
Demystifying the Characteristics of High Bandwidth Memory
for Real-Time Systems

Kazi Asifuzzaman∗, Mohamed Abuelala†, Mohamed Hassan† and Francisco J Cazorla∗
∗Barcelona Supercomputing Center, Spain

†McMaster University, Canada

Abstract—The number of functionalities controlled by software on
every critical real-time product is on the rise in domains like automotive,
avionics and space. To implement these advanced functionalities, software
applications increasingly adopt artificial intelligence algorithms that
manage massive amounts of data transmitted from various sensors.
This translates into unprecedented memory performance requirements
in critical systems that the commonly used DRAM memories struggle
to provide. High-Bandwidth Memory (HBM) can satisfy these require-
ments offering high bandwidth, low power and high-integration capacity
features. However, it remains unclear whether the predictability and
isolation properties of HBM are compatible with the requirements of
critical embedded systems. In this work, we perform to our knowledge
the first timing analysis of HBM. We show the unique structural and
timing characteristics of HBM with respect to DRAM memories and
how they can be exploited for better time predictability, with emphasis on
increased isolation among tasks and reduced worst-case memory latency.

I. INTRODUCTION

Advanced software functionalities, like autonomous operation,
build on complex Artificial Intelligence (AI) algorithms [1], yield
unprecedented memory performance requirements that corresponds to
the need to collect enormous amounts of data coming from sensors
(e.g. cameras, LiDARs and radars) that must be processed at high
rates. The bandwidth requirement of these applications have reached
60GB/s, and advanced applications are projected to require from
400GB/s to 1TB/s [2]. However, the scaling of the off-chip memory
bandwidth has not been able to keep up with the increased processing
capabilities. Currently, Graphics Double Data Rate (GDDRx) and
Dynamic Random Access Memories (DRAMs) are used to provide
high bandwidth, but they are still limited due to the narrow interface.
Moreover, GDDRx uses high data rate to provide high bandwidth
which comes at a considerable power cost [3].

High Bandwidth Memory (HBM) comes as an alternative im-
plementing wider channels (128 bits) providing bandwidth up to
1TB/s [2], while consuming lower power and having higher capacity
in comparison to GDDRx. Also, unlike the other variant of 3D-
stacked DRAM — Hybrid Memory Cube (HMC), HBM is adopted as
a JEDEC standard, implements much wider data bus and resides on
the same silicon interposer as the processing unit. HBM, common in
GPUs, FPGA-CPUs and System on Chips like the Xilinx UltraScale+,
is better equipped to handle increased memory requirements of GPU
and accelerator-based architectures [4], [5]. A recent study suggests
the combination of low power consumption and high bandwidth make
this category of memory ideal for embedded systems as well [6].

Besides the increasing average-performance requirements, applica-
tions used in automotive and avionics carry real-time requirements,
where the total worst-case execution time (WCET) of all tasks should
never exceed their respective dedicated deadlines. Therefore, the
consolidation of HBM in critical systems requires careful analysis of
its timing predictability properties with emphasis on timing isolation.
This enables the safe execution of mixed-criticality software and
predictable and tight worst-case memory access latency so that it can
be shown that the benefits of HBM in average memory performance
remain for worst-case memory performance.

To study the main memory system from the real-time perspective,
two system components need to be analyzed: the memory device
itself and the on-chip memory controller managing accesses to the
device [7]–[9]. In this first analysis of HBM from a real-time systems
perspective, we focus on the HBM device to capture its architectural
characteristics and functionalities that can affect timing predictability
such as device access behavior, timing properties and performance
metrics. Additionally, by focusing on the device, the analysis and
observations we provide in this paper are general and not limited to
a specific scheduling technique deployed by the memory controller.
Our analysis leads to key insights as a first essential step opening
the door towards designing predictable HBM memory controllers.
Overall, we make the following contributions.

1) We analyze HBM’s device structure and the changes it brings
to its functional and timing behavior compared to the DRAMs.
This leads us to identify unique features of HBM from the latency-
guarantee perspective that are not present in other DRAM-based
memories. These are articulated as a set of observations (Section II).

2) We analyze the impact of the main HBM features to increase iso-
lation or decrease worst-case latency (WCL). To that end, we develop
an HBM specific latency formulation for certain HBM features and
a set of illustrative time diagrams comparing DRAM and HBM. Our
analysis shows that HBM can indeed represent a promising memory
protocol for real-time embedded systems (Section III).

3) We perform an empirical comparison of the latest HBM stan-
dard (HBM2) and DDR4 DRAM with the state-of-the-art DRAM-
Sim3 [10] simulator integrated with MacSim [11]: a detailed cycle-
accurate processor simulator (Sections IV-B and IV-C). Our compar-
ison assesses overall average performance, worst-case performance,
and isolation properties using a wide set of representative as well as
synthetic benchmarks and kernels.

4) We develop a timing simulation model derived from the JEDEC
standards of HBM2 and DDR4 [12], [13]. The purpose of the
model is twofold. It allows us to execute synthetically generated
traces to further stress HBM2 and DDR4 differences. And it allows
us to assess all HBM features including the recently introduced
ones in the HBM2 standard [12] (such as pseudo-channels), which
are not currently implemented in details in state-of-the-art memory
simulators (Section IV-D). We release this model as open-source [14].

The rest of this paper is structured as follows. Section II analyzes
the structural organization of HBM. Section III analyzes HBM’s fit to
real-time domain. Section IV presents experimental results. Section V
describes the most relevant related work and Section VI presents the
main conclusions of our work.

II. HBM STRUCTURE AND FEATURES

As the dominant memory technology for several decades, extensive
information about DRAM is publicly available making it easier to
analyze. This includes the real-time domain with well-documented
studies summarizing DRAM analysis and proposals in this field [8],
[15], [16]. In contrast, HBM has recently been adopted as an industry
standard by JEDEC [12]. Therefore publicly available knowledge

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/ICCAD51958.2021.9643473



Fig. 1: Organization of DRAM (left) and HBM devices (right).

base of HBM is not nearly as mature as DRAM, making its real-
time analysis very challenging. Since the core of HBM uses DRAM
chips as its basic building blocks, we start with a brief background
about DRAM, its commands, and associated timing constraints.

A. DRAM Background

DRAM is structured in independent channels. Each channel can
have one or more ranks, and each rank has a number of banks (left
side of Figure 1). Each DRAM bank is a 2-D matrix of memory
cells comprising rows and columns. Each bank also has a distinct
row buffer caching the most recently accessed row. Accesses to
DRAM are performed in the form of DRAM commands. In particular,
an Activate command (ACT) fetches an entire row from cells into
the row buffer, then a Column Address Strobe command (CAS) is
used to perform the read (RD) or write (WR) operation. If the row
buffer holds a different row than the requested one, a precharge
(PRE) command is needed to write back the old row to the cells,
before activating the new one. The JEDEC DRAM standard mandates
specific timing constraints between different commands that must be
honored to ensure correct operation. Table I describes the different
constraints, while Figure 2 describes the most relevant constraints.
For instance, once a read (write) command is issued, tRL (tWL)
cycles must elapse before the start of transferring the associated data.

B. HBM Device Organization

HBM organizes DRAM dies into stacks (Figure 1 right), in contrast
to the planar layout of conventional DDRx DRAMs (Figure 1 left).
This leads to a completely different structure and organization of
HBM, enforcing significant changes in operation sequence and timing
behavior in contrast to DRAM. These novel properties and features
of HBM urge close analysis of the memory standard to determine
what advantages HBM can offer for specific computing domains.
The basic structure of HBM entails a base logic die, on which several
(usually four or eight) DRAM core dies are stacked. The logic die
accommodates external communication interface of the stack while
stacked DRAM core dies are powered and connected to the logic die
by Through Silicon Vias (TSVs). TSVs provide internal bandwidth
to satisfy the external I/O pin bandwidth of the stack. A DRAM
core die accommodates two independent channels, each of which are
connected to the logic die with 128 non-shared TSV I/Os.

A standard HBM stack with four/eight dies totals 1024 TSV I/O
connections to the logic die from its DRAM dies, see in Figure 1.

A W
DATA

P A
tRCD tWL

tB
tWR tRP

R

tRTW

R

tWTR
DATAtRLBNK1

BNK0

tRAS
tRC

Fig. 2: DRAM commands and timing constraints.

TABLE I: JEDEC DRAM timing description [17]. Values are shown
in cycles for DDR4 and HBM both running at 2133MHz. S/L
refers to Short (different bank group) and Long (same bank group),
respectively.
Parameter Description HBM DDR4 Parameter Description HBM DDR4
tRCD ACT to CAS delay 14 15 tRTP (S/L) Read to PRE Delay 4/6 8/8
tRL RD to Data Start 14 15 tCCD(S/L) CAS to CAS delay 1/2 4/6
tWL WR to Data Start 4 11 tRRD ACT to ACT (diff bank) 6 6
tRP PRE to ACT Delay 14 15 tRTW RD to WR Delay
tRAS ACT to PRE Delay 34 36 tWTR (S/L) WR to RD Delay 6/8 3/8
tWR Data end of WR to PRE 16 16 tFAW 4 bank activation window30 32

These corresponds to the stack’s external 1024 bit wide I/O interface
that connects to the computing unit via interconnect circuitry (i.e.
memory controllers) [18] (Observation 1). One processing unit can
be connected to multiple HBM stacks as depicted in Figure 3a
(Observation 2). DRAM on the other hand usually has an interface
of 64 bit. This is because the DRAM’s chip width is usually 4,
8, or 16 bit as stated in the DRAM chip datasheets. A DRAM
channel or DIMM is usually composed of rank(s) where each rank
has 8-chips totaling 64bit [7]. Each channel of the HBM interface
is independently clocked and has its own command / data interface.
Channels do not need to be synchronous to each other (Figure 3b and
captured by Observation 3). Each channel features several DRAM
banks. However, their organization and access granularity is different
than of DRAM’s. As stated in Observation 4, unlike DRAM, HBM
is not organized into ranks. Instead, each HBM channel has a
number of banks (e.g. 8 or 16), and each bank is divided into
half banks [19] [20]. Each half, under the so called legacy-mode,
produces 64 bits, so that a full bank produces 128 bits in each access
(having the column width of 128 bits). Each set of half banks have
64 dedicated I/Os, see Channel 7 at Core Die 3 in Figure 3c. For
DDR DRAMs, when a specific memory location is fetched via row,
column and bank address, each chip across the rank supplies either
4, 8, or 16-bit (column width) data from the same location (based on
the device type, which is so-called x4, x8, or x16). Hence, assuming
8 chips, this results in a 64 bit width per rank. In contrast, a single
access to an HBM (logical) bank supplies 128 bits (Observation 5).
In addition to its bandwidth benefits, we show in Section III that this
feature can also help in reducing worst-case memory access latency.

Observation 1. HBM offers wider connections to the processing unit
(1024 bits) with respect to DRAM (e.g. 64 bits).

Observation 2. A processor can be connected to several independent
HBM stacks residing on the same silicon interposer.

Observation 3. HBM channels, even those in the same core die,
operate independently via private data and address/control signals
and buses. Each HBM channel is connected to the logic die via a
non-shared 128-bit TSV.

Observation 4. While HBM is based on DRAM banks, unlike DRAM
it is organized into channels, pseudo channels, (logical) banks and
half (physical) banks.

Observation 5. In DDR3/4 the access granularity is either 4, 8, or
16 bits per physical bank and 64 bits for the DRAM rank, while in
HBM each bank supplies 128 bits.

C. HBM’s Core Memory Cells

Although HBM has a completely different structure w.r.t. conven-
tional DRAMs, it still uses conventional DRAM cells as its memory
storage core, i.e., HBM banks are organized (and accessed) the
same way as in DRAMs. Accordingly, all commands have the same
associated timing constraints as in conventional DRAM, which are
dictated by the JEDEC standard both for DRAM [17] and HBM [12].



Processing unit

2GB HBM 
Stack

2GB HBM 
Stack

2GB HBM 
Stack

2GB HBM 
Stack

1024
I/O

1024
I/O

1024
I/O

1024
I/O

Silicon Interposer

Base Logic Die

Channel 1Channel 0

Channel 3Channel 2

Channel 5Channel 4

Channel 6
Pseudo Channel Mode

Pseudo CH 0 Pseudo CH 1

B0 B1

B2 B3

B4 B5

B6 B7

64 I/O

B0 B1

B2 B3

B4 B5

B6 B7

64 I/O
ADD
CMD

Channel 7
Legacy Mode

B0 B1

B2 B3

B4 B5

B6 B7

64 I/O

B0 B1

B2 B3

B4 B5

B6 B7

64 I/O
ADD
CMD

B0 half 
Bank

B0 half 
Bank

Core Die 3

(a)

(c)

P
ro

ce
ss

in
g 

un
it

H
B

M
 B

as
e 

Lo
gi

c 
D

ie128 bit data bus

Row command bus

Column command bus

Row address bus

Column address bus

... x8

(b)

Fig. 3: (a) HBM stacks; (b) Per channel data/bus connections; (c)
Internal structure of a 4-die HBM stack with arrangements of banks
for pseudo channel mode (Channel 6) and legacy mode (channel 7).

D. Reduced Column-to-Column Timing

Another interesting characteristic of HBM is that, its tCCD is
smaller than for DRAM’s. tCCD is the timing of minimum burst
duration, or the column-to-column timing constraint (i.e. minimum
time between column operations). tCCD is mainly constrained by
the time required to transfer the data on the data bus. In DDR
DRAM, with a burst length of BL = 8, it requires BL/2 = 4
cycles to transfer the data from one access (i.e. one CAS command).
Accordingly, tCCD = 4 is the minimum possible value to ensure
correct operation. On the other hand, since HBM does not have
BL = 8 and instead it supports up to BL = 4, we observe that
tCCD = 1 or 2 in most HBM devices (depending on using either
BL = 2 or BL = 4). This leads to Observation 6.

Observation 6. Compared to DRAM, HBM has a reduced tCCD.

E. Pseudo Channel Mode

A unique feature of HBM is that HBM channels can be operated in
two modes — legacy and pseudo channel. The former corresponds to
the conventional operation mode as described in the previous section.
The latter, which is provided in the latest HBM standard (also known
as HBM2) [21], further divides each channel into two sub channels
formed with each set of half banks and 64 I/Os. This is illustrated
for Channel 6 and Core Die 3 in Figure 3c. Pseudo channel mode
requires the burst length (BL) to be 4, providing 64 × 4 = 256 bit
or 32B per read/write command for each pseudo channel.

Observation 7. In HBM2, a single memory access (i.e., CAS
command) provides a 32B of data using BL = 4.

Pseudo channels offer some degree of isolation so that accesses to
the same channel but different pseudo channel have limited impact
on each other. Assuming that each pseudo channel is provided to a
different task would also limit the inter-task contention effects.

Observation 8. Pseudo channels are semi-independent to each other:
while they share the row and column command buses and clock
inputs, they can decode and execute commands independently.

F. Dual Command Interface

Driven by cost constraints, DRAM adopts a shared column and
row address pins. On the other hand, with its wide I/O interface,
HBM deploys separate column and row address pins. Leveraging
this architecture, HBM employs dual address/command interface that
allows column-related commands (i.e. read and write) to be issued
simultaneously with the row-related commands (ACT and PRE) [22].

C C C C

DATA DATA DATA DATA

𝑊𝐶𝐷

𝑡𝐶𝐿
𝑡𝐵𝑈𝑆

𝑊𝐶𝐷 𝑊𝐶𝐷 𝑊𝐶𝐷

request
arrival

C C

DATA DATA

𝑊𝐶𝐷 𝑊𝐶𝐷

request
arrival

Fig. 4: Effect of bank partitioning.

Observation 9. HBM has dedicated pins for column address that are
separate from row address pins. Hence, read/write commands and
addresses can be issued concurrently with row ACT/PRE commands.

Despite employing separate row/column address and command
bus, HBM needs to enforce usual DDR timings for ACT, RD/WR,
PRE since these timing constraints are imposed by the internal physi-
cal structure of the memory cells, which is still DRAM-based. Hence,
this does not change the timing of individual transactions (ACT,
RD/WR, PRE). However, this feature can reduce address/command
bus conflicts among different transactions as we explain in Section III.

G. Implicit Precharge

In DRAM standard, a row in a bank can only be activated
after the previously open (active) row has been closed (precharged).
Under DRAM close-page protocol, this translates into the sequence
ACT-RD/WR-PRE. Under open-page if the row to access is open
RD/WR commands are issued, otherwise it is required to issue
PRE and ACT. Contrarily, when operating in pseudo-channel mode,
HBM controller can ignore the PRE command and issue the ACT
directly by leveraging the implicit precharge feature (Observation 10).
However, it is important to know that all associated ACT-to-PRE and
PRE-to-ACT constraints yet have to be satisfied.

Observation 10. In pseudo channel operation HBM allows a subse-
quent ACT command to be issued to another row in the same bank
without closing the previous row. In this case, the DRAM core itself
will issue an implicit PRE command to close the first row before
activating the second one.

III. HBM FOR REAL-TIME SYSTEMS

In this section, we show how the main observations made on
the previous section about HBM operation can be leveraged to (i)
either increase isolation properties; and/or (ii) reduce the worst-case
memory latency (WCL) bounds compared to existing state-of-the-
art commodity-DRAM approaches. In each subsection we describe
each feature assuming it is the only difference between HBM and
DRAM. By default all timing parameters remains the same as DRAM
except the ones being analyzed in that subsection. This allows to
independently analyze the benefit of each feature as well as simplifies
the discussion. Of course, the benefit of different features combine,
which we analyze experimentally in Section IV.

A. HBM degrees of isolation

HBM can be leveraged to reduce contention among tasks in
memory. We identify several levels of isolation from HBM stacks
(Observation 2), HBM channels (Observation 3) and two pseudo-
channels per channel (Observation 8). They can be smartly exploited
to map the data/instructions of concurrently running tasks to reduce
their contention interference as follows. 1) Stack isolation. At the
top level, requests sent to different HBM stacks suffer no inter-task
contention. This is so as each HBM stack operates independently. 2)
HBM (logical) bank isolation. Similar to regular DRAM systems,



Fig. 5: Reduced tCCD effect.

HBM enables bank isolation so that requests from different tasks
can be mapped to non overlapping banks. 3) Half (logical) bank
isolation. As per Observation 8, pseudo-channels enable request to
be sent to different half logical banks (also referred to as physical
banks). Pseudo channels offer a reduced degree of isolation compared
to channels as they share the row/column address and command
buses and clock inputs. Each pseudo-channel has its own 64-bit
data interface to the TSV. These isolation levels can be leveraged
from the software [23] to increase predictability. Comparing high-
level organizational structure, HBM stacks do not exist in traditional
DRAMs (since the latter is not 3D stacked); HBM channels match
DRAM channels; DRAM ranks do not exist in HBM; HBM bank iso-
lation matches DRAM bank isolation, and HBM half-bank isolation
(pseudo-channels) is not present in DRAM.

B. Reconciling the Isolation and Bandwidth Trade-offs

A common approach when using DRAMs for real-time systems is
to partition banks among different requestors to minimize interfer-
ence [8], [24], [25]. The main issue with this approach is that one
request can be serialized into multiple accesses to serve the requested
data. For instance, under bank partitioning, for the common DRAM
data bus width of 16 bit [7] and a maximum burst length of BL = 8,
a 64B cache line will require 64/(8 ∗ 2) = 4 accesses to serve
the requested data from a single bank. For WCL analysis purposes,
the 64B request will suffer an interference delay of 4 × WCDAcc

from other requestors, where WCDAcc is the worst-case interference
delay suffered by a single access, see Figure 4(top) 1. Lemma 1
generalizes this delay.

Lemma 1. Under bank partitioning where each core is assigned
BC private banks, a request with a data size of Y bytes targeting a
DRAM with a data bus width of cw bits and a burst length of BL
suffers a total WCD due to interference from other requestors that
can be computed as shown in Equation 1 [8], [26].

WCDtot
DRAM =

Y

BL×BC × cw/8
×WCDAcc (1)

Note that as Lemma 1 shows, the number of transferred bytes
depends on how many banks the request is interleaved across
(Equation 1) [8], [15]. We make the following important remarks
about Equation 1. 1) cw in modern DRAMs is limited to 4, 8, 16,
or 32 bits. 2) BL can be either 4 or 8. 3) BC is the number of
banks assigned to the requestor, which is upper bounded by the total
number of available banks. In DDR3, a rank has a total of 8 banks,
while in DDR4 it increased to 16. And 4) the value of WCDAcc

depends on the memory controller architecture [8]. For HBM, we
build on Observation 1, 5, and 7 to tighten the WCD in Lemma 1.
Observation 7 is based on the fact that each pseudo channel in HBM
has a bus width of 64 bit (8 bytes). A BL = 4 results in 32B
per access. Based on Observation 7, HBM can be utilized to deploy

1‘A’, ‘C’ and ‘P’ refers to ACT, CAS and PRE commands respectively; and
the following number, if any, indicates the bank. ‘D’ represents data burst.

(a
) 

D
R

A
M

B
0 A

0
C
0

P
0

P
0

A
0

C
0

B
x C

1
A
2

P
3

P
4

P
5

P
6

C
1

D D

(b
) 

H
B

M
2

 (
A

C
T 

w
it

h
 P

R
E)

B
0 A

0
C
0

A
0

C
0

B
x C

1
A
2

P
3

P
4

P
5

P
6

C
1

D D

cy
cl

es 1 1
6

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
7

7
4

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

Fig. 6: HBM Internal PRE feature and its effect on latency.

bank partitioning to provide isolation among different requestors,
while mitigating the effects of the reduced interleaving. To illustrate
this observation, Figure 4(bottom) presents the same example used
previously in DRAM but using HBM instead. Since HBM provides
32B per single access, a 64B cache line size will consume two
accesses. This reduces the total WCD suffered by a memory request
to half of the DRAM’s case (compared to DRAM’s column width of
16 bits).

Lemma 2. Under bank partitioning scheme where each core is
assigned a single private bank, a request with a data size of Y bytes
targeting HBM suffers a total WCD due to interference from other
requestors that can be computed as WCDtot

HBM = Y/32×WCDAcc

C. Reducing CAS Latency

One of the main components of the WCD is the CAS latency [23],
[27], defined as the latency affecting open requests targeting data
available in the row buffer. For a sequence of NOP row-open requests
of same type (and hence composed of NOP CAS commands), the
total access latency of the sequence is LCAS = (NOP−1)×tCCD+
tCL + tBUS, where tCL is the time between the CAS command
and the start of its corresponding data transfer, while tBUS is the
required time to transfer the data (= BL/2). For this CAS latency,
HBM (Observation 6) offers a significant advantage over regular
DRAMs. This is because HBM has tCCD = 1 or 2 compared to
tCCD >= 4 for DRAM. Accordingly, HBM can reduce the CAS
latency component to at least half of its DRAM value. Figure 5
illustrates this by showing a sequence of three consecutive CAS
commands. In case of DRAM (Figure 5a), tCCD = 4, which leads
to a total of 31 cycles of service time of the sequence. In contrast,
HBM (Figure 5b) with tCCD = 2 services the same sequence in
only 21 cycles. In both scenarios we assume tCL = 15 (recall that
we keep DRAM parameters except the one being analyzed).

D. Reducing Bus Conflicts

Implicit Precharge. Per Observation 10, HBM implements an
implicit precharge that allows the controller to issue an ACT com-
mand to a bank while another row is already active. The internal
circuitry of HBM device takes care of precharging the open row and
maintaining correct operation. Figure 6 captures how this feature can
lead to a reduced memory access latency by eliminating the PRE
bus conflict. Each scenario shows three rows corresponding to the
address/commands sent to of Bank0 (row1); address/commands sent
to the other banks (row2); and the data over the bus, respectively.
The scenario assumes that Bank0 has opened a row with the ACT
command at cycle 1 and accesses it at cycle 16. While this row
is open, another request at cycle 37 arrives to the same bank
but different row. Hence, it has to close the open row by a PRE
command before accessing the requested row. The PRE command



at cycle 37 already satisfies the intra-bank constraint of CAS-to-
PRE. Additionally, PRE commands do not have associated inter-
bank constraints. Hence, it can theoretically be issued immediately
to the DRAM device. However, there are other ready commands to
the remaining 7 DRAM banks (C1, A2, P3, ... in the Figure). This
delays the PRE command by 7 cycles to cycle 44. In this case, we
say that the PRE command suffered a bus conflict delay (this is why
it is shown in orange at cycle 37 indicating that it was not issued).
For the HBM case, the controller does not need in the first place
to issue that PRE command at cycle 37. It only needs to issue the
ACT command after satisfying all timing constraints, namely, tRAS
(36 cycles) and tRP (15 cycles). So, the next ACT command occurs
at cycle 52. That request finishes at cycle 85 compared to 92 for
the DRAM case. Again note that all timings are DRAM based, e.g.
single-cycle ACT, other than the particular features analyzed.

Dual Command Bus Since the Implicit Precharge feature helps in
removing the need to issue the PRE command, and hence eliminates
its associated bus conflict delays, it remains to be discussed the bus
conflicts in ACT and CAS commands. We now discuss how the
dual command/address buses (feature from Observation 9) can help
in eliminating these conflicts by an illustrative example. Figure 7
draws a scenario in which several ACT commands are sent to the
memory device (namely to Bank 0, 1, and 2). Concurrently, Bank3
has multiple requests to the same open row that happens to arrive
at the same time when the ACT commands to other banks become
ready. Assuming that ACT commands have higher priority than CAS
commands, each of the CAS commands to Bank3 has to be delayed
by one cycle due to the command bus conflict. Note that a similar
scenario would occur if CAS commands have higher priority, but
in that case the ACT commands are the ones that are going to be
delayed and hence suffer the bus conflict. On the HBM case, on
the other hand, none of these conflicts occur since CAS and ACT
commands can be issued simultaneously.

E. Reducing ACT Latency

One of the largest DRAM timing constraints affecting the WCD is
the four-bank window constraint, tFAW . No more than 4 banks can
be activated in a rank within a tFAW time window. Figure 8 draws
an illustrative example of 8 requests targeting different banks. When
a single-rank DRAM is used, Figure 8a, the first four ACTs (A0–A3)
are issued separated by the tRRD constraint, which is 6 cycles in
the used DRAM example. However, the fifth ACT command cannot
be issued until the tFAW = 32 constraint is satisfied. This causes
the idle gap in the data bus between cycles 53 and 62 in Figure 8a.
Hence, the sequence of the 8 requests finishes at cycle 84.

Intuitively, using a DRAM with more than one rank and interleav-
ing the ACT commands among them solves the tFAW effect on the
memory delays. While it is true that the tFAW constraint does not
apply to ACTs across ranks, rank interleaving in commodity DRAMs
is a source for another delay that can result in a total suffered delay
larger than the one added by the tFAW . This is so as the DRAM
standard mandates that data transfers from different ranks has to be
separated by at least tRTR cycles. The tFAW constraint in the
single-rank case adds an extra delay of tFAW − 4 × tRRD. This
equals to 32−24 = 8 cycles to the ACT commands in our used DDR
device. On the other hand, the tRTR constraint in the dual-rank case
can add a delay of 7× 2 = 14 cycles between the CAS commands
compared to the single-rank case. Overall, this is a trade-off between
ACT latency (tFAW ) and CAS latency (tRTR).

In contrast to commodity DRAMs, HBM has no concept of ranks
(Observation 4). Instead, it introduces the pseudo channel concept,

where each channel can be divided into two pseudo channels as
explained in Section II. ACTs targeting two different pseudo channels
do not have to conform to the tFAW constraint, while ACTs to the
same pseudo-channel have to; this constructs our next observation.

Observation 11. HBM’s large tFAW constraint does not apply to
ACT commands targeting different pseudo channels.

Unlike accesses to different ranks in DRAMs, there are no timing
constraints that enforce a gap between data transfers from two pseudo
channels (Observation 3). In other words, there is no tRTR-like
constraint. Accordingly, by cleverly interleaving ACTs among the
two pseudo channels, it is possible to stream data on the data bus
without suffering the large tFAW constraint. In Figure 8b, we apply
this observation to our 8 requests sequence. As the figure illustrates,
HBM enables the sequence to terminate at cycle 76, which is an
example of how the effect of tFAW on the WCL can be mitigated.

F. HBM Drawback: Two-cycle ACT commands

One drawback in HBM that affects the access latency as well as
the total WCD upon accessing the device is that HBM requires the
ACT command to consume two-cycles in the command bus compared
to a single-cycle DRAM’s ACT command. This also affects all the
ACT-related timing constraints since the standard imposes that all
these constraints have to be considered from the second cycle of
the command and not the first one [12]. To illustrate the effect of
this feature, in Figure 8c we show actual dual-cycle ACT commands
of HBM (compared to a single-cycle ACT in Figure 8b). As the
figure illustrates, now the same 8-request sequence finishes at cycle
84 similar to DRAM even though it does not suffer the tFAW
constraint. The intuition behind this result is that with the two-cycle
ACT commands, an additional cycle per ACT command is suffered
by the sequence. This adds 8 cycles to the single-cycle ACT HBM
in Figure 8b entailing the sequence to finish at cycle 84.

IV. EVALUATION

In this section we assess the worst-case performance, predictabil-
ity (Sections IV-B and IV-D) and average-case performance (Sec-
tion IV-C) of DDR4 and HBM2 . We model a DDR4 DRAM as the
reference predictable DDR technology. To our knowledge there are
no worst-case analysis developed for GDDR5/6.

A. Experimental Setup

Simulation Environment. We use the MacSim CPU simula-
tor [11] integrated with DRAMSim3 [10] as its off-chip memory.
In particular, we model a single channel DDR4-2133 with one rank,
and eight banks; and an HBM2 stack with four dies, each with two
channels and each channel having 16 banks. Both HBM2 and DDR4
devices are running at the same frequency (2133MHz). Details of the
timing constraints are listed in Table I, while structural and system
configurations are shown in Table II.

The core has an L1 cache with 16KB and a last-level cache (LLC)
with 256KB. Unless otherwise stated, we use a cache line size of
64B for DDR4 and 512B for HBM since DDR4 can only transfer
up to 64B per single transaction, while HBM provides transactions
up to 512B. In this way we match the cache line size with the off-
chip memory transaction size to guarantee that all the cache line bytes
will be transferred by one request; and hence, maximize performance.
Later in this section we show that using 512B cache line sizes for
DDR4 do not affect our results.

Benchmarks. We aim at modeling real-time applications with
varying memory demands. These are common in real-time on-board



(a
) D

RA
M

Ba
nk

0 A
0

Ba
nk

1 A
1

Ba
nk

2 A
2

Ba
nk

3 C
3

C
3

C
3

C
3

C
3

C
3

(b
) H

BM
2

Ba
nk

0 A
0

Ba
nk

1 A
1

Ba
nk

2 A
2

Ba
nk

3 C
3

C
3

C
3

cy
cl

es 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

Fig. 7: HBM Dual com-
mand feature.

(a
)

A
0

A
1

A
2

C
0

A
3

C
1

C
2

A
4
C
3

A
5

A
6

C
4

A
7

C
5

C
6

C
7

D D D D D D D D

(b
)

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

D D D D D D D D

(c
)

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

C
0

C
1

C
2

C
3

C
4

C
5

C
6

C
7

D D D D D D D D

cy
cl
es 1 2 3 4 5 6 7 8 9 1

0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1
3
2
3
3
3
4
3
5
3
6
3
7
3
8
3
9
4
0
4
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
4
9
5
0
5
1
5
2
5
3
5
4
5
5
5
6
5
7
5
8
5
9
6
0
6
1
6
2
6
3
6
4
6
5
6
6
6
7
6
8
6
9
7
0
7
1
7
2
7
3
7
4
7
5
7
6
7
7
7
8
7
9
8
0
8
1
8
2
8
3
8
4

Fig. 8: Effect of HBM’s pseudo-channel on tFAW constraint. (a) DRAM, (b) HBM with pseudo-channel.
(c) HBM with pseudo-channel but with actual two-cycle ACT command.

TABLE II: Cache and memory configuration parameters we use.

Cache Parameters {DDR4,HBM2} Memory Structural Parameters
PARAMETER L1 LLC PARAMETER DDR4 HBM2
Cache Size 16KB 256KB bankgroups 2 4
sets {32, 4} {256, 32} banks per group 4 4
Associativity 8 16 rows 65536 32768
bank 1 1 columns 1024 64
Line size {64, 512} {64, 512} device width 16 128

BL 8 4

space systems that encompass control applications and payload ap-
plications. While both have real-time and predictability requirements,
control application are much less memory intensive [28].

We model control type of applications with benchmarks from
EEMBC Autobench (EEMBC) [29] to mimic control functionalities
of production automotive, industrial, and general-purpose systems.

We model payload applications by using a Matrix Multiplication
(MXM) kernel that we configure with different total memory foot-
prints: 2MB, 4MB, and 8MB. MXM is one of the most common
kernels for many functionalities like object detection libraries like
YOLOv3 [30] and accounts for more than 65% of YOLO’s execution
time [31]. We also use the Bandwidth (BW read and BW write) and
Latency micro-benchmarks from the IsolBench suite [32].

B. Worst Case Memory Latency

Determining the worst-case memory latency (WCL) of a task
is primitive towards calculating its total worst-case execution time
(WCET) since WCET = WCCT +WCL, where WCCT is the
worst computation time of the task on the processor. Since WCL =
WCLperReq ×NumReqs, two metrics are needed: the worst-case
latency suffered by a single request WCLperReq , and the worst-case
total number of memory requests issued by the task NumReqs. In
this section, in order to evaluate the behavior of HBM2 compared to
DDR4 from a real-time perspective, we delineate both metrics.

1) Total Number of Read Requests: In most modern architectures,
write requests to DRAM are only due to cache evictions of dirty
cache line (cache write backs). Therefore, they do not stall the
processor pipeline and hence, are not in the critical path of the task’s
WCET [27]. Therefore, we focus in this experiment on comparing
the total number of read requests issued to both HBM2 and DDR4,
which is shown in Figure 9. From Figure 9, we note that there is an
overall significant reduction in the number of issued read requests
for HBM compared to DDR4 with an average reduction of 6.5×
for the EEMBC benchmarks and up to 8× for the BW benchmarks
in Figure 9 (right). This is so since HBM by leveraging the wide
interface (a total of 1024 bits) is able to transfer 512B per single
transaction compared to the 64B transaction size of DDR4. When
applications exhibit a high locality pattern, fetching larger data to
their caches allows them to enjoy more cache hits and hence decrease
the number of times they need to access the off-chip memory.

a2
tim

e
aif

ftr
aifi

rf
aii

fft

ba
sef

p

bit
mnp

ca
ch

e
ca

nrd
r
idc

trn iir
flt

matr
ix
pn

trc
h

pu
wmod

rsp
ee

d

tbl
oo

k
tts

prkmea
n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
um

be
r

R
ea

d
R

eq
s

DDR4
HBM2

·103

BW
rea

d

BW
writ

e

Late
nc

y

M
XM

2M

M
XM

4M

M
XM

8Mmea
n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

·106

Fig. 9: Read requests of DDR4 vs HBM2 for EEMBC BMs (left),
Synthetic and MXM BMs (right). Note the different scales.

a2
tim

e
aif

ftr
aifi

rf
aii

fft

ba
sef

p

bit
mnp

ca
ch

e
ca

nrd
r
idc

trn iir
flt

matr
ix
pn

trc
h

pu
wmod

rsp
ee

d

tbl
oo

k
tts

prk

0

50

100

150

200

250

300

350

400

450

500

W
or

st
R

ea
d

L
at

en
cy

DDR4 HBM2

BW
rea

d

BW
writ

e

Late
nc

y

M
XM

2M

M
XM

4M

M
XM

8M

0
50

100
150
200
250
300
350
400
450
500
550

Fig. 10: Worst latency of read request DDR4 vs HBM2 for EEMBC
BMs (left), Synthetic and MXM BMs (right).

Some of the benchmarks, namely Latency and MXM, exhibit a
relatively smaller reduction in the number of requests. Investigating
these benchmarks, we find that due to their access pattern, they suffer
a lot of cache conflicts. As a result, they do not really benefit from
the large request size that is brought to their cache hierarchy, which
results in more requests issued to the off-chip memory.

2) Worst-Case Per-Request Read Latency: Figure 10 shows the
observed worst-case latency, which is the maximum latency of a
single request observed during the execution of the corresponding
benchmark. Results show that HBM consistently introduces lower
WCL compared to DDR4. HBM’s WCL is in the range 291 - 353
cycles and DDR4’s WCL is in the range 415 - 480 cycles in case
of DDR4. Interestingly this the behavior for both control type of
benchmarks (EEMBC) and payload (MxM and BW and Lat). This
leads us to conclude that despite the aggressiveness of the application
accessing memory, HBM2 provides reduced per-request WCL. We
also evaluated 512B lines for DDR4 with 64B sectors in each line
requested on demand. Our results confirm that the number of DRAM
requests and latency per request is roughly unaffected.

3) Memory Isolation Opportunities: In all previous experiments,
we assume that a request to HBM is interleaved across all the
channels to utilize the wide interface of 1024 bits, and hence, transfer



a2
tim

e
aif

ftr
aifi

rf
aii

fft

ba
sef

p

bit
mnp

ca
ch

e
ca

nrd
r
idc

trn iir
flt

matr
ix
pn

trc
h

pu
wmod

rsp
ee

d

tbl
oo

k
tts

prkmea
n

0

150

300

450

600

750

900

1,050

1,200

1,350

1,500

B
W

(M
B

/S
ec

)

Partition
Interleave

BW
rea

d

BW
writ

e

Late
nc

y

M
XM

2M

M
XM

4M

M
XM

8Mmea
n

0

2

4

6

8

10

12

14

·103

Fig. 11: Channel partitioning vs interleaving in HBM2 for EEMBC
BMs (left), Synthetic & MXM BMs (right). Note the different scales.

512B per request. This is the common approach in high-performance
systems to increase the off-chip memory bandwidth. However, a
common approach in real-time systems is to enforce isolation by par-
titioning the off-chip memory among requestors to minimize memory
interference [8]. As discussed in Section III-A, HBM offers different
degrees of isolation. Nonetheless, it is well established that achieving
isolation by partitioning off-chip entities among different requestors
comes at the cost of performance. Although as we discussed in
Section III-B, HBM can reconcile this trade-off, it is still expected
that the trade-off is not fundamentally resolved. Therefore, in this
section, we evaluate the BW loss incurred if the application accesses
a single HBM channel (resembling channel isolation) compared
to being interleaved across all the channels. Figure 11 shows our
findings. We can see that achieving isolation comes at the expense
of a BW degradation of 15%–45% (35% on average) for the
EEMBC benchmarks and 67%–87% (78% on average) for the BW-
intensive synthetic benchmarks. The bandwidth-latency trade-off is
a use-case dependent and, hence, depends on the running set of the
applications. For example, if the number of contending requestors is
less than the number of available channels, bandwidth can improve
by assigning multiple (yet exclusive) channels. Deciding the exact
ideal compromise point of this trade-off is not the focus of the paper.
C. Average-Case Performance

The potential utilization of HBM in real-time systems targets
domains requiring both guarantees and considerable average perfor-
mance. We next compare HBM2 and DDR4 average performance.

Figure 12 depicts the execution time of all the benchmarks using
DDR4 and HBM. Despite EEMBC benchmarks presented in Fig-
ure 12 (left) are not memory intensive, HBM2 shows better perfor-
mance than DDR4 with an average improvement of 12%. On the
other hand, for memory-stressing synthetic benchmarks (Figure 12
(right)) the performance gap between HBM2 and DDR4 is clearer
with an improvement up to 4× for the BW write benchmark. The
Latency benchmark shows comparable performance for HBM2 and
DDR4 with HBM2 better execution time of only 3%. For MXM we
see improvements of 1.17%.

As expected, for benchmarks with limited memory utilization or
reduced locality, the memory performance is not a key factor in
application performance. For instance, the Latency benchmark has a
random pointer-chasing-like pattern that does not benefit from HBM’s
high bandwidth since it exhibits very low locality. In order to assess
the memory behavior, Figure 13 shows the total memory time spent
by different benchmarks accessing the off-chip memory. We see that
the gap between HBM2 and DDR4 significantly increases compared
to Figure 12. For instance, HBM shows on average a 5× less memory
time compared to DDR4 for the EEMBC benchmarks. The gap
reaches up to 6× for EEMBC benchmarks and the MXM benchmarks,
and up to 9× for the BW write synthetic benchmark. This confirms

a2
tim

e
aif

ftr
aifi

rf
aii

fft

ba
sef

p

bit
mnp

ca
ch

e
ca

nrd
r
idc

trn iir
flt

matr
ix
pn

trc
h

pu
wmod

rsp
ee

d

tbl
oo

k
tts

prkmea
n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
xe

cu
tio

n
C

yc
le

s

DDR4
HBM2

·106

BW
rea

d

BW
writ

e

Late
nc

y

M
XM

2M

M
XM

4M

M
XM

8Mmea
n

0

75

150

225

300

375

450

525

600

·106

Fig. 12: Execution cycles of DDR4 vs HBM2 for EEMBC BMs (left),
Synthetic and MXM BMs (right). Note the different scales.

a2
tim

e
aif

ftr
aifi

rf
aii

fft

ba
sef

p

bit
mnp

ca
ch

e
ca

nrd
r
idc

trn iir
flt

matr
ix
pn

trc
h

pu
wmod

rsp
ee

d

tbl
oo

k
tts

prkmea
n

0

20

40

60

80

100

120

140

To
ta

l
M

em
or

y
Ti

m
e

(c
yc

) DDR4
HBM2

·103

BW
rea

d

BW
writ

e

Late
nc

y

M
XM

2M

M
XM

4M

M
XM

8Mmea
n

0

20

40

60

80

100

120

140

160

180

·106

Fig. 13: Total off-chip memory time for DDR4 & HBM2 for EEMBC
BMs (left), Synth. & MXM BMs (right). Note the different scales.

that HBM2 consistently improve the memory performance of DDR4,
while the benefit of this depends on how the performance or programs
depends on memory performance.

D. Synthetic Experiments

Memory simulators, including DRAMSim3 [10], RAMulator [33],
and GEM5 [34], have been mainly used for the evaluations of tech-
niques for high-performance systems, and naturally model elements
that affect average performance, while overlooking some details of
the features that might have an impact on the worst-case latency.
For instance, we find that the pseudo-channel mode is either not
supported at all or is partially (and abstractly) implemented by these
simulators. Abstracting HBM features can support investigations
related to average-case behavior; however, analysis for real-time
systems mandates a complete and accurate modeling of the timing
behavior of HBM. It is also worth mentioning that although there
has been a recent DRAM simulator targeting real-time systems [35],
it unfortunately does not support HBM in its current version.

For this purpose, we develop a C++ simulation model derived from
the JEDEC standard both for HBM2 and DDR4, which we release as
open-source. It implements the state machine of the various timing
constraints for both protocols taking into account all the features we
covered in this paper including the recent pseudo-channel feature
of HBM2. A final important note is that all the results presented
in Sections IV-B and IV-C are not affected by any means by the
missing pseudo-channel modeling of HBM2 in DRAMSim3 since
all the experiments are assuming HBM2 used in the legacy mode
where a request is interleaved across all the channels and accesses
the 16 logical banks of each channel as illustrated in Section II.

In addition to the developed simulation model, we also developed
specific tests to stress each of the covered features and feed these
tests to the simulator to assess the behavior of the two protocols.
We develop four different synthetic tests for four different features
as shown in Figure 14: Dual CMD, partition, Reduced tCCD, and
tFAW . Each of these four tests performs 1,024,000 read accesses. 1)
Dual CMD is a test that measures the impact of the dual command



Dual CMDpartition rtCCD tFAW

0

5

10

15

20

25

30

35

A
ve

ra
ge

L
at

en
cy

DRAM
HBM one feature
HBM all features

Dual CMDpartition rtCCD tFAW

0

5

10

15

20

B
an

dw
id

th

DRAM
HBM one feature
HBM all features

·103

Fig. 14: Isolated and combined analysis of the impact of different
HBM features: avg. request latency(left), overall bandwidth (right).

feature (Section III-D). This is done by issuing a stream of open-row
requests to one bank; hence, consisting mainly of CAS commands.
Simultaneously, an interfering stream of ACT commands to other
banks is crafted such that there is always a ready interfering command
in the same cycle as each of the CAS commands. 2) Partition is a test
where the emulated core running the trace is assigned a single bank
and each request has a data size of 64B. This is useful to study the
impact of the wide data bus width of HBM on latency (Section III-B).
3) Reduced tCCD is a test of open requests targeting same row, and
hence, consisting mainly of CAS commands. Unlike Dual CMD,
there is no interfering streams to avoid bus conflicts in order to focus
only on the reduced tCCD feature of HBM (Section III-C). 4) tFAW is
a test stressing the tFAW constraint by issuing close-row requests to
different banks; hence, containing ACT commands; hence, assessing
the pseudo-channel feature (Section III-E).

Figure 14 shows both the average per-request latency and the
bandwidth, respectively for both DRAM (DDR4 in the experiments)
and HBM. For each test we use two different models of HBM. The
first one (HBM one feature) only models the considered feature in
the corresponding test while all other properties are exactly the same
as DRAM. We do this for the sake of studying the effect of this
specific feature in isolation. The second model (HBM all features
or simply HBM) captures all the features of a regular HBM. For
instance, for Reduced tCCD test, HBM one feature is completely
identical to DRAM parameters except tCCD value, which models
the HBM’s one, while HBM all features models all the parameters
of HBM regardless of the test.

The following conclusions can be obtained from Figure 14. 1)
Dual CMD and Reduced tCCD features notably contribute to band-
width improvement – this complies with our analysis presented in
Section III-D and III-C, respectively. Due to Dual CMD feature,
HBM can issue ACT and CAS commands in parallel, effectively
eliminating bus conflicts, therefore suffering minimum stall cycles
and improving sustained bandwidth. This feature also slightly im-
proves execution time for HBM. 2) Reduced tCCD also allows
HBM to issue consecutive CAS commands in shorter time, therefore
increasing throughput, as well as contributes to achieve reduced
execution time. 3) The bank partition feature (analyzed in III-B)
enables HBM to provide 32B per single access, therefore filling a
64B cache line in just two CAS commands, in comparison to four
for DRAM – resulting in a huge reduction in execution time. This
feature also considerably improves bandwidth. 4) Feature tFAW refers
to the timing requirement to open maximum four active windows
in a certain time frame as explained in Section III-E. Since HBM
improves this requirement, we see it achieves increased bandwidth
and reduced execution time w.r.t DRAM. Combined with the analysis
in Section III, these results provide insights on the benefits of all the
HBM features including the recently introduced ones in HBM2.

V. RELATED WORK

HBM. Some initial works present HBM as an emerging memory
standard that can provide bandwidth superior to 256GB/s as well as
offers lower power consumption [22]. More recent works compare
HBM and DDR for high performance systems [4]. [18] presents
the challenges of capacity scaling of HBM device by stacking more
DRAM dies to make a taller stack. Other works focus on studying
the power consumption of HBM2 compared to DRAM [36], which
confirm that HBM2 consumes significantly less energy than DDR4,
for per-bit transmitted. While we recognize the importance of energy-
consumption in embedded systems, in this first work, we focus on
HBM features affecting time predictability. At the software level, sev-
eral techniques propose HBM’s application-specific improvements.
For instance, Maohua [37] et al. implement a convolutional neural
network (CNN) and breadth-first search (BFS) – two data intensive
applications on a HBM-enabled GPU platform. Bingchao et al.
describes pseudo channel mode and dual-command features of HBM,
and concludes that these features do not significantly contribute to
an average-case performance improvement [4].

DRAM memory predictability. There exists an extensive liter-
ature to handle memory contention in real-time systems. A com-
monality in these proposals is that they do not propose hardware
changes to the memory device. Instead they address contention with i)
software solutions that increase the isolation among tasks in memory;
and/or ii) hardware changes of the memory controller. Regarding the
former we refer the reader to [23] for a detailed summary of the state
of the art. Software solutions build around approaches to increase
isolation, e.g. via bank partitioning among processors (e.g. [38]),
and controlling access counts (e.g. [39]). A comparison of hardware
solutions is presented in [8] covering a wide set of works on DRAM
controller designs for predictability and/or balancing predictability
and performance (e.g. [24], [28], [40]). Beyond DDR DRAMs,
Hassan [9] identifies that DDR DRAMs suffer inherent limitations to
achieve reasonable predictability and results highly variable access
latencies with over pessimistic bounds. The study proposes to use
Reduced Latency DRAM (RLDRAM) to address these challenges.

Summary. While several works analyze HBM and predictability
in DRAM-based systems, in this work we bring these two worlds
together and tackle for the first time HBM usage in real-time systems.

VI. CONCLUSIONS

We analyzed some distinctive functional and architectural features
of HBM and their benefits in terms of isolation and reduction on
memory worst case latency. We empirically showed the benefits of
some HBM features via a reference DRAM memory simulator. We
also developed a worst-case timing model derived from the JEDEC
standards of HBM and DDR4 capturing HBM features not currently
properly modeled in DRAM simulators. Overall, this work provides a
good understanding of the benefits of HBM over DRAM for real-time
systems in worst-case performance and isolation and sets a solid basis
for future techniques to fully embrace HBM in real-time systems.

VII. ACKNOWLEDGMENTS

This work has been partially supported by the Spanish Min-
istry of Science and Innovation under grant PID2019-107255GB-
C21/AEI/10.13039/501100011033; the European Union’s Horizon
2020 Framework Programme under grant agreement No. 878752
(MASTECS) and agreement No. 779877 (Mont-Blanc 2020); the
European Research Council (ERC) grant agreement No. 772773
(SuPerCom); and the Natural Sciences and Engineering Research
Council of Canada (NSERC).



REFERENCES

[1] R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J.
Cazorla, “Generating and exploiting deep learning variants to increase
heterogeneous resource utilization in the NVIDIA xavier,” in 31st Eu-
romicro Conference on Real-Time Systems, ECRTS , Stuttgart, Germany,
S. Quinton, Ed. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

[2] M. Jung, S. A. McKee, C. Sudarshan, C. Dropmann, C. Weis, and
N. Wehn, “Driving into the memory wall: the role of memory for
advanced driver assistance systems and autonomous driving,” in Pro-
ceedings of the International Symposium on Memory Systems, MEMSYS,
Old Town Alexandria, VA, USA, B. Jacob, Ed. ACM, 2018.

[3] B. Oh, N. S. Kim, J. Ahn, B. Li, R. G. Dreslinski, and T. N. Mudge,
“A load balancing technique for memory channels,” in Proceedings of
the International Symposium on Memory Systems, MEMSYS, Old Town
Alexandria, VA, USA, B. Jacob, Ed. ACM, 2018.

[4] B. Li, C. Song, J. Wei, J. H. Ahn, and N. S. Kim, “Exploring new
features of high-bandwidth memory for gpus,” IEICE Electronic Express,
2016.

[5] M. Zhu, Y. Zhuo, C. Wang, W. Chen, and Y. Xie, “Performance
evaluation and optimization of hbm-enabled GPU for data-intensive
applications,” IEEE Trans. Very Large Scale Integr. Syst., 2018.

[6] M. Jung, C. Weis, and N. Wehn, The Dynamic Random Access Memory
Challenge in Embedded Computing Systems, 2021.

[7] B. L. Jacob, S. W. Ng, and D. T. Wang, Memory Systems: Cache, DRAM,
Disk. Morgan Kaufmann, 2008.

[8] D. Guo, M. Hassan, R. Pellizzoni, and H. D. Patel, “A comparative study
of predictable DRAM controllers,” ACM Trans. Embedded Comput.
Syst., 2018.

[9] M. Hassan, “On the off-chip memory latency of real-time systems:
Is DDR DRAM really the best option?” in IEEE Real-Time Systems
Symposium, RTSS, Nashville, TN, USA. IEEE Computer Society, 2018.

[10] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: a
Cycle-accurate, Thermal-Capable DRAM Simulator,” in IEEE Computer
Architec. Letters, 2020.

[11] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho,
“Macsim: Simulator for heterogeneous architecture,” 2012.

[12] JEDEC, “High Bandwidth Memory DRAM (HBM1, HBM2),” 2020.
[13] J. S. S. T. Association et al., “Jedec standard: Ddr4 sdram,” JESD79-4,

Sep, 2012.
[14] “HBM DDR Synthetic Model.” [Online]. Available:

https://gitlab.com/FanosLab/hbm ddr synth model
[15] B. Akesson and K. Goossens, Memory controllers for real-time embed-

ded systems. Springer, 2011.
[16] S. Goossens, K. Chandrasekar, B. Akesson, and K. Goossens, Memory

controllers for mixed-time-criticality systems. Springer, 2016.
[17] D. S. JEDEC, “JEDEC jesd79-3b,” 2008.
[18] A. F. Farahani, S. Gurumurthi, G. H. Loh, and M. Ignatowski, “Chal-

lenges of high-capacity DRAM stacks and potential directions,” in
Proceedings of the Workshop on Memory Centric High Performance
Computing, MCHPC@SC, Dallas, TX, USA. ACM, 2018.

[19] J. Kim and Y. Kim, “HBM: memory solution for bandwidth-hungry
processors,” in IEEE Hot Chips 26 Symposium (HCS), Cupertino, CA,
USA. IEEE, 2014.

[20] D. U. Lee et al, “22.3 A 128Gb 8-High 512GB/s HBM2E DRAM with
a Pseudo Quarter Bank Structure, Power Dispersion and an Instruction-
Based At-Speed PMBIST,” in IEEE International Solid- State Circuits
Conference - (ISSCC), 2020.

[21] JEDEC, “High Bandwidth Memory (HBM) DRAM,” 2013.
[22] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, “Hbm

(high bandwidth memory) dram technology and architecture,” in IEEE
International Memory Workshop (IMW), 2017.

[23] M. Hassan and R. Pellizzoni, “Analysis of memory-contention in het-
erogeneous cots mpsocs,” in 32nd Euromicro Conference on Real-Time
Systems, ECRTS, 2020.

[24] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst, “A mixed critical mem-
ory controller using bank privatization and fixed priority scheduling,”
in IEEE 20th International Conference on Embedded and Real-Time
Computing Systems and Applications, Chongqing, China, 2014.

[25] L. Ecco and R. Ernst, “Improved DRAM timing bounds for real-
time DRAM controllers with read/write bundling,” in IEEE Real-Time
Systems Symposium, RTSS, San Antonio, Texas, USA. IEEE Computer
Society, 2015.

[26] Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst case analysis of dram
latency in multi-requestor systems,” in IEEE Real-Time Systems Sympo-
sium (RTSS), 2013.

[27] H. Yun, R. Pellizzoni, and P. K. Valsan, “Parallelism-aware memory
interference delay analysis for COTS multicore systems,” in 27th Eu-
romicro Conference on Real-Time Systems, ECRTS Lund, Sweden. IEEE
Computer Society, 2015.

[28] J. Jalle, E. Quiñones, J. Abella, L. Fossati, M. Zulianello, and F. J.
Cazorla, “A dual-criticality memory controller (dcmc): Proposal and
evaluation of a space case study,” in Proceedings of the IEEE 35th IEEE
Real-Time Systems Symposium RTSS, Rome, Italy. IEEE Computer
Society, 2014.

[29] J. A. Poovey, T. M. Conte, M. Levy, and S. Gal-On, “A benchmark
characterization of the EEMBC benchmark suite,” IEEE Micro, 2009.

[30] H. Tabani, R. Pujol, J. Abella, and F. J. Cazorla, “A cross-layer review
of deep learning frameworks to ease their optimization and reuse,” in
2020 IEEE 23rd International Symposium on Real-Time Distributed
Computing (ISORC). IEEE, May 2020, pp. 144–145.

[31] F. Fernandes dos Santos, L. Draghetti, L. Weigel, L. Carro, P. Navaux,
and P. Rech, “Evaluation and mitigation of soft-errors in neural network-
based object detection in three gpu architectures,” in 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshops (DSN-W). IEEE, Jun. 2017, pp. 169–176.

[32] H. Yun, IsolBench. [Online]. Available: https://github.com/CSL-
KU/IsolBench

[33] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
DRAM simulator,” IEEE Comput. Archit. Lett., 2016.

[34] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, 2011.

[35] R. Mirosanlou, D. Guo, M. Hassan, and R. Pellizzoni, “Mcsim: An
extensible dram memory controller simulator,” IEEE Computer Archi-
tecture Letters (CAL), 2020.

[36] S. S. N. Larimi, B. Salami, O. S. Unsal, A. C. Kestelman, H. Sarbazi-
Azad, and O. Mutlu, “Understanding power consumption and reliability
of high-bandwidth memory with voltage underscaling,” 2020.

[37] M. Zhu, Y. Zhuo, C. Wang, W. Chen, and Y. Xie, “Performance
evaluation and optimization of hbm-enabled GPU for data-intensive
applications,” 2018.

[38] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in 20th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS, Berlin, Germany. IEEE Computer
Society, 2014.

[39] A. Agrawal, G. Fohler, J. Freitag, J. Nowotsch, S. Uhrig, and
M. Paulitsch, “Contention-aware dynamic memory bandwidth isolation
with predictability in COTS multicores: An avionics case study,” in
29th Euromicro Conference on Real-Time Systems, ECRTS Dubrovnik,
Croatia, M. Bertogna, Ed. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

[40] H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava, and J. Oh,
“A predictable and command-level priority-based DRAM controller
for mixed-criticality systems,” in 21st IEEE Real-Time and Embedded
Technology and Applications Symposium, Seattle, WA, USA. IEEE
Computer Society, 2015.


