 5.49 into equation 5.47, the following is obtained:

µt “ Cρ

ˇ

ˇ

ˇ

ˇ

Bxuy

By

ˇ

ˇ

ˇ

ˇ

l2m (5.50)
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Finally, by introducing the previous approximation for the turbulent viscosity into the Boussinesq
approximation 5.43, noting that for two-dimensional turbulent flows the only significant Reynolds
stress term is τxy “ τyx “ ´ρxu1v1y, and that the mean velocity gradient Bxuy

By is the most
significant one, the following is obtained:

τxy “ τyx “ ´ρxu
1v1y “ ρl2m

ˇ

ˇ

ˇ

ˇ

Bxuy

By

ˇ

ˇ

ˇ

ˇ

Bxuy

By
(5.51)

In which the constant of proportionality C has been absorbed into the mixing length lm. From
the previous expression, it is clear that the Reynolds stresses are heavily dependent on the flow
characteristics as already stated. Consequently, the mixing length lm will vary depending on
the type of turbulent flow. For relatively simple two-dimensional turbulent flows such as mixing
layers, jets or wakes, the mixing layer lm can be approximated by simple algebraic expressions:

Flow Mixing Length lm L

Mixing layer 0.07L Layer width
Jet 0.09L Jet half width

Wake 0.16L Wake half width
Axisymmetric jet 0.075L Jet half width

Table 2: Mixing lengths for two-dimensional turbulent flows [6]

The main advantage of the mixing length model is its simplicity, as no extra equations are needed
to be solved. Consequently, it is really cheap computationally. However, even though the model
works well for thin shear layers such as mixing layers, wakes and boundary layers, it does not
work properly for turbulent flows with recirculation or separation zones.

The mixing length model is the basis for the Law of the Wall, which is described in the following
section.

Law of the wall

In wall-bounded turbulent flows, close to the wall, three different regimes regarding the contri-
bution of the Reynolds stresses in the total stresses can be observed. At the closest zone to
the wall, a dampening effect of the turbulent or Reynolds stresses is observed. This dampening
effect implies that there exists a region where viscous stresses dominate, known as the viscous
sub-layer. After this zone, a transition zone is observed, in which the order of magnitude of the
Reynolds shear stresses and viscous stresses are approximately equal in magnitude. This zone
is known as the transition or buffer layer. Finally, this regions transitions to the last one, in
which Reynolds stresses dominate, being those much larger than the viscous shear stresses. In
this layer, known as the fully turbulent or log-law layer, the Prandtl’s mixing length theory can
be used.

Assuming that the fully turbulent layer begins at a distance from the wall (y) much smaller than
the thickness of the boundary layer (δ), the total shear stresses can be approximated using a
simple Taylor expansion series, such that:
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τ “ τw `
dτ

dy
y

loomoon

!τw

` ¨ ¨ ¨ » τw (5.52)

In the viscous sub-layer, as already stated, only viscous stresses are important, as Reynolds
stresses are damped due to the presence of the wall, consequently:

τ “ µ
dxuy

dy
“ τw Ñ xuy “

τw
µ
y (5.53)

At this point, the friction velocity can be defined as:

uτ “

c

τw
ρ

(5.54)

Which is used to define a non-dimensional velocity (u`) and a dimensionless length scale (y`)
as:

u` “
xuy

uτ
(5.55)

y` “
uτy

ν
(5.56)

With the friction velocity defined, equation 5.53 for the viscous sub-layer can be written as:

u` “
xuy

uτ
“
uτ
ν
y “ y` (5.57)

On the other hand, in the fully turbulent zone, the viscous shear stresses are negligible, and thus,
the Reynolds stresses are dominant, i.e:

τ “ ´ρxu1v1y “ τw (5.58)

Recalling the mixing length model 5.51, and assuming that the mixing length lm9y:
ˆ

dxuy

dy

˙2

9
τw
ρ

1

y2
Ñ

dxuy

dy
9
uτ
y

(5.59)

Integrating the previous equation yields:

C0xuy “ lnpyq ` C 10 (5.60)

Where C0 and C 10 are to integration constants. By making use of the definitions of u` and y`

from equations 5.55 and 5.56, equation 5.60 can be written as:

u` “ C1lnpy
`q ` C2 (5.61)

Where C1 and C2 are two constants that need to be empirically found by comparing the previous
expression with experimental data. By doing so, it is found that:
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C1 « 2.54 C2 « 5.56 (5.62)

C1 is typically written as 1{κ where κ “ 0.41, and known as the von Kármán constant, as he
was the first to derive the logarithmic velocity profile.

If both velocity profiles for the viscous sub-layer and for the log-law region are graphed, and
compared with experimental data, the graph shown in figure 13 is obtained. As it can be seen,
for y` ă 5 experimental results show excellent agreement with the expression found for the
viscous sub-layer, implying that viscous shear stresses dominate, as already stated. For y`

values higher than 5, the same approximation can be used, even though leading to higher errors.
For 5 ă y` ă 30 (the buffer layer), neither of the laws derived hold true. However, for y` ă 11,
the linear approximation should be used, while for y` ą 11, it is advisable to use the logarithmic
law. Finally, for y` ą 30, the logarithmic law shows very good agreement with experimental
data as well.

Figure 13: Law of the Wall. Extracted from [3]

5.3.1.2 The k ´ ε model

The k ´ ε turbulence model focuses on the mechanisms that affect the turbulent kinetic energy
[6]. The model has two equations, one for the turbulent kinetic energy k, and another one for
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the rate of dissipation of turbulent kinetic energy per unit of mass ε. Both parameters can be
used to define a velocity scale ϑ and a length scale ` such that:

ϑ “ k1{2 (5.63)

` “
k3{2

ε
(5.64)

Which are representative of the large-scale turbulence. Applying the same dimensional analysis
as in the mixing length model previously derived, the following expression is obtained:

µt “ Cρ ϑ` “ ρCµ
k2

ε
(5.65)

In which Cµ is a non-dimensional constant. Consequently, the standard k ´ ε model makes use
of one transport equation for the turbulent kinetic energy k and another one for the rate of
dissipation of turbulent kinetic energy ε, to solve for the turbulent viscosity µt.

Bpρkq

Bt
`∇ ¨ pρkxvyq “ ∇ ¨

„

µt
σk

∇k


` 2µtxSijy ¨ xSijy ´ ρε (5.66)

Bpρεq

Bt
`∇ ¨ pρεxvyq “ ∇

„

µt
σε

∇ε


` C1ε
ε

k
2µtxSijy ¨ xSijy ´ C2ερ

ε2

k
(5.67)

The terms on the left hand side represent the rate of change of k or ε and the transport of those
quantities by convection. The first term on the right hand side represents the transport of k or
ε by diffusion, the second term represents the rate of production of those quantities, while the
last one is their rate of destruction. In the equations there are five adjustable constants Cµ, σk,
σε, C1ε and C2ε that are found through data fitting of of various turbulent flows. Their typical
values are:

Cµ “ 0.09 σk “ 1.00 σε “ 1.30 C1ε “ 1.44 C2ε “ 1.92 (5.68)

With the previous equations, a system is obtained which allows to find the turbulent viscosity
µt, and in virtue of the Boussinesq’s approximation, close the system.

The main drawback of the k ´ ε model is that it predicts excessive turbulent shear stresses,
specially when adverse pressure gradients are present. Consequently, flow separation in curved
shear layers is not well predicted.

5.3.1.3 Spalart-Allmaras model

The Spalart-Allmaras model provides more economical resolutions of boundary layers for external
aerodynamics. It relates the eddy viscosity µt to a kinematic eddy viscosity parameter ν̃ and to
a wall-damping function fν1 “ fν1pν̃{νq:

µt “ ρν̃fν1 (5.69)

The wall damping function tends to unity when the Reynolds number is high, in which case the
kinematic eddy viscosity parameter equals the kinematic eddy viscosity, while at the wall, the
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function fv1 tends to zero. Consequently, for this model, an extra transport equation for ν̃ needs
to be solved:

Bpρν̃q

Bt
`∇ ¨ pρν̃xvyq “ 1

σν
∇ ¨

„

pµ` ρν̃q∇ν̃ ` Cb2ρ
Bν̃

Bxk

Bν̃

Bxk



`Cb1ρν̃Ω̃´Cw1ρ

ˆ

ν̃

κy

˙2

fw (5.70)

The left hand side of the previous equation represents the rate of change of the viscosity parameter
ν̃ and its transport by convection. The right hand side expresses the transport of ν̃ by turbulent
diffusion, and the rate of production and dissipation of ν̃. As it can be seen, the rate of production
of ν̃ is related to the local mean of vorticity xΩy “

a

2xΩijyxΩijy where xΩijy is the mean vorticity
tensor:

Ω̃ “ xΩy `
ν̃

pκyq2
fν2 (5.71)

While the functions fν2 “ fν2pν̃{νq and fw “ fwpν̃{pΩ̃κ
2y2qq are two additional wall damping

functions. The model constants are empirically found to be:

σν “ 2{3 κ “ 0.4187 Cb1 “ 0.1355 Cb2 “ 0.622 Cw1 “ Cb1 ` κ
2 1` Cb2

σν
(5.72)

Unlike the k ´ ε model, the Spalart-Allmaras model performs good for solving boundary layers
under adverse pressure gradients. However, for rapidly changing flows, the model does not
perform well.

5.3.1.4 Wilcox k ´ ω model

In the k ´ ω model, the turbulent frequency ω “ ε{k is used as the second model variable
alongside k, to define the length scale as l “

?
k{ω. Consequently, the eddy viscosity is written

as:

µt “ ρk{ω (5.73)

Which is used in combination with the Boussinesq’s expression to compute the Reynolds stresses.
Consequently, like in the k´ ε model, one transport equation is needed for k, while another one
is needed for ω. The former reads the following:

Bpρkq

Bt
`∇ ¨ pρkxvyq “ ∇ ¨

„ˆ

µ`
µt
σk

˙

∇k


`

ˆ

2µtxSijy ¨ xSijy ´
2

3
ρk
Bxuiy

Bxj
δij

˙

´ β˚ρkω (5.74)

While the transport equation for ω reads:

Bpρωq

Bt
`∇ ¨pρωxvyq “ ∇ ¨

„ˆ

µ`
µt
σω

˙

∇ω


`γ1

ˆ

2ρxSijy ¨ xSijy ´
2

3
ρω
Bxuiy

Bxj
δij

˙

´β1ρω
2 (5.75)

As in the previous transport equations, the left hand side of equations 5.74 and 5.75 represent
the rate of change of k or ω and their transport by convection. On the other hand, on the right
hand side each term represents, from left to right, the transport of k or ω by turbulent diffusion,
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their rate of production and their rate of dissipation.

The model has the following model parameters:

σk “ 2.0 σw “ 2.0 γ1 “ 0.553 β1 “ 0.075 β˚ “ 0.09 (5.76)

This model is specially interesting, as integration to the wall doesn’t require wall-damping func-
tions for low values of the Reynolds number.
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6 Large eddy simulation (LES)

Even though different turbulence models have been developed for the RANS equations, a gen-
eral purpose model that can be used for a wide range of applications and flow configurations
has not been found yet. This can be explained due to the different behaviour of the large and
small eddies. While the smaller eddies show a universal behaviour and are nearly isotropic, the
largest eddies, which are responsible for extracting energy of the mean flow, are anisotropic and
heavily-dependent on the flow configurations and boundary conditions. RANS equations try to
model the collective behaviour of all the eddies of the flow, by modelling them with a single tur-
bulence model. This implies that a general model that can be used in a wide set of applications
is difficult to find. The essence of the Large eddy simulation (LES) approach is to solve for the
larger eddies of the flow, which are problem-dependent, with a time-dependent simulation, while
the effect of the smaller eddies, which are universal, is modelled.

In large eddy simulation (LES), a spatial filtering operator is used to separate the larger eddies
and the smaller ones. This process is done by selecting a filtering function and a cutoff width,
which sets the minimum length scale of the eddies that are solved in an unsteady computation.
However, the information regarding the smaller eddies, which are filtered, is destroyed. Addi-
tionally, the effects of the interaction between the larger and smaller eddies is also lost, giving
rise to sub-grid-scale stresses (SGS stresses), whose effect must be described by means of a SGS
model.

The basic idea behind the large eddy simulation approach is shown in the following figure of the
energy cascade:

Figure 14: Filtered energy spectrum
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6.1 Filtering functions

The spatial filtering function needed in LES separates scales by using a high-pass filter (low-pass
filter in frequency). Mathematically, in physical space, it can be represented as a convolution
product:

φ̄px, tq “

ż `8

´8

ż `8

´8

φ
`

ξ, t1
˘

G
`

x´ ξ, t´ t1
˘

dt1d3ξ (6.1)

Where ¯φpx, tq is the filtered function, and φpx, tq is the unfiltered function. G is the convolution
kernel which depends on the filter used, and depends on the cutoff scales in both space and time
∆̄ and τ̄c, respectively. As it can be seen, filtering is an integration (a linear operator), and un-
like the averaging used in RANS, in LES the integration is carried out in three dimensional space.

The previous integral can be written as:

φ̄ “ G ‹ φ (6.2)

And converted into Fourier space, the spectrum of the filtered function is found by multiplying
the spectrum pφpk, ωq of φpx, tq by the spectrum of the kernel pGpk, ωq:

pφpk, ωq “ pφpk, ωq pGpk, ωq (6.3)

Being k and ω the spatial wave number and time frequency. The spatial cutoff length ∆̄ and
the cutoff time scale τ̄c are associated to the cutoff wave number kc and cutoff frequency ωc
respectively.

The unresolved part of φpx, tq is denoted by φ1px, tq and can be defined as:

φ1px, tq “ φpx, tq ´ φ̄px, tq

“ φpx, tq ´

ż `8

´8

ż `8

´8

φ
`

ξ, t1
˘

G
`

x´ ξ, t´ t1
˘

dt1d3ξ “ p1´Gq ‹ φ
(6.4)

Or in spectral form:

pφ1 “ p1´ pGqφ̂ (6.5)

The filter used must verify certain properties to be applied to the Navier-Stokes equations [24]:

• Conservation of constants: ā “ aðñ

ż `8

´8

ż `8

´8

G
`

ξ, t1
˘

d3ξdt1 “ 1

• Linearity: φ` ψ “ φ̄` ψ̄. Which is always satisfied independently of the kernel G due to
the characteristics of the product of convolution.

• Commutation with derivation:
Bφ

Bs
“
Bφ̄

Bs
, s “ x, t
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Introducing the commutator rf, gs of two operators f and g applied to a variable φ:
rf, gsφ ” f ˝ gpφq ´ g ˝ fpφq “ fpgpφqq ´ gpfpφqq; has the following properties:

rf, gs “ ´rg, f s Skew-symmetry
rf ˝ g, hs “ rf, hs ˝ g ` f ˝ rg, hs Leibniz identity
rf, rg, hss ` rg, rh, f ss ` rh, rf, gss “ 0 Jacobi’s identity

The filters that fulfill these properties, are not, in general, Reynolds operators, which imply
that:

φ̄ “ G ‹G ‹ φ “ G2 ‹ φ ‰ φ̄ “ G ‹ φ

φ1 “ G ‹ p1´Gq ‹ φ ‰ 0

Which implies that G is not a projector, i.e (G ˝ Gq ‰ G. Therefore, the filtering opera-
tion might be understood as a change of variable which can be inverted without implying
information loss.

The convolution kernel G in R4 can be assumed to be obtained by the multiplication of
mono-dimensional kernels as:

G
`

x´ ξ, t´ t1
˘

“ Gpx´ ξqGt
`

t´ t1
˘

“ Gt
`

t´ t1
˘

ź

i“1,3

Gi pxi ´ ξiq

However, in LES, the most employed approach is spatial filtering. Consequently:

Gt
`

t´ t1
˘

“ δ
`

t´ t1
˘

While different forms of the space kernel can be used. Nevertheless, given that the dy-
namics of the Navier-Stokes equations allow to associate a characteristic time with each
characteristic length, a spatial filtering induces a time filtering, although implicitly.

The most common filtering functions in LES in three dimensions are:

• Top-hat or box filter:

Gpx´ ξq “

# 1

∆̄
if |x´ ξ| ď ∆̄

2

0 otherwise
(6.6)

And the transfer function Ĝ:

pGpkq “
sinpk∆̄{2q

k∆̄{2
(6.7)
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Figure 15: Top-hat filter. Convolution kernel in the physical space normalised by ∆̄ (left) and
its transfer function (right)

• Gaussian filter:

Gpx´ ξq “
´ γ

π∆̄2

¯1{2
exp

ˆ

´γ|x´ ξ|2

∆̄2

˙

pGpkq “ exp

ˆ

´∆̄2k2

4γ

˙ (6.8)

Being the typical value for γ “ 6

Figure 16: Gaussian filter. Convolution kernel in the physical space normalised by ∆̄ (left) and
its transfer function (right)

• Spectral or sharp cutoff filter:
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Gpx´ ξq “
sin pkcpx´ ξqq

kcpx´ ξq
, with kc “

π

∆̄

pGpkq “

"

1 if |k| ď kc

0 otherwise

(6.9)

Figure 17: Sharp cutoff filter. Convolution kernel in the physical space normalised by ∆̄ (left)
and its transfer function (right)

The top-hat filter is typically used in FVM implementations of LES, while the Gaussian and
spectral cutoff filters are usually employed in the research literature, the former being introduced
by the Stanford group in finite differences, while the latter is rarely used in general-purpose CFD
codes [6].

6.2 Filtered unsteady Navier-Stokes equations

Recalling the incompressible form of the Navier-Stokes equations (momentum and mass conser-
vation) 5.24 and 5.25, and making use of the linearity of the filtering operation and its basic
property regarding its commutation with derivation, the following filtered equations are obtained:

ρ

ˆ

Bui
Bt
`

B

Bxj
puiujq

˙

“ ´
Bp

Bxi
`

B

Bxj

„

µ

ˆ

Bui
Bxj

`
Buj
Bxi

˙

(6.10)

Bui
Bxi

“ 0 (6.11)

As it can be seen, the continuity equation reads exactly the same, with the difference that the
filtered velocity is used instead . On the momentum equation, the filtered pressure p appears,
as well as a non-linear term uiuj , which must be expressed as a function of v and v1, in a
similar way as it was done in the RANS equations with the Reynolds stress term. It must be
noticed that the tilde represents the fluctuations or unresolved part. This non-linear term can
be expressed as triple decomposition which allows to express it in terms of the filtered quantity
and the unresolved scales as:

63



uiuj “ pui ` u1iqpuj ` u
1
jq “ uiuj ` uiuj1 ` uju1i ` u

1
iu
1
j (6.12)

The previous decomposition can be used to rewrite the filtered momentum equation as:

ρ

ˆ

Bui
Bt
`

B

Bxj
puiujq

˙

“ ´
Bp

Bxi
`

B

Bxj

„

µ

ˆ

Bui
Bxj

`
Buj
Bxi

˙

´
Bτij
Bxj

(6.13)

The subgrid tensor τ includes all the terms that are not only dependent on the large scales, i.e:

τij “ Cij `Rij (6.14)

Where
Cij “ ρuiu1j ` ρu

1
iuj (6.15)

Rij “ ρu1iu
1
j (6.16)

Cij is the cross-stress tensor, which represents the interaction between the larger and the smaller
scales. The subgrid tensor R, known as the Reynolds subgrid tensor, reflects the interaction
between smaller scales. This approach, known as the double decomposition, focuses on the fact
that all the terms that are present on the equations of the filtered quantities must also be filtered
quantities. However, another approach is to consider that the terms must be evaluated directly
from filtered variables. To do so, the term uiuj must be decomposed further by using Leonard’s
decomposition:

ρuiuj “ ρpuiuj ´ uiujq ` ρuiuj “ Lij ` ρuiuj (6.17)

Where Lij is the Leonard tensor, given by:

Lij “ ρpuiuj ´ uiujq (6.18)

Thus, the term ρuiuj can be expressed as:

ρuiuj “ ρuiuj ` Lij ` Cij `Rij (6.19)

Where:

τij “ Lij ` Cij `Rij “ ρuiuj ´ ρuiuj (6.20)

This decomposition is known as the triple decomposition or simply Leonard decomposition, and
allows to rewrite the filtered Navier-Stokes momentum equation as:

ρ

ˆ

Bui
Bt
`

B

Bxj
puiujq

˙

“ ´
Bp

Bxi
`

B

Bxj

„

µ

ˆ

Bui
Bxj

`
Buj
Bxi

˙

´
Bτij
Bxj

(6.21)

It is important to notice that the non linear term uiuj is quadratic, and thus, it contains fre-
quencies higher than each of the composing terms. Additionally, it must be noticed the fact that,
if the filter is a Reynolds operator (i.e u “ u, u1 “ 0, uu “ ūū), the tensors Cij and Lij are
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identically zero and the subgrid tensor is reduced to the tensor Rij .

As it can be seen, the difference between the closure problem in LES and in RANS is that in
LES the average of the product is not the product of the averages. This implies that in LES
more interactions need to be modelled in comparison to RANS modelling.

6.2.1 Eddy Viscosity closure models in LES

The basic idea for the closure problem is to find a tensor Spu,uq which approximates the sub-grid
scale tensor τij . The idea behind the eddy viscosity models employed in LES is totally analo-
gous to the Boussines’q hypothesis previously derived for RANS equations. Smagorinsky (1963)
suggested that, given the isotropy property of the smaller eddies, Boussinesq’s approximation
might give a good approximation regarding the effect of the unresolved scales on the solved ones.
Consequently, the Reynolds subgrid tensor Rij is assumed to be proportional to the mean filtered
rate of strain tensor Sij :

Rij “ ´2µtS̄ij `
1

3
Riiδij “ ´µt

ˆ

Būi
Bxj

`
Būj
Bxi

˙

`
1

3
Riiδij (6.22)

In which the proportionality constant µt appears, with dimensions of Pa ¨ s. The term 1
3Riiδij

performs the same function as the term ´2
3ρkδij in the Boussinesq’s approximation in equation

5.43, making sure that the sum of the modelled normal sub-grid scale tensor stresses is equal to
the kinetic energy of the unfiltered eddies [6]. Nevertheless, in current CFD codes, it is common
to model the whole stress tensor τij as a single entity by means of a unique SGS turbulence
model:

τij “ ´2µtS̄ij `
1

3
τiiδij “ ´µt

ˆ

Būi
Bxj

`
Būj
Bxi

˙

`
1

3
τiiδij (6.23)

The term 1
3τiiδij of the eddy viscosity approach is usually included into the pressure term, giving

place to a modified filtered pressure in the filtered momentum equation, and thus, it is commonly
neglected when modelling the SGS tensor. Consequently, through the use of the eddy viscosity
modelling, the filtering equations for incompressible flow read:

ρ

ˆ

Bui
Bt
`

B

Bxj
puiujq

˙

“ ´
Bp

Bxi
`

B

Bxj

„

pµ` µtq

ˆ

Bui
Bxj

`
Buj
Bxi

˙

(6.24)

Bui
Bxi

“ 0 (6.25)

Therefore, the only thing remaining is to find an expression for the eddy viscosity.

µt “ ρpCm∆̄q2Dmpv̄q (6.26)

Where Cm is the model constant and Dmpv̄q is the differential operator with units of frequency.
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6.2.1.1 Smagorinsky-Lilly SGS model

The Smagorinsky-Lilly model is based on the Prandtl’s mixing length previously derived. It
assumes that, given the units of the dynamic eddy viscosity (kgm´1s´1), this can be expressed
as the product of the density with one length scale and one velocity scale, i.e: µt “ ρl∆̄v∆̄.
Regarding the characteristic length, it is reasonable to use the cutoff width multiplied by a
constant:

l∆̄ “ CS∆̄ (6.27)

The constant, known as the Smagorinsky constant, indicates the fraction of the cutoff width
that gives the sub-grid length scale, which is the average length-scale of the unfiltered eddies.
Regarding the characteristic velocity, the filtered rate of strain tensor can be used to express the
sub-grid scale velocity as:

v∆̄ “ l∆̄

b

2SijSij (6.28)

Consequently, the Smagorinsky eddy viscosity reads:

µt “ ρpCS∆̄q2
b

2SijSij “ ρpCS∆̄q2|S̄| (6.29)

At this point, the only thing remaining is to find the value for the Smagorinsky constant CS . In
order to determine it, it can be assumed that the smallest modelled scale kc “ π{∆̄ is inside the
inertial subrage of Kolmogorov’s energy spectrum:

Epkq “ CKε
2{3k´5{3 (6.30)

Under this assumption made, if the kinetic energy dissipation ε is equated with the model
dissipation, an expression for the Smagorinsky constant can be obtained:

ε “ pCS∆̄q2|S̄|3 (6.31)

And |S̄| is evaluated as follows:

|S̄|2 “ 2

ż kc

0
k2Epkqdk “

3

2
CKε

2{3k4{3
c (6.32)

Consequently, by taking Ck « 1.58:

CS “
1

π

ˆ

2

3CK

˙3{4

« 0.17 (6.33)

With a value for the Smagorinsky constant of Cs “ 0.17, the model provides excellent results
for homogeneous isotropic turbulence [25]. However, in practical applications it is common to
use Cs “ 0.11. Additionally, there is energy transfer everywhere from the filtered scales to the
unfiltered ones, meaning that there is no backscatter (although this is applicable to any eddy
viscosity model) [21]. However, it is not the most appropriate model to capture the near-wall
behaviour properly. This can be easily understood by analysing the Smagorinsky eddy viscosity,
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which does not vanish at the wall.

As it can be seen, by specifying the Smagorinsky constant and the Smagorinsky length scale, the
filtered Navier-Stokes equations 6.24 and 6.25 can be solved without directly specifying the filter
used, as it does not appear neither in the equations, nor in the Smagorinsky model. However,
the filter used is implicitly contained inside the model used.

6.2.1.2 Proper invariants for eddy-viscosity sub-grid scale models

The eddy-viscosity model presented for LES rely on differential operators seeking to properly de-
tect different flow configurations. The majority of the eddy-viscosity models are formed through
the combination of invariants of a symmetric tensor that depends on the gradient of the filtered

velocity Gij “
Bui
Bxj

, mainly the symmetric part of the tensor (rate of strain) Sij , and the skew-

symmetric part Ωij “
1

2

ˆ

Bui
Bxj

´
Buj
Bxi

˙

. The tensor Gij contains 8 independent elements and can

be characterised by 5 invariants:

 

QG, RG, QS, RS, V
2
(

(6.34)

Where:

PA “ trpAq (6.35)
QA “ 1{2

 

tr2pAq ´ tr
`

A2
˘(

(6.36)
RA “ detpAq “ 1{6

 

tr3pAq ´ 3 trpAq tr
`

A2
˘

` 2 tr
`

A3
˘(

(6.37)

V 2 “ 4
´

tr
´

S
2
Ω

2
¯

´ 2QsQΩ

¯

(6.38)

PA, QA and RA represent the first, second and third invariants of a A, which is a second order
tensor. The subscript G or s indicate if it is the corresponding invariant of Gij or Sij respectively.
It is interesting to notice that if tensor A is traceless, the previous expressions reduce to:

PA “ 0 (6.39)
QA “ ´1{2 tr

`

A2
˘

(6.40)
RA “ detpAq “ 1{3 tr

`

A3
˘

(6.41)

The following relations can be derived between the principal invariants:

PG “ PS “ PΩ “ 0 (6.42)
QG “ QS `QΩ (6.43)

RG “ RS ` tr
`

Ω̄2S
˘

, RΩ “ 0 (6.44)

Finally, for the sake of convenience, the following relations are defined as well:
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tr
´

ḠḠ
T
¯

“ tr
´

S
2
¯

´ tr
´

Ω
2
¯

“ 2 pQΩ ´QSq (6.45)

tr
´

S
2
Ω

2
¯

“ 1{8
´

tr
´

G
4
¯

´ tr
´

ḠḠ
T

ḠḠ
T
¯¯

“ 1{8
´

2Q2
G ´ tr

´

ḠḠ
T

ḠḠ
T
¯¯

(6.46)

tr
´

S
2
Ω

2
¯

“ V 2{4` 2QsQΩ (6.47)

tr
´

Ã2
¯

“ tr
`

A2
˘

´ 1{3tr2pAq (6.48)

Where Ã “ A´ 1{3trpAq is the traceless part of the tensor A.

6.2.1.3 Unified Framework for eddy-viscosity models

The different eddy-viscosity models employed in large eddy simulations can be re-written in
terms of the invariants described in the previous section.

Smagorinsky-Lilly model

The Smagorinsky-Lilly model, previously defined, can be written in terms of the previously
defined invariants according to:

νsmag
t “ 2pCs∆̄qp´QSq

1{2 (6.49)

WALE model

The Wall-adapting local eddy (WALE) viscosity model is based on the second invariant of the
traceless part of the symmetric tensor Sd “ 1{2pḠ2 ` pḠ2qT q “ S̄2 ` Ω̄2. This model, proposed
by Nicoud and Ducros, can be written in terms of the basic invariants previously described as:

νWt “
`

CW ∆̄
˘2

`

V 2{2` 2Q2
G{3

˘3{2

p´2Qsq5{2 `
`

V 2{2` 2Q2
G{3

˘5{4
(6.50)

Where the constant CW “
?

0.5 [26].

Vreman’s model

Vreman’s model makes use of the first two invariants of the tensor ḠḠT , yielding the following
expression for the eddy viscosity:

νV rt “
`

CV r∆̄
˘2

ˆ

V 2 `Q2
G

2 pQΩ ´Qsq

˙1{2

(6.51)

The constant used in the Vreman’s model is taken as CV r “
?

0.07.
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Verstappen’s model

An additional model was proposed by Verstappen, which, in contrast with the previous ones
defined, makes use of the third invariant of the filtered rate of strain tensor S̄:

νVe
t “ pCV e∆̄q

2 |Rs|

´Qs
(6.52)

Being its proportionality constant equal to CV e “ 1{π
a

3{2.

S3PQR model

Trias et al. [26], propose a family of models, all of them based on the invariants of the tensor
ḠḠT , aiming to achieve a better wall behaviour. The three models of this family are shown
below:

νS3PQ
t “

`

Cs3pq∆̄
˘2
P
´5{2

GGT Q
3{2

GGT

νS3PR
t “

`

Cs3pr∆̄
˘2
P´1

GGTR
1{2

GGT

νS3QR
t “

`

Cs3qr∆̄
˘2
Q´1

GGTR
5{6

GGT

(6.53)

The model constant was found by Trias et al. by relating it with Vreman’s model constant in
order to assure numerical stability and a dissipation smaller or equal than the one in Vreman’s
model. According to this, the constant was found to be Cs3pqr “

?
3CV r, and proved to be

successful in the resolution of decaying isotrpic turbulence and a turbulent channel flow.

As previously seen for the Smagorinsky-Lilly model, its major drawback was the fact that the
model did not vanish at the wall. Therefore, a good model should totally switch-off at the wall,
and slowly increase its effect outside the viscous sub-layer. The wall-behaviour of the different
models showed under the unified framework can be seen in the following table:

Wall-behaviour of each model

Smagorinsky-Lilly WALE Vreman’s Verstappen’s S3PQR
Opy0q Opy3q Opy1q Opy1q Opy3q

Table 3: Near wall-baheviour of the Smagorinsky-Lilly, WALE, Vreman’s, Verstappen’s and
S3PQR models

As it can be seen in the previous table, only the S3PQR and the WALE model exhibit a wall-
behaviour of the order of Opy3q, while Vreman’s and Verstappen’s are of the order of Opy1q. The
Smagorinsky-Lilly, as stated previously, is the one that has the worst wall-behaviour, only of the
order of Opy0q. Another important factor regarding the models is the fact that the eddy viscosity
should be null for 2D flows, or in other words, the model should totally vanish for bidimensional
flow configurations. This property is only satisfied by Verstappen’s and for the S3PQR models.
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7 Natural laminar convection in square heated cavity

The first case solved is the study of natural convection inside a square cavity with heated walls.
It is considered laminar flow and incompressible Newtonian fluid inside the cavity. Heat transfer
due to radiation is totally neglected. Additionally, Boussinesq’s approximation is used to consider
that differences in density are neglected in all the terms, except on the buoyancy force when it is
multiplied by g . Non-dimensional equations are considered in this case, but using the following
non-dimensional variables instead:

r˚ “ r{L v˚ “ v
L

α
T ˚ “

T ´ Tc
Th ´ Tc

p˚ “
pL2

ρα2
(7.1)

Therefore, the non-dimensional equations that are considered are the following:

∇˚v˚ “ 0 (7.2)
Dv˚

Dt˚
“ ´∇˚p˚ ` Pr∇˚2v˚ `RaPrT ˚k (7.3)

DT ˚

Dt˚
“ ∇˚2T ˚ (7.4)

In which the vector k in the momentum equation is equal to k “ p0, 1, 0qT . The energy equation
is space-discretised in the same manner as the momentum equation, implying that the same
symmetry-preserving discretization for the operators is used. In terms of the time integration
method, both the diffusive and convective terms are grouped and discretised with a second order
Adams-Bashforth scheme, while the transient term is discretised using a second order central
difference scheme like in the momentum equation. The Conjugate Gradient solver is used as a
solver for the Poisson equation.

Figure 18: Boundary conditions of the natural laminar convection in square heated cavity prob-
lem
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The problem is defined in a similar manner as in [7]. A square cavity with dimensions 0 ď x ď 1,
0 ď y ď 1, 0 ď z ď 1 is considered. For the top and bottom walls at px, y “ 0, 1, zq, Dirichlet
boundary conditions are used for the non-dimensional velocity, while Neumann boundary con-
ditions are used for the non-dimensional temperature. For the vertical walls at px “ 0, 1, y, zq,
Dirichlet boundary conditions are used for both the non-dimensional temperature and the non-
dimensional velocity. For the vertical walls at px, y, z “ 0, 1q, periodic boundary conditions
are imposed. The Prandtl number is set to Pr “ 0.71, and the problem is solved for different
Rayleigh numbers of Ra “ 1e3, Ra “ 1e4, Ra “ 1e5 and Ra “ 1e6.

The mesh employed is a uniform mesh of 64 ˆ 64 ˆ 3 control volumes. Only 3 control volumes
are used in the z direction given the fact that the problem considered is laminar. For each of the
previous Rayleigh numbers, the non dimensional temperature field and non dimensional velocity
modulus is shown in the figures below:

Figure 19: Non-dimensional temperature (left) and non-dimensional velocity modulus for Ra “
1e3

Figure 20: Non-dimensional temperature (left) and non-dimensional velocity modulus for Ra “
1e4
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Figure 21: Non-dimensional temperature (left) and non-dimensional velocity modulus for Ra “
1e5

Figure 22: Non-dimensional temperature (left) and non-dimensional velocity modulus for Ra “
1e6

As it can be easily seen, for a Rayleigh number of Ra “ 1e3, the isotherms are similar to a case
of pure conduction. See for instance [27]. This is given due to the fact that conduction is the
dominant heat transport mechanism. Isotherms, however, appear to be slightly curved due to
the fact that buoyancy forces are being considered. As the Rayleigh number increases, it can be
seen how the isotherms flatten at the centre of the cavity as thermal transport by convection
dominates over thermal transport by diffusion. As a result, as the Rayleigh number increases,
larger temperature and velocity gradients are observed at the hot and cold walls of the cavity.

Next, in terms of other important numerical results, the following parameters are computed in or-
der to compare the data obtained in the present study with the data from [7]: maximum horizon-
tal non-dimensional velocity component on the vertical mid-plane of the cavity (u˚maxp0.5, y, z)),
and its location (yu˚max

), maximum vertical non-dimensional velocity component on the horizon-
tal mid-plane of the cavity (v˚maxpx, 0.5, zq), and its location (xv˚max

), the average x-component of
the Nusselt number on the vertical wall at x “ 0 (Nu0), the average x-component of the Nusselt
number at the vertical mid-plane of the wall (Nu1{2), the maximum value of the x-component of
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the local Nusselt number at the vertical wall at x “ 0, (Numaxp0, y, zq) and its location (yNumax),
the minimum value of the x-component of the local Nusselt number at the vertical wall at x “ 0,
(Numinp0, y, zq) and its location (yNumin).

The local x-component of the Nusselt number can be computed as the dimensionless heat flux,
i.e:

Nuxpx, yq “ u˚T ˚ ´
BT ˚

Bx˚
(7.5)

While its average value on a vertical line can be computed as a line integral according to:

Nuxpxq “

ż 1

0
Nuxpx, yqdy (7.6)

Table 4: Results for the natural convection in square heated cavity for Ra “ 1e3, and comparison
with benchmark results from [7] (I)

Ra “ 1e3
u˚maxp0.5, y, zq yu˚max

v˚maxpx, 0.5, zq xv˚max
Nu1{2

Benchmark 3.649 0.813 3.697 0.178 1.118
Results 3.646 0.820 3.697 0.180 1.118
Error(%) 0.00 0.86 0.00 1.11 0.00

Table 5: Results for the natural convection in square heated cavity for Ra “ 1e3, and comparison
with benchmark results from [7] (II)

Ra “ 1e3
Nu0 Numaxp0, y, zq yNumax Numinp0, y, zq yNumin

Benchmark 1.117 1.505 0.092 0.692 1
Results 1.118 1.509 0.084 0.691 0.992
Error(%) 0.09 0.26 8.70 0.14 0.80

Table 6: Results for the natural convection in square heated cavity for Ra “ 1e4, and comparison
with benchmark results from [7] (I)

Ra “ 1e4
u˚maxp0.5, y, zq yu˚max

v˚maxpx, 0.5, zq xv˚max
Nu1{2

Benchmark 16.178 0.823 19.617 0.119 2.243
Results 16.171 0.820 19.619 0.117 2.247
Error(%) 0.04 0.36 0.01 1.68 0.18

73



Table 7: Results for the natural convection in square heated cavity for Ra “ 1e4, and comparison
with benchmark results from [7] (II)

Ra “ 1e4
Nu0 Numaxp0, y, zq yNumax Numinp0, y, zq yNumin

Benchmark 2.238 3.528 0.143 0.586 1
Results 2.251 3.551 0.148 0.585 0.993
Error(%) 0.58 0.65 3.50 0.17 0.70

Table 8: Results for the natural convection in square heated cavity for Ra “ 1e5, and comparison
with benchmark results from [7] (I)

Ra “ 1e5
u˚maxp0.5, y, zq yu˚max

v˚maxpx, 0.5, zq xv˚max
Nu1{2

Benchmark 34.730 0.855 68.590 0.066 4.519
Results 34.791 0.852 68.448 0.070 4.553
Error(%) 0.18 0.35 0.21 6.1 0.75

Table 9: Results for the natural convection in square heated cavity for Ra “ 1e5, and comparison
with benchmark results from [7] (II)

Ra “ 1e5
Nu0 Numaxp0, y, zq yNumax Numinp0, y, zq yNumin

Benchmark 4.509 7.717 0.081 0.729 1
Results 4.562 7.908 0.071 0.725 0.993
Error(%) 1.17 2.48 12.35 0.55 0.70

Table 10: Results for the natural convection in square heated cavity for Ra “ 1e6, and compar-
ison with benchmark results from [7] (I)

Ra “ 1e6
u˚maxp0.5, y, zq yu˚max

v˚maxpx, 0.5, zq xv˚max
Nu1{2

Benchmark 64.63 0.850 219.36 0.0379 8.799
Results 65.49 0.852 221.61 0.039 9.054
Error(%) 1.33 0.24 1.03 2.90 2.90

Table 11: Results for the natural convection in square heated cavity for Ra “ 1e6, and compar-
ison with benchmark results from [7] (II)

Ra “ 1e6
Nu0 Numaxp0, y, zq yNumax Numinp0, y, zq yNumin

Benchmark 8.817 17.925 0.0378 0.989 1
Results 9.069 19.241 0.024 0.965 0.993
Error(%) 2.86 7.34 36.51 2.43 0.70

74



As it can be seen by comparing the results obtained in the present study and the benchmark
results from [7], really good agreement is obtained. It can be seen that larger errors are observed
as the Rayleigh number increases, which might indicate that a finer mesh is needed. In terms
of the results themselves, slight differences in the average Nusselt number computed at x “ 0
and x “ 1{2 are observed for both the benchmark results and the self obtained ones. The
discrepancies must be due to numerical errors, as it is expected to obtain the same value for
the Nusselt number regardless of the position in which it is measured. This is due to the fact
that, given that the top and bottom walls of the cavity are adiabatic, the heat flow across any
vertical line joining both walls must be the same, hence, leading to a same average Nusselt
number independent of the x coordinate. Nevertheless, it is clear that as the Rayleigh number
increases, the average Nusselt number in the x direction increases, indicating that convective
heat transport becomes the dominant heat transport mechanism. The maximum local Nusselt
number in the left wall also increases with the Rayleigh number. Its position slightly changes
for each case studied, but it is located very near bottom vertex. The minimum value of the local
Nusselt number on the same wall slightly decreases for Ra “ 1e4, and then starts to increases for
higher values of the Rayleigh number. However, it is always located at the top vertex. Maximum
values for both the vertical and horizontal velocity components also increase with the Rayleigh
number, which is totally expected as convection dominates.
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8 Taylor-Green vortex

The Taylor-Green vortex (TGV) is a well known problem in computational fluid dynamics to
study vortex dynamics and the energy decay process in turbulent flows due to the vortex stretch-
ing phenomenon. At the beginning, an initial vorticity distribution is given. However, as time
advances, vortices start to roll-up, stretching and interacting between them, breaking up even-
tually. The problem consists on a cubic domain with periodic boundary conditions in all the
directions, with dimensions 0 ă x, y, z ă 2πL, where L is a characteristic length. An initial
distribution of velocity, and hence, of vorticity, is given according to [28]:

u “ U0sin
´x

L

¯

cos
´ y

L

¯

cos
´ z

L

¯

(8.1)

v “ ´U0cos
´x

L

¯

sin
´ y

L

¯

cos
´ z

L

¯

(8.2)

w “ 0 (8.3)

The initial pressure field is given by:

p “ p0 `
ρ0U

2
0

16

ˆ

cos

ˆ

2x

L

˙

` cos

ˆ

2y

L

˙˙ˆ

cos

ˆ

2z

L

˙

` 2

˙

(8.4)

Being U0 and ρ0 reference values for the velocity and density, although the flow is treated as
incompressible. The problem is solved for a Reynolds number of Re “ 1600 during 20 time units
(TU), being a time unit defined as TU “ tU0{L.

During the simulation, the volume-averaged kinetic energy is computed as a function of time:

Ek “
1

ρ0Ω

ż

Ω

1

2
ρpv ¨ vqdΩ (8.5)

And the kinetic energy dissipation rate (KEDR) can be computed by differencing Ek in time:

εpEkq “ ´
dEk
dt

(8.6)

In the previous expression, the kinetic energy dissipation rate has been expressed as a function
of Ek to note that it has been directly computed from the integrated kinetic energy.

Additionally, the integrated enstrophy is also computed as a function of time:

ζ “
1

ρ0Ω

ż

Ω
ρ
ω ¨ ω

2
dΩ (8.7)

Which can also be used to compute the kinetic energy dissipation rate as, for an incompressible
fluid, it can be shown that:

εpζq “ 2
µ

ρ0
ζ (8.8)

The kinetic energ dissipation rate is computed in both ways and compared with the reference
solution from van Rees et al. [4], generated with a spectral method.
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The equations are discretised with the symmetry-preserving scheme previously described, and
the pressure velocity coupling is solved with the projection method, also outlined in the previous
sections. The conjugate gradient method is used as a solver. First of all, the isosurface of the
z-component of the vorticity ar plotted as a function of time for a mesh of 32ˆ 32ˆ 32 control
volumes.

Figure 23: Isosurfaces of the z-component of the vorticity at TU “ 0 (left) and at TU « 5. In
blue ωz “ ´0.7s´1 and in red ωz “ 0.7s´1

Figure 24: Isosurfaces of the z-component of the vorticity at TU « 10 (left) and at TU « 20. In
blue ωz “ ´0.7s´1 and in red ωz “ 0.7s´1

As it can be seen, after 5 TU, the velocity distribution retains some of the characteristics of the
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initial velocity field. However, the vortices are already slightly stretched and start to interact
between them. At TU=10, vortical structures start to break up and mix. After 20 time units,
the flow is totally chaotic showing a lot of smaller vortices and a velocity distribution typical of
turbulent flows.

Next, the volume-averaged kinetic energy is plotted as a function of the non-dimensional time
and compared with the reference results from van Rees et al. [4].
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Figure 25: Volume-averaged kinetic energy of the Taylor-Green Vortex problem and comparison
with results from van Rees et al. [4]

As it can be seen, the volume-averaged kinetic energy monotonously decreases, given the fact
that there is no energy introduced into the system, and consequently, all the initial kinetic energy
of the domain ends up being dissipated due to viscous effects. At the beginning, during the first
5 time units approximately, the volume-averaged kinetic energy remains nearly constant due
to the fact that only big vortical structures are present. When the vortical structures start to
stretch and interact between them, much smaller structures are being formed and the averaged
kinetic energy starts to decrease more rapidly as dissipation happens in the smaller scales that
are being created. This is clearly seen by the rapid kinetic energy decrease between 5 and 15 TU
approximately. From this time on, only very small structures are present in the flow, and the rate
at which the kinetic energy decreases reduces. The latter explanation can also be understood by
analysing figure 26 , which shows the kinetic energy dissipation rate computed from the enstro-
phy (εpEζq), and computed as the time derivative of the volume-averaged kinetic energy (εpEkq).

It can be seen how the KEDR computed from the volume-averaged kinetic energy shows better
agreement with the results from van Rees et al. [4], even for coarser meshes. Nevertheless, it is
interesting to notice how different the KEDR curves obtained with each mesh are, even though
the time variation of the volume-averaged kinetic energy shown in figure 25 show similar results
for all the meshes tested. On the other hand, the KEDR computed from the enstrophy shows
lower values in comparison to their respective values of the εpEkq. However, the εpEζq) profiles
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obtained show much less spikes and a smoother variation, even though the peak in the KEDR
is not correctly captured by any of the meshes employed, which indicates that the the results
obtained are still far from a DNS results.

0 2 4 6 8 10 12 14 16 18 20

0

0.005

0.01

0.015

van Rees et al.

32x32x32

64x64x64

128x128x128

0 2 4 6 8 10 12 14 16 18 20

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

van Rees et al.

32x32x32

64x64x64

128x128x128

Figure 26: Kinetic energy dissipation rate of the Taylor-Green vortex problem. On the left, the
KEDR computed as the derivative of the volume averaged kinetic energy. On the right, the
KEDR computed from the enstrophy
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9 Turbulent channel flow at Reτ “ 180

The next benchmark problem solved is a turbulent channel flow with periodic boundary condi-
tions in the streamwise and spanwise directions. The problem is sketched below:

Figure 27: Schematic of the turbulent channel flow problem

As already stated, periodic boundary conditions are imposed in the streamwise (x) and spanwise
(z) directions. At the top and bottom walls the non-slip condition is applied, hence, Dirichlet
boundary conditions are set for the velocity vector, and Neumann boundary conditions for the
pressure, as sketched above in figure 27. The channel dimensions are set at 4π ˆ 2 ˆ 2π. Ad-
ditionally, to impose the movement of the fluid in the streamwise direction, a constant pressure
gradient of Bp

Bx “ ´1 is applied to the x-component of the momentum equation as a source term.
Given that this a typical benchmark problem for wall-bounded turbulent flows, it is common to
normalise the equations with the friction velocity uτ (defined in equation 5.54) and the channel’s
half-width (δ). This allows to express the problem in terms of a friction Reynolds number Reτ ,
defined as Reτ “ uτδ{ν. For this problem, the friction Reynolds is set to Reτ “ 180.

In terms of numerical simulations performed, the problem is firstly solved with a direct numerical
simulation (DNS) and verified with the data from Moser et al. [5]. Different meshes are employed
for this first case, with grid points uniformly distributed in both the streamwise and spanwise
directions, whereas for the wall-normal direction, grid points are distributed according to a piece-
wise hyperbolic sine functions, which, for the lower-half part of the channel reads the following:

yj “ sinhpγj{Nyq{sinhpγ{2q j “ 0, 1, ..., Ny{2 (9.1)

where Ny denotes the total number of grid points employed in the wall-normal direction; and γ
is the stretching parameter. The latter is set to 8.0, as it allows to place the first point in the
wall-normal direction inside the viscous sub-layer (y` ă 5). The points in the upper half of the
channel are placed symmetrically to the lower ones with respect to the channel’s centreline. The
problem is also solved with the Smagorinsky, Vreman’s and S3PR models. The subgrid char-
acteristic length is computed as the minimum value of the cell size, i.e ∆ ” minp∆x,∆y,∆zq.
Field averages are performed over the four statistically invariant transformations: time, stream-
wise, spanwise directions and central plane symmetry. Time averages are carried out after an
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initial start-up period, and the time-span over which the fields are averaged is equal to 60-time
units (based on the friction velocity uτ and the channel’s half-width).

9.1 DNS results

First of all, the rms values of the fluctuating velocity components obtained with 5 different
meshes are shown and compared with the DNS data from Moser et al. [5].
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Figure 28: u1rms velocity profile for different meshes in wall-units for Reτ “ 180 and comparison
with results from [5]
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Figure 29: v1rms velocity profile for different meshes in wall-units for Reτ “ 180 and comparison
with results from [5]
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Figure 30: w1rms velocity profile for different meshes in wall-units for Reτ “ 180 and comparison
with results from [5]
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As it can be seen in the previous plots showing the root-mean-square of the fluctuating velocity
components, there is relatively good agreement with the reference results from Moser et al. [5]
for all the points near the wall. This is due to the fact that more points are located in this region
according to the hyperbolic sine function law previously described and also because by imposing
the friction Reynolds, the shear stress in the wall is also imposed. However, for higher y` values
and as we get close to the channel’s centreline, in general, larger errors are observed for all three
profiles. Nevertheless, it can be clearly seen how, as the mesh improves, the obtained velocity
profiles start to resemble the ones obtained with a full DNS simulation. With a 323 mesh and,
without using any turbulence model, there is good agreement with the reference results taking
into account how coarse the mesh used is. The solution obtained for the u1rms profile correctly
predicts the position of the peak, but over-predicts its value in the whole domain. Regarding the
results of the v1rms and w1rms velocity profiles, the peak values are relatively well-predicted with
the 323 mesh. However, their values are slightly under-predicted inside the viscous sub-layer
and buffer layer, and start to be over-predicted for y` values higher than 110, approximately.
The data of table 12 shows the maximum absolute error observed for each rms profile of the
fluctuations taking as a reference solution the results from Moser et al. [5], and the position
of the maximum error observed, in wall units; where εu, εv, εw, y`εu , y

`
εv and y`εw represent the

absolute errors observed for each profile and its location, respectively.

Table 12: Maximum absolute errors of the root-mean square of the fluctuating velocity compo-
nents and position of the maximum errors

Mesh εu y`εu εv y`εv εw y`εw

8x8x8 2.496 45.000 0.742 123.038 1.525 123.038
16x8x16 1.246 15.837 0.688 123.034 1.073 123.034
24x16x24 0.738 18.983 0.472 144.556 1.171 144.556
32x24x32 0.699 9.697 0.116 154.467 0.458 154.467
32x32x32 0.465 9.159 0.128 27.432 0.177 160.077

According with the results shown in the previous table, it can be seen how the largest absolute
errors are produced for the streamwise velocity fluctuations. The rms values of the fluctuations
of the wall-normal velocity profile show surprisingly good agreement with the reference results,
even with the coarsest mesh used, while for the spanwise velocity fluctuations, the absolute error
observed lays between the previous two, except for the 24x16x24 mesh. It is also interesting to
notice the location where the maximum errors are observed. It can be seen how the maximum er-
ror obtained for the fluctuations in the streamwise velocity component happens inside the buffer
layer for all the meshes tested except for the coarsest mesh employed, in which the maximum
error is observed in the log-law region. However, for the fluctuations in the wall-normal and
spanwise velocity components, the larger errors are obtained close to the channel’s centreline in
the outer layer or core region, except for the εv error for the 323 mesh, which is observed in the
buffer layer. This is a clear indicator that more points are needed close to the channel’s cen-
treline, given that the hyperbolic sine law used makes the spacing between the channel’s centre
nodes to large to properly capture the flow behaviour in this region.

Similar conclusions can be obtained by analysing figure 31, in which the mean velocity profile
is graphed in wall units. First of all, it must be noticed that for all the meshes used, the first
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point in the wall-normal direction lays inside the viscous sub-layer. For the coarsest mesh, it is
located at y` “ 3.88, while for the finest mesh used it is positioned at y` “ 0.833. Regarding
the comparison with the DNS results from Moser et al. [5], it can be seen that, regardless of
the mesh employed, there is good agreement for the points located inside the viscous sub-layer
and initial part of the buffer layer, while higher discrepancies are observed as we move towards
the channel’s centreline. For all the meshes tested and, except for the last point of the 16x8x16
mesh, the velocity profile is slightly over-predicted for y` ą 5, which once again indicates that
more points are needed in the wall-normal direction.
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Figure 31: Mean velocity profile in wall-units for Reτ “ 180 and comparison with results from
[5]

Figure 32 shows the mean total, turbulent and viscous shear stresses. The first thing to notice
is that just at the wall, the mean shear stress, corresponding to the value of τw, is equal to one,
which is totally expected given that the value of the Reτ was imposed. However, at the beginning
of the buffer layer region, a slight overshoot in the total shear stresses is observed, which might
be attributed to a lack of mesh refinement in this zone. Nevertheless, this difference is not too
considerable and the solution obtained is still acceptable, as it perfectly allows to understand
the flow behaviour near the wall. The different sub-divisions of the turbulent boundary layer are
also shown, which helps to get a better understanding of the law of the wall. As it can be seen,
in the viscous sub-layer, viscous shear stresses predominate due to the the rapid change in the
average fluid velocity in the direction normal to the wall. Nevertheless, given that some turbulent
shear stresses, although very small, are still present, the flow in this region can not be considered
strictly laminar. After the viscous sub-layer, the buffer layer zone can be clearly distinguished
as both the turbulent and viscous shear stresses are both too important to be ignored. Finally,
in the log-law region, turbulent shear stresses dominate, while viscous shear stresses are nearly
damped to zero. Consequently, when both components of the shear stress are combined together
in all the three regions a near linear variation in the total mean shear stress is observed.
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Figure 32: Mean shear stresses for Reτ “ 180 and a 323 mesh without model

9.2 LES results

Once the turbulent channel flow problem was solved without any turbulence model, the same
problem was solved applying three different LES eddy-viscosity models: the Smagorinsky, Vre-
man’s and S3PR models, as each of them exhibits a different near-wall behaviour. First of all, in
order to test the proper implementation of the different models, the average eddy-viscosity xνty
divided by the kinematic viscosity ν is graphed in the following figure:
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Figure 33: Mean eddy-viscosity xνty divided by the kinematic viscosity ν. Results for a turbulent
channel flow at Reτ “ 180 obtained with a 323 mesh for different LES models
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As it can be seen, the S3PR model shows a cubic behaviour in the near wall region as expected
according to the studies from Trias et al. [26], while Vreman’s model tends to add more dissipa-
tion in the buffer layer in comparison, showing a first order behaviour. Finally, the Smagorinsky
model presents an Opy0q behaviour, which implies that the eddy-viscosity does not vanish at the
wall.

Next, the root-mean-square values of the fluctuating velocity components are plotted in figure
34 and compared with the DNS results from Moser et al. [5] for the S3PR, Smagorinsky and
Vreman’s model. Regarding the comparison with the three models used, it can be seen how the
S3PR model, in comparison to the other two, shows a better performance in the buffer layer
region. This can be explained given the better near-wall behaviour that the S3PR model has,
while Vreman’s, and specially the Smagorinsky model, tend to over-dissipate in the near-wall
region. However, it is interesting to notice how, at the core region of the flow, the Smagorinsky
model is the one that shows better results. This could be attributed to the fact the latter shows
a larger eddy-viscosity in the outer layer region in comparison to the other two models tested,
as shown in figure 33.
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Figure 34: Root-mean-square of the fluctuating velocity components for a turbulent channel flow
at Reτ “ 180 obtained with a 323 mesh for different LES models, and comparison with the DNS
results from Moser et al. [5]. From top to bottom u1rms, v1rms and w1rms respectively.

Next, the results obtained with these models are compared with the DNS results obtained for the
same mesh. The S3PR model shows and over-prediction for the u1rms profile in the buffer layer
region. Although the position of the peak value of the the rms of the fluctuations is correctly
predicted, its value is even higher than the one obtained with the DNS simulation. However,
between 35 ă y` ă 125, the values of the u1rms are considerably improved. From y` ą 125, an
over-prediction of the rms of the streamwise velocity fluctuations is observed again. Regarding
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the results for the v1rms and w1rms, the S3PR model improves the results in the buffer layer re-
gion considerably, but over-predicts the rms values in the core region in comparison to the DNS
results obtained.

The Smagorinsky model shows very similar results to the DNS simulation for the u1rms velocity
profile in the buffer layer region, but improves the solution for y` ą 45. However, the model does
not improve the results of the DNS simulation neither in the buffer layer region, nor in the outer
layer of both the root-mean-square values of the spanwise and wall-normal velocity fluctuations.

Finally, Vreman’s model shows an intermediate behaviour between the S3PR and the Smagorin-
sky model. The model correctly predicts the peak position for the u1rms velocity profile, but the
peak value obtained is even higher than the one obtained in the SP3R simulation. For the v1rms
profile, improvements in the results are only present in the buffer layer. The root-mean-square
values of the fluctuations of the spanwise velocity component show very similar results to the
DNS simulation in the buffer layer, but important discrepancies in the core region.

All in all, it can be seen how, among the three models tested, only the S3PR and Vreman’s
model improved the results in the buffer layer, being the former the most suitable one given its
near-wall behaviour. However, the three models tested worsen the results in the core region of the
channel in comparison to the DNS results obtained with the same mesh, being the Smagorinsky
model the one that worsens the less in this region, probably due to its larges eddy-viscosity in
that part of the domain. This behaviour could probably be improved by a better tuning of the
models, and further test should be done as a future research to see if the results could be further
improved for the same mesh.
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10 Conclusions and future work

As already stated at the begining of the thesis, the objective of the present study was the elab-
oration, validation and verification of C ` ` codes to solve the incompressible Navier-Stokes
equations under turbulent regime, by applying a symmetry-preserving discretization. The code
has been tested by solving the well-known problem of a turbulent channel flow and thus, it can
be concluded that the general objectives set before the development of the thesis have been
accomplished. Additionally, the development of this study has been useful to get a better un-
derstanding of the physics behind turbulent flows and how they can be modelled.

First of all, it has been observed how important it is to preserve the symmetry of all the oper-
ators involved in the spatial discretization of the Navier-Stokes equations in order to avoid the
artificial introduction or the dissipation of kinetic energy into the system. Verstappen et al. [15]
propose a fourth order symmetry preserving discretization. However, given its higher complexity,
a second order model was used in this thesis, which was properly verified.

Next, the classical approach to tackle turbulence has been briefly studied through the concept
of the energy cascade. It has been observed how the larger scales of a turbulent flow, which are
anisotropic and problem-dependent, transfer energy to smaller and smaller scales, until reaching
sufficiently smaller eddies, which have an isotropic behaviour and whose Reynolds number is
small enough so that this energy ends up being dissipated due to viscous effects.

The statistical description of turbulent flows has also been discussed, and the turbulence mod-
elling problem has firstly been approached by considering the Reynolds-averaged Navier Stokes
equations (RANS). Different eddy viscosity models have been overviewed to tackle the closure
problem, such as the mixing-length model, the k ´ ε, Spalart-Allmaras and Wilcox k ´ ω mod-
els. However, it has been observed that, due to the fact that the RANS equations intend to
model the overall behaviour of all the eddies of the flow, a general model that works properly
for a wide range of flow configurations is difficult to find. On the other hand, the principles
behind the Large Eddy Simulation (LES) have also been reviewed, and how the equations can
be space-filtered by using different filters. Special emphasis has been put in how the non-linear
term that appears in the filtered equations can be treated, and in how to model the interactions
between the larger and smaller scales of the flow with various eddy viscosity models, such as the
Smagorinsky, WALE, Vreman’s, Verstappen’s and the S3PQR models developed by Trias et al.
[26], emphasising their near-wall behaviour.

Regarding the results of the Taylor-Green vortex problem, good agreement has been observed
with the results of van Rees et al. [4] regarding the time evolution of the volume-averaged kinetic
energy, even for coarser meshes. The kinetic energy dissipation rate (KEDR) was also computed
as a function of time by differentiating the kinetic energy and also by making use of the enstro-
phy. Both approaches failed to correctly capture its peak value in time. However, the second
approach showed a smoother variation of the KEDR, while the first one obtained peak values
closer to the peak value of the reference results. The isosurface of the z-component of vorticity
plotted for four different time units allowed to visualize how the main vortexs stretch and start
to interact between them, breaking up and eventually obtaining a velocity distribution typical
of turbulent flows.
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Finally, a turbulent channel flow problem for Reτ “ 180 was also studied. Firstly, DNS results
were obtained with different meshes. Root-mean-square values of the fluctuating velocity com-
ponents and the mean velocity profile in wall units were computed, obtaining considerably good
agreement with the results of Moser et al. [5] for a mesh of 323. The maximum absolute error
regarding the u1rms values was observed in the buffer-layer region for the finest mesh employed,
while the rms values of the wall-normal and span-wise velocity fluctuations showed a maximum
error in the latest part of the buffer layer region and core region respectively, indicating that a
finer mesh is needed to place more control volumes close to the channel’s centerline. Finally,
the S3PR, Smagorinsky and Vreman’s model were programmed and compared. While the three
models tested failed to improve the results observed in the core region of the flow, except for the
fluctuations in the stream-wise direction, the S3PR model improved the results considerably in
the buffer-layer region given its third order near-wall behaviour. On the other hand, Vreman’s
model also improved the results in the buffer layer, although to a lesser extent given that the
model tends to add more dissipation in this region. Finally, the Smagorinsky model did not im-
prove the results neither in the buffer layer, nor in the core region, except for the u1rms velocity
profile for which the model slightly improved the results in the outer layer. However, the latter
was the one that worsened the less in the core region, probably due to the fact that a larger
eddy-viscosity was introduced in that part of the domain in comparison to the other models.

Regarding the future work to be done, it could be interesting to try to better tune the different
LES models used to see if better results could be obtained for the same meshes employed.
Additionally, the parallelization of the code is a fundamental topic in order to be able to solve
problems with finer meshes, as solving all the problems with only 1 CPU was a limiting case.
Additionally, investigation in regards to more efficient solvers should also be done, which might
also improve the overall performance of the code. Moreover, the implementation of unstructured
meshes is also an important topic that should be studied in order to simulate flows around more
complex geometries.

89



11 Task planning

The Gantt chart presented in the following page is an initial schedule that was done at the start
of the thesis. It must be noticed that the Gantt chart was modified during the development of
the project to account for all the minor problems encountered during the development of the
study.

The preliminary code modifications took slightly longer than expected. Even though the exten-
sion of the code developed during the Bachelor’s thesis took shorter than planned, the symmetry-
preserving discretization took a bit longer than expected to verify.

Regarding the DNS simulations of the turbulent channel flow, those also took longer than ex-
pected due to minor issues regarding the computation of the statistics of the flow. On the other
hand, even though the implementation of the LES models did not take much, the simulations
took considerably longer than planned given the high computational resources required.

Regardless of everything mentioned above, the general schedule that was followed is presented
in the following page:
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TFM 19 sept. 2021

Diagrama de Gantt 5

Nombre Fecha ... Fecha ...

Previous work 22/2/21 28/2/21

Review of the code written for the Bachelor's thesis 22/2/21 24/2/21

Review of the fractional step method 25/2/21 28/2/21

Preliminary code modifications 1/3/21 4/4/21

Extension of the code to 3D 1/3/21 14/3/21

Programming of conjugate gradient solver 15/3/21 21/3/21

Symmetry-preserving discretization programming and verification 22/3/21 4/4/21

Laminar heated cavity problem 5/4/21 11/4/21

Simulations for different Rayleigh numbers 5/4/21 11/4/21

DNS Turbulent channel flow 12/4/21 16/5/21

Bibliographic research of statistical description of turbulent flows 12/4/21 16/4/21

Code modifications for saving data for computation of statisticals 17/4/21 23/4/21

DNS computations for different meshes 24/4/21 16/5/21

LES Turbulent channel flow 17/5/21 19/7/21

Bibliographic research of RANS turbulence modelling 17/5/21 20/5/21

Bibliographic research of LES modelling 21/5/21 30/5/21

Code modification for computation of invariants and eddy viscosity 31/5/21 13/6/21

LES models test 14/6/21 19/7/21

Taylor-Green vortex 20/7/21 31/7/21

Bibliographic research of Taylor-Green vortex problem 20/7/21 22/7/21

Taylor-Green vortex with different meshes 23/7/21 31/7/21

Writing of the thesis 22/2/21 15/8/21

Thesis review 16/8/21 22/8/21

Preparation of the oral presentation 23/8/21 5/9/21

2021

Semana 8 Semana 9 Semana 10 Semana 11 Semana 12 Semana 13 Semana 14 Semana 15 Semana 16 Semana 17 Semana 18 Semana 19 Semana 20 Semana 21 Semana 22 Semana 23 Semana 24 Semana 25 Semana 26 Semana 27 Semana 28 Semana 29 Semana 30 Semana 31 Semana 32 Semana 33 Semana 34 Semana 35 Semana 36
22/2/21 1/3/21 8/3/21 15/3/21 22/3/21 29/3/21 5/4/21 12/4/21 19/4/21 26/4/21 3/5/21 10/5/21 17/5/21 24/5/21 31/5/21 7/6/21 14/6/21 21/6/21 28/6/21 5/7/21 12/7/21 19/7/21 26/7/21 2/8/21 9/8/21 16/8/21 23/8/21 30/8/21 6/9/21

Figure 35: Gantt chart
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12 Budget of the study

The following section is a brief estimation of the cost that a study like the present could have.
Therefore, the reader should not consider this budget as a detailed breakdown of the cost that
each project sub-task had, as the following estimations have been made:

• The present study is a thesis for the obtainment of the Master’s degree in aeronautical
engineering. Therefore, the hourly price for the elaboration of the present study has been
considered taking into account the salary that a recently graduated aerospace engineer with
no previous experience could have. With this, and taking into account that this is just
a thesis and not a full-time job, the hourly price is estimated to be around 10.6 e/hour [29].

• The price of all the software used for the thesis development also needs to be considered.
The development of all the codes has been done with DevC++, which is a free and full-
featured IDE (Integrated Development Environment). All the line plots have been done
withMatlab, whose annual educational license price is of 250e [30]. However, given that the
university provides a key license for the students, its use has been totally free throughout
the duration of the project. On the other hand, all the data visualization and colour plots
have been obtained with Paraview, which is an open-source multiple-platform application
and hence, totally free. The self-drawn figures have been made with Microsoft Word, whose
educational Office 365A1 plan is free for students. Finally, the thesis has been written with
the free plan of the collaborative cloud-based LaTeX editor Overleaf. Therefore, all the
software employed in the development of this study has been free to use.

• The price of the hardware is another important part of the total cost of the project, and
hence, it should be taken into account. Considering that the price of the laptop used to
write all the code and run all the simulations is about 1900e, and assuming its lifetime
to be of about 5 years, the cost of its use during the development of the thesis can be
estimated to be about 221.69 e. Additionally, an external monitor with a price of 300 e
has also been employed. Assuming the same lifetime, its cost of use is about 35e for its
use during the whole study.

• Finally, the price of the electricity is an important part in the overall budget of the study.
This needs to include not only the electricity consumption of the computer and the external
screen, but also the consumption due to lighting and room acclimatisation, given that the
majority of the work has been done during the winter and spring times. To do so, the
average cost of 1 kW ¨ h is estimated to be about 0.25e/kW ¨ h considering all the fees
and taxes added to the baseline price. The lighting consumption is estimated to be around
0.06kW ¨ h, while the consumption of the computer and the external screen is estimated
to be around 0.3kW ¨ h.

Therefore, the breakdown of the total costs can be easily seen with the following tables grouping
the hardware cost, software costs, lighting and acclimatisation costs and salary:
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Table 13: Software cost breakdown

Software Monthly cost Total cost
Dev C++ 0.00 e 0.00 e

Matlab (student’s license) 0.00 e 0.00 e
Paraview 0.00 e 0.00 e

Office 365 A1 0.00 e 0.00 e
Overleaf (free plan) 0.00 e 0.00 e

TOTAL 0.00 e

Table 14: Hardware cost breakdown

Hardware Monthly cost Total cost
Personal computer 31.67 e 221.69 e
External monitor 5.00 e 35.00 e

TOTAL 256.69 e

Table 15: Salary

Working hours Hourly price Total cost
1440 10.6 e 15264.00 e

TOTAL 15264.00 e

Table 16: Total budget breakdown

Expense Cost
Software cost 0.00 e
Hardware cost 256.69 e

Salary 15264.00 e
Electricity 270 e
TOTAL 15790.69 e
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13 Environmental impact

The environmental impact that the development of this thesis has had is difficult to quantify.
Consequently, determining the environmental footprint that this study has entailed is not an easy
task and thus, some assumptions need to be considered in order to get an reasonable approxima-
tion. Given that all the thesis has been developed with a personal computer, it is clear that all
the electricity consumed by this equipment has an important role in the environmental footprint
that the present study has had. Nevertheless, quantifying its contribution is also cumbersome,
as its origin could be a renewable energy source, such as wind power, hydropower, solar energy,..;
or it could be a non-renewable energy sources, such as solid fuels. However, the data provided by
the CNMC (Comisión Nacional de los Mercados y la Competencia) [31] can be used to estimate
the amount of carbon dioxide and radioactive residues produced per kW ¨ h of electricity con-
sumed. According to this source, only 16.1% of the electricity produced during 2019 by "Endesa
Generación" came from a renewable energy source. A 29.0% came from combined natural gas
cycles, a 6.7% from carbon, a 3% from fuel/gas, and nearly a 29.4% of the electricity produced
by the company came from nuclear energy. Therefore, it is estimated that about 0.27kg of CO2

and 0.69mg of radioactive residues are produced per kW ¨ h of electricity consumed. Therefore,
assuming that about 1080 kW ¨ h have been used throughout the duration of the present thesis,
the following carbon dioxide and radioactive emissions can be estimated:

Table 17: CO2 emissions and radioactive residues produced per kW ¨ h of electricity and total
amount of emissions

Emission type Emissions per kW ¨ h Total emissions
CO2 0.27 kg 291.60 kg

Radioactive residues 0.69 mg 7.45¨10´4kg

TOTAL 291.60 kg

As it can be seen, the amount of radioactive residues are totally negligible. However, the amount
of CO2 is quite considerable, and equivalent to the carbon dioxide emissions produced, by an
average car driving 2700 km, according to the data provided during NEDC cycles by the Euro-
pean Environmental Agency [32].

Finally, another important aspect to take into account, even though in a less important manner,
is the amount of paper used for taking notes. During the development of the thesis, non-recycled
paper has been used, which also implies an environmental impact due to its fabrication, packaging
production and distribution. Nevertheless, it is considered that its contribution in the footprint
is not relevant in comparison to the carbon dioxide emissions previously outlined and thus, it
will not be considered.
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