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ABSTRACT

Aims. Based on a local sample from Gaia DR2 catalogue composed of 74,339 stars, we are able to derive more accurate kinematic
statistics defining the local stellar populations and classify the stars in terms of their planar and vertical orbital eccentricities.
Methods. Firstly, we carried out a kinematical characterisation of stellar populations from a tested mixture model that fits the trivari-
ate velocity cumulants up to the fourth order, maximises the entropy of the mixture probability, and minimises the χ2 error. We then
proposed several approaches to classifying the stars according to the population they are most likely to belong to. None of these ap-
proaches provided a definitive solution due to the overlapping of the partial distributions. Finally, by using the epicycle approximation,
we transformed the three-dimensional velocity probability space into a two-dimensional diagram. In one direction, the information
of the two planar velocity components is picked up by the planar eccentricity. In the other direction, the vertical eccentricity does
the same with the vertical velocity component. However, in the vertical direction, the epicycle approximation is not valid and it is
replaced by a biquadratic approximation.
Results. In the eccentricity diagram, the region of maximum probability for a population is approximately delimited by straight line.
We characterise three local kinematic populations: thin disc, thick disc (composed of two subpopulations: canonical thick disc and
metal-weak thick disc), and kinematical halo (metal-rich thick-disc plus chemical halo). The Gaia DR2 sample allows us to estimate
small mean radial differential motion of 5 ± 2 km s−1between the thin and thick discs, and of 9 ± 3 km s−1between both thick-disc
subpopulations, as well as between the disc and the kinematical halo. All disc populations and subpopulations have significant vertex
deviations.
Conclusions. The classification of the stars from the eccentricity diagram resolves the problem of overlapping velocity distributions
by producing a segregation that is more net, along with a more precise kinematical characterisation of populations.
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1. Introduction

In recent years, the statistical analysis of local kinematic popu-
lations was drastically limited by the amount of data available,
mainly with regard to radial velocities. The advent of the HIP-
PARCOS Catalogue (ESA 1997) represented both a qualitative
and quantitative change for the better. Previously, a typical lo-
cal disc sample limited to a trigonometric distance of 300 pc
consisted of 13,678 stars (e.g. Cubarsi & Alcobé 2004; Alcobé
& Cubarsi 2005). To understand the extent of such an improve-
ment, it suffices to compare the size, N, of such a sample with the
one used by Erickson (1975) to compute, for the first time, the
higher-order central velocity moments, composed of 869 stars.
In addition, we must recall that the sampling variances of the
moments are proportional to 1

√
N

.

The Geneva-Copenhagen survey (GCS) catalogue (Nord-
ström et al. 2004; Holmberg et al. 2007) incorporated new and
more accurate radial velocity data. However, a sample composed
of F and G dwarf stars, considered the favourite tracer popula-
tions of the history of the disc, contained the total velocity space
of 13,240 stars. Hence, this sample improved the quality of the
data, but not the size. The GCS catalogue allowed for some pre-

vious results to be confirmed while improving others (Famaey
et al. 2007; Cubarsi et al. 2010); in particular, the detail of the
small-scale of the local velocity distribution (Skuljan et al. 1999;
Dehnen & Binney 1998; Soubiran & Girard 2005; Famaey et al.
2005), which was proven to be strongly correlated with the pla-
nar eccentricity of the stars’ orbits (Cubarsi 2010).

By using newer radial velocity data from the RAdial Veloc-
ity Experiment (RAVE) survey (Siebert et al. 2011; Zwitter et al.
2008; Steinmetz et al. 2006), which incorporated the radial ve-
locity of 49,327 randomly selected stars, several statistical anal-
yses (Pasetto et al. 2012a,b; Steinmetz 2012; Moni Bidin et al.
2012; Casetti-Dinescu et al. 2011; Smith et al. 2009a,b) have
studied the velocity distribution of the galactic populations from
neighbourhood stellar samples of about 39,000 stars. Thanks to
this more accurate data, it was possible to estimate the anisotropy
of the velocity distribution and to assert that thick disc stars have
a radial mean motion that differs from the thin disc. In addi-
tion, inside the thick disc, a subdivision was proposed between a
rapidly rotating canonical thick disc and a metal-weak thick disc
(MWTD). Inside the halo, the outer and counter-rotating halo
was differentiated from the inner halo (Carollo et al. 2010, 2019;
Kordopatis et al. 2013; Beers et al. 2014). However, we might
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consider whether such sets of stars should be considered as in-
dependent populations (Haywood et al. 2018), since Di Matteo
et al. (2019) proved that the kinematically defined halo in the so-
lar neighbourhood is approximately composed of a half of metal-
rich thick-disc (MRHD) stars and a half of chemical halo stars.

More recently, the European Space Agency’s Gaia mission
(Gaia Collaboration et al. 2016) produced Gaia’s second data
release (Gaia DR2, Gaia Collaboration et al. 2018) and just a
few weeks ago, Gaia EDR3 (Gaia Collaboration et al. 2020)
was released. Gaia DR2 provides position, parallax, and proper
motions for ca. 1.3 × 109 stars in the Milky Way (Lindegren
et al. 2018) and radial velocity for about 7.2 million stars (Soubi-
ran et al. 2018) measured using a Radial Velocity Spectrograph
(Cropper et al. 2018). With regard to the stellar density distribu-
tion, the precise measurement of the parallax for the bright stars
allows to focus in selected populations of stars (Miyachi et al.
2019; Galli et al. 2019). With regard to the velocity distribution,
Gaia radial velocities have an even better precision than those of
RAVE (Sysoliatina et al. 2018; Katz et al. 2019), and the radial
velocities catalogue is more complete, with a simpler complete-
ness function, and reproduces the vertical kinematics of the disc.

In this work, we use a local sample of Gaia DR2, composed
of 74,339 stars within a solar radius of 100 pc, to characterise
in a more precise way the kinematic statistics used to define the
local stellar populations. From the statistical analysis of the ve-
locity space, we wish to infer some key values for the orbital
eccentricities, allowing for a net separation of the local galactic
populations.

2. Preliminaries

2.1. Stellar populations

The concept of stellar population can carry various implications.
For instance, it can refer to the chemical composition of the stars
or, alternatively, it can describe their main kinematic features
through their mean velocity and the associated tensor of covari-
ances. In this paper, we focus on the kinematical approach.

From the kinematical viewpoint, a stellar population is typ-
ically composed of many subsets of stars, possibly with well-
defined properties for each subset, such as it happens with mov-
ing groups or stellar streams composing the galactic disc. But a
moving group itself is not a statistical population. As described
in Cubarsi (2010), the small-scale kinematics of the disc is deter-
mined by stellar streams that are associated with stars of low pla-
nar eccentricity. When stars with greater eccentricities are con-
sidered, the specific kinematic behaviour of the stellar streams is
no longer seen and an average behaviour of the whole set domi-
nates.

From a statistical viewpoint, according to the law of large
numbers, the sample average of the stars that have velocities
with similar distribution tends to a Gaussian distribution that
characterises the kinematics of the statistical population. In other
words, a sufficiently large number of stars is required for it to be
possible to speak of a continuous velocity distribution that de-
scribes, in terms of its mean values and moments (similarly to
the kinetic theory of gases) the macroscopic state of a popula-
tion as a whole. To this, the condition of statistical equilibrium
must be added, meaning that the phase space density function of
each population, which depends the particular integrals of mo-
tion of its stars, is invariant under the collisionless Boltzmann
equation. Such a condition is satisfied when each population is
of a Schwarzschild type (e.g. Chandrasekhar 1942; Ogorodnikov
1965; Lynden-Bell 1967), meaning that there is a Gaussian dis-

tribution in the three-dimensional velocity space, which is a par-
ticular case of ellipsoidal distribution. Moreover, since this equa-
tion is linear, we may assume (Cubarsi 2018) that the whole stel-
lar system is composed of a finite number of stellar populations
in statistical equilibrium.

Ellipsoidal distributions are described in terms of their cen-
tral second moments (tensor of covariances) µ2, which can be
written in terms of the peculiar velocity components as (e.g. Bin-
ney & Tremaine 2008):

µi j ≡ σ
2
i j = 〈uiu j〉.

The second central moments account for the shape and orien-
tation of the velocity ellipsoid and for the variance σ2

l of the
velocity distribution function in an arbitrary direction, l, of the
peculiar velocity space. According to the coordinate system, if
c1 , c2, and c3 are the corresponding direction cosines, we have:

σ2
l = 〈(c1u1 + c2u2 + c3u3)2〉 =

∑
i, j

ci c j µi j; i, j ∈ {1, 2, 3}.

The symmetric tensor µ−1
2 (inverse of the second central mo-

ments µ2) is then associated with the peculiar velocity ellipsoid:

uT · µ−1
2 · u = 1,

so that the velocity dispersions σ1 , σ2, and σ3 are the semi-
axes of the ellipsoid that refers to the same coordinate axes. The
anisotropy of the velocity ellipsoid is measured by the ratio of
the velocity dispersions along the principal axes and by its ori-
entation since the principal axes need not to be aligned with the
coordinate axes. The angle between the direction from the Sun
to the Galactic Centre (GC) and the direction of the major prin-
cipal axis of the velocity ellipsoid is known as vertex deviation,
while the angle between the major principal axis and the Galac-
tic Plane (GP) is the tilt of the velocity ellipsoid.

In general, and especially when the velocity variables are
expressed without subindices, the n-th central moments can be
written as (e.g. Gilmore et al. 1990):

µαβγ = 〈uα1 uβ2uγ3〉, (1)

with α + β + γ = n. This notation is used in the current paper.
In the current paper, a stellar group is referred to as a stellar

population if it can be reasonably approximated by a trivariate
Gaussian distribution, otherwise we refer to subpopulation. Such
a simplified Galaxy model with a few population components is
useful for getting a large-scale kinematical portrait depicting the
basic symmetries of the stellar velocity distribution – or the main
deviations from them (Cubarsi 2014a,b) – such as whether there
is axial or point-axial symmetry and a symmetry plane, what the
average differential motion between populations is, as well as the
shape and orientation of the respective velocity ellipsoids, etc. In
addition, these features are relative to the potential function of
the dynamical model.

2.2. Orbital eccentricities

As stated above, the velocity distribution function depends on
the isolating integrals of the star motion. The disc and the halo
stars may share some integrals of motion, for example, the en-
ergy integral, I1, (under the hypothesis of steady-state system)
and the angular momentum integral, I2, (under the hypothesis
of axial symmetry). Nevertheless, for disc stars, an independent
integral, I3, (e.g. Gilmore et al. 1990), related to the low height
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about the GP allowing for the approximation of separability of
the potential in cylindrical coordinates, makes them distinguish-
able from halo stars. Hence, a combination of these integrals de-
fines a quadratic form, Q, that is, the velocity ellipsoid, which
characterises the Schwarzschild velocity distribution that defines
the stellar population based on its means and second central mo-
ments.

For a population mixture, the velocity moments of the whole
stellar sample allow us to determine, with an acceptable accu-
racy, the population partial moments (Cubarsi et al. 2010). How-
ever, in the process of disentangling the partial distributions, the
stars belonging to a region where the tails of the population dis-
tributions overlap then become classified with a great level of
uncertainty. Other non-kinematical parameters can be of help,
such as the metallicity [Fe/H] and the colour b − y, but none of
them produce a net segregation (Cubarsi 2010). The alternative
approach presented here, still based on kinematical parameters,
is meant to identify the thin and thick disc stars from its planar
and vertical eccentricities. In this way, the problem of such over-
lapping regions is to become minimised. The reason is that for
the disc stars, the equations of the star motion can be treated as
two independent sets: one for the planar motion in the GP, in-
volving the integrals I1− I3 and I2, which are in direct relation to
the planar eccentricity of the star (Ninković 2018), and another,
for the perpendicular motion, involving the integral I3, which is
in direct relation to the vertical eccentricity.

Let us recall the definitions of planar and vertical eccentrici-
ties. For a local disc star, under the epicycle approximation (e.g.
Binney & Tremaine 2008), the local radius r0 and the radius rc
of the circular velocity point C1 can be expressed in terms of the
the maximum and minimum orbital distances to the centre, ra
and rp (apo- and pericentric distances), as r0 ≈ rc =

ra+rp

2 . Then,
the planar eccentricity is defined from the orbital amplitude a,
as:

a =
ra − rp

2
, e =

a
rc
. (2)

On the other hand, the vertical eccentricity, e′, is defined in terms
of the maximum height, zmax, about the GP as:

e′ =
zmax

rc
. (3)

The approach based on the epicycle approximation was
proven to be a promising tool in Cubarsi et al. (2010) when work-
ing with the Geneva-Copenhagen Survey III catalogue (Holm-
berg et al. 2009); in Cubarsi et al. (2017) , it allowed the authors
of the study to infer features of the local potential in relation to
several symmetry hypotheses.

2.3. Stellar sample

We used two criteria to obtain our local sample. Firstly, we se-
lected all the stars that have parallax greater than 10 mas. Then,
from these sources, we selected those that satisfy the two fol-
lowing conditions: the astrometric parameters are solved and for
ever source, the radial velocities must be given. In this way, we
obtained a sample consisting of 74,339 stars.

Sources with poor astrometric solutions are expected to have
small parallaxes, so they should not present a potential contami-
nation of our sample. As for radial velocities, in Gaia DR2, there

1 The epicycle approximation consists in to refer the orbit of a star near
the GP to a reference frame with its centre in the position C of a star in
the GP in circular motion with the same angular momentum integral.

are about 4000 stars that have been reported to carry erroneous
values (information available on the site2) and for this reason,
they are not present in Gaia EDR3, pending further tests of the
local kinematics, however, we decided to keep them based on the
presumption that those stars most likely belong to the halo. Halo
stars are known to be rare, but our interest is to have as many of
them as possible in our sample.

Our examination shows that if Gaia EDR3 were used, our
sample would be slightly smaller. As for five-parameter astrom-
etry solution, in Gaia EDR3, only the errors are different. For
instance, Gaia Collaboration et al. (2021), in applying a quite
different approach, have found 74281 stars within 100 pc from
the Sun with radial velocities, a conclusion that is rather similar
to our own.

When our sample of stars was finally constructed, we looked
further into the Gaia DR2 catalogue to analyse the metallicities
given by the Gaia team. Since we used only the sources with
measured radial velocity, all these sources also have values for
[Fe/H] that are given from the template parameters (Katz et al.
2019). The metallicities given in the catalogue may serve as indi-
cators because it is well-known that thin-disc stars are generally
the most metal-rich, whereas halo stars tend to be generally the
most metal-poor.

In order to determine the planar eccentricity and the maxi-
mum height of the Galactocentric orbits, we used the model of
the Milky Way proposed by Ninković (1992). This model as-
sumes three contributors to the potential of the Milky Way: the
bulge, the disc, and the corona (the subsystem consisting of dark
matter). The latter is assumed as spherically symmetric, while
the other ones are assumed to be axisymmetric. The contribu-
tions to the Galactic potential of the former two are described by
the same formula as that of Miyamoto & Nagai (1975). The only
difference concerns the values of the parameters. The parame-
ters from Gaia DR2 (five-parameter astrometry solution and ra-
dial velocity) are used as input for the model. The integration of
the Galactocentric orbits for each star is done for 10 Gyr by us-
ing a fourth-order Runge-Kuta method, from where we obtained
values for ra, rp, and zmax.

2.4. Methods

Our procedure consists of three steps. Firstly, we made a kine-
matical characterisation of the stellar components (further de-
scribed in Section 3) by applying the same statistical algorithm
(Cubarsi et al. 2010, hereafter, Paper I) used for other catalogues
. The algorithm (a) uses a mixture model that fits the trivari-
ate cumulants up to the fourth order, (b) maximises the entropy
of the mixture probability according to a hierarchical segrega-
tion, and (c) minimises the χ2 error of the total set of cumu-
lants, which, in the optimal case, matches the maximum entropy
condition. In this way, it is possible to determine the sampling
parameters by allowing subsamples to be extracted, which con-
tain either a mixture of thin and thick discs, or a mixture of disc
and halo. As a result, each population remains characterised by
its mean velocity, its covariance matrix, and the mixture propor-
tion. For the disc, the most reliable samples are those obtained
when the sampling parameter is the absolute heliocentric veloc-
ity (the improvement achieved when using the peculiar veloc-
ity is not significant and requires a more laborious iterative pro-
cess). We are able to confirm that there is vertex deviation in
the thin and thick discs, although their differential radial motion

2 https://www.cosmos.esa.int/web/gaia/
dr2-known-issues#RadialVelocitiesCrowdedRegions.
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is very small. In addition, the MWTD, together with a part of
the MRHD stars, are still identified as belonging to the same ex-
treme subpopulation of the disc. Alternatively, when the samples
are selected from the absolute perpendicular velocity, it is pos-
sible to discriminate between the thick disc and the kinematical
halo composed of MRHD stars and a few chemical halo stars.

In a second step (described in Section 4), the stars are la-
belled according to the population they most likely belong to.
Three plausible criteria are applied and discussed, each hav-
ing their pros and cons, and ultimately, none of them provide a
definitive solution for identifying a star from its velocity compo-
nents when these components belong to an overlapping region
with similar population probability. Thus, after the stars have
been labelled as belonging to one of the populations, we may ex-
tract subsamples of supposedly pure populations, although none
of these subsamples will have bell-shaped distribution, typical of
the Gaussian distributions, in any of the velocity variables.

In a third step (Section 5), the most likely population is ob-
tained, not in terms of the velocities, but in terms of the ec-
centricities. By using the epicycle approximation for the disc
stars, we transform the three-dimensional velocity probability
space into a two-dimensional diagram. In one direction, the in-
formation of the two planar velocity components is picked up
by the planar eccentricity, e. In the other direction, the vertical
eccentricity, e′, does the same with the vertical velocity compo-
nent. Nevertheless, upon moving away from the GP, the epicycle
approximation is no longer valid and requires an approximate
model, which is fitted by using a biquadratic equation for the
vertical velocity curve. In the eccentricity diagram (e′2 in terms
of e2), three regions of maximum likelihood with regard to the
populations become delimited by two nearly straight lines. When
the classification of the stars is carried out according to these
regions, the resulting subsamples recover the bell-shaped curve
in each velocity component, their covariances match those ex-
pected for the corresponding populations and are obtained with
smaller sampling variances. Additionally, it solves the overlap-
ping problem of the distributions by producing a more net seg-
regation.

3. Populations in the sample

3.1. Segregation algorithm

The method to identify kinematic populations is explained with
detail in Paper I. It was referred to as MEMPHIS algorithm.
Briefly, it consists of several complementary criteria.

We use a continuous sampling parameter P allowing to
form nested stellar subsamples that incorporate subsequent pop-
ulations orderly. There are two optimal sampling parameters,
namely P = |v|, the absolute value of the heliocentric star ve-
locity3 v = (U,V,W), and P = |W |.

The algorithm segregates pairs of Gaussian populations (1
and 2). For consecutive segregations, population 1 is cumulative
(i.e. it approximates the previous segregated populations by a
single Gaussian component). As they increase the sampling pa-
rameter, subsequent entering populations are identified as popu-
lation 2.

There are two indicators for validating the goodness of a seg-
regation. One is the entropy of the partition H, which must at-
tain a relative maximum at the end of a region of stability. The
3 The radial heliocentric velocity component U positive towards the
GC, the heliocentric velocity component V positive in the direction of
the Galactic rotation, and the velocity component W perpendicular to
the GP and positive towards the north galactic pole.

other is the χ2 error, associated with the fitting of the velocity
cumulants up to the fourth order, which must reach a relative
minimum. For optimal cases, such extreme values are achieved
simultaneously.

3.2. Selecting by P = |v|

3.2.1. Inside the thin disc

The sampling parameter P = |v| yields an optimal segregation
for P = 50 km s−1, as it is shown in Figure 1. However, the
large χ2 error with regard to the subsequent optimal points is in-
dicative of the poor Gaussianity of both segregated components.
This result is similar to that obtained in Alcobé & Cubarsi (2005)
for HIPPARCOS samples, which was interpreted as a mixture of
early-type stars and young disc stars, whose most important dif-
ferential movement took place in the radial direction. According
to Cubarsi (2010), such a subsample reflects the kinematics of
the Hyades-Pleiades moving groups and the Sirius-UMa stream,
and is not yet kinematically representative of the whole thin disc.

45 46 47 48 49 50 51 52 53 54 55

P=|V|
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0.1
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Fig. 1. Local optimal values of the partition entropy, H (dimensionless),
and χ2 (scaled error) obtained from the sampling parameter P = |v|
inside the thin disc.

3.2.2. Thin and thick discs

The optimal values are shown in Fig. 2. The values P = 123
and P = 230 km s−1detect a mixture of thin and thick disc pop-
ulations. The former identifies the core of the thin disc, t, as
population 1, and a partial thick disc4, the canonical thick disc
T−, as population 2. On the other hand, the sample selected by
P = 230, also contains a new subpopulation, the MWTD stars,
say T +. From a kinematical viewpoint, there are two subpopula-
tions within the thick disc, which altogether but not separately,
can be approximated by a Gaussian distribution. The velocity
moments (centred and non-centred) of the selected stellar sub-
samples are listed in the Appendix D, and the partial centred
moments of the population components in Table 1. The notation
used here is that of Eq. 1.

The value of P = 350 km s−1detects a new subpopulation
composed of MRHD stars and a few halo stars5 that we refer to
as the inner halo H− subpopulation, which polarise the previous
segregation into two groups, namely, t + T−, and the remaining
stars, T ++H−. Thus, the MWTD stars, labelled as T +, have an in-
termediate kinematic behaviour that is alternatively assimilated

4 A similar situation happened in the HIPPARCOS catalogue at |v| =
131 km s−1(Alcobé & Cubarsi 2005). The resolution is now 1 km s−1.
5 A higher sampling parameter is responsible for a few stars with un-
real velocity |v| > 500 or zmax > 100 kpc (i.e. the maximum value of |z|)
introduce great sampling variances to the velocity moments, so that the
resulting sample is not good enough to carry out a segregation.
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with the canonical thick disc or the inner halo, depending on the
composition of the sample. The bottom panel of Fig. 2 shows an
unstable region for the increasing thick disc velocity dispersion
σ1 (pop 2, between 123 and 230 km s−1) and an increasing trend
of the velocity dispersion of the halo population (pop 2, from
350 onward), indicating that this population is not completely
merged to the sample, while the disc stars (pop 1) have a stable
and nearly constant radial velocity dispersion.

Fig. 2. Optimal values from the sampling parameter P = |v| (km s−1).
Top: Entropy, H (dimensionless), and χ2 (scaled error). Bottom: Trend
of the radial velocity dispersion σ1 (on a logarithmic scale).
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Fig. 3. Optimal values from the sampling parameter P = |W |. Top: En-
tropy, H (dimensionless), and χ2 (scaled error). Bottom: Trend of the
vertical velocity dispersion σ3 (on a logarithmic scale).

3.3. Selecting by P = |W |.

Figure 3 shows a similar analysis for the sampling parameter
P = |W |. The value of P = 35 km s−1yields a mixture that,
from a kinematical viewpoint, corresponds to a partial thin disc
as population 1 and a mixture of a partial thick disc and a few
kinematical halo stars as population 2. In Section 5.3, we anal-
yse such a situation in greater detail. The values from P = 130
to 170 km s−1detect a mixture of disc stars (thin plus thick discs)
and kinematical halo6. The latter provides the lowest χ2 error
and is placed at the end of a region of stability for H. The lower
graph in Fig. 3 shows the increasing trend of the vertical veloc-
ity dispersion σ3 of the halo (inner halo H− and outer halo H+

with counter-orbiting stars), while the disc stars maintain stable
values. The samples selected by P = |W | describe the disc from
similar second central moments than the sample selected by ab-
solute velocity, however they determine the halo with higher ve-
locity dispersions and lower population fraction, namely, a more
extreme halo7. These samples are extremely sensitive to the halo
component H+ in such a way that 111 stars produce a radial
mean velocity of the halo, which is entirely unexpected.

3.4. Kinematical parameters of the samples.

In Appendix A, we justify in detail why the working sample is
kinematically representative of the GP. Based on this fact, we
may now extract conclusions about which subsamples provide
us with information concerning the thin disc, the thick disc, or
the halo.

Table 1 displays the characteristic parameters of the seg-
regated components. The values for the thin disc are stable
and consistent whether obtained from the sampling parameters
|v| = 123 km s−1, |v| = 230 km s−1and |W | = 35 km s−1. Simi-
larly, the parameters of the whole disc are stable when obtained
sampling parameters from |W | = 130 to 170 km s−1. On the con-
trary, for the thick disc and the halo, these values depend on the
size of the sample, that is, on the fraction of stars included as
population 2, which, in addition, have larger velocities and pro-
duce unstable values for these populations.

Hence, to define the boundaries between populations in
terms of the eccentricities, the characteristic parameters for the
thin-thick segregation are to be taken from the sampling param-
eter |v| = 230 km s−1and for the segregation disc-halo, we use
the sampling parameter |W | = 170 km s−1. Furthermore, for a
more detailed characterisation of the subpopulations, in order to
distinguish between the thin disc and the canonical thick disc,
we use the values obtained for the sampling parameter |v| = 123;
and in order to distinguish between the canonical thick disc and
the MWTD, we use those obtained for |v| = 350.

6 The sample obtained from W = 170 km s−1can be improved by just
removing four stars with |v| > 500 km s−1, which are not reliable. This
reduces the error of the central velocity moments of the halo population
in about 50%, while the resulting partial moments and mean velocities
do not sensibly change, similarly to the x values. The resulting sample
provides total and partial velocity moments similar to the sample ob-
tained from W = 130 km s−1, and provides a population 1 very similar
to that of the sample limited by |v| = 350 km s−1. The bound |v| ≤ 500
was also used in Paper I to filter the HIPPARCOS and the Geneva-
Copenhagen Survey catalogues to avoid stars having an erroneous esti-
mation of the velocity, perhaps greater than the escape velocity.
7 As expected, the kinematical halo population is identified in a very
unstable way since the working sample contains a very small fraction
of these stars.
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P Pop. n U0 V0 W0 µ200 µ020 µ002 µ110 µ101 µ011

|v| = 123 t 69% -8.4 -11.2 -6.9 887.87 249.62 225.15 66.69 -5.33 7.59
?72859 ±0.5 0.8 0.3 13.83 30.66 5.93 5.41 4.57 3.49

T− 31% -11.3 -38.4 -9.0 1731.44 629.16 551.53 151.89 13.64 -20.39
±1.0 1.3 0.7 28.15 67.30 12.34 10.37 8.82 6.74

|v| = 230 t 79% -9.3 -12.8 -7.3 899.09 191.26 207.96 91.65 -5.6 5.2
?74153 ±0.4 1.3 0.2 19.72 53.42 9.02 8.14 6.57 5.5

T = T− + T + 21% -12.1 -51.9 -9.0 2795.11 1138.25 989.07 204.42 28.96 3.03
±1.1 2.6 0.7 69.35 201.47 32.63 26.57 21.94 18.13

|v| = 350 t + T− 96% -9.7 -17.5 -7.5 1111.01 348.54 299.15 112.51 -0.26 7.5
?74272 ±0.2 3.8 0.2 17.24 65.35 6.29 8.75 5.63 5.71

T + + H− 4% -13.4 -103.8 -11.1 6250.16 1730.69 2193.22 231.09 43.28 -2.43
±1.8 9.0 1.7 328.47 1439.42 119.95 143.54 95.18 97.97

|W | = 35 t 96% -12.6 -16.0 -6.0 803.35 251.13 174.32 266.61 -10.91 12.56
?67513 ±0.2 0.1 0.1 55.89 63.86 1.20 49.88 5.37 4.74

T + H− 4% 51.0 -99.9 -0.2 6368.63 1356.51 367.29 2282.06 -5.76 86.51
±0.5 0.6 0.5 37.05 73.03 5.46 40.46 8.28 6.81

|W | = 170 D = t + T 98% -8.8 -19.4 -7.6 1084.12 429.29 335.40 28.20 -5.44 10.53
?74332 ±3.9 6.9 0.2 38.42 71.41 4.90 41.89 7.54 6.16

H 2% -99.0 -180.7 -12.7 16786.20 5503.28 4235.46 -6134.47 102.11 -29.81
±16.4 18.2 2.5 2894.86 5503.28 275.30 3213.48 492.94 329.74

Table 1. Mean velocities (km s−1), second central moments (km2s−2), population fractions (relative to the subsample), and number of stars in terms
of the sampling parameter P (km s−1) for optimal segregations, where t=thin disc, T=thick disc (− for canonical, + for MWTD), D=total disc,
H=halo (− for inner).

4. Labelling the populations

4.1. The most likely population

Let us assume a sample Ω of stars consisting in a partition of
disc and halo populations, Ω = D∪H, where the set of disc stars
also consists in a partition of thin and thick disc populations,
D = t∪T . Given the characteristic kinematic parameters of each
stellar population, for a star s ∈ Ω we calculate the probability
of belonging to the population, S , namely, π(s ∈ S ).

Firstly, the segregation disc-halo is considered, from where
we get the velocity distribution functions (trivariate Gaussian)
for computing the probabilities of a star to belong to the disc
π(s ∈ D) and to the halo π(s ∈ H), so that π(s ∈ D) + π(s ∈
H) = 1. Secondly, from the thin-thick disc segregation, for the
stars likely belonging to the disc, we compute the probabilities
of a star to belong to the thin disc π(s ∈ t|D) and to the thick disc
π(s ∈ T |D), so that π(s ∈ t|D) + π(s ∈ T |D) = 1.

The easiest method, say L0, for labelling a star according to
one of the populations is to assign the star to the more proba-
ble population. Thus, a star can be labelled as t,T,H, although
this does not provide a relative scale among populations when,
inevitably, cases arise where a star belongs to an area where the
tails of two distributions overlap. For instance, it is possible that
a thick-disc star has a higher probability of belonging to the thin
disc, and then it is labelled incorrectly. Hence, there must be a
mutual exchange of labels established between these stars. This
should not be considered a major issue if the number of these
stars is relatively low (such as the case of the thin disc), as gen-
erally occurs when the sample is large and the populations are
significantly differentiated, but it is not negligible for the thick
disc, with a relatively low number of stars.

However, once the respective populations have been with-
drawn from the whole catalogue, as a consequence of having
cut the wings of the distributions, the resulting partial samples
will have lost the clock shape of the Gaussian distributions. If
we compute their moments we obtain some modified distribu-
tions sharing the main basic trends, for instance, the means and
the second moments, but with likely modified higher-order mo-
ments.

4.2. Population index

To determine if a star is in the overlapping region between popu-
lations or is in the most characteristic region of one of the popu-
lations, it is useful to have an index indicating, for each star, the
expected value of the population the star belongs to. The index
can also be used to extract more pure subsamples for a particu-
lar population. For this reason, we adopt two more approaches,
which allow us to quantify with a population index the stars in
relation to the populations. To each star, we assign a continuous
value x(s) ∈ [0, 3] representing the expected population the star
belongs to. Thus, the population index will be computed from
three different methods:

L0. The simplest way for labelling a star is to assign the star a
discrete value 1, 2, or 3 to x, depending on whether the most
likely population is t, T, or H.

L1. The population index is computed as a continuous parameter
from the expected value of a star to belonging to either of the
three populations, labelled as x = 0 for the thin disc, x = 2
for the thick disc, and x = 3 for the halo, namely:

x =((((
((((

(
0 π(s ∈ D) π(s ∈ t|D) + 2 π(s ∈ D) π(s ∈ T |D) + 3 π(s ∈ H).

In this case, for the sake of continuity, the probabilities are
obtained from the segregations with the same sampling pa-
rameter P = |v| for all the populations.
The value representing the average kinematics of the disc
is x = 1. Within the disc, a star with a higher or equal
probability of belonging to the thin disc satisfies 0 ≤ x ≤ 1,
while stars satisfying 1 < x ≤ 2 have higher probability
of belonging to the thick disc. Although values of x > 2
represent stars with higher probability of belonging to the
halo than to the average disc, the range of 2 < x ≤ 2.5
still contains thick-disc stars, since these stars have higher
probability of belonging to the thick disc than to the halo.
Finally, the interval 2.5 < x ≤ 3 represents stars with higher
probability of belonging to the halo. In the next subsection,
we discuss the methods for labelling the populations in
detail.
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L2. We use the probabilities obtained from the sampling param-
eter P = |W | for the segregation disc-halo and the sampling
parameter P = |v| for the segregation thin-thick discs. In this
way, the separation of both main components disc-halo is
emphasised. The value x(s) ∈ [0, 3] is computed in two dif-
ferent ways depending on whether the most likely population
is the disc or the halo. Firstly, for the stars with higher prob-
ability of belonging to the disc, we compute the expected
value x1 of belonging to the thin disc (label x1 = 0) or to the
thick disc (label x1 = 2). Thus, x1 ∈ [0, 2] and, as with the
previous method, the value of x1 = 1 represents the average
disc as well as the limiting value between thin and thick disc.
Secondly, for the stars with higher probability of belonging
to the halo, we compute the expected value x2 of belong-
ing to the disc (label x2 = 0) or to the halo (label x2 = 2).
These stars satisfy x2 ∈ (1, 2]. Then, in order to produce a
parameter x covering the total range [0, 3], the range of x2 is
modified so that for the halo stars the interval is adjacent to
the range of x1. Hence, the value x2 must be translated by 1.
Therefore:

x =

{
((((

(0 π(s ∈ t|D) + 2 π(s ∈ T |D), if π(s ∈ D) ≥ π(s ∈ H)
1 +���

��0 π(s ∈ D) + 2 π(s ∈ H), if π(s ∈ H) > π(s ∈ D)
,

Now the disc and halo populations remain more isolated than
in the previous case.

4.3. Comparing labelling methods

Here, we discuss these methods in detail. The approach marked
as L1 considers the three populations as independent. For each
star, the respective probabilities are:

p ≡ π(s ∈ t) = π(s ∈ D) π(s ∈ t|D)
q ≡ π(s ∈ T ) = π(s ∈ D) π(s ∈ T |D)
r ≡ π(s ∈ H),

which satisfy r = 1 − p − q. The possible values for p, q are dis-
played in Fig. 4, according to the following constraints between
them, namely,

0 ≤ p ≤ 1, 0 ≤ q ≤ 1, 0 ≤ r ≤ 1
0 ≤ p + q ≤ 1, 0 ≤ p + r ≤ 1, 0 ≤ q + r ≤ 1
0 ≤ p + q + r ≤ 1.

Panel (a) shows the coloured regions p ≥ 1
2 (green), q ≥ 1

2 (blue),
and r ≥ 1

2 (light red), where one of the probabilities is greater or
equal than the sum of the others.

Panel (b) shows the coloured regions p ≥ q and p ≥ r
(green), q ≥ p and q ≥ r (blue), r ≥ p and r ≥ q (light red),
where one of the probabilities is greater than each one of the
others. This is the case described as L0. However, in L1, it has
been assigned the index x = 0p + 2q + 3r = 3 − 3p − q to
each star. Therefore, the interval x ≤ α corresponds to the region
q ≥ 3 − α − 3p. These are the limiting lines plotted in red in
the panel (c) for values x = 0.5, 1, 1.5, 2, 2.5. These lines do not
match the regions where each population has higher probability.
Indeed, the regions 0 ≤ x ≤ 1 and 2.5 ≤ x ≤ 3 determine pure
thin disc and halo stars, respectively, but the range 1 ≤ x ≤ 1.5
accounts for mixed stars labelled as thin and thick disc, and the
range 1.5 ≤ x ≤ 2.5 accounts for mixed thick disc and halo stars.
Therefore, although the parameter x has a desirable continuous
behaviour for labelling the stars, it has a non negligible uncer-
tainty.
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0 1

1
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q

0 1

1
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1
-2
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=
1
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1-r-p
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Fig. 4. Regions (a) of higher probability than the sum of the other pop-
ulations for thin disc (green), thick disc (blue), and halo (light red).
Regions of higher probability than each one of the other populations for
cases L0 (b), L1 (c), and L2 (d).

An alternative approach for partially avoiding such a situa-
tion is to first consider the segregation disc-halo and, afterwards,
within the disc, the segregation thin-thick disc. Such is the ap-
proach L2, which is represented in the panel (d). For the segrega-
tion disc-halo, we consider the probabilities d = p+q = π(s ∈ D)
and r = 1 − d = 1 − p − q = π(s ∈ H). The light-red region cor-
responds to probabilities r ≥ 1

2 of halo stars, where q ≤ 1
2 − p.

We refer to it as the halo region. The green and blue areas define
the disc region, where the the probability of disc stars is higher,
d ≥ 1

2 , so that q ≥ 1
2 − p. In the halo region, a probability of

r ∈ [ 1
2 , 1] defines the line q = (1 − r) − p, hence 0 ≤ q ≤ 1

2 − p.
Since the index is computed as x = 1+2r, the line can be written
in terms of x as q = 3−x

2 − p for values 2 ≤ x ≤ 3.

Within the disc region, for a fixed value d ≥ 1
2 , the respective

probabilities of the thin and thick discs satisfy p
d +

q
d = 1. Hence,

q = d − p defines the line in the graph corresponding to this disc
probability. Then, the index, that in this case has been evaluated
as x =

2p
d , corresponds to a point on this line of value q = d(1 −

x
2 ). Along this line, the green zone satisfies q ≤ p and 0 ≤ x ≤ 1,
while the blue zone satisfies q ≥ p and 1 ≤ x ≤ 2. In this
approach, and comparing with panel (b), we see that a small part
of the halo can be mistaken as disc stars, but no disc stars are to
be labelled as halo stars.

In order to interpret the resulting segregations and how they
depend on the method, Figures 5 and 6 display eccentricity, e,
absolute velocity, |v|, maximum distance to the Galactic plane,
zmax, and vertical eccentricity, e′, in terms of x (in grey, the per-
centage of stars according to the axis on the right), as well as the
population index, x, in terms of the heliocentric velocities.
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Fig. 5. Relation between several properties and the population index (x) for case L1.

4.4. Subsamples

These labelling methods provide the following number of stars
in each population:
L0 #t=59715

#T=13907
#H=717.

L1 #t =59434 (0 ≤ x ≤ 1)
#(t+T)+(T+H)=3699+4832=8531 (1 < x ≤ 1.5 and 1.5 < x ≤ 2)
#(T+H)=5657+717=6374 (2 < x ≤ 2.5 and 2.5 < x ≤ 3).

L2 #t=59722 (0 ≤ x ≤ 1)
#T=12357 (1 < x ≤ 2)
#H=2260 (2 < x ≤ 3).

The values for L0 and for L1 are computed from the samples
with |v| < 230 km s−1and |v| < 350 km s−1. As explained above,
for the case of L1, in the range of 2 < x ≤ 3, there are many stars
that likely belong to the thick disc.

For the case of L2, the listed values come from samples with
|W | < 170 km s−1for the segregation disc-halo, and |v| < 230
km s−1for the segregation thin-thick disc.

The velocity moments of the samples containing thin disc
and thick disc stars are listed at the end of the Appendix D. The

moment values are nearly the same for all the labelling methods.
For the thin-disc stars, the moments are similar to the first popu-
lation obtained from the samples selected by |v| < 123, |v| < 230,
and |W | < 35 km s−1. For the total disc they are similar to the to-
tal moments of the same samples.

4.5. Velocity distribution features

Firstly, we point out some basic features: (a) in the UV plane, the
thin disc distribution is more ellipsoidal than the thick disc; (b)
thin and thick disc distributions have a non-vanishing, although
small, vertex deviation in the UV plane, while the halo does not
have a significant one; (c) in the VW plane the disc populations
have almost spherical distribution; (d) the mean velocities for
the U and W velocity components are similar for the disc com-
ponents and the inner halo, which is indicative of stationarity, so
that the main difference between these populations takes place
in the rotation velocity component.

More specific features are below described from Figures 5
and 6, allowing us to compare methods L1 and L2. The main
difference is due to the overlapping of thick-disc and halo popu-
lations that occurs for 2 < x < 2.5 in method L1 (as explained in
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Fig. 6. Relation between several properties and the population index (x) for case L2.

Section 4). The method L2 produces a sudden change in x = 2,
however, let us note that among the 12357 stars with 1 < x ≤ 2,
a total of 4101 satisfy 1.9 < x ≤ 2, which is nearly half of a
thick disc. Similarly, among the 2260 stars with 2 < x ≤ 3, a
total of 1226 satisfy 2.9 < x ≤ 3, which is the very core of the
kinematical halo.

For method L1, with regard to the disc (0 ≤ x ≤ 2.5), in the
range 0 ≤ x ≤ 2 the velocities, U and W, are symmetrically dis-
tributed around their mean. However, in the rotation component,
V , the density of stars to the right of the mean is lower than to
the left. This is specially remarkable in the range of 1 < x ≤ 2.5,
corresponding to the part where the thick disc is dominant. That
is the reason why stars in this range elicit a radial mean velocity
that is significantly lower than the stars in the range of 0 ≤ x ≤ 1
and associated with the thin disc, resulting in a net asymmetrical
drift between thin- and thick-disc stars.

Figures 7 and 8 are plotted to establish the velocity bounds
for the population components. The population index x is plot-
ted in terms of the heliocentric velocities. The population com-
ponents are coloured in green for the thin disc, blue for the thick
disc, and red for the halo.

For the whole disc, the velocity bounds are approximately
(all velocities are given in km s−1):

−160 ≤ U ≤ 140, −140 ≤ V ≤ 60, −120 ≤ W ≤ 100.

For the thin disc, we get approximately:

−110 ≤ U ≤ 90, −60 ≤ V ≤ 40, −50 ≤ W ≤ 40.

These ranges are also valid for the graphs of method L2, Fig. 6.
For the halo (range 2.5 < x ≤ 3 in method L1 and 2 <

x ≤ 3 in method L2), the above general features are repeated,
although the asymmetry in rotation is emphasised. In particular,
for case L1, this is a transitional region with a mixture of thick
disc and halo stars. The drift in rotation is much higher than in
the disc. There is a great lag in rotation, partially corresponding
to a subcomponent with no net galactic rotation. For the halo,
the velocity bounds are approximately

−400 ≤ U ≤ 400, −400 ≤ V ≤ 0, −170 ≤ W ≤ 160

although most of them satisfy V ≤ −50.
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Fig. 7. Several properties in terms of the heliocentric velocities for case L1.
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Fig. 8. Several properties in terms of the heliocentric velocities for case L2.
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Similarly, in Figures 7 and 8 we are able to visualise the dis-
tribution of several properties in terms of the velocity compo-
nents, such as the planar and vertical eccentricities (e and e′),
the maximum height (zmax), and the absolute heliocentric veloc-
ity (|v|). These properties can be contrasted with the assigned
population derived from the algorithm, indicated by the colour,
to see whether they provide independent information about the
stellar component the stars belong to.

We find that the U velocity component mixes up the popu-
lations when the eccentricities are taken into account, but it iso-
lates the disc and the halo quite well in terms of the absolute
heliocentric velocity. To display such a feature, the red points
corresponding to the halo stars are plotted over those of the disc.

The V velocity component together with the planar eccen-
tricity allow us to estimate the Galactocentric rotation velocity
of the centroid in about 220-225 km s−1, which is consistent with
the commonly accepted values (Kerr & Lynden-Bell 1986) and
the Galactocentric rotation velocity of the Sun in about 225-230
km s−1. It is also possible to determine that the subset of stars
that are symmetrically distributed around the centroid are those
approximately satisfying e < 0.3. This is also evident from the
plot of the absolute value of the heliocentric velocity, where the
symmetry region corresponds to |v| ≤ 50 km s−1. This interval
size of ±50 km s−1is maintained even while increasing the value
up to approximately |v| = 140 km s−1. Then, as it goes up to
|v| = 230km s−1or |v| = 250km s−1, the interval of the V veloci-
ties becomes narrower, and afterwards it seems to expand again,
as corresponding to two sub-halo components with opposite ro-
tation. Similar features are deduced from the W component. In
this case, the maximum interval size for a constant value |v| is
reached approximately at |v| = 130 km s−1. For higher values,
the size is maintained. Nevertheless, the planar eccentricity in
terms of the W velocity is the only graph, among those of Fig-
ures 7 and 8, that seems to isolate the three populations, with
more accuracy between the whole disc and the halo. Therefore, it
is reasonable to associate the slight overlapping between the thin
and thick disc populations to some uncertainty in the labelling of
the populations. Thus, we take advantage of this feature of such
stellar properties for isolating regions of the graph. These re-
gions, where one population is predominant, are not limited by
constant values of these variables or by easily defined contours.
We examine this fact in the following section. Since there exists
a one-to-one relationship between the maximum height (or the
vertical eccentricity) and the vertical velocity, which are linked
through the potential (Eq. C.1), the graphs of Figures 7 and 8
(first row and third column), where the previous relationship is
depicted, suggest that the populations can be segregated exclu-
sively in terms of the planar and vertical eccentricities.

5. Planar and vertical eccentricities

5.1. Epicycle approximation

In the attempt to devise better method for labelling the stars and
to reduce the overlapping of the stellar populations of the sam-
ple, we used the epicycle approximation for disc stars (with the
notation used in Cubarsi et al. (2017), hereafter Paper II). We
consider the planar and vertical eccentricities as defined in Eqs.
2 and 3. To visualise the assignation of populations, we plot the
eccentricities of each star (regardless whether they belong to the
disc or not) versus the parameter x . In doing so, we obtain the
graphs of Figures 5 and 6, which depend on the labelling method.
In these three cases, most of the thin disc stars (79-80% of the
sample) have a planar eccentricity of 0 ≤ e ≤ 0.35; most of the

thick disc stars (ca.18-19% of the sample) have a planar eccen-
tricity of 0 ≤ e ≤ 0.5; and most of the halo stars (2-4% of the
sample) have a planar eccentricity of e > 0.5. We notice that the
grey line indicating the cumulative percentage of population is
consistent with the ranges of values of x assigned to each popu-
lation. A similar analysis for the absolute velocity, the maximum
distance zmax to the Galactic plane, and the vertical eccentricity
e′ is also shown. From those graphs we see that most thin-disc
stars satisfy |v| ≤ 120 km s−1(consistent with the sampling pa-
rameter |v| = 123 km s−1), zmax ≤ 1 kpc, and e′ ≤ 0.1.

Some of these features are similar to the segregation car-
ried out from the relation between vertical and planar eccen-
tricities of Paper I. For instance, for the method L2, which pro-
vides a reliable separation of disc and halo populations, the re-
spective planar and perpendicular eccentricities determine two
well-separated regions, which are more evident when plotting
the squared eccentricities. However, thin and thick discs still end
up partially overlapping.

It is widely recognised that the relationship between the ec-
centricities and the velocity components of the local circular mo-
tion point C at a given time t for each star can be written as (see,
e.g. Eqs. (42), (43), and (46) of Paper II):

U − Uc = κa cos(κt − ϕ), (4)

V − Vc = −κγ−1
c a sin(κt − ϕ), (5)

W −Wc = νb cos(νt − ψ). (6)

Let us remember that the planar and vertical epicycle frequencies
κ and ν are Galactic constants depending on the second deriva-
tives of the potential (e.g. Binney & Tremaine 2008); a, b, ϕ, ψ
are constants that are specific for each star, obtained from the
initial conditions of position and velocity when integrating the
equations of the star’s motion; and γc = 2Ωc κ

−1 is a dimension-
less constant depending on the angular velocity of C, which can
be assumed constant around the radius rc (as justified in Paper
II, Eq. (41)). Nevertheless, we go on to see that phases ϕ, ψ are
not needed for our calculations.

Bearing in mind Eqs. 2 and 3, we get the following relation-
ships between positive constants:

a = rc e; b ≡ zmax = rc e′. (7)

As a first approximation, we assume that Uc = U0, Vc = V0
and Wc = W0, that is, the circular motion point coincides with
the local centroid. For disc stellar samples, this assumption is
generally satisfied in the radial and vertical directions. For the
rotation component, a priory, it is satisfied for low eccentricity
stars, that is, for thin-disc stars, otherwise the asymmetric drift
∆ = Vc − V0 should be considered to get a more accurate model.

For a given planar eccentricity, e, we find stars in the sam-
ple with radial velocities of U − U0 ∈ [−a, a] (e.g. Fig. 7, 1st
row, 1st column) and stars with peculiar rotation velocity within
the interval [−κγ−1

c a, κγ−1
c a] around the mean rotation veloc-

ity V0, which depends on the stellar population they belong to,
tending towards −220 km s−1for the halo, or even lower values
for the counter-rotating halo (e.g. Fig. 7, 1st row, 2nd column).
We notice, however, that as the value V0 decreases, the eccen-
tricity increases, and the number of stars in the sample decreases
dramatically, so that at the corresponding eccentricity level, the
graph becomes nearly empty.

For the vertical eccentricity and the vertical velocity compo-
nent, by taking into account that the height of star referred to the
GP is z = b sin(νt − ψ) and that our stellar sample is approxi-
mately on the GP, we have sin(νt − ψ) ≈ 0 and cos(νt − ψ) ≈ ±1.
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Therefore, for a fixed vertical eccentricity, we may find stars with
values W − W0 ≈ −νb or W ≈ νb, but not within these values,
as shown in Figures 7 and 8 (3rd row, 3rd column). Thus, in the
GP, Eq. 6 becomes:
|W −W0| = νb. (8)
However, the above graphs are not actually V-shaped. It is
for this reason that the foregoing equation, associated with the
epicycle approach, is replaced in Section 5.3.2 by a more gen-
eral approximation.

5.2. Most likely population from eccentricities

To evaluate which population a star is most likely to belong to
in terms of the planar and vertical eccentricities, we compare
the probability density functions of two consecutive segregated
populations (with regard to the order induced by the sampling
parameter P), namely, thin disc versus thick disc, and disc versus
halo.

Let us consider a star s with velocity v. We write the re-
spective partial velocity density functions for two populations,
S ′ and S ′′, as f ′(v) = π(v|S ′) and f ′′(v) = π(v|S ′′), which are
assumed to be Schwarzschild distributions. The total probabil-
ity density function is obtained from superposition as f (v) =
n′ f ′(v)+n′′ f ′′(v), where n′ = π(s ∈ S ′) and n′′ = π(s ∈ S ′′). Ac-
cording to the epicycle approximation, the respective partial ve-
locity ellipsoids are aligned along their symmetry axes. In terms
of the planar and vertical eccentricities, we want to determine
the population component with with the highest probability. For
instance, we want to see whether:
n′ f ′(v) ≥ n′′ f ′′(v). (9)
Such a condition is derived in Appendix B, where we define:

Σ′ =
σ′1σ

′
2σ
′
3

n′
, Σ′′ =

σ′′1σ
′′
2σ
′′
3

n′′
, Q = 2 ln

Σ′′

Σ′
(10)

and we get Eq. B.5, which can be expressed as:

a2

A
+

b2

B
≤ 1; A =

Q
κ2

σ′1
2σ′′1

2

σ′′1
2 − σ′1

2 , B =
Q
ν2

σ′3
2σ′′3

2

σ′′3
2 − σ′3

2 .

(11)
Alternatively, by taking into account Eq. 7 in terms of the eccen-
tricities, we can also write:

e2

A0
+

e′2

B0
≤ 1; A0 =

A
r2

0

, B0 =
B
r2

0

. (12)

Since the velocity dispersions of the thin disc, thick disc, and
halo increase progressively, that is, σ′′1

2
− σ′1

2 > 0 and σ′′3
2
−

σ′3
2 > 0, and their population fractions decrease, that is, n′ > n′′,

the values of A, B, A0, B0, and Q are positive. In such a case, the
two foregoing equations define a quarter ellipse. Alternatively, if
we write Eq. 12 as:

e′2 ≤ B0

(
1 −

e2

A0

)
(13)

we get a triangle region for the squared eccentricities e2 and e′2.
We refer to the last representation as an eccentricity diagram.

Figure 9 displays these regions, estimated from the popula-
tion index for the labelling method L2. Despite the fact that the
segregation was carried out from the velocities instead of the ec-
centricities, we can observe the tendency of the disc (green plus
blue dots) and the halo (red dots) to separate. On the contrary,
stars labelled as thin- and thick-disc clearly overlap. This is due
to the labelling inaccuracy.
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Fig. 9. Planar and vertical eccentricities (left) and squared eccentricities
(right) of the stars labelled according to method L2 (green for thin disc,
blue for thick disc, and red for halo).

5.3. Determining the local constants

Several remarks must be made about the samples used to de-
termine the local kinematic parameters of disc stars. If the 111
stars of the counter-rotating halo are included, that is, stars with
V < −230 km s−1, the fitting for V0 is not reliable. It leads to a
circular motion point with positive heliocentric rotation veloc-
ity – which does not make any sense. Even so, some stars still
introduce a significant uncertainty, such as those with a likely
erroneous heliocentric velocity greater than 500 km s−1. We find
that all these unreliable stars are excluded when considering only
the stars with a planar heliocentric velocity

√
U2 + V2 < 230

km s−1.
The samples selected from the sampling parameter |W | al-

ways contain stars with great eccentricity for which the epicycle
approximation is not valid. The reason can be deduced from the
graph of Fig. 7 in the first row, third column, where we see that
even for low values |W | the planar eccentricities can reach maxi-
mum values.

Nevertheless, the above remark supports the explanation of
how the sampling parameter P = |W | exhibited the proper be-
haviour to segregate populations: the algorithm worked appro-
priately since there were enough stars in each population com-
ponent to be segregated. Thus, the sampling parameter |W | = 35
provided a segregation of thin disc, on the one hand, and thick
disc plus halo, on the other hand, although their distributions are
slightly truncated, mainly those of the thick disc and the halo.
Hence, the thin disc was rather well identified as population 1,
although a partial thick disc and a partial halo (stars with higher
eccentricities) remained mixed into population 2. For these rea-
sons, the most representative samples of the disc to determine
the local parameters are those selected from the absolute helio-
centric velocity |v|.

5.3.1. Planar fitting

Firstly, we fit the linear relationship given of Eq. B.2. Bearing in
mind Eq. 7, we write it as:

e2 = k1(U − Uc)2 + k2(V − Vc)2; k1 =
1
κ2r2

c
, k2 =

γ2
c

κ2r2
c
. (14)

We use the estimation obtained by fitting e instead of the or-
bital amplitude, a, because the eccentricities of the stars in the
sample are referred to by their circular velocity point, rc, and, in
many cases, this value is far from r0. However, the ratio e = a

rc

always satisfies the condition e ≤ 1. Therefore, the planar ec-
centricities (linked to the planar epicycle frequency and to the
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angular rotation velocity, which, as commented above, are ap-
proximately constant in a wide region around r0) are marked by
a condition that is homogeneous for all the stellar sample, re-
gardless of whether rc is similar to or different from r0. Instead,
if we use the orbital amplitude a, the local value of a

r0
is uncon-

strained (and much greater than 1 for most halo stars) and has
a great dispersion depending on the star’s value rc. This is illus-
trated in Fig. 10 via a comparison of the left and right plots.

The resulting parameters are listed in Table 2. They are very
stable for the thin and thick discs, that is, with either of the sam-
ples containing stars with a population index 0 ≤ x ≤ α for
0.5 ≤ α ≤ 2.5 (method L2), as well as for samples selected as
|v| ≤ 50, |v| ≤ 123. The fitting for disc stars is shown in Fig. 10
(continuous line) for values: Uc = −10 km s−1, Vc = −20 km s−1,
γ2

c = 1.96, κ2r2
c = 9.45 × 104 km2 s−2.

0.00 5.00 10.00 15.00 20.00 25.00 30.00

a²

0.0E00

5.0E04

1.0E05

1.5E05

2.0E05

2.5E05

3.0E05

(U
-U

0
)²

+
y
² 

(V
-V

0
)²

0.00 0.20 0.40 0.60 0.80 1.00

e²

0.0E00

5.0E04

1.0E05

1.5E05

2.0E05

2.5E05

3.0E05

(U
-U

0
)²

+
y
² 

(V
-V

0
)²

Fig. 10. Fitting by using the orbital amplitude a and (right) by using the
planar eccentricity e (left). Fitting of Eq. 14 (continuous line) for disc
stars, excluding the counter-rotating halo.

We note that we get a value of γ2
c ≈ 2, which is consistent

with the ratio µ11/µ22 ≈ 2 of the optimal sample selected from
|v| ≤ 230, containing mostly thin- and thick-disk stars. In Fig.
10 (right), we show the fitting obtained by excluding the stars
with absolute velocity |v| > 500, the stars of the counter-rotating
halo, V < −230, as well as the halo stars with a planar velocity
√

U2 + V2 < 230.

Sample Uc Vc γ2
c κ2r2

c

0 ≤ x ≤ 0.5 -9.98 -20.37 1.92 9.28 × 104

0 ≤ x ≤ 1 -10.02 -20.28 1.94 9.32 × 104

0 ≤ x ≤ 1.5 -10.05 -20.27 1.95 9.36 × 104

0 ≤ x ≤ 2 -10.10 -20.31 1.97 9.46 × 104

0 ≤ x ≤ 2.5 -10.12 -20.33 1.98 9.49 × 104

|v| ≤ 50 -10.01 -20.41 1.88 9.17 × 104

|v| ≤ 123 -9.98 -20.42 1.97 9.45 × 104

|v| ≤ 230 -10.10 -20.56 2.02 9.83 × 104

|v| ≤ 350 -10.53 -15.26 1.43 9.95 × 104

|W | ≤ 35 -10.33 -20.01 2.23 1.10 × 105

|W | ≤ 130 -9.90 -19.75 2.30 1.17 × 105

|W | ≤ 170 -10.22 -15.38 1.96 1.16 × 105

Table 2. Fitting parameters of Eq. 14 for several subsamples. The pop-
ulation index is for the labelling method L2.

By assuming r0 = rc = 8.3 kpc (Reid et al. 2014), which
is the average value of the mean orbital radius of the stars
in the sample, the values obtained from the population index
yield a planar epicycle frequency κ = 36.9 ± 0.2 km s−1 kpc−1,
which is consistent with the commonly assumed value (Binney

& Tremaine 2008). The values for (Uc,Vc), match the mean ve-
locities (U0,V0) obtained for the corresponding disc samples se-
lected by P = |v| as well as P = |W | (tables in Appendix D) with
an error of ±1. Hence, we can confirm the assumption that the
local centroid is approximately in a circular orbit.

Furthermore, fitting from planar eccentricities means it is not
necessary to estimate the asymmetric drift. In other words, we
get a value, Vc, that matches the mean velocity, V0; whereas
working with the orbital amplitude, the former value would dif-
fer from the latter depending on the asymmetric drift of the sub-
sample. The reason for this is the following: the ellipses of Eq. 14
describe the motion of the stars referred to their circular velocity
point, that is, their mean radius, say rm, which not always match
the local one rc. However, the local constants γc and κ should not
differ very much from point to point. On the one hand, the latter
does not depend on rc. On the other hand, the former depends on
the angular velocity of the circular velocity Ωc = 1

2κγc, which,
although it is not constant, satisfies the following (Paper II, Eq.
39):

∂Ωc(r)
∂r

∣∣∣∣∣
rc

=
κγ−1

c − 2Ωc(rc)
rc

=
1 − γ2

c

γ2
c

2Ωc(rc)
rc

. (15)

Therefore, around the Sun,
∣∣∣∣∆Ωc

Ωc

∣∣∣∣ ≈ ∣∣∣∣∆rc
rc

∣∣∣∣. Hence, this variation is
relatively small. Thus, the respective fittings, even for different
circular velocity points, can be gathered as the same fitting.

5.3.2. Vertical fitting

Although the amplitude of the graph e vs U −U0 varies linearly,
it does not in the graph e′ versus W−W0, as shown in Fig. 7, sec-
ond row, third column. Figure 11 shows that the approximation
of linear dependence is valid only for small values of zmax and
e′ for the core of the thin disc. The absolute value of the slope
increases with higher values of zmax. When fitting the vertical
motion, it occurs the opposite to the planar fitting. The vertical
eccentricity of a star has been defined depending on the radius rc
to which is referred its circular orbit. For the local stellar sample,
rc covers a wide range around r0; then, for the same value zmax,
we may get lower or higher vertical eccentricities. However, the
vertical amplitude zmax is quite homogeneous among the stars
in the sample, meaning that it is not sensitive to the mean or-
bital radius of the star. This fact that the vertical eccentricity is
not appropriate for the vertical fitting, is illustrated in Figure 11,
where the graph on the left, plotted in terms of e′, shows a greater
dispersion of dots (they form something similar to layers), espe-
cially for thick-disc and halo stars, than the graph on the right,
plotted in terms of zmax. In Appendix C , we discuss this situa-
tion in detail. The graph on the right of Fig. 11 also depicts the
biquadratic fit (grey continuous line) for

z2
max = c1(W −Wc)2 + c2(W −Wc)4 (16)

by using the average values obtained from the samples se-
lected according to population index, corresponding to values
c1 = 2.49 × 10−4 kpc2 s2 km−2, c2 = 4.99 × 10−8 kpc2 s4 km−4,
Wc = −6.1 km s−1.

Hence, for these stars, the value ν corresponding to the ratio

1
ν2 = lim

W→Wc

z2
max

(W −Wc)2 = c1 (17)

can be estimated as ν = 63.4±0.1 km s−1 kpc−1, which is consis-
tent with (although slightly lower than) the commonly assumed
value of 70 (Binney & Tremaine 2008). The parameters are quite
stable for different subsamples, as shown in Table 3.
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Fig. 11. Relation e′2-W (left) and z2
max-W (right), for thin-disc (green),

thick-disc (blue), and halo (red) stars. The continuous grey line is the
biquadratic fit for the stars satisfying |v| < 50 km s−1.

Sample Wc c1 c2 ν

0 ≤ x ≤ 0.5 −5.98 2.49 × 10−4 4.19 × 10−8 63.4
0 ≤ x ≤ 1 −6.04 2.48 × 10−4 4.84 × 10−8 63.5
0 ≤ x ≤ 1.5 −6.12 2.48 × 10−4 5.02 × 10−8 63.4
0 ≤ x ≤ 2 −6.21 2.50 × 10−4 5.11 × 10−8 63.3
0 ≤ x ≤ 2.5 −6.17 2.49 × 10−4 4.99 × 10−8 63.3
|v| ≤ 50 −6.05 2.36 × 10−4 5.98 × 10−8 65.1
|v| ≤ 123 −5.98 2.59 × 10−4 4.39 × 10−8 62.2
|v| ≤ 230 −6.27 2.51 × 10−4 5.48 × 10−8 63.1

Table 3. Parameters obtained by fitting Eq. 16. The population index is
for the labelling method L2.

5.4. Eccentricity diagram

5.4.1. Linear approximation

Firstly, we use the linear model of the epicycle approximation
instead of the biquadratic fitting of Eq. 16 to carry out a test of
the eccentricity diagram. By assuming rc = r0, we write Eq. 8
as:

e′2 = p (W −W0)2; p =
1
ν2r2

0

. (18)

For the perpendicular motion, across the whole stellar sam-
ple, we use the estimation ν = 63.4 km s−1 kpc−1, which, accord-
ing to Table 3 is shared by all the subsamples with 0 ≤ x ≤ 2.5.
By assuming r0 = 8.3 kpc, we get ν2r2

0 = 2.77 × 105 km2 s−2.
For the planar motion, we use the estimations γ2

c = 1.96 and
κ2r2

0 = 9.45×104 km2 s−2, also approximately shared, according
to Table 2, by all the subsamples with 0 ≤ x ≤ 2.5.

By taking into account the velocity moments and population
fractions for the subsamples listed in Table 1 we determine the
constants A0 and B0 for the limits of the triangular regions Ri
listed in Table 4.

5.4.2. A more precise approximation

We now modify the model by taking into account the biquadratic
approximation of Eq. 16, written as:

e′2 = p (W −W0)2 + q (W −W0)4, (19)

where p = c1
r2

0
and q = c2

r2
0
. Then, the peculiar vertical velocity in

terms of the vertical eccentricity may be written as:

(W −W0)2 =

√
p2 + 4qe′2 − p

2q
=

e′2

p
2

1 +
√

1 + 4αe′2
; α = qp−2

(20)

If q = 0 we get the linear relationship of Eq. 18. We note that the
value

α =
q
p2 =

c2r2
0

c2
1

obtained in the current fitting yields a value α ≈ 55. On the
other hand, e′2 can reach values close to 0.1. Therefore 4αe′2 is
not always lesser than 1. Hence, Taylor expansions of the square
root in Eq. 20 should be avoided. Thus, Eq. 12 becomes:

e2

A0
+

e′2

B0

2

1 +
√

1 + 4αe′2
≤ 1. (21)

The above equation is an area quite similar to the quarter ellipse
of Eq. 12, but with the vertical semiaxis modified, as it is shown
in Fig. 12, green and blue curves on the left. For e = 0, the
maximum value ζ for the vertical eccentricity satisfies:

ζ2

B0

2

1 +
√

1 + 4αζ2
= 1 =⇒ ζ =

√
B0 + αB2

0. (22)

Hence, Eq. 21 can be approximated as

e2

A0
+

e′2

B1
≤ 1; B1 = B0(1 + αB0). (23)

Eq. 13 becomes modified and approximated in the same way as

e′2 ≤ B1

(
1 −

e2

A0

)
. (24)

Fig. 12. Quarter ellipses (left) define the regions up to R2 (green line)
and up to R4 (blue line) according to the biquadratic approximation:
Eq. 21. The red dotted lines are for the linear model, Eq. 18. The black
dashed lines are approximation of the biquadratic model by an ellipse,
Eq. 23. (Right) The corresponding regions in terms of the squared ec-
centricities.

As displayed in Fig. 12, since the thin-disc stars (within the
region limited by R2) have low eccentricities, the approximation
of the biquadratic fit (green curve) by a modified ellipse (black
dashed curve) does not introduces a significant error. For the
whole disc (within the region limited by R4, blue curve), the error
is greater, due to the thick-disc stars with higher eccentricities,
although qualitatively, the approximated ellipse is still meaning-
ful and easier to describe. In any case, both approximations are
far better than the linear approach (red dotted lines). Thus, the
triangular regions can be improved according to the values B1
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Region Sample A0 emax B0 e′max zmax B1 e′max zmax

R1 |v| ≤ 123 7.88 × 10−2 0.28 5.62 × 10−3 0.07 0.6 7.37 × 10−3 0.09 0.7
R2 |v| ≤ 230 1.00 × 10−1 0.32 6.78 × 10−3 0.08 0.7 9.33 × 10−3 0.10 0.8
R3 |v| ≤ 350 1.67 × 10−1 0.41 1.46 × 10−2 0.12 1.00 2.65 × 10−2 0.16 1.3
R4 |W | ≤ 170 1.91 × 10−1 0.44 2.06 × 10−2 0.14 1.2 4.40 × 10−2 0.21 1.7

Table 4. Fitting parameters for the elliptical model, Eq. 13, and for the improved model, Eq. 24, with their corresponding bounds.
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Fig. 13. Triangular regions according to Table 12 (left). The comple-
mentary area is the halo (red). (Right) The same plot for the actual stars
in the sample.

listed in Table 4. The resulting eccentricity diagram, is shown in
Fig. 13.

The stars can now be labelled according to the regions of
the above diagram. The number of stars in a region, Ri, that do
not belong to the regions, R j, for j < i is denoted as Ni, and
the corresponding population or subpopulation component as Pi.
Thus,

N1=63219 , N2=3162 , N3=5484 , N4=825 , N5=1649.

The means and second central moments of these components are
listed in Table 5.

6. Discussion

There are two ways which allow us to check whether the re-
gions selected from eccentricities instead of the population in-
dex depict the expected properties and, in particular, whether
they isolate populations. One is the plot e in terms of W, sug-
gested in the previous section. We see in Fig. 14 (left) that the
populations remain well isolated, without overlapping areas. The
other is shown in Fig. 14 (right), where the stars are labelled
according to the eccentricity diagram instead of the population
index from the methods L1 or L2. For each star we plot the
quantity p(W − W0)2 + q(W − W0)4, expressed in Eq. 19, ver-
sus c1(U − U0)2 + c2(V − V0)2, from Eq. 14, by using the lo-
cal constants obtained in the corresponding fittings, i.e., p, q, c1
and c2. The first three constants are equivalent to κ, γc and ν,
while the latter measures the deviation from the linear model in
the vertical component of the velocity. Therefore, with these lo-
cal constants, the planar eccentricity and the vertical eccentricity
can be used to determine the stars’ population. The loss of lin-
earity in the vertical component of the epicycle model justifies
the slightly convex shape of the contours separating the corre-
sponding regions in the graph, which was predicted in Fig. 12
(right). Nevertheless, the approximate values for the maximum
eccentricities that determine the respective regions can be esti-
mated with enough accuracy from the corrected elliptical model
given by Eq. 23.
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Fig. 14. Plot e versus W that isolates populations (left). Plot p(W −
W0)2 + q(W −W0)4 versus c1(U −U0)2 + c2(V − V0)2 that isolates pop-
ulations and reproduces the eccentricity diagram (right).

The mean velocities and the second central moments of the
subsamples selected by star eccentricities of Table 5 can be now
compared to the values of Table 1 obtained from the MEMPHIS
algorithm to identify the populations. The values for P1 + P2
are consistent with those of the thin disc t (population 1) ob-
tained from the sampling parameters |v| = 123, |v| = 230, and
|W | = 35 km s−1, although, in general, the method of eccentrici-
ties provides a slightly higher value for the moment µ020, which
is compensated for by using a lower differential rotation veloc-
ity. Therefore, we can associate the triangular region up to R2
with the thin disc population8. We note that on the one hand, the
subsample P1 has a moment µ002 still too low compared with the
respective populations 1 of the mentioned samples to be consid-
ered the full thin disc. On the other hand, for the subsample P2,
this moment is a bit short compared with the thick disc samples
obtained as population 2 from the sampling parameters |v| = 230
and |v| = 350. Therefore, we should consider the stars of the sub-
sample P2 as a tail of the thin disc that have a behaviour similar
to the stars of a tail of the thick disc and, therefore, not an inde-
pendent subpopulation.

For the same reasons, the subsamples P3 and P4 can be
considered thick-disc samples. The heliocentric rotation veloc-
ity of about −57 km s−1for the subsample P4 is consistent with
that of the MWTD stars, which may vary between −120 and
−50 km s−1, depending on the selected samples (e.g. Carollo
et al. 2010; Ruchti et al. 2011; Kordopatis et al. 2013; Beers
et al. 2014). Hence, subsample P3 can be associated with the
canonical subcomponent and P4 with the MWTD. Nevertheless,
it is worth noticing the difference in radial motion of about 9
km s−1between these two subpopulations.

The values for P1 + P2 + P3 + P4 are similar to the total mo-
ments of the sample selected from |v| ≤ 123, which contained
the thin and thick discs, and are similar to the population 1 ob-
tained from |W | ≤ 170. Those values are slightly lower than
the total moments of the samples selected from |v| ≤ 230 and

8 As a general rule, the more reliable moment to depend on is µ020,
since µ200 has greater sampling variance and µ020 is very sensible to the
rotation velocity obtained from the mixture model.
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Pop. U0 V0 W0 µ200 µ020 µ002 µ110 µ101 µ011

P1 85% -9.23 -17.04 -7.05 829.09 356.93 179.35 88.23 6.01 2.25
± 0.11 0.08 0.05 4.45 2.01 1.02 2.12 1.50 1.02

P2 4% -10.00 -26.99 -10.05 3080.59 1077.88 653.61 281.89 -48.77 -16.75
± 0.11 0.08 0.05 4.45 2.01 1.02 2.12 1.50 12.78

t ∼ P1 + P2 89% -9.27 -17.52 -7.19 936.36 395.76 202.35 97.80 3.51 2.70
± 0.99 0.58 -10.05 45.66 19.89 9.99 26.46 19.34 12.78

P3 7.5% -13.21 -37.61 -11.18 3621.42 1281.57 1205.20 299.61 -22.38 35.50
± 0.81 0.48 0.47 47.12 27.18 13.47 23.71 22.24 15.10

P4 1% -21.91 -57.16 -10.62 4190.59 1237.61 2211.36 148.14 -39.25 -17.32
± 2.25 1.22 1.64 159.00 51.78 54.79 71.99 89.24 56.87

T ∼ P3 + P4 8.5% -14.35 -40.16 -11.10 3704.46 1319.28 1336.81 299.14 -25.14 27.35
± 0.77 0.46 0.46 45.95 24.79 14.38 22.97 22.57 15.11

D ∼ P1 + P2 + P3 + P4 98% -9.71 -19.48 -7.53 1178.66 516.58 302.03 124.40 2.59 11.86
± 0.13 0.08 0.06 6.59 3.57 1.99 3.12 2.50 1.68

H ∼ P5 2% -18.55 -103.75 -14.86 10125.91 5865.47 4190.30 -420.76 -205.00 -325.77
± 2.48 1.89 1.59 418.90 525.05 144.63 311.24 171.90 144.63

Table 5. Mean velocities, central moments, and population fractions (relative to the whole sample) for the populations and subpopulations obtained
from the eccentricity diagram.

|v| ≤ 350 (which may indicate that these ones are contaminated
with halo stars). Furthermore, the values corresponding to the
samples P1 + P2 + P3 (not shown in the table) match the ones of
population 1 obtained for the sample |v| ≤ 350, a finding that is
consistent with the interpretation that the latter sample contains a
mixture of thin-disc and canonical thick-disc stars. The samples
limited by |W | = 130 and |v| = 350 yield a similar population 1,
composed of thin-disc and canonical thick-disc stars.

With regard to P5, the moments are similar to those of the
halo obtained from the sampling parameter |W | = 170 (in par-
ticular µ002). However, the rotation heliocentric velocity is sig-
nificantly lower in the latter sample, while that of P5 is compa-
rable to the one of population 2 from the samples selected as
|v| ≤ 350 and |W | ≤ 35, which indicates that P5 still contains
some MWTD stars mixed with the MRHD stars. It is not possi-
ble to be more precise with regard to this point, as among the few
stars with |v| > 230, we find MWTD stars mixed with MRHD
stars, with a few chemical halo stars (some of them belonging
to the counter-rotating halo) and with stars with likely errors in
their estimations. Hence, the parameters of the kinematical halo
of our disc sample are only a wholesale estimation.

The mean metallicities [Fe/H] of these subsamples decrease
from P1 to P5. The kinematical halo component P5 can be as-
sociated with the MRHD, in agreement with Di Matteo et al.
(2019). With regard to the chemical halo stars having [Fe/H]<
−1, the current sample only contains 565 stars satisfying such a
condition. This set of stars does not conform an own (Gaussian)
population, but together with the MRHD stars, they become one
single component.

7. Conclusions

The combination of methods explained in this work has allowed
us to characterise thin- and thick-disc stars in terms of their pla-
nar and vertical eccentricities with the help of the eccentricity
diagram. In a first step, by using a local disc sample from the
Gaia DR2 catalogue composed of 74,339 stars within a solar
radius of 100 pc, we applied the MEMPHIS segregation algo-
rithm to obtain the central velocity moments of its stellar popu-
lation components (by associating each kinematical population
with one Schwarzschild velocity distribution).

In Appendix A, we prove that the determination of the GP
is quite accurate, with an error of ±20 pc, which might pro-
duce a maximum error of about ±1.3 km s−1in the estimation

of the vertical velocities. According to Table 1, we obtained the
following velocity dispersions: for the thin disc (σ1, σ2, σ3) =
(30, 14, 14) km s−1(77% of the total sample), for the thick disc
(σ1, σ2, σ3) = (53, 34, 31) km s−1(21% of the total sample).
Together, they form the disc, with (σ1, σ2, σ3) = (32, 19, 18)
km s−1(98% of the total sample), while the remaining halo stars
have (σ1, σ2, σ3) = (110, 56, 57) km s−1(2% of the total sample).
Within the thick disc, two subcomponents are distinguished: one
of them associated with the MWTD (Carollo et al. 2010, 2019)
and the latter with non-Gaussian distribution.

As in our previous analyses from other catalogues (Cubarsi
et al. 2010; Alcobé & Cubarsi 2005; Cubarsi & Alcobé 2004)
we get a small but significant vertex deviation of the disc popu-
lations and subpopulations, although now they are accompanied
by more accurate estimates. The differential mean radial motion
between populations is very small, but non-null, for the thin disc
and the canonical thick disc, 5 ± 2 km s−1, and it is more signifi-
cant, namely, 9 ± 3 km s−1, between the canonical thick disc and
the MWTD stars. The few stars of the kinematical halo compos-
ing our sample do not show a significant tilt nor vertex deviation
of the velocity ellipsoid. However, they also maintain a differ-
ence of radial mean velocity of about 9 km s−1with regard to the
disc.

The dispersions for the thin disc are similar to those obtained
by using the same segregation algorithm published in Alcobé &
Cubarsi (2005) for a HIPPARCOS sample and in Cubarsi et al.
(2010) for a GCS sample. However, they differ from those ob-
tained by Anguiano et al. (2018) by using the Gaia DR1 cata-
logue with chemical labelling. As commented at the beginning,
the concepts of stellar population from a chemical or a kinemat-
ical approach do not match, since a chemical population is not
constrained by the shape of the velocity distribution, which is
a condition for our model. For the remaining populations, the
actual sample provides slightly lower dispersions, although the
sampling parameters for the optimal segregations are similar. We
attribute it to the different composition of the sample.

In terms of the orbital eccentricities, the thin disc and the
whole disc are respectively associated with the following trian-
gular regions:

A : e′2 ≤ 9.33 × 10−3
(
1 −

e2

1.00 × 10−1

)
; 0 ≤ e ≤ 0.32; 0 ≤ e′ ≤ 0.10 (zmax = 0.8 kpc),

B : e′2 ≤ 4.40 × 10−2
(
1 −

e2

1.91 × 10−1

)
; 0 ≤ e ≤ 0.44; 0 ≤ e′ ≤ 0.21 (zmax = 1.7 kpc).
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If the couple (e, e′) ∈ A, the star can be considered to belong to
the thin disc; if (e, e′) ∈ B\A, the star can be considered to belong
to the thick disc; otherwise, it is a star of the kinematical halo.
These regions have been defined in a more exact way by taking
into account Eq. 16, although, in such a case, the eccentricity
diagram describes the above regions in a less simple way.

There are two main advantages of labelling the stars accord-
ing to the method of eccentricities instead of the inference meth-
ods L1 and L2. One is that there are no overlapping areas. Of
course, these regions depend on the kinematical parameters used
to discriminate the populations. A change in these parameters
will not provide a dramatic change, but it can determine a region
with an uncertain classification. The other advantage is that at
the border between these regions, there is no a concentration of
stars, as it happened with the methods L1 and L2. Let us remem-
ber that for the method L2, the interval 1.9 < x ≤ 2 contained
a half-thick disc. Instead, once it reached the average eccentrici-
ties (and maximum height) of the thin-disc distribution, the star
density decreases rapidly as eccentricities decrease.

In a future work, we would like to justify and improve the
approximation given by Eq. 16 for the vertical velocity curve
expressed in Eq. C.1. This can provide us with useful informa-
tion about the local shape of the potential function, allowing us
to replace this approximate formula by a more meaningful one.

Similarly, it would be interesting to deepen the study of the
age-velocity dispersion relation through the stars’ orbital ec-
centricities. The power law σi ∝ t α, which can be fitted with
αi ' 0.3 for the radial and rotation velocities, i = 1, 2 (e.g. Bin-
ney & Tremaine 2008), by assuming that the average epicycle
energy of a disc’s stellar population is ER ∝ σ

2
1 led to a consid-

eration of the sampling parameter P = |v| as highly correlated
with the age t in Alcobé & Cubarsi (2005) . This was related
to the increasing radial velocity dispersion of disc stellar sam-
ples in terms of the sampling parameter P and the corresponding
saturations of σ1 indicating that the thin disc or the thick disc
populations were totally included in the sample. Now, the linear
behaviour given by Eq. 14, when taking average values, leads
to the relationship 〈e2〉 = k1σ

2
1 + k2σ

2
2. Therefore, the average

squared planar eccenricity of a disc stellar sample could be used
as an estimate 〈e2〉 ∝ t 2α of the average age of its stars.
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Appendix A: Considering whether the sample is
representative of the GP

The purpose of this section is to analyse how the velocity mo-
ments depend on the determination of the GP and how these
moments might indicate that we are dealing with a GP repre-
sentative stellar sample. The second central moment most af-
fected by a bad determination of the GP is µ002 = 〈(W − W0)2〉

(brackets denote mean values). The key question is whether its
actual value accounts for the true value on the GP or whether it
becomes slightly modified since most of the stars in the stellar
sample could be placed a bit over the GP, say 0.1 kpc. A neces-
sary correction of such a value can be interpreted in two ways:

(a) It can be assumed that we actually work with a sample taken
basically from the GP but the covariances are computed with
regard to an erroneous mean. The centroid velocity, W0, may
be inexact due to a biased kinematic behaviour of some stars.
For instance, the sample limited by |W | < 35 (heliocentric
velocities) yields a value W0 = −5.7, whilst the sample sat-
isfying |W | < 170 produces a value of W0 = −7.7 km s−1. In
such a case, if the vertical centroid velocity at the GP is W1
instead of the measured value W0, then, the corresponding
second moment should be:

〈(W −W1)2〉 = 〈[(W −W0) + (W0 −W1)]2〉 =

= 〈(W −W0)2〉 − (W0 −W1)2.

Thus, we should correct the moment with regard to an
amount corresponding to the difference (∆W)2 = (W0−W1)2.
According to the epicycle approximation, such a difference,
in z = 0, is related to a difference in the height over the GP
∆z, such that (∆W)2 ≈ ν2(∆z)2. If |∆z| . 0.1, then |∆W | . 7.
In this case, the correction of the moment may be estimated
in less than 50 km2 s−2.

(b) Alternatively, we may assume that the sample is slightly dis-
placed from the GP. In such a case we will use the depen-
dency of the moments in terms of the position (r, z) provided
by the Chandrasekhar model, where the velocity distribution
is, by hypothesis, quadratic in the peculiar velocities (in our
case, trivariate Gaussian). Such relationships and their gradi-
ents are given in Cubarsi (2014a). We only need the follow-
ing ones:

µ002 =
k1 + k4z2

k1k3 + k1k4r2 + k3k4z2 ,

∂µ002

∂z2 =
k1k2

4r2

(k1k3 + k1k4r2 + k3k4z2)2 ,

µ101 =
k4rz

k1k3 + k1k4r2 + k3k4z2 ,

where the k’s are positive constants. Then, by setting the no-
tation of µGP

002 as the value at the GP, corresponding to z = 0,
it satisfies:

µ002 ≤
k1

k1k3 + k1k4r2 +
k4z2

k1k3 + k1k4r2 + k3k4z2 = µGP
002 +

∣∣∣∣∣ zr µ101

∣∣∣∣∣ .

Therefore, we have9

∂µ002

∂z2

∣∣∣∣∣
z=0

> 0, µ002 − µ
GP
002 ≤

∣∣∣∣∣ zr µ101

∣∣∣∣∣ .
The factor z

r has an order of magnitude of −2 and the moment
µ101 clearly vanishes with regard to its sampling variance for
all the working samples as well as for their segregated pop-
ulations. In any case, for the working samples, we have an
order of magnitude of 1. Therefore, the variation of the mo-
ment µ002 is at most of few units, similar to its sampling vari-
ance. Then, we should abandon the interpretation of case (b).

We have other resources to test whether we are working with a
GP sample, assuming that the GP is a symmetry plane for the ve-
locity distribution. If we take a kinematical representative sam-
ple, such as the one limited by |v| < 350 (which excludes some
anomalous stars and contains the entire disc), we can check the
symmetry about z = 0 from the moments with odd powers in
the vertical peculiar velocity. As seen above, the moment µ101
is clearly null. The moment µ011 is slightly different from zero,
although very low, which is still possible in an axisymmetric
model (Cubarsi 1990) where the mean velocities would not be
even functions of z. Therefore, this may suggest a small (local)
break in the assumption of a symmetry plane. The third moments
µ201 and µ021 vanish (within 2σ error) and µ003 is very small
(−738 ± 312). These moments, at z = 0, should vanish.

According to case (a), let us estimate the possible deviation
from the GP, by assuming that W1 (different from W0) should
be the exact mean vertical velocity in the GP. We assume that
U0 and V0 are the mean radial and rotation velocities in the GP,
which are provided without a significant error by our sample. We
also assume that the planar and vertical velocity distributions are
independent (which is quite true, since the only significant non-
vanishing non-diagonal moment is µ110, responsible for a small
vertex deviation). Thus,

�
�µGP

201 = 〈(U − U0)2(W −W1)〉 = 〈(U − U0)2[(W −W0) + (W0 −W1)]〉 =

= µ201 + µ200∆W.

Hence,

∆W = −
µ201

µ200
. (A.1)

Similarly,

�
�µGP

021 = 〈(V − V0)2(W −W1)〉 = 〈(V − V0)2[(W −W0) + (W0 −W1)]〉 =

= µ021 + µ020∆W

Hence,

∆W = −
µ021

µ020
. (A.2)

Finally,

�
�µGP

003 = 〈(W −W1)3〉 = 〈[(W −W0) + (W0 −W1)]3〉 =

= µ003 + 3µ002∆W − 2(∆W)3.

9 This approach is valid if we assume an approximate Gaussian ve-
locity distribution for the whole disc. If we assume that the disc is the
mixture of two Gaussian distributions, this behaviour applies to each
Gaussian component, where the differential mean vertical velocity is
very small and proportional to z. Therefore, it is also a valid approxima-
tion for each population.
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This is a depressed cubic equation in ∆W, (∆W)3 − 3
2µ002∆W −

1
2µ003 = 0, with roots

∆W =
µ003

µ002
, ∆W = −

µ003

2µ002
. (A.3)

Since, for the working samples, we have µ021 . 0, µ201 . 0, and
µ003 . 0, from the above equations we must conclude,

∆W ≈ −
µ201

µ200
≈ −

µ021

µ020
≈ −

µ003

2µ002
. (A.4)

These quotients provide us with values of 0.6±0.3, 1.3±0.8, 3.9±
1.6, respectively. By assuming a possible error within 2σ, the
three quotients would be satisfied altogether if ∆W is between
0.6 and 1.3 km s−1.

In summary, a correction of µ002 by a quantity (∆W)2 of a one
or two units can be carried out, but this is not necessary since it
is similar to its sampling variance. We can safely affirm that we
are working with a sample basically drawn from the GP.

An error of 100 pc in the GP, associated with a value ∆W =
7, would produce moments µ201 = −∆Wµ200 ≈ 9000, µ021 =
−∆Wµ020 ≈ 4900, and µ003 = −2∆Wµ002 ≈ 5300, which are
between 5 and 10 times greater than the actual values. Therefore,
the error in the determination of the GP, by taking the maximum
estimate ∆W = 1.3, should not be greater than 20 pc.

A non-null value for the moment µ011 would indicate that,
locally, there is a slight asymmetry of the velocity distribution
with respect to the GP. However, when the segregation disc-halo
is carried out, such a moment is nearly null for the disc (7.5 ± 6)
and also for the MRHD plus the inner halo (−2 ± 98). The total
moment (−19.6±3) is basically due to the differential velocities,

µ011 = n′n′′(V ′0 − V ′′0 )(W ′
0 −W ′′0 ),

since the difference W ′0 −W ′′0 is not null. The mean value for the
disc is W ′0 ≈ −7.5, which is a value similar to that of the local
centroid. Nevertheless, the mean value for the halo is W ′′0 ≈ −13
if the segregation is carried out from the sample limited by
|W | = 170. This would suggest that the vertical velocity dis-
tribution of the halo stars contained in the working sample is not
symmetric about the GP. Such a correction in about 4-6 km s−1,
should be only applied to the halo, and would be associated with
an error ∆z of about 60-85 pc. However, the halo is scarcely rep-
resentative in our sample and is the less reliable component.

Appendix B: Condition for most likely population

Equation 9 can be explicitly written as:

n′

(2π)
3
2σ′1σ

′
2σ
′
3

exp

− (U′ − U′0)2

2σ′1
2 −

(V ′ − V ′0)2

2σ′2
2 −

(W ′ −W ′0)2

2σ′3
2

 ≥
n′′

(2π)
3
2σ′′1σ

′′
2σ
′′
3

exp

− (U′′ − U′′0 )2

2σ′′1
2 −

(V ′′ − V ′′0 )2

2σ′′2
2 −

(W ′′ −W ′′0 )2

2σ′′3
2

 .
(B.1)

According to the epicycle approximation via Eqs. 4, 5 , and 8,
we have:

(U − U0)2 + γ2
c (V − V0)2 = κ2a2, (B.2)

(W −W0)2 = ν2b2, (B.3)

and it approximately satisfies (Paper II, Eq. (61)):

σ′1
2

= γ2
cσ
′
2

2, σ′′1
2

= γ2
cσ
′′
2

2,

so that by taking logarithms and simplifying the equation, we
write Eq. B.1 as

ln n′ − ln(σ′1σ
′
2σ
′
3) −

κ2a2

2σ′1
2 −

ν2b2

2σ′3
2 ≥

ln n′′ − ln(σ′′1σ
′′
2σ
′′
3 ) −

κ2a2

2σ′′1
2 −

ν2b2

2σ′′3
2 . (B.4)

By using the parameters defined in Eq. 10, and rearranging
terms, we get the following condition:

Q ≥ κ2a2

 1
σ′1

2 −
1
σ′′1

2

 + ν2b2

 1
σ′3

2 −
1
σ′′3

2

 , (B.5)

which involves the star amplitudes a and b instead of its veloci-
ties.

Appendix C: Errors in fitting the vertical
eccentricities

There is a behaviour related to the vertical eccentricities that af-
fects the stars but not always in the same way, as shown Fig. 11
(left), where the stars indexed as halo (red) define an inner and
more convex curve to that of the disc stars.

Locally, the value of the vertical epicycle frequency ν can be
assumed as constant. However, the solar sample contains many
stars with a mean orbital radius rc between 4 and 6 kpc, so that
they come from a far inner region of the Galaxy (there are also
many stars with rc > r0, but they are less problematic). Even
without considering that these stars might be oscillating accord-
ing to a slightly different vertical epicycle frequency associated
with the circular velocity point far from r0, when their orbits
reach the solar position at the local circular velocity point r0, we
come to assume the values e, e′ and zmax that have been obtained
from an approximated potential at rc instead of r0. With these
values it is possible to have some deviations from the model.

A more detailed analysis, displayed in Fig. C.1 (left), shows
that the stars escaping the main trend are those with rc more
distant to the solar radius r0. This is more important for the stars
with rc < r0 than for rc > r0. If the maximum height is referred to
r0 (Fig. C.1, right), the dispersion is lower. There are also some
non-reliable stars that can be removed to lessen the dispersion,
such as those with zmax > 15, |v| > 500, |W | > 170, and minimum
distance to the GC rp < 0.1.
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Fig. C.1. Dots plotted in terms of distances |rc − r0| with the maximum
height referred to rc (left) and to r0 (right).

When passing through the GP, all the stars have attained
maximum vertical speed. There is one relationship between zmax
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and W at z = 0, given by the potential U at r0 once integrated
the third equation of motion, z̈ = − ∂U

∂z . We refer to it as the max-
imum velocity curve:

1
2

W2(r0, 0) = U(r0, zmax) −U(r0, 0). (C.1)

Thus, such a great dispersion shown in the previous graphs (ex-
cept small dispersions allowed by some measurement errors)
makes no sense. Since the values of W are solely based on obser-
vational data, we cannot change them. We should conclude that
the estimations of zmax and, especially, e′ have some deviations
from the values they should attain at the local radius, because
they are estimated at values rc, different from r0.

We analyse the errors in fitting:

e′2 = a1w2 + a2w4 , w = W −W0. (C.2)

Without taking into account any specific model for the potential,
simply by using the fit, in a first approximation, by differenti-
ating the above expression, we get dw2

de′2 = 1
a1+2a2w2 . Let us take

b = zmax. Since the squared vertical eccentricity for a star with
a circular orbit with radius r is e′2 = b2

r2 , then de′2

dr2 = − e′2

r2 , so

that, dw2

dr2 = dw2

de′2
de′2

dr2 = −w2

r2
a1+a2w2

a1+2a2w2 . Since the velocities must al-
ways be lower than the velocity measured at the GP, by defining
ϕ(w2) = a1+a2w2

a1+2a2w2 , we may estimate:

∆w2 = w2ϕ(w2)
∆r2

r2 = 2w2ϕ(w2)
∆r
r
.

Thus, we should translate the curve for the vertical eccentricities
with regard to the solar radius r0 in a quantity:

∆e′2 = 2(a1 + 2a2w2)w2ϕ(w2)
∆r
r0
. (C.3)

We note that the value ϕ(w2) varies from 1 to 1
2 as w varies from

0 to∞.
There are still three possible errors to consider: (a) the error

due to a bad estimation of the Galactic plane (GP) z = 0; (b) the
error in determining the maximum height zmax; and (c) the error
due to a bad determination of the W velocity. To study these
errors we assume a linear propagation of the error according to
the epicycle approximation. Then, the variables z and w satisfy
(e.g. Paper II, Eqs. (21) and (43)),

z2 +
w2

ν2 = b2. (C.4)

The error due to a bad determination of the GP is obtained by
differentiating Eq. C.4, assuming a b constant. Thus, the error
propagation corresponds to:

∆w2 = ν2∆z2.

Since the local sample contains stars within a radius of 0.1
pc, we may assume a maximum error of ∆z2 = 0.22. That is, by
assuming ν = 70, ∆w2 ≈ 200.

On the other hand, the same variation in w2 at z = 0 (see Fig.
C.2) can be interpreted as an error in z2 for constant b2, or as an
error in b2 under a correct determination of the GP. Hence, we as-
sume that, at worst, an erroneous determination of ∆b2 produces
an error of ∆w2 that is similar to the error due to the determina-
tion of the GP.

Dw2

z2
=D Db2

z2= b2- ____
2

w

z2D

b
2

n2

w2

Fig. C.2. Relationship between errors in z2, b2 and w2 from Eq. C.4.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

(W-W0)^2

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

e' ²

Fig. C.3. Curves indicate the maximum vertical velocity at r0 (black),
the errors for the determination of the GP and the maximum height
(red), an estimation of 20% relative error in the velocity (blue), an esti-
mation of 50% relative variation around the radius r0 (orange), and the
sum of all the errors (grey).

Now, we determine how the error due to a bad determina-
tion of the velocities, ∆w2, is translated to e′2. Let us assume a
relative error ∆w

w = β, hence ∆w2

w2 = 2β.
Thus, to Eq. C.3 we must add these three possible errors, as

follows,

∆e′2 = (a1 + 2a2w2)∆w2 = 2(a1 + 2a2w2) [∆z2 + w2β + w2ϕ(w2)
∆r
r0

].

(C.5)

The impact of these errors can be seen in Fig. C.3. The red
line accounts for the error due to the term ∆z2. Between the black
and the red lines, we can see most of the thin-disc stars and a
large share of the thick-disc stars. The blue line corresponds to
a value of β = 0.2. Although it seems excessive to assume an
error of 20% in the determination of the W velocities, there are
still a lot of disc stars excluded from this explanation. Clearly,
the prevailing error is the one associated with the different rc
for each star, corresponding to the orange line. The addition of
all the errors is represented in the grey line, which explains the
dispersion of the dots. For this reason, we fit the curve Eq. 16
instead of Eq. C.2.
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Appendix D: Tables of moments

ORDER1 CENTRED MOMENTS ERROR NON-CENTRED MOMENTS ERROR
100 0.00 0.13 -9.29 0.13
010 0.00 0.08 -19.58 0.08
001 0.00 0.07 -7.58 0.07
ORDER2
200 1150.09 6.44 1236.41 6.68
110 109.62 3.02 291.57 4.40
020 524.70 3.30 908.15 5.55
101 1.81 2.60 72.25 2.84
011 11.10 1.88 159.56 2.59
002 326.86 2.43 384.34 2.67
ORDER3
300 4313.60 373.19 -28545.92 630.27
210 -5019.28 151.04 -31267.81 272.15
120 -1394.12 113.50 -14125.34 257.82
030 -8251.89 165.00 -46584.41 462.46
201 -349.41 112.94 -9757.20 182.42
111 -144.40 69.35 -2493.51 107.37
021 28.89 59.23 -7291.06 167.33
102 168.80 94.29 -3429.65 121.25
012 -1879.38 73.99 -9573.78 117.23
003 -475.50 127.43 -8345.75 181.37
ORDER4
400 4340607.85 50618.06 4783455.44 54202.03
310 231202.88 13664.36 958486.69 22988.86
220 677033.79 7418.46 1498700.09 15874.45
130 141992.23 7831.50 782829.06 18618.44
040 1071053.68 15943.06 3071623.67 41596.00
301 5926.13 13337.94 232561.98 14713.62
211 11001.91 4154.13 259208.25 6847.60
121 692.49 3262.13 117905.69 6486.82
031 11626.51 5955.11 375885.66 13145.60
202 492546.46 6665.33 594507.38 7515.65
112 20281.19 3010.60 114956.99 4714.22
022 257111.49 4207.99 514404.86 7818.64
103 -4266.41 6194.06 69749.10 7136.09
013 3637.49 5086.17 211724.34 7498.30
004 536037.75 11942.60 666494.29 13877.93

Table D.1. Moments for 72859 stars with |v| ≤ 123 km s−1.

ORDER1 CENTRED MOMENTS ERROR NON-CENTRED MOMENTS ERROR
100 0.00 0.13 -9.91 0.13
010 -0.00 0.09 -20.84 0.09
001 0.00 0.07 -7.68 0.07
ORDER2
200 1291.92 8.24 1390.06 8.63
110 133.03 4.37 339.46 5.97
020 637.77 5.53 1071.93 8.20
101 2.30 3.36 78.36 3.62
011 15.33 2.87 175.31 3.72
002 369.71 3.14 428.66 3.36
ORDER3
300 348.35 743.87 -39021.21 1051.88
210 -12267.93 358.28 -43867.83 541.67
120 -1958.15 349.08 -18121.45 554.29
030 -19244.37 616.88 -68157.28 1076.09
201 -525.79 261.36 -11244.09 333.21
111 -254.25 172.93 -3060.26 232.66
021 -271.53 252.53 -9140.37 397.83
102 -787.09 181.07 -5069.15 212.70
012 -5009.55 193.87 -14176.74 259.22
003 -704.42 226.12 -9672.91 287.02
ORDER4
400 6699282.63 133209.14 7455916.77 140241.56
310 424487.12 48880.65 1641338.74 68506.54
220 1431031.96 37416.90 2757020.81 56261.63
130 161980.78 46714.29 1132886.48 72957.77
040 2677540.74 102770.44 6131332.80 171995.16
301 2820.47 40652.48 318725.10 42648.01
211 23512.11 17732.25 378771.18 24369.66
121 1980.93 18061.16 161725.93 26136.59
031 16023.51 37424.00 576263.73 56764.04
202 835143.25 20777.21 977743.40 21948.40
112 83738.75 13035.29 253069.73 17359.82
022 611790.59 22965.17 1058235.35 32412.39
103 -1583.93 16466.09 112781.85 17952.25
013 4317.78 19882.20 323966.31 25220.19
004 866651.21 26255.10 1022528.47 28831.43

Table D.2. Moments for 74153 stars with |v| ≤ 230 km s−1.

ORDER1 CENTRED MOMENTS ERROR NON-CENTRED MOMENTS ERROR
100 0.00 0.13 -9.90 0.13
010 -0.00 0.10 -21.15 0.10
001 -0.00 0.07 -7.69 0.07
ORDER2
200 1327.70 9.45 1425.68 9.78
110 130.26 6.01 339.62 7.52
020 706.87 8.85 1154.20 11.59
101 2.10 3.77 78.25 4.02
011 19.57 3.66 182.29 4.51
002 379.33 3.44 438.52 3.65
ORDER3
300 1137.00 1280.07 -39259.09 1529.76
210 -17943.64 866.95 -50675.68 1051.49
120 -1865.01 938.71 -18799.87 1197.18
030 -34083.51 1725.97 -88395.84 2402.89
201 -855.88 440.26 -11866.43 495.97
111 -201.91 341.22 -3052.90 405.47
021 -949.17 557.31 -10657.19 734.23
102 -715.14 272.59 -5088.09 302.72
012 -6618.43 311.58 -16194.38 383.84
003 -738.08 312.14 -9949.11 364.66
ORDER4
400 8389423.89 308531.02 9134520.01 305378.10
310 235094.13 189113.90 1636558.99 214044.35
220 2698725.26 170123.57 4310755.35 207794.49
130 112455.61 206002.38 1280579.28 271013.48
040 6322031.28 422325.88 11302843.12 598060.39
301 -49214.21 96505.89 278874.41 95933.05
211 100018.58 59451.78 514808.13 69052.35
121 -43800.13 64343.21 127911.60 79722.47
031 199730.00 123682.75 966325.80 166382.04
202 1056722.40 48041.62 1206249.84 48784.30
112 65890.28 33755.81 252814.50 40404.09
022 997978.56 58066.18 1543291.16 74075.24
103 31633.45 35496.40 146992.81 37078.04
013 59919.22 39267.84 426584.64 45322.14
004 1021123.02 48918.89 1182071.97 49029.37

Table D.3. Moments for 74272 stars with |v| ≤ 350 km s−1.

ORDER1 CENTRED MOMENTS ERROR NON-CENTRED MOMENTS ERROR
100 0.00 0.13 -9.81 0.13
010 -0.00 0.09 -19.71 0.09
001 -0.00 0.05 -5.71 0.05
ORDER2
200 1216.71 9.58 1312.91 9.92
110 131.52 6.14 324.87 7.49
020 591.81 7.78 980.41 10.05
101 4.76 2.08 60.74 2.26
011 -4.57 1.53 107.94 1.99
002 184.19 0.98 216.77 1.03
ORDER3
300 414.16 1781.24 -36330.12 1992.02
210 -15691.14 1247.28 -44152.54 1427.55
120 -2290.25 1196.58 -17091.69 1443.89
030 -23044.88 1762.38 -65704.54 2290.03
201 752.06 167.99 -6834.81 205.94
111 41.52 117.20 -1861.73 146.02
021 562.56 154.01 -4852.98 201.35
102 -70.18 41.77 -2250.60 55.50
012 -699.22 31.00 -4920.17 47.41
003 740.38 20.03 -2599.35 35.09
ORDER4
400 7674775.20 567559.51 8370054.40 585190.06
310 469354.02 360926.55 1685188.10 400906.11
220 2563105.76 300869.91 3895523.01 355699.96
130 268226.26 316332.97 1201437.08 394092.00
040 4435949.43 507980.10 7783978.06 667448.74
301 -85900.09 42397.69 100700.43 42471.29
211 -28595.68 25749.97 209167.81 30041.20
121 -32752.20 23051.10 57727.53 29723.92
031 -45374.88 33550.15 291037.56 45301.58
202 293078.15 5456.57 347424.18 5353.96
112 26502.12 3262.18 81025.07 3883.92
022 157086.56 3875.58 279690.33 5186.42
103 1834.66 1571.99 28996.35 1588.48
013 -7433.74 1170.34 55333.21 1437.20
004 98783.18 1001.09 118942.21 981.03

Table D.4. Moments for 67513 stars with |W | ≤ 35 km s−1.
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ORDER1 CENTRED MOMENTS ERROR NON-CENTRED MOMENTS ERROR
100 -0.00 0.14 -9.89 0.14
010 0.00 0.10 -21.36 0.10
001 0.00 0.07 -7.70 0.07
ORDER2
200 1376.55 12.33 1474.42 12.63
110 129.38 9.12 340.71 10.48
020 778.28 13.70 1234.58 16.33
101 1.47 4.36 77.62 4.58
011 20.02 4.53 184.43 5.31
002 383.76 3.50 443.00 3.71
ORDER3
300 -351.18 3132.65 -42174.91 3406.13
210 -28783.84 2041.41 -62839.08 2252.57
120 794.13 2479.75 -16947.19 2799.35
030 -52124.04 4312.06 -111745.69 5102.28
201 -837.00 934.85 -12214.43 972.04
111 -432.85 640.12 -3284.78 707.08
021 -1161.05 1106.35 -11518.65 1263.81
102 -626.71 393.83 -5032.10 414.87
012 -7688.88 430.68 -17460.05 502.04
003 -797.58 298.79 -10114.63 358.67
ORDER4
400 13204166.24 1311625.59 14036025.07 1386946.31
310 22433.98 580770.81 1815617.31 619990.37
220 6205478.10 660698.84 8277786.29 720678.12
130 -324588.82 942521.05 907150.49 1058863.99
040 14554852.17 1746360.58 21347510.21 2002081.43
301 -399163.34 396361.96 -49279.38 401231.63
211 213342.19 153079.30 726024.59 166944.12
121 -126080.48 200080.56 43471.64 220940.16
031 409070.02 402307.41 1370959.01 437456.33
202 1415628.10 138206.37 1566267.15 134475.76
112 95682.57 71096.00 296617.91 78297.12
022 1522514.40 129970.83 2130283.67 141460.01
103 -1098.61 56188.85 113700.45 54843.82
013 38675.43 54458.51 435830.92 61528.18
004 1057383.40 39892.86 1221850.83 41996.37

Table D.5. Moments for 74332 stars with |W | ≤ 170 km s−1.

ORDER1 CENTRED MOMENTS ERROR NON-CENTRED MOMENTS ERROR
100 0.00 0.12 -9.70 0.12
010 0.00 0.06 -13.36 0.06
001 -0.00 0.06 -7.25 0.06
ORDER2
200 887.80 5.28 981.98 5.75
110 108.34 1.90 238.03 2.78
020 245.20 1.32 423.80 2.17
101 2.68 1.77 73.01 2.06
011 1.38 0.88 98.23 1.22
002 194.46 1.22 246.98 1.52
ORDER3
300 739.22 264.69 -26021.92 483.75
210 -878.39 79.50 -16104.52 151.69
120 -678.73 37.78 -7687.27 100.07
030 -50.42 30.17 -12268.09 97.48
201 -49.88 53.13 -7218.56 110.08
111 -20.69 26.14 -1794.95 44.07
021 -8.69 13.94 -3116.94 38.69
102 -13.86 36.66 -2449.58 58.18
012 200.91 17.37 -3119.82 31.56
003 -284.44 28.41 -4893.05 62.69
ORDER4
400 2449739.51 30958.88 2931587.61 38795.74
310 225860.61 6335.72 629807.43 11327.22
220 226299.79 2335.10 517632.05 5612.75
130 73139.53 1525.78 277456.96 4166.15
040 163107.05 1705.48 460463.54 4320.58
301 498.98 5853.33 191297.19 7780.62
211 1774.40 1320.21 120381.76 2414.66
121 1678.11 636.14 58863.27 1484.84
031 2361.03 660.36 92358.08 1479.33
202 187262.93 2084.37 258899.75 2964.15
112 15746.37 614.82 52717.34 1129.04
022 46269.08 450.29 98549.70 922.64
103 454.85 1386.40 48663.53 2065.51
013 -325.38 634.18 60915.54 1114.49
004 127024.97 1580.65 199312.12 2519.98

Table D.6. Moments for 59434 thin disc stars (0 ≤ x ≤ 1) from method
L1.

ORDER1 CENTRED MOMENTS ERROR NON-CENTRED MOMENTS ERROR
100 0.00 0.44 -10.51 0.44
010 -0.00 0.25 -48.29 0.25
001 -0.00 0.26 -9.52 0.26
ORDER2
200 2740.00 29.16 2850.45 30.49
110 207.24 12.39 714.77 23.12
020 871.43 13.45 3203.74 21.19
101 -2.86 13.18 97.14 14.17
011 12.66 8.42 472.20 13.11
002 943.94 10.84 1034.48 11.77
ORDER3
300 1980.89 2323.63 -85565.69 4131.76
210 13799.32 837.93 -128215.99 1683.11
120 -2917.13 613.30 -56602.82 1635.45
030 22320.42 734.38 -216570.16 2237.31
201 -406.10 559.19 -27469.11 1219.97
111 -994.42 410.80 -7790.90 694.03
021 1937.63 421.23 -29770.29 947.28
102 -1255.99 550.09 -12073.20 754.98
012 8474.43 338.54 -41725.65 613.08
003 1101.06 559.59 -26706.16 997.47
ORDER4
400 19611138.82 442132.41 21355763.87 501961.55
310 1097485.47 107671.47 4863399.50 203900.43
220 2226875.72 53247.90 8120433.53 123167.77
130 75381.38 51781.44 4224049.84 136919.15
040 3332928.53 84675.16 16655450.74 232241.32
301 -113555.38 121701.87 712490.37 137449.97
211 18890.99 35435.34 1277925.70 58508.65
121 -83506.81 25975.49 536969.45 48183.62
031 141310.72 36239.78 2009937.05 80228.36
202 2472356.13 54990.73 2867678.35 63084.13
112 113459.71 22698.04 647684.12 36054.32
022 1008465.11 23620.38 2667964.87 44700.76
103 -23961.29 44472.62 291777.48 52187.66
013 35250.75 27956.59 1086526.07 46221.12
004 2563595.06 66723.32 3042680.99 81280.58

Table D.7. Moments for 14188 thick disc stars (1 < x ≤ 2.5) from
method L1.

ORDER1 CENTRED MOMENTS ERROR NON-CENTRED MOMENTS ERROR
100 0.00 0.13 -9.86 0.13
010 0.00 0.09 -20.10 0.09
001 0.00 0.07 -7.68 0.07
ORDER2
200 1244.52 7.56 1341.76 7.98
110 131.65 3.48 329.88 5.05
020 555.99 3.61 960.05 6.02
101 1.96 2.93 77.70 3.20
011 15.79 2.00 170.19 2.77
002 339.54 2.56 398.54 2.83
ORDER3
300 281.10 577.40 -37495.37 892.77
210 -8162.01 218.83 -37729.61 383.88
120 -2360.47 155.32 -17120.52 333.91
030 -10061.41 196.97 -51711.63 530.70
201 -773.26 177.77 -11118.08 253.62
111 -218.52 89.46 -2947.36 139.03
021 -244.86 61.07 -8253.88 189.75
102 -344.81 121.12 -4304.94 153.87
012 -2318.05 82.47 -10571.72 133.59
003 -814.91 140.83 -9092.21 201.79
ORDER4
400 5759204.18 92651.03 6483707.34 105400.27
310 412297.31 24678.45 1445872.20 40915.83
220 909705.13 13306.70 1984999.09 26639.77
130 227106.25 12176.78 1038980.90 27290.58
040 1268222.15 20028.56 3588388.86 50826.89
301 -19752.64 24027.28 291701.08 27307.70
211 31529.53 7212.53 343499.97 11598.80
121 1198.55 5036.85 150953.15 9416.11
031 31252.51 7251.84 462362.20 15803.10
202 630403.50 11287.40 761857.65 12992.17
112 44690.72 4520.05 167600.81 7081.39
022 294146.29 5051.45 594687.47 9445.06
103 -2300.26 8701.80 95652.27 10229.32
013 19824.32 5811.30 258799.72 9102.99
004 598936.28 13584.81 747651.23 16373.56

Table D.8. Moments for 73622 disc stars (0 ≤ x ≤ 2.5) from method
L1.
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ORDER1 CENTRED MOMENTS ERROR NON-CENTRED MOMENTS ERROR
100 -0.00 0.12 -9.75 0.12
010 0.00 0.06 -13.47 0.06
001 -0.00 0.06 -7.26 0.06
ORDER2
200 895.27 5.33 990.31 5.81
110 110.08 1.92 241.41 2.82
020 247.99 1.33 429.46 2.20
101 2.61 1.79 73.35 2.08
011 1.47 0.89 99.23 1.23
002 195.55 1.23 248.21 1.53
ORDER3
300 667.61 269.69 -26442.87 492.11
210 -959.39 80.69 -16446.39 155.02
120 -728.47 38.35 -7881.10 102.31
030 -90.37 30.48 -12557.09 99.64
201 -58.47 54.20 -7295.45 111.68
111 -16.93 26.47 -1818.25 44.77
021 -6.42 14.22 -3162.49 39.32
102 -14.11 37.09 -2471.75 58.80
012 199.12 17.48 -3165.90 31.84
003 -289.92 28.67 -4928.96 63.14
ORDER4
400 2501362.43 31764.76 2994894.30 39896.02
310 233086.24 6476.03 648748.38 11692.84
220 231616.67 2392.69 532779.54 5795.76
130 75815.78 1557.59 287604.32 4295.19
040 167009.27 1732.85 474828.91 4450.04
301 1488.35 5992.40 195822.00 7981.12
211 1965.94 1344.65 123250.74 2475.16
121 1628.20 649.51 60196.41 1523.28
031 2418.68 672.17 94600.07 1517.11
202 190674.34 2124.83 263267.21 3021.85
112 16085.22 624.48 53692.07 1150.03
022 47011.06 456.24 100416.45 938.15
103 287.60 1408.94 49059.49 2098.12
013 -285.73 639.30 62011.42 1126.99
004 128627.30 1600.96 201594.90 2547.56

Table D.9. Moments for 59722 thin disc stars (0 ≤ x ≤ 1) from method
L2.

ORDER1 CENTRED MOMENTS ERROR NON-CENTRED MOMENTS ERROR
100 0.00 0.45 -8.23 0.45
010 0.00 0.24 -44.43 0.24
001 -0.00 0.26 -9.03 0.26
ORDER2
200 2495.14 26.89 2562.90 27.65
110 175.41 11.43 541.17 20.86
020 741.33 12.88 2715.65 16.03
101 5.15 11.95 79.45 12.79
011 17.30 7.79 418.32 11.07
002 812.81 9.02 894.26 9.83
ORDER3
300 4933.49 1822.45 -57240.93 3359.57
210 15654.60 696.73 -101111.57 1279.83
120 -4172.52 551.59 -42114.87 1223.16
030 26584.17 701.93 -159960.95 1391.34
201 -114.83 236.72 -23330.44 937.20
111 -1181.19 340.75 -6436.75 509.28
021 2301.15 438.23 -23745.69 650.26
102 60.34 399.49 -7393.85 567.74
012 9786.58 264.41 -30260.83 400.66
003 2067.02 358.19 -20675.47 694.56
ORDER4
400 15202610.33 297339.00 16059161.32 325726.53
310 831458.34 76896.32 3023937.48 135497.73
220 1651058.05 39693.94 5695438.23 74052.78
130 -82073.22 41282.15 2829812.41 81116.87
040 2608635.38 70048.09 10563439.12 111972.32
301 31260.28 77094.84 551755.73 86400.98
211 1502.40 23433.92 943547.34 34985.93
121 -54647.20 16953.14 434305.67 28268.77
031 150098.14 29249.03 1389509.89 43314.12
202 1771781.33 31604.52 2038226.97 36366.94
112 57143.32 14601.88 343298.06 20001.46
022 752642.97 16809.67 1695106.72 22080.60
103 -13254.78 26278.63 156561.84 30810.18
013 85732.46 17525.51 743662.50 23786.76
004 1669580.71 34582.51 1998836.72 41877.13

Table D.10. Moments for 12357 thick disc stars (1 < x ≤ 2) from
method L2.

ORDER1 CENTRED MOMENTS ERROR NON-CENTRED MOMENTS ERROR
100 0.00 0.13 -9.49 0.13
010 -0.00 0.08 -18.78 0.08
001 0.00 0.06 -7.56 0.06
ORDER2
200 1169.02 6.78 1259.03 7.11
110 114.33 2.92 292.49 4.30
020 469.10 2.66 821.73 4.61
101 2.86 2.54 74.57 2.79
011 11.90 1.58 153.85 2.21
002 302.00 2.05 359.13 2.30
ORDER3
300 2412.78 426.62 -31714.29 707.96
210 -5142.25 153.07 -30954.41 281.21
120 -1646.25 94.62 -13736.14 231.90
030 -4821.18 99.07 -37870.08 327.31
201 -474.61 117.37 -10045.59 187.23
111 -232.59 59.04 -2610.05 95.35
021 -34.55 29.04 -6692.87 120.10
102 129.01 81.62 -3321.48 109.37
012 -895.43 48.62 -7819.39 83.08
003 -352.12 81.79 -7632.18 132.37
ORDER4
400 4682638.14 60296.97 5230530.56 67551.67
310 282292.82 14499.58 1055076.21 25457.98
220 626370.23 6805.83 1418414.06 15429.64
130 150192.47 5700.13 723172.19 14844.49
040 729497.79 8393.06 2208510.75 24218.47
301 3900.72 14209.15 257902.56 16277.94
211 14454.60 3701.96 263848.18 6463.16
121 6194.58 2312.66 124335.82 5053.22
031 16119.20 3255.16 316909.19 7778.05
202 463239.26 6136.62 567904.71 7188.59
112 20769.07 2106.13 103392.61 3594.79
022 180106.91 2224.11 374462.35 4481.54
103 -2245.85 4657.41 67728.94 5582.58
013 13356.27 2675.63 179023.40 4308.08
004 393125.90 6444.37 510564.51 7926.23

Table D.11. Moments for 72079 disc stars (0 ≤ x ≤ 2) from method
L2.
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