
Creation of an agent in reinforcement
learning using explainability methods

in a complex environment

Project Thesis

Author: Bartomeu Perelló Comas

Director: Sergio Álvarez Napagao

Co-Director: Dmitry Gnatyshak

GEP Tutor: Andujar Larios Agustin

Computation
Facultat d’informàtica de Barcelona (FIB)

Universitat politècnica de Catalunya (UPC)
Barcelona

Delivery: 18/10/2021
Defence : 25/10/2021

Abstract

La intel·ligència artificial es una de les àrees de la computació que está en
auge actualment, aquest treball s’emmarca dins de l’aprenentatge per reforç.
L’aprenentatge per reforç es centra en la resolució de problemes o també
anomenats escenaris mitjançant la creació de models d’intel·ligència artifi-
cial anomenats agents. Els objectius d’aquests agents es maximitzar el valor
que retorna una funció una vegada aquest ha realitzat una acció. General-
ment tots aquests agent estan formats per xarxes neuronals. Quan tenim
una xarxa neuronal entrenada aquesta es vista desde fora com una capsa
negra que no entenem com perquè està funcionant d’una forma determinada
degut a la seva complexitat. La explicabilidad són un conjunt de tècniques
que s’encarreguen de donar llum a aquesta capsa i donar explicacions de
com funcina. En aquest treball s’apiquen tècniques de explicabilidad en un
videojoc anomenat ViZDoom, en el qual podem trobar escenaris complexos
a resoldre.

La inteligencia artificial es una de las áreas de la computación que se en-
cuentra actualmente en auge, este trabajo se encuentra bajo el marco del
aprendizaje por refuerzo. El aprendizaje por refuerzo se centra en la res-
olución de problemas conocidos como escenarios mediante la creación de
modelos de inteligencia artificial llamados agentes. Los objetivos de esto
es maximizar el valor que nos retorna una función que una vez el agente ha
realizado una acción en el escenario. Generalmente todos estos agentes han
sido creados mediante el uso de redes neuronales. Al tener entrenada una red
neuronal, desde fuera puede parecer como una caja negra ya que no sabemos
porqué o cómo está solucionando el problema debido a su complejidad. La
explicabilidad son un conjunto técnicas que se encargan de arrojar luz a esta
caja intentando aśı dar explicaciones del porqué de su funcionamiento. En
este trabajo se aplican este tipo de técnicas en el videojuego ViZDoom, en
el cual se encuentran escenarios complejos de resolver.

Since the beginning of artificial intelligence as a field it has shown humanity
how useful it has been to solve complex problems which there were no feasi-
ble algorithms for. One of the main problems is that once we have a system
trained is like a black box. Explainability tries to cast light on those black

boxes and explain how they are working or the case of Reinforcement Learn-
ing explains how they behave. In this project we will use some explainability
techniques in the ViZDoom game which contains complex environments.

2

Contents

1 Introduction and context 7
1.1 Introduction . 7
1.2 Extent . 8

1.2.1 Main goal . 8
1.2.2 Split goals . 8
1.2.3 Requirements . 9
1.2.4 Risks and problems . 9

1.3 Stakeholders . 10
1.4 Research Objectives . 10

2 State of the art 12
2.1 Terms and concepts . 12

2.1.1 Machine Learning . 12
2.1.2 Reinforcement Learning 12
2.1.3 Neural Networks . 13
2.1.4 Convolutional Networks 13
2.1.5 Agent . 13
2.1.6 Markov decision process 14
2.1.7 Policy . 15

2.2 Environments . 15
2.3 Explainability methods . 16
2.4 Justification . 17
2.5 Methodology . 18
2.6 Tools . 18

3 Implementation 19
3.1 VizDoom environment . 19
3.2 State representation . 20

1

3.3 Agent creation . 20
3.4 Training process . 23

3.4.1 First approach . 23
3.4.2 Second approach . 23

3.5 Policy graph . 24
3.5.1 Health state . 24
3.5.2 Simple Wall 1.0 . 25
3.5.3 Simple Wall 2.0 . 26
3.5.4 Creation of the Policy Graph 26
3.5.5 Usage of the Policy Graph 27

4 Results 31
4.1 Methodology of evaluation . 31
4.2 Analysis . 31

4.2.1 Overall sight . 32
4.2.2 Seed analysis . 37

4.3 Final thoughts . 40

5 Conclusions 41
5.1 Research questions . 41
5.2 Experience used in the project 42
5.3 Experience gained from the project 43

Bibliography 44

A Planning 47
A.1 Resources . 47
A.2 Task description . 48

A.2.1 Project management [T1] 48
A.2.2 State of the art and research [T2] 49
A.2.3 Creation of an agent [T3] 50
A.2.4 Generation of predicates [T4] 50
A.2.5 Create an algorithm for the Policy Graph [T5] 50
A.2.6 Comparing the performance [T6] 51

A.3 Risk management . 51

2

B Budget 55
B.1 Staff costs . 55
B.2 Hardware costs . 57
B.3 Amortization . 57
B.4 Contingencies . 57
B.5 Incidentals . 58
B.6 Total cost . 58
B.7 Management control . 58

C Sustainability 60
C.1 Environmental dimension . 60
C.2 Social dimension . 60
C.3 Economic dimension . 61

D Laws and regulations 62

3

List of Figures

2.1 Example of a neural network. Image taken from [7] 13
2.2 Simplified agent training process. Image taken from [25] Fig 3.1 14
2.3 Example of a Markov Decision Process. Image taken from

[25], Fig 3.2 . 15

3.1 Images from the VizDoom environment. Self made 20
3.2 Neural Network model code for the trained agent 22
3.3 med class: player state representation 24
3.4 health state class . 25
3.6 Flowchart of the program . 27
3.5 simpleWall class . 28
3.7 Code for making decisions based on the Policy Graphs (part I) 29
3.8 Code for making decisions based on the Policy Graphs (part II) 30
3.9 Choose action based on an actions array 30

4.1 Histogram of average health. Self made. 32
4.2 Each boxplot correspond to: Agent, Graph, Random, Agen-

t/Graph, Agent/Random and Graph/Random/ respectively.
Self made. 33

4.3 Each boxplot correspond to: Agent, Graph, Random, Agen-
t/Graph, Agent/Random and Graph/Random/ respectively.
Self made. 34

4.4 Each boxplot correspond to: Agent, Graph, Random, Agen-
t/Graph, Agent/Random and Graph/Random/ respectively.
Self made. 35

4.5 Each boxplot correspond to: Agent, Graph, Random, Agen-
t/Graph, Agent/Random and Graph/Random/ respectively.
Self made. 36

4.6 Scatter plots for Agent, Graph and Random policies. Self made. 37

4

4.7 Scatter plots for Graph/Random policy. Self made. 38
4.8 Scatter plots for Agent, Graph and Random policies. Self made. 38
4.9 Scatter plots for Graph/Random policy. Self made. 39
4.10 Scatter plots for Agent, Graph and Random policies. Self made. 39
4.11 Scatter plots for Graph/Random policy. Self made. 40

A.1 Old Gantt diagram. Self made with GanttProject 53
A.2 New Gantt diagram. Self made with GanttProject 54

5

List of Tables

A.1 Distribution of tasks . 51

B.1 Table of the staff salary. Salary from [23][22][24] 55
B.2 Final task cost. Self made. 56
B.3 Hardware costs. Self made . 57
B.4 Cost of the possible incidentals. Self made. 58
B.5 Hardware costs. Self made. 58

6

Chapter 1

Introduction and context

1.1 Introduction

Since the beginning of artificial intelligence as a field it has shown humanity
how useful it has been to solve complex problems which there were no feasi-
ble algorithms for. Artificial intelligence requires the existence of hardware
capable of handling the computation required in order to solve the desired
problem. As time went by, more powerful hardware was being developed
such as graphics cards which in recent years have allowed machine learning
algorithms be present on most of the services provided by enterprises such
as recommendation systems, self-driving cars, video editing software among
others; it is also used in medical applications to help doctors reduce their
time when searching through patient data.

Reinforcement learning is an area of machine learning which relies on
the agent taking decisions based on a reward system which will lead to a
behaviour that is able to solve the problem; in order to do so for complex
problems neural networks can be used. And when using deep neural networks
it is almost impossible for humans to understand how the agent is working.

Explainability methods in reinforcement learning make it possible for us
to extract information that can be understood by humans from a complex
model of Artificial Intelligence, which allows us to check whether the trained
agent is performing the actions based on a strategy.

The goal of this project is to see if an agent trained with these techniques
is able to perform as well as another agent trained with conventional ones
as a follow-up to a previous project in which positive results were achieved

7

in a simple environment (Cart Pole) using a policy graph extracted from the
trained agent (similar to a Markov Decision Process).

1.2 Extent

Up next we will define the main objective of the project as well as some risks
and problems we may encounter while doing the project.

1.2.1 Main goal

This problem has been investigated before in simpler environments such as
Cart Pole; we would like to recreate positive results in a video game with
a complex environment. We have chosen the original Doom game, a first
person shooter in which life or ammunition management are key when trying
to play the game. In order to have a clear view on how this project will be
handled we split the main objective into six.

1.2.2 Split goals

In the following list the differtent sub-goals will be explained:

• Looking for existing projects: The aim of this goal is to obtain the
required knowledge to carry out this project.

• In order to train our agent several neural networks will have to be used
so we will have to research for the ones that fit our project the most.

• Generation of predicates: In this part we want to add code into the
agent or the environment so we can extract predicates which will allow
us to create a policy graph.

• In this goal we will have to code an algorithm which will allow us to
ask questions about the behaviour of the agent to the policy graph.

• Along with the code created is the previous goal and the explainability
method selected we will be able to train a new agent based on the
behavior of the original agent

• Finally we will compare the performance of both agents and get con-
clusions.

8

1.2.3 Requirements

In this project we have two types of requirements, functional and non-
functional. We will start with the functional ones.

Functional requirements

• As we want an agent which is capable of playing original Doom we will
probably use a Deep Q Network with some sort of memory system so
it can learn different strategies depending on the state.

• Also we will need to instrument the code so in the end we can generate
a policy graph which will be very helpful in the explainability part of
the project

• Finally once the policy graph is created along with the explainability
method we selected we will have to create a simpler agent capable of
playing the game as close as possible to the neural network one.

Non-functional requirements

• Our algorithm that will give us an action given the current state of
the game should be efficient enough to return an answer so each run
execution does not last longer than expected.

• The code must be modular so if changes to the environment are made
the adaptation of functions should be minimal, reducing the develop-
ment time.

1.2.4 Risks and problems

There is no project where there never have been any problem to face which
delays the progress, in our case we think that we may encounter two different
problems defined below.

Time

The first and main problem may be that the time is limited, due to the com-
plexity of the problem and the non-existing experience with this topic. It may

9

take a large amount of time just to understand and get the required knowl-
edge. Another problem related with time is training, because this project
focuses on a complex environment multiple trainings will probably be done
because the performance obtained will not be as good as it is desired. More-
over the process of creating the agent can end up as a trial and error which
can be very time consuming.

Bugs

The other problem we may face are software bugs which may lead to our
agent to malfunction, the delay it can produce may be very big due to the
use of a new programming language. Bugs can come from different sections
of the overall code from the image input, which will be the only feedback the
agent will receive, to the interpretation of the rewards of the environment.
The amount of different modules that this project will be made of can create
a huge amount of errors that may be hard to find and correct.

1.3 Stakeholders

The stakeholders of this project will probably be engineers that work with
reinforcement learning systems, so once their agent is trained they will be
able to understand if the agent has learned a strategy they already taught
or has discovered a new one which was never intended. Also as this project
is an extension of Dmitry Gnatyshak’s PhD project.

1.4 Research Objectives

In this brief section we would like to state a few objectives to complete by
the end of the project.

• First of all, the main objective is to check if applying the same explain-
ability techniques used in [3] which try to replicate some behaviour
based on the creation of predicates which end up forming a Policy
graph. In case the same methods do not work properly we will have to
modify them so we are able to achieve positive results.

• Secondly as time passes probably some problems will arise, at that
case we should note down what the problem has been and also if this

10

problem can be postponed as future research in case it could lead to
delays.

11

Chapter 2

State of the art

2.1 Terms and concepts

In this section we will show a few concepts related to the area of the project.

2.1.1 Machine Learning

Machine learning [12] is one of several branches of Artificial Intelligence, this
one is focused on letting the system learn or train itself by feeding it with
data instead of programming its behaviour. There are several approaches on
how models are trained, supervised learning, unsupervised learning and the
one this project is based on, reinforcement learning.

2.1.2 Reinforcement Learning

Reinforcement Learning [19] is an area of Machine Learning which focuses
in the creation of models called Agents which perform actions in an environ-
ment, the aim of those Agents is to maximize a reward function provided by
the environment.

A problem in a reinforcement learning context can be split into several
states, an agent which is the model or program we want to train and the one
in charge of taking actions, another state is the environment, which describes
the problem to solve. When the agent takes an action a reward is assigned to
it and a new representation of the state is given to it, this process is repeated
until the agent is capable of solving the problem.

12

2.1.3 Neural Networks

A neural network [11, 18, 30], as the name suggests, is a structure which
tries to replicate the human brain. Each network is an interconnection of
layers formed by elements called neurons. A neuron is composed of a vector
of weights and a mathematical function called activation function. When a
neuron receives an input vector, it uses its weights to calculate the weighted
sum of the input vector and then pass this result to the activation function
to get this neuron’s output. In the most common neural network models the
outputs of neurons of each layer is then used as an input vector for the next
layer. The classical network models consist of an input layer, an output layer
and a number of hidden layers in between. The minimal neural network is a
single layer, which works as both an input and output layer.

Figure 2.1: Example of a neural network. Image taken from [7]

2.1.4 Convolutional Networks

Convolutional neural networks (CNN) [10] are a variation of neural networks.
They are specialized in pattern recognition by having layers formed by neu-
rons that apply a transformation to the input by using a matrix called filter,
this operation is called convolution. The result of each layer is often called
feature or features depending on the number of filters we apply. These layers
sometimes are connected to common networks to process the information
they have gathered.

2.1.5 Agent

An agent in reinforcement learning is the entity which performs the actions,
the environment where the agent is located represents the state or the prob-

13

lem we are trying to solve, due to the complexity of the environment a deep
neural network will be used as an agent.

Every reinforcement learning training process is almost the same, first of
all the agent performs an action, afterwards the environment is updated and
a new state is sent to the agent as well as a reward with its value depending
on the results of the actions taken, so they can guide our agent into solving
the problem.

Figure 2.2: Simplified agent training process. Image taken from [25] Fig 3.1

2.1.6 Markov decision process

A Markov Decision Process (MDP) [2] is a form of representing the behaviour
of an agent throughout the process of solving a problem. Each MDP can be
represented as a graph where each node represents a state and each edge
represents an action with a probability of going into another state, along
with the probability we can assign to each edge the reward we want to give
to the agent for doing this action. In our case we will use a similar approach
which will be called policy graph.

14

Figure 2.3: Example of a Markov Decision Process. Image taken from [25],
Fig 3.2

2.1.7 Policy

A policy is a function which returns the probability of going into a state
given an action. We can define a policy π for a given action a and state s as
π = (a|s).

2.2 Environments

Reinforcement learning has a lot of complex environments on which we could
train the agent, let us have a look at different options.

• Neural MMO [21]: Neural MMO is a multi-agent game environment
provided by OpenAI, one the the leading industries in the machine
learning area, the objective is to create a player who is able to manage
food and drink while competing against other players in three different
combat styles.

• Pommerman [15]: This environment is based on the original Bomber-
man, it has all of the original features such as power ups which allow
the player to get extra bombs, increase its range and the capability of
kicking bombs, each one of these upgrades may change the strategy of
the agent.

15

• SMAC [20]: SMAC stands for StarCraft Multi-Agent Challenge which
focuses on micromanagement in the StarCraft 2 game, micro man-
agements are strategies which focus on maximizing the output of an
action while minimizing the losses it may produce due to interaction
with other players.

• ViZDoom [31]: This is an application whose objective is to use the
original doom game as a training environment using only visual infor-
mation, it contains different scenarios so we can create an all-round
agent.

2.3 Explainability methods

The explainability methods are key for this project and the selection of the
method to implement must be well thought out. We came across three pos-
sible methods.

Rationalization

We can understand rationalization as a process in which a trained agent
is able to explain the reasons behind its behaviour [5]. The way they ap-
proached this problem is by feeding a network with examples of human game-
play along with words or commentary about the decisions taken. A major
problem about this implementation is the time it takes to create the required
input data, also as this will be implemented in a complex environment we
would need a huge amount of gameplay to cover most of the situations.

LIME

LIME [16] stands for local interpretable model-agnostic explanations, as the
name suggests the goal of this method is to be able to explain any model
as long as it a classifier. In order to train the model first the input must be
human readable, in our case it can be possible depending on the environment,
afterwards some noise is added to the input data so the model can learn which
variables are important to check in order to give explanations.

16

Autonomous Policy Explanation

In another study a method is introduced that is able to make any agent
explain itself without the intervention of the user in the training phase, and
once this phase is finished humans can ask questions to the system on why it
is performing an action or when it will perform a given action [9]. This is a
very interesting approach because it allows us to get direct knowledge about
its behavior.

2.4 Justification

In the end we have selected to use ViZDoom as the training environment due
to the following reasons:

• It provides almost all game variables which will be useful at the time
of creating the policy graph

• It contains a huge amount of scenarios so we can train our agent in
different skills

• It is a single agent environment, which is very helpful because of a lack
of experience in agent training with neural networks.

There is a lot of information regarding this environment which will be
helpful in case we have to face implementation problems or runtime bugs,
which will be key due to the delivery deadline.

As we have selected VizDoom as the target environment we can already
discard LIME as a viable approach due to its requirement of the input being
human readable, in our case, ViZDoom uses the game screen as input so
LIME cannot use it as information to train, also, if it were to add noise
into the image it could remove vital information leading to errors in the
explanations.

Finally rationalization cannot be selected due to the need of feeding it
with gameplay, it would require us to spend a lot of time playing, so we will
implement the Autonomous Policy Explanation which will be very helpful in
the last phase of the project.

17

2.5 Methodology

For this project we will use the scrum methodology, the basis of scrum is to
split the project into sections called sprints.

In our case we think that weekly sprints will be enough for the develop-
ment of the project.

2.6 Tools

In order to organize this project and have it finished by the deadline we will
use several tools.

• Trello [26]: Trello is a very handful tool for the scrum methodology it is
easy to use and very effective, in pasts projects it has shown its utility.

• GitLab [8]: This is a Git version control tool which will be used to
store the progress of the project so in case of any computer failing or
data loss we will always have a copy on hand.

• RocketChat [17]: This is an application which will be used as a fast
communication channel.

• Discord [4]: In case of meetings we will use this platform which allows
its users to have a voice chat while being able to share the screen if it
is necessary.

18

Chapter 3

Implementation

As mentioned before, in this project we want to use explainability methods
to check if we can extract valid behaviour from a trained agent which will be
able to solve the same problem. First of all we will describe the environment
used for this research.

3.1 VizDoom environment

VizDoom is a platform for training AI models which is based on the original
Doom game, this platform contains several complex environments, in our case
we have selected the Health-gathering scenario. This environment is settled
in a closed squared room, the floor is made of acid which deals damage to the
player throughout the duration of the simulation. The goal of the scenario
is to survive for the longest, in order to do so several med-kits, which restore
health to the player if they are picked up, spawn randomly inside the room,
so if the player is able to collect those med-kits, it will be able to survive
longer. The simulation ends if the player dies which means that its health
reaches a value of 0 or a total of two minutes have passed. The reward given
to the player is 1 point for each tick of the game.

19

(a) Environment used in this project. (b) Med-kit that
restores health.

Figure 3.1: Images from the VizDoom environment. Self made

3.2 State representation

VizDoom has a high customization when it comes to state representation,
it allows its users to select which variables can be accessed with a simple
command [28], it also provides two different buffers, one which contains each
element on the environment along with its own variables and the second one
has the elements which are visible on the current scene [27].

In order to use explainability we need to discretize the different variables
that the platform provides so it can be transformed into a policy graph.
During the project several discretizations have been tested, in this document
we will explain two different states and also a few changes that have been
made in the environment.

3.3 Agent creation

In order to create our Deep Q Network Agent we have used an example
code provided by ViZDoom which makes use of the Tensorflow 2.0 library
as a starting point. This code is able to solve a simpler environment called
“simpler basic” the goal of the environment is to kill a static enemy which
spawns randomly along a line in front of the player, so in order to make a
network capable of solving our selected environment changes must be made.

A common structure for Deep-Q Agents that receive images from the
game as input have three elements, our agent follows the same structure.

20

• A memory buffer: A memory buffer is used so we can keep track of
the recent actions taken along with the reward obtain and the state
of the problem. This is very useful in order to have some temporal
information. This kind of information is critical in scenarios where
there are moving objects because it allows the agent to keep track of
the movement rather than just show the immediate image.

• Convolution layers: Those layers are responsible of applying filters to
the incoming images and generating an output called feature, the com-
bination of features are called feature maps. The values from the filters
are also modified through training as well as the weight in the neurons
of the neural networks.

• Neural network: The part of the agent that is in charge of the processing
of the information that the convolution layers have gathered and based
on the information give an action to perform.

In our case we have used a different structure in the neural network sec-
tion, we use an architecture proposed by DeepMind [29] which splits the
processing of the neural network into two streams, one with only one neuron
to calculate the value of the current state and another with the amount of
actions the agent can perform. This configuration leads to the agent being
able to know how valuable is an state beforehand, which is useful when the
actions taken do not modify the environment heavily, so it does not has to
learn the consequences of an action after each step. The code for the model
can be seen in Figure 3.2.

Some important parameters we have been testing when creating the agent
are:

• the re-scaled resolution of the game images,

• the number of frames on which the agent has to maintain an action,
and

• if we should use colored images or not.

The resolution of the image is important because if it is too low, we may
be leaving details that are important to solving the problem, in this case
could be the distance to the walls not being recognisable or not being able
to see where med-kits are located, on the contrary if the resolution is too

21

1 class DQN(tf.keras.Model):

2 def __init__(self , num_actions):

3 super(DQN , self).__init__ ()

4 self.conv1 = tf.keras.Sequential ([

5 tf.keras.layers.Conv2D(

6 32, kernel_size =7, strides=4, input_shape

=(85 ,85 ,1)),

7 tf.keras.layers.BatchNormalization (),

8 tf.keras.layers.ReLU()

9]) # (85 ,85 ,1) |(160 ,120 ,1)

10 self.conv2 = tf.keras.Sequential ([

11 tf.keras.layers.Conv2D(

12 32, kernel_size =5, strides=2, input_shape

=(20 ,20 ,32)),

13 tf.keras.layers.BatchNormalization (),

14 tf.keras.layers.ReLU()

15])# (20 ,20 ,32) | (39 ,29 ,32)

16 self.conv3 = tf.keras.Sequential ([

17 tf.keras.layers.Conv2D(

18 32, kernel_size =3, strides=2, input_shape =(8,

8, 32)),

19 tf.keras.layers.BatchNormalization (),

20 tf.keras.layers.ReLU()

21]) # (8, 8, 32) | (18 ,13 ,32)

22 self.flatten = tf.keras.layers.Flatten ()

23 self.stateValue = tf.keras.layers.Dense (1) # Get the

value of the state

24 self.advantage = tf.keras.layers.Dense(num_actions)

25

26 def call(self , x):

27 x = self.conv1(x)

28 x = self.conv2(x)

29 x = self.conv3(x)

30 x = self.flatten(x)

31 x1 = x[:, :144]

32 x2 = x[:, 144:]

33 x1 = self.stateValue(x1)

34 x2 = self.advantage(x2)

35 x = x1 + (x2 - tf.reshape(tf.math.reduce_mean(x2,

axis =1),shape =(-1,1)))

36 return x

Figure 3.2: Neural Network model code for the trained agent

22

large it will require more space in the memory buffer. Linked to the problem
of the space on the memory buffer we find the use of colored images, using
those means that for each frame of the game we need to keep three versions
of the same image, each one containing information of each color, red, green
and blue, making the usable space for new states three times smaller. In the
end we decided to use a resolution of 85X85 pixels and no colored images.

The other variable we mentioned before is the number of frames on which
the agents has to commit to one action, having a high number of frames
per action can lead to the agent not perform well because it cannot react to
changes in the environment or its location and having a low amount of frames
it can make the agent have an erratic behaviour too difficult to extract, also
the aim of training an agent is to make it as close as human behaviour as
possible.

3.4 Training process

We had to face some problems when training our agent, so in order to solve
them we made a few changes in the reward system.

3.4.1 First approach

At first it was quite difficult to get the network to perform well into the
environment in a reasonable training time so in order to make it converge
faster we decided to add a little reward to the agent each time it would pick
up a med-kit. Doing so improved the training time a lot. Now the agent
would perform decently after 5 to 8 epochs of training which is equivalent to
a range between 10 000 and 16 000 iterations. While the training time got
faster even with these changes we could not appreciate a solid behaviour, a
random walking agent could possibly work on average so we decided to make
another change.

3.4.2 Second approach

The next modification was to change the reward for each tick, instead of
rewarding a point, it would remove a low amount, in this case it was 0.001,
by doing this change the agent finally adopted a clear behaviour which is to
walk close to a wall an run in diagonals until it reaches the next one.

23

3.5 Policy graph

In order to use explainability we need to make a representation of the state
so we are able to create a Graph that somehow can represent the behaviour
of our trained agent. Throughout the duration of the project we have used
different state representations in the next sections we will explain each state
created and tested.

3.5.1 Health state

This state representation was used and tested before the second change to
the reward system, at that moment the behaviour of the agent consisted on
running to med-kits. In order to try and replicate the behaviour we created
a representation that made use of two classes which are called med, and
health state. The med class (see Figure 3.3) is used to store information
such as its position, distance to the player, the number of neighbours and
two strings representing its location from the player.

1 class med:

2 # Maximum distance to be considered a neighbour

3 d2n = 10

4

5 def __init__(self , pos , horizontal):

6 self.neigh = 0

7 self.pos = pos

8 self.d2p = -1

9 self.vert = "NoVertical" # ("Far "|" Mid "|" Close")

10 self.hor = "NoHorizontal"# ("Left "|" Front "|" Right")

Figure 3.3: med class: player state representation

The health state (see Figure 3.4) is the responsible of creating the med
object based on the information retrieved from the game. It creates an array
with all the med-kits on-screen and afterward takes the (N) closest to the
player and creates an array representing the amount of med-kits in each type
of location.

At the end we thought that with the behaviour the agent had it would not
be as clear to spot big differences between the Graph Policy and a Random
policy. At this point we decided to modify again the reward system (as
mentioned in Section 3.4.2).

24

1 class healthState:

2 def __init__(self , st):

3 # Array to check the medkits available , and player

position

4 self.medkits = []

5 self.playerPos = []

6 self.maxElements = 7

7 for l in st.objects:

8 if l.name == "DoomPlayer":

9 self.playerPos = np.array([l.position_x , l.

position_y , l.position_z])

10 break

11

12 # Taking important info

13 for l in st.labels:

14 if l.object_name == "Medikit":

15 currMed = med(

16 np.array ([l.object_position_x , l.

object_position_y , l.object_position_z]),

17 med.calculateHorizontal ((l.x+l.width /2)))

18 self.medkits.append(currMed)

19

20 # Calculating distance to player and sorting vector

21 for m in self.medkits:

22 m.calculateD2p(self.playerPos)

23 if len(self.medkits) > 0 and self.medkits [0]. d2p !=

None:

24 self.medkits = sorted(self.medkits , key=lambda x:

x.d2p)

Figure 3.4: health state class

3.5.2 Simple Wall 1.0

After the second change in the reward system our Agent started to behave in
a clear way, it was moving in smoothed diagonals from one wall to another
while picking up med-kits, when we saw this behaviour we knew this could be
extracted with some representation. This representation is called simple wall,
we calculate an approximate distance from the player to each wall and then
we made a transformation to a string, we decided to have four values for
range: Close, Mid, Far and VeryFar, we also created a variable that recorded
how much time had elapsed since the Agent had changed from one action

25

to another. Finally the state was composed of two distances those being
the wall in front of the player and the wall on the left, this decision was
made after watching the Policy Graph using only the right turn and the time
variable having a range of: Recent, WhileAgo and Ages.

3.5.3 Simple Wall 2.0

After some testing, the previous representation did not work as good as we
once expected, we decided to remove the temporal variable leaving the state
representation into two variables (see Figure 3.5). Surprisingly, this small
change made the Policy Graph more consistent throughout the runs.

At first it may seem that this state representation is simple, as it does
not allow high precision at extracting behaviour. However, because we are
using a graph to store the observable behaviour of a trained agent, we need
to make a decision when it comes to the complexity of the representation:
having a simpler representation could mean we would not be able to get a
decent approximation, but, on the contrary, it would mean more variables
therefore a more sparse graph with higher amount of states which would
impact the performance of the explainability method by making the search
of a similar state or even the exactly the same one more time consuming,
thus, making the new agent unable to keep up with the pace of the game.

3.5.4 Creation of the Policy Graph

The creation of the Policy Graph and the results of the project follow the
flow-chart depicted in Figure 3.6.

26

Figure 3.6: Flowchart of the program

In Figure 3.6 we can see the different steps that the program goes through.
At the start we can decide if we want to train a new agent or use an already
trained agent so we avoid the whole training process. Because ViZDoom is
the game we are using to do the research, it is a part of all of the environment-
related processes. Once we have finished training or have loaded the selected
Agent, we run it in an environment to generate predicates which, once the
runs are finished, are converted into the Graph policy. Finally what we
create several new policies so we can run experiments on them with the help
of MLFlow platform which allows us to keep track of the information that
constitutes the results.

3.5.5 Usage of the Policy Graph

In order to make use of the Policy Graph at each step where the player can
perform an action we get the current representation of the state and give it
to a function which is the responsible of returning an action depending on
the Policy Graph. If the current state is not located in the Policy Graph,
this function tries to look for a state that is close to it, if there are no more
states it returns a random action. The code for these choices is shown in
Figures 3.7 and 3.8. As we mention this function is called from the function
specified in Figure 3.9, which is called from the main game loop.

27

1 class simpleWall:

2 pos = {"left":0,"top":1,"right":2,"bottom":3}

3 leftPos = {"left":3,"top":0,"right":1,"bottom":2}

4 def __init__(self , st , time):

5 playerX = int(st.game_variables [0])

6 playerY = int(st.game_variables [1])

7 self.playerAngle = int(st.game_variables [3])

8 for s in st.sectors:

9 first = True

10 minX = maxX = minY = maxY = 0

11 for l in s.lines:

12 if first:

13 first = False

14 minX = min(l.x1 ,l.x2)

15 maxX = max(l.x1 ,l.x2)

16 minY = min(l.y1 ,l.y2)

17 maxY = max(l.y1 ,l.y2)

18 else:

19 currminX = min(l.x1,l.x2)

20 currmaxX = max(l.x1,l.x2)

21 currminY = min(l.y1,l.y2)

22 currmaxY = max(l.y1,l.y2)

23 if currminX < minX:

24 minX = currminX

25 if currmaxX > maxX:

26 maxX = currmaxX

27 if currminY < minY:

28 minY = currminY

29 if currmaxY > maxY:

30 maxY = currmaxY

31 leftWall = int(abs(playerX - minX))

32 topWall = int(abs(playerY - maxY))

33 rightWall = int(abs(playerX - maxX))

34 bottomWall = int(abs(playerY - minY))

35 self.timeChange = "Error"

36 if time < 0.35:

37 self.timeChange = "Recent"

38 elif time < 0.75:

39 self.timeChange = "WhileAgo"

40 else:

41 self.timeChange = "Ages"

42 self.state = [leftWall ,topWall ,rightWall ,bottomWall]

43 self.ststate = self.convert2String(self.state)

Figure 3.5: simpleWall class

28

1 def whatToDoString(state , myProbs):

2 if state in myProbs.keys():

3 random.seed()

4 currState = myProbs[state].items ()

5 newAct = {key:round(value ,1) *10 for key ,value in

currState}

6 totalElm = int(sum(newAct.values ()))

7 aux = [_ for _ in range(totalElm)]

8 i = 0

9

10 for key ,value in newAct.items():

11 for _ in range(int(value)):

12 aux[i] = key

13 i+=1

14 pos = random.randint(0,totalElm -1)

15 return aux[pos]

16 # LOOKING FOR THE CLOSEST STATE

17 else:

18 posDict = {"Close":0,"Mid":1,"Far":2,"VeryFar":3}

19 posArray = ["Close","Mid","Far","VeryFar"]

20 currPos = posDict[state [0]]

21 currLeftPos = posDict[state [1]]

22 currState = (posArray[currPos],posArray[currLeftPos])

23

24 if currPos < 2:

25 while not (currState in myProbs.keys()) and

currPos < 4:

26 currLeftPos += 1

27 if currLeftPos > 3:

28 currLeftPos = 0

29 currPos += 1

30 currState = (posArray[currPos],posArray[

currLeftPos])

31 else:

32 while not (currState in myProbs.keys()) and

currPos > 0:

33 currLeftPos -= 1

34 if currLeftPos < 0:

35 currLeftPos = 3

36 currPos -= 1

37 currState = (posArray[currPos],posArray[

currLeftPos])

Figure 3.7: Code for making decisions based on the Policy Graphs (part I)

29

1 try:

2 newState = myProbs[currState].items ()

3 newAct = {key:round(value ,1) *10 for key ,value in

newState}

4

5 totalElm = int(sum(newAct.values ()))

6

7 aux = [_ for _ in range(totalElm)]

8 i = 0

9

10 for key ,value in newAct.items():

11 for _ in range(int(value)):

12 aux[i] = key

13 i+=1

14 random.seed()

15 pos = random.randint(0,totalElm -1)

16

17 return aux[pos]

18

19 except:

20 return "Random"

Figure 3.8: Code for making decisions based on the Policy Graphs (part II)

1 def mdpChooseAction(state , myProbs):

2 # Maps the string action to the position in actions array

3 myActionsMap ={"None":0,"Left":4,"Right":2,"Forward":1,"

LeftForward":5,"RightForward":3,"LeftRight":6,"

LeftRightForward":7}

4

5 action = whatToDoString(state ,myProbs)

6

7 if action == "Random":

8 return np.random.choice(range(len(myActionsMap)), 1)

[0]

9

10 return myActionsMap[action]

Figure 3.9: Choose action based on an actions array

30

Chapter 4

Results

In this chapter we will explain everything related to the data obtained after
some experiments.

4.1 Methodology of evaluation

In order to evaluate the results we will be using the same metrics as in
previous research work on the topic [3] by creating different policies and
tracking several variables that will allow us to compare the agent’s behaviour
to the one extracted by the explainability methods.

The policies we have created are the neural network-based agent, the
extracted behaviour which we will be calling a graph, a random agent and a
mix of agent with graph, agent with random and graph with random. Each
part of the combined policies has an even chance of selecting the action that
will be used in the testing process.

For extracting the data needed for evaluation we have set a seed for the
environment. This way we can have the same state throughout the entire
run so that we can achieve a fair comparison between policies. Also we have
executed several runs with random seeds each time to check how each policy
changes.

4.2 Analysis

In this section we well discuss the results obtained.

31

4.2.1 Overall sight

Now we will be looking at some charts that contain information of all the
runs done, afterwards we will check case by case. Down below we have some
charts that represent the average health throughout all runs.

Figure 4.1: Histogram of average health. Self made.

As we mentioned in Section 1.4, our goal is to replicate as much as possible
the behaviour of our Agent policy. The first thing we can appreciate is the
similarity that the Graph and the Graph/Random policy to the Agent one, it
seems that the Random policy has a tendency to have lower levels of health,
which is completely understandable because it does not follow any strategy
and there will be times where it we be moving in a close circle not picking
up med-kits, therefore not gaining health. This is not a complete indicator
that our extraction is working perfectly because med-kits spawn randomly
and any behaviour is able to gain health, but it is a good start point. Now
we will analyze some box plots representing the average distance to each wall
through all the seed runs.

32

Figure 4.2: Each boxplot correspond to: Agent, Graph, Random, Agent/Graph, Agent/Random and
Graph/Random/ respectively. Self made.

33

Figure 4.3: Each boxplot correspond to: Agent, Graph, Random, Agent/Graph, Agent/Random and
Graph/Random/ respectively. Self made.

34

Figure 4.4: Each boxplot correspond to: Agent, Graph, Random, Agent/Graph, Agent/Random and
Graph/Random/ respectively. Self made.

35

Figure 4.5: Each boxplot correspond to: Agent, Graph, Random, Agent/Graph, Agent/Random and
Graph/Random/ respectively. Self made.

36

What we can appreciate from those box plots is that the Graph policy
has the tendency to follow what the Agent policy is doing, which means our
explainlability implementation may be extracting the behaviour in some way,
of course is not perfect nor highly close but for what we have seen so far it
is promising. Also, it looks like the Graph policy has the most impact when
using the mixed policies, in most cases they have a similar boxplot.

4.2.2 Seed analysis

In this subsection we will analyse each set of runs made with the same seed,
which means that every run has had the same initial condition and same
spawn location for each med-kit. In order to do the comparisons scatter
plots representing the average health with the average wall distance will be
used.

First seed

Figure 4.6: Scatter plots for Agent, Graph and Random policies. Self made.

In the first scatter we can check that the Graph policy is pretty similar to
the Agent one, there are several points which diverge to lesser health with
almost the same average distances, on the other side we can see how the
Random policy is shifted to the left, meaning that it does not pick up that
much med-kits, we can appreciate the same when compared to the Graph
policy. One really interesting thing can be seen in the following scatter plot
showing the results with the mixed policy Graph/Random.

37

Figure 4.7: Scatter plots for Graph/Random policy. Self made.

The runs with this seed the Graph/Random policy has behaved closely
to the pure Graph one, in the next seed evaluation we will see if this relation
is maintained, in the box plots we could see that the average distances from
walls was similar.

Second seed

Figure 4.8: Scatter plots for Agent, Graph and Random policies. Self made.

In those scatter plots there is something interesting, in the case of the Agent
and Graph policy we have a single group but on the contrary the Random

38

policy has two independent groups, which could mean that is has been run-
ning in close cycles in two different regions, rather than moving across the
scenario most of the time.

Figure 4.9: Scatter plots for Graph/Random policy. Self made.

Again, the Graph/Random policy seems to behave similar to the Graph
and the Agent. In this case we can see that some of the points in the Graph
policy have been shifted to the right, which could mean that the Random
actions may have helped the Graph policy to get out from a stuck situation,
for example walking straight into a wall or corner.

Third seed

Figure 4.10: Scatter plots for Agent, Graph and Random policies. Self made.

39

In this seed execution we have a clearer difference between the Agent and
Graph policies, similar to the previous seed, the Random policy has two
differentiated groups meaning movement in a reduced area. Graph and Agent
seem to be pretty similar again.

Figure 4.11: Scatter plots for Graph/Random policy. Self made.

Finally there are no huge differences between the Graph and Graph/Ran-
dom policies, probably both could be decent approximations of the Agent
behaviour.

4.3 Final thoughts

What we can understand from the obtained results is that our approach
is decent enough to consider that we are able to extract the Agent policy
behaviour. What has surprised us is the Graph/Random policy being able
to keep up without much problems. We understand that the current state
representation is not giving a clear extraction, but this happens because we
are making the choice of the action proportional to the amount of times it
has been used, so in some cases it will choose the action which is not optimal
to mimic the Agent policy.

40

Chapter 5

Conclusions

AI is an area which is growing nonstop every day, and as time comes by there
will be the need of understanding how those applications select or perform
their actions which in most cases are left like black boxes that produce some
output that works or is able to solve a problem efficiently enough. The work
of explainability is to cast light on those black boxes and return feedback
related to their behaviour.

In this project we are following the techniques used in [3] which consists on
creating a Policy Graph based on some representation of the scenario/prob-
lem we want to solve, in the context of the project we have used the game
ViZDoom [31] and the health gathering scenario, in the end there needs to be
some expert in the topic of research to validate the results of the behaviour
extraction.

5.1 Research questions

Relating to questions in Section 1.4, we think that we have achieved promis-
ing results: in Chapter 4 we have shown that our work is able to extract, to
some extent and in a symbolic manner, the behaviour of a trained Agent. Of
course, it is not perfect, probably due to the simplicity of state representation
used in Section 3.5, but we do not have to forget that the environments com-
ing form this game are really complex. With the results we have obtained we
are pretty sure that keeping on track with this research is a great idea to ex-
plore the limits of explainability in ViZDoom environments, we have in mid
to return to a previous state representation using vector representations and

41

also explore new environments such as defend the line which involves dodging
enemy projectiles while at the same time the agent needs to shot and kill
those enemies in order to win the scenario. Another scenario we would like to
research on is the deadly corridor which consists on reaching a check point at
the end of a corridor without dying, on the way to the checkpoint there are
med-kits that restore health, shields that avoid direct damage to the health
of the player and enemies which will try to kill our player. At the start of the
project we defined some competences that would be covered by this work,
now we will be talking about if we have fulfilled them. At first we should
have analyzed the requirements of the project and select some platform to
develop on, as programming language we selected python which is one of the
lead languages when it comes to Neural Network programming and we have
also used TensorFlow 2.0 library, it allowed us to use the full capabilities of
our NVIDIA graphic card when training, which speed up the process a lot
compared when the CPU is used to do the calculus required for training.

There are two other competences which involve the implementation of
machine learning techniques, as it can seen in Chapter 3, we have created
a Reinforcement Learning Agent by the use of a Convolutional Networks
and Neural Networks, also there is a competence in which is required to
implement some graphic application such as video games, in our case have
not created the game on which we are researching but we are using direct
images from the game as well as modified some of the code for the scenario
in order to meet our requirements, and of course once the agent is trained
we are making it play the game so we can extract data.

Finally there is one competence which is supposed to evaluate our ca-
pacity to extract or formalize the human knowledge in order to solve some
problem. As the definition means our project is based on the extraction of
the behaviour of a trained Agent, which could really be the behaviour of a
human playing the game. We are trying to replicate it by using a represen-
tation that is human readable so we can truly understand if our assumption
on how the trained Agent behaves is correct.

5.2 Experience used in the project

There are several subjects from the degree that have allowed us to finish this
project, the first one is LP (Llengüatges de programació), in this subject we
learned a lot of python and other several languages allowing a better adapta-

42

tion when learning how to use new libraries or learn new languages. Another
subject has has helped with the analysis is APA (Apranentatge Automàtic),
the final project of this subject consisted on creating a classification and re-
gression system for a data-set of our choice, by the end of this project we
learned how to analyse the data used as training and also understand the re-
sults, also we did en introduction to neural networks which was useful to have
a big picture of what the project would be. There is another subject called
CAIM (Cerca i anàlisi de dades massives) which has been useful to develop
the vector based representation and similarity algorithm which will probably
be used in future work due to its generalization and its ease when comparing
similar states. Finally there is VC (Visió per computadors) which taught us
what convolutions were and how they work thus making the process of using
Convolution layers easily.

5.3 Experience gained from the project

Finally there are several aspects of the project that we would like to remark
as they have been an expansion of the knowledge we previously had on some
areas, such as neural networks, the work done in this project has allowed us
to have a more deep knowledge on how Convolutional Networks and Neural
networks work in a more real life scenario. Also it as been useful to learn how
to analyse results in machine learning projects. Another huge lesson learned
from the project is how subtle changes in the representation of the data makes
the process of training more time and space consuming (see Section 3.4),
making that some configurations could not converge fast enough or finish
training due to lack of memory in the graphics card.

43

Bibliography

[1] A European approach to artificial intelligence — Shaping Europe’s dig-
ital future. url: https://digital-strategy.ec.europa.eu/en/
policies/european-approach-artificial-intelligence (visited
on 10/16/2021).

[2] Richard Bellman. “A Markovian decision process”. In: Journal of math-
ematics and mechanics 6.5 (1957), pp. 679–684.

[3] Antoni Climent Muñoz. “An application of explainability methods in
reinforcement learning”. In: (July 2020). url: https://upcommons.
upc.edu/handle/2117/335594.

[4] Discord. url: https://discord.com/.

[5] Upol Ehsan et al. “Rationalization: A Neural Machine Translation
Approach to Generating Natural Language Explanations”. In: AIES
2018 - Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society (Feb. 2017), pp. 81–87. arXiv: 1702.07826. url: http:
//arxiv.org/abs/1702.07826.

[6] EUR-Lex - 52021PC0206 - EN - EUR-Lex. url: https://eur-lex.
europa.eu/legal- content/EN/TXT/?qid=1623335154975&uri=

CELEX%3A52021PC0206 (visited on 10/16/2021).

[7] File:MultiLayerNeuralNetwork english.png - Wikimedia Commons. url:
https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetwork_

english.png (visited on 10/16/2021).

[8] Git Lab. url: https://gitlab.com/gitlab-org/gitlab.

44

https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://upcommons.upc.edu/handle/2117/335594
https://upcommons.upc.edu/handle/2117/335594
https://discord.com/
https://arxiv.org/abs/1702.07826
http://arxiv.org/abs/1702.07826
http://arxiv.org/abs/1702.07826
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1623335154975&uri=CELEX%3A52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1623335154975&uri=CELEX%3A52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1623335154975&uri=CELEX%3A52021PC0206
https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetwork_english.png
https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetwork_english.png
https://gitlab.com/gitlab-org/gitlab

[9] Bradley Hayes and Julie A. Shah. “Improving Robot Controller Trans-
parency Through Autonomous Policy Explanation”. In: ACM/IEEE
International Conference on Human-Robot Interaction. Vol. Part F127194.
New York, NY, USA: IEEE Computer Society, Mar. 2017, pp. 303–312.
isbn: 9781450343367. doi: 10.1145/2909824.3020233. url: https:
//dl.acm.org/doi/10.1145/2909824.3020233.

[10] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”.
In: nature 521.7553 (2015), pp. 436–444.

[11] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical bio-
physics 5.4 (1943), pp. 115–133.

[12] Tom M Mitchell. “Machine learning and data mining”. In: Communi-
cations of the ACM 42.11 (1999), pp. 30–36.

[13] Precios de GPU — Documentación de Compute Engine — Google
Cloud. url: https://cloud.google.com/compute/gpus-pricing
(visited on 03/13/2021).

[14] Regulatory framework on AI — Shaping Europe’s digital future. url:
https://digital-strategy.ec.europa.eu/en/policies/regulatory-

framework-ai (visited on 10/16/2021).

[15] Cinjon Resnick et al. “Pommerman: A Multi-Agent Playground”. In:
CoRR abs/1809.07124 (2018). arXiv: 1809 . 07124. url: http : / /

arxiv.org/abs/1809.07124.

[16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why should
i trust you?” Explaining the predictions of any classifier”. In: Proceed-
ings of the ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. Vol. 13-17-August-2016. Association for Com-
puting Machinery, Aug. 2016, pp. 1135–1144. isbn: 9781450342322.
doi: 10.1145/2939672.2939778. arXiv: 1602.04938. url: http:

//dx.doi.org/10.1145/2939672.2939778.

[17] Rocket.Chat. url: https://rocket.chat/.

[18] Frank Rosenblatt. “The perceptron: a probabilistic model for informa-
tion storage and organization in the brain.” In: Psychological review
65.6 (1958), p. 386.

[19] Stuart J. Russell, Peter Norvig, and Ernest Davis. Artificial intelli-
gence: a modern approach. 4th. Pearson, 2020.

45

https://doi.org/10.1145/2909824.3020233
https://dl.acm.org/doi/10.1145/2909824.3020233
https://dl.acm.org/doi/10.1145/2909824.3020233
https://cloud.google.com/compute/gpus-pricing
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://arxiv.org/abs/1809.07124
http://arxiv.org/abs/1809.07124
http://arxiv.org/abs/1809.07124
https://doi.org/10.1145/2939672.2939778
https://arxiv.org/abs/1602.04938
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1145/2939672.2939778
https://rocket.chat/

[20] Mikayel Samvelyan et al. “The StarCraft Multi-Agent Challenge”. In:
CoRR abs/1902.04043 (2019).

[21] Joseph Suarez et al. Neural MMO: A Massively Multiagent Game En-
vironment. url: https://openai.com/blog/neural-mmo/.

[22] Sueldo: Junior Developer en Barcelona. url: https://www.glassdoor.
es/Salaries/barcelona-junior-developer-salary-SRCH_IL.0,

9_IM1015_KO10,26.htm (visited on 03/12/2021).

[23] Sueldo: Project manager en Barcelona. url: https://www.glassdoor.
es/Sueldos/barcelona-project-manager-sueldo-SRCH_IL.0,9_

IM1015_KO10,25.htm (visited on 03/12/2021).

[24] Sueldo: Qa-engineer-salary en Barcelona. url: https://www.glassdoor.
es/Salaries/barcelona- qa- engineer- salary- SRCH_IL.0, 9_

IM1015_KO10,21.htm (visited on 03/12/2021).

[25] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An
Introduction. London, England, 2017. url: http://incompleteideas.
net/book/bookdraft2017nov5.pdf.

[26] Trello. url: https://trello.com/.

[27] ViZDoom/Types.md at master · mwydmuch/ViZDoom · GitHub. url:
https://github.com/mwydmuch/ViZDoom/blob/master/doc/Types.

md#gamestate (visited on 10/16/2021).

[28] ViZDoom/Types.md at master · mwydmuch/ViZDoom · GitHub. url:
https://github.com/mwydmuch/ViZDoom/blob/master/doc/Types.

md#gamevariable (visited on 10/16/2021).

[29] Ziyu Wang et al. Dueling Network Architectures for Deep Reinforce-
ment Learning. 2016. arXiv: 1511.06581 [cs.LG].

[30] Paul J Werbos. “Applications of advances in nonlinear sensitivity anal-
ysis”. In: System modeling and optimization. Springer, 1982, pp. 762–
770.

[31] Marek Wydmuch, Micha l Kempka, and Wojciech Jaśkowski. “ViZ-
Doom Competitions: Playing Doom from Pixels”. In: IEEE Transac-
tions on Games (2018).

46

https://openai.com/blog/neural-mmo/
https://www.glassdoor.es/Salaries/barcelona-junior-developer-salary-SRCH_IL.0,9_IM1015_KO10,26.htm
https://www.glassdoor.es/Salaries/barcelona-junior-developer-salary-SRCH_IL.0,9_IM1015_KO10,26.htm
https://www.glassdoor.es/Salaries/barcelona-junior-developer-salary-SRCH_IL.0,9_IM1015_KO10,26.htm
https://www.glassdoor.es/Sueldos/barcelona-project-manager-sueldo-SRCH_IL.0,9_IM1015_KO10,25.htm
https://www.glassdoor.es/Sueldos/barcelona-project-manager-sueldo-SRCH_IL.0,9_IM1015_KO10,25.htm
https://www.glassdoor.es/Sueldos/barcelona-project-manager-sueldo-SRCH_IL.0,9_IM1015_KO10,25.htm
https://www.glassdoor.es/Salaries/barcelona-qa-engineer-salary-SRCH_IL.0,9_IM1015_KO10,21.htm
https://www.glassdoor.es/Salaries/barcelona-qa-engineer-salary-SRCH_IL.0,9_IM1015_KO10,21.htm
https://www.glassdoor.es/Salaries/barcelona-qa-engineer-salary-SRCH_IL.0,9_IM1015_KO10,21.htm
http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://incompleteideas.net/book/bookdraft2017nov5.pdf
https://trello.com/
https://github.com/mwydmuch/ViZDoom/blob/master/doc/Types.md#gamestate
https://github.com/mwydmuch/ViZDoom/blob/master/doc/Types.md#gamestate
https://github.com/mwydmuch/ViZDoom/blob/master/doc/Types.md#gamevariable
https://github.com/mwydmuch/ViZDoom/blob/master/doc/Types.md#gamevariable
https://arxiv.org/abs/1511.06581

Appendix A

Planning

The length of this project is about four months, it started at the beginning
of February and it is supposed to be completed at the end of June. The
total amount of credits assigned to the project are 18 on which each credit is
equivalent to 30 hours of work, so in the end it is supposed to last 540 hours
which leads to 4.5 hours a day.

In the end problems have been faced so the defence of the project has
been postponed to October

In this section we will have a look at the requirements, different tasks
that will make up the project as well as the risk management and a Gantt
chart.

A.1 Resources

We can divide the requirements into three groups, Human resources, Hard-
ware and Software. Those are the following:

• Human: As for human resources we have the Director and Co-director
which will take care of the organization such as deciding the steps to
follow or control whenever a task is finished, also a programmer which
will be in charge of all of the coding required and the document writing.

• Software: The software that will be used in this project are Visual
Studio Code that will be the programming environment, GitLab as the
control version manager, Trello as the organizing tool and finally for
the communication Rocket.Chat and Discord.

47

• Hardware: The hardware that has been used for this project is a decent
laptop which contains a GTX 1070 mobile. At first we thought this
GPU wouldn’t be able to handle the training process and we would
require the use of TPU’s provided by Google, but in the end the laptop
has been enough, it has also been used for the writing of the document.

A.2 Task description

All of the tasks that made up the goals specified in the last chapter will be
explained and a certain amount of hours will be assigned to each one along
with an explanation about the time assigned and if it has any dependency
with another task.

A.2.1 Project management [T1]

This task is one of the most important because it lasts the whole project,
the first part of the task is done into a compulsory subject which is GEP,
the goal of this subject is to plan the whole project beforehand so afterwards
one can focus into the research or implementation of the project.

This task will be split into several sub-tasks, those are:

Context and Scope [T1.1]

It is required to give to the project a contextualization and an explanation
of the terms that will be used in the project so the reader can understand
what this project is about, the goal of the project, how the project will be
organized and a justification. This was done in 20 hours.

Planning [T1.2]

We are asked to define the different tasks that make up the project along
with an assignment of estimated hours and dependencies between them. It is
very important because if it is well organized there should not be any major
difficulty to complete the project in time. The time spent in this task has
been 12 hours.

48

Budget and sustainability [T1.3]

In this case an analysis of the cost of the project will be made, in this case
it is important because as powerful hardware will be required it may have
a big impact on the budget. It is estimated that 8 hours will be enough to
complete it.

Meetings [T1.4]

This subtask has been active throughout the project in order to check fin-
ished tasks or discuss different approaches to several problems, the meetings
involved the director and the co-director, around 10 hours of meetings have
been made.

Document Writing [T1.5]

Document writing is one of the most important tasks because the report
has to be well written and structured. This task has been active the whole
project, and we estimate that we have spent 90 hours.

Defense of the project [T1.6]

Once all the work is finished and the document has been written, there will
be a presentation on which we have to defend and explain what we have
achieved throughout the project, in order to prepare this presentation we
estimate that 20 hours will be used.

A.2.2 State of the art and research [T2]

This task focuses on acquiring the desired knowledge in order to create an
agent and apply explainability methods so we can investigate if similar results
can be achieved.

First of all, many books and reports about different topics must be read,
such as machine learning, reinforcement learning and Markov Decision Pro-
cesses. It will also require us to make a research on different explainability
methods in order to train a second agent. Finally we will have to look for an
environment that suits our interests.

This task has been active until the implementation of the explainability
techniques, at each step of the project we have had to look for information

49

in order to make sure everything is well coded. A total of 60 hours have been
spent during the task.

A.2.3 Creation of an agent [T3]

Once the research on reinforcement learning and different methods to create
agents finished it was the time to create the core of the project, the creation
of the agent, this task can be split into two:

Coding the neural network [T3.1]

In order to code our neural network we decided to start with a base code
which was provided by the developers of ViZDoom library, which was only
able to solve a simple scenario, we had to invest a lot of time trying to
understand how the code worked and also modify the neural network so it
could be able to solve the scenario we had selected. Otherwise we would
probably have to invest more than 50 hours which is the time we spent on
this task.

Training the agent [T3.2]

At first, due to our lack of experience in this field we expected that 5 hours
of training would be enough but in the end we have spent around 40 hours
because of the different approaches

A.2.4 Generation of predicates [T4]

This task is very important because it will allow us to create one of the bases
of the explainability process of the project which is the creation of a policy
graph through instrumentation of the code, as there are many ways of doing
this process it will require a lot of time to implement and test that it works
correctly, this task lasted 200 hours.

A.2.5 Create an algorithm for the Policy Graph [T5]

In this task we will have to create an algorithm that allows obtaining an ac-
tion from the policy graph by giving a state representation, at each iteration
of the generation of predicates this algorithm needs to be modified, it has
taken us around 180 hours.

50

A.2.6 Comparing the performance [T6]

This task focuses on obtaining data from the newly created agent from the
explainability methods by creating a code which is able to extract variables
that allow us to compare it to the original agent and achieve conclusions. We
have spent around 40 hours in creating the code and the analysis.

ID Task Time Dependency Resources

T1 Project Management 162 h - -
T1.1 Context and scope 20 h - PC
T1.2 Planning 12 h T1.1 PC
T1.3 Budget and sustainability 10 h T1.2 PC
T1.4 Meeting 10 h - PC
T1.5 Document writing 90 h - PC
T1.6 Defense of the project 20 h T6 PC
T2 State of the art and research 60 h - PC
T3 Creation of an agent 90 h T2 PC, GitLab, Visual

Studio Code
T3.1 Coding the neural network 50 h T2 -
T3.2 Training the agent 40 h T3.1 -
T4 Generation of predicates 200 h T3 PC, GitLab, Visual

Studio Code
T5 Create an algorithm for the MDP 180 h T4 PC, GitLab, Visual

Studio Code
T6 Comparing the performance 40 h T5 PC

Table A.1: Distribution of tasks

A.3 Risk management

In this section we will explain the different problems that have occurred
throughout the project and its implications.

At the start of the project we made a gantt chart in order to have an
estimation of the duration of each task. In our previous planning we had
almost two free weeks at the end in order to have some time to solve the
problems we could encounter.

51

We expected that three tasks could deviate from our estimation, those
are: the generation of predicates (T4), the creation of an algorithm for the
graph (T5) and the training of a second agent.

In the end we realized that we could unite the training of a second agent
to the comparison of the performance.

The remaining tasks have lasted at least 185 hours more which is longer
than the almost 50 hours we had as spare time.

Down below we will explain what has happened with every task and also
show the original gantt chart and an updated one.

• Generation of predicates (T4): This is the task that has hold us for
longer, the reason behind this overtime is that whenever we try to
extract a behaviour several iterations of representations are needed,
also if we decide to give up on one behaviour because is not clear
enough we need a completely different representation.

• Algorithm for behaviour graph (T5): This task is highly related to the
previous one (T4). There are several ways of representing the state of
the game in order to try to mimic a given behaviour, in our case we have
tried a integer vector representations and string vectors representations.
The advantage with integer vectors is that we can rely on one function
to compare and look for similar states by using cosine similarity but
when it comes to string vectors each time we change the strings or the
structure we need to code a new comparison function. Using string
representations makes it easier to understand what the agent is doing
because we can create more specific states.

52

Figure A.1: Old Gantt diagram. Self made with GanttProject

53

Figure A.2: New Gantt diagram. Self made with GanttProject

54

Appendix B

Budget

In this chapter we will discuss the cost or budget that would be required for
the realization of the project. Costs can be split in several sections, staff
costs, amortization, contingencies and incidentals.

B.1 Staff costs

First of all we must present the different roles that will be necessary for this
project. A project manager is responsible for the planning of the project,
also a developer will be required because the core of the project is to create
a reinforcement learning agent so programming will be essential, finally the
last role would be a tester so it can verify the correctness of the agent. Due
to the pandemic the use of a work space won’t be necessary for safety reasons,
we specified in section 2.5 that weekly meetings would be done to control the
flow of the project so all of work can be done from home.

Role Salary SS Cost
Project manager 20.26 6.08 26.34

Developer 12.2 3.66 15.86
Tester 16.1 4.84 20.94

Table B.1: Table of the staff salary. Salary from [23][22][24]

55

ID Task Time Proj. Manager Developer Tester Cost

T1 Project Management 162 h 162 h - - 4214.4e
T1.1 Context and scope 20 h 20 h - - 526.8e
T1.2 Planning 12 h 12 h - - 316.08e
T1.3 Budget and sustainability 10 h 10 h - - 210.72e
T1.4 Meeting 10 h 10 h - - 263.4e
T1.5 Document writing 90 h 90 h - - 2370.6e
T1.6 Defense of the project 20 h 20 h - - 526.8e
T2 State of the art and research 60 h 5 h 50 h 5 h 1029.4e
T3 Creation of an agent 90 h - 85 h 5 h 1437.56e

T3.1 Coding the neural network 50 h - 55 h - 793.0e
T3.2 Training the agent 40 h - 30 h 5 h 644.56e
T4 Generation of predicates 200 h - 180 h 20 h 3273.6e
T5 Create an algorithm for the MDP 180 h - 165 h 15 h 2931e
T6 Comparing the performance 40 h - 40 h - 634.4e

Total Cost 732 h 167 h 520 h 45 h 13520.35e

Table B.2: Final task cost. Self made.

56

B.2 Hardware costs

As we specified in the previous section we have been using a decent laptop in
order to code, train and write the report of the project, the cost of this laptop
was 1400e. As hardware cost we will have to calculate the amortization of
the laptop.

B.3 Amortization

In our case the amortization comes from the hardware used, as we are rent-
ing a service in order to train the only amortization is the laptop used for
programming and writing, also as the software we are using is open source
there is no amortization. So the formula for calculating the amortization is
the following.

Amortization = productPrice ∗ monthsUsed

expectedLifeT ime

So the amortization will be 1400 ∗ 8.5
40

= 297, 5e.

Source Cost
Laptop 297,5e
Total 297,5e

Table B.3: Hardware costs. Self made

B.4 Contingencies

Throughout a project unexpected events may appear and those events can
have an impact in the cost, having a contingency budget is necessary to cover
them in case of need. A common value used in software projects is a 15%
of the total cost. This is the value we calculated at the start of the project
with an estimated cost of 10803.51. Contingency cost = 10803.51 * 0.15
= 1620.53e

57

B.5 Incidentals

In section 3.3 we specified two different risks we could face on the project,
also we had almost two weeks which corresponds to 54 hours of work, in one
hand if programming bugs or delay appear the developer would take those
hours as work, on the other hand training times may vary if the results are
not what we desire, due to renting this can have an impact on the budget.
We estimate that we have a high chance that more training will be necessary
and less likely more hours of programming.

Problem Hours Price Chance Cost
More training 35 h 73.5e 50% 36.75e

More programming 40 h 634.4e 30% 190.32e
Total 227.07e

Table B.4: Cost of the possible incidentals. Self made.

B.6 Total cost

In the chart below we have a summary of all of the costs calculated previously

Source Cost
Staff cost 10115.72e

Hardware cost 119.05 e
Contingencies 1620.53 e

Incidentals 227.07 e
Total 12082.37 e

Table B.5: Hardware costs. Self made.

B.7 Management control

Once the budget has been calculated we must have a form of controlling the
budget and amortization deviations, in order to do so after a project stage
has been completed we will calculate both deviations.

58

In order to calculate the deviations we just need to subtract the real
cost of a task from the estimated, if we get a positive result we are below
the estimated meaning we have spare budget that can be assigned to trou-
bleshooting but in case the result is negative we will have to take funds from
the contingency budget.

To calculate the real cost at each stage we will have to check if any price
has changed and re-calculate.

As we showed in the previous chapter we had to face some delay with the
most critical tasks, now we will calculate how much we have had to spend in
order to complete those tasks and check if our contingency plan has covered
this expense.

At this point we have deviated 135 hours from the original planning, 35
from those hours have come from training. The average price for each kWh
is around 0.23 e. The power draw of the laptop when training is close to
230 Watts, so cost of more training is 35 ∗ 0.23 ∗ 230

1000
= 1.85e, this cost is

almost negligible
Now the remaining 100 hours are from our developer, at the time of

writing the average wage has not changed.
The cost of more hours for the developer is 15.86 ∗ 100 = 1586e. In the

end we have to add 1587.85 eto the total cost of our project, because we set
a 15% as a contingency which is equivalent to 1620.53e, which means we are
still within the budget we calculated.

59

Appendix C

Sustainability

Before doing the survey I already knew the existence of the three different
dimensions that make up sustainability, environment, social and economic,
but my knowledge was not as high as expected regarding the social dimension.

While the project was being organized one of the goals was to optimize
the resources that could be used which has relation with the environment
and the economic dimensions.

C.1 Environmental dimension

In regards to the environmental dimension the computer we are using for
the writing and coding is one we already had so there is no more potential
electronic waste, also because the computer is a laptop its power consumption
is lower than a desktop so the amount of electricity consumed is lower.

One big impact that this project may have on the environment is the
computation required to train the agents that will be created. In order to
train those agents high end hardware must be used and this kind of hardware
requires a huge amount of energy so our effort will be to invest more time in
programming so less training time will be required.

C.2 Social dimension

Since the beginning of the degree I knew the existence of artificial intelligence
which was a topic which had my attention and when i discovered what ma-
chine learning was it fascinated me, the capability to generalize a task with

60

a series of calculations made me want to take the computation mention and
to look for a project within this area. I think this is a great opportunity to
learn from talented people that work in this field.

As for the utility that this project can offer, once it is finished if positive
results are achieved it will allow researchers to understand the behaviour
of their agents and networks making possible the understanding of different
strategies in tasks that we assumed that could only be solved in a specific
way.

C.3 Economic dimension

In my opinion the calculation of the budget has been as realistic as possi-
ble, the only problem we may face are the training hours. I think that i
underestimated them a bit, but nothing else from there.

As this is a research project and an extension of a PhD project it is quite
hard to estimate the economic impact it may have. One benefit of knowing
the behaviour of an agent or network could be that once a similar task has
to be faced there is no need to invest resources into solving the problem from
scratch.

The major problem regarding this type of project is that is very hard
to improve the economic issues because improving the training speed which
would involve less economic resources implies using better hardware which is
more expensive and less energy efficient

61

Appendix D

Laws and regulations

In this section we will be explaining if our project may have a conflict with
some regulations or laws.

In April 2021 the European Commission posted a document which is a
proposal for regulating the use of high risk AI systems in the European region
[1][6], even if those regulations are not in force we should take a look at them
to check if our project could be under those regulations.

The EU has four categories for the risk classification of AI systems, un-
acceptable, high, limited and minimal [14].

For a system to be classified as high risk it needs to be used in the following
cases:

• Critical infrastructures: cases where the life or health of humans could
be affected

• Educational or vocational training: cases where the system could in-
terfere with the access to studies or formations

• Safety components of products

• Employment procedures

• Essential private and public services

• Law enforcement that may interfere with people’s fundamental rights

• Migration, asylum and border control management

• Administration of justice and democratic processes

62

The requirements for being a limited risk system is if the machine is
interacting directly with its users, in this case they must be notified.

Finally there is the group where our project belongs, the minimal risk, to
be in this group a system must not be used in any of the previous situations, in
the case of being minimal the project must obey the Charter of Fundamental
Rights and the General Data Protection Regulation.

63

	Introduction and context
	Introduction
	Extent
	Main goal
	Split goals
	Requirements
	Risks and problems

	Stakeholders
	Research Objectives

	State of the art
	Terms and concepts
	Machine Learning
	Reinforcement Learning
	Neural Networks
	Convolutional Networks
	Agent
	Markov decision process
	Policy

	Environments
	Explainability methods
	Justification
	Methodology
	Tools

	Implementation
	VizDoom environment
	State representation
	Agent creation
	Training process
	First approach
	Second approach

	Policy graph
	Health state
	Simple Wall 1.0
	Simple Wall 2.0
	Creation of the Policy Graph
	Usage of the Policy Graph

	Results
	Methodology of evaluation
	Analysis
	Overall sight
	Seed analysis

	Final thoughts

	Conclusions
	Research questions
	Experience used in the project
	Experience gained from the project

	Bibliography
	Planning
	Resources
	Task description
	Project management [T1]
	State of the art and research [T2]
	Creation of an agent [T3]
	Generation of predicates [T4]
	Create an algorithm for the Policy Graph [T5]
	Comparing the performance [T6]

	Risk management

	Budget
	Staff costs
	Hardware costs
	Amortization
	Contingencies
	Incidentals
	Total cost
	Management control

	Sustainability
	Environmental dimension
	Social dimension
	Economic dimension

	Laws and regulations

